mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-01 11:12:50 +08:00
Compare commits
1639 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
4ba7de0434 | ||
|
ea8a2d60d0 | ||
|
ae0ef374a3 | ||
|
edd112f35c | ||
|
7218d4aa96 | ||
|
4380b7b35e | ||
|
3307ff1d4a | ||
|
2aadc90c2d | ||
|
2353e16e20 | ||
|
6812f5e1f5 | ||
|
2077875622 | ||
|
678b7d69d2 | ||
|
f00742b078 | ||
|
fdb70c04e0 | ||
|
95ed6c45cd | ||
|
cf1087d409 | ||
|
766884fa5c | ||
|
6a8d88826e | ||
|
043103e1c9 | ||
|
5817583630 | ||
|
62bd2c8047 | ||
|
1b549e3199 | ||
|
c6290db118 | ||
|
d30cbcdfa5 | ||
|
62c6943699 | ||
|
8e7727f4ee | ||
|
e117e3c2b7 | ||
|
dcd75e7063 | ||
|
4465e4347e | ||
|
c5a08291f4 | ||
|
544b7dc2ed | ||
|
ac6c93df1f | ||
|
0b188ca00c | ||
|
0a004904bd | ||
|
bb7bf51554 | ||
|
7242caf0ff | ||
|
ed57b7ba2a | ||
|
b10333dafb | ||
|
6b46c8b689 | ||
|
be27eae175 | ||
|
31b0787e12 | ||
|
fffa43be86 | ||
|
8ed085e403 | ||
|
1221533542 | ||
|
8a3bddc7fa | ||
|
3a119ed5a2 | ||
|
0d7d0ea972 | ||
|
0e1fea71d2 | ||
|
ec04d7b89c | ||
|
cabc9207be | ||
|
f3d144f001 | ||
|
af2f75e688 | ||
|
9f2f12b0fe | ||
|
bb84c3c83e | ||
|
1cfe42916d | ||
|
5ed62a29c5 | ||
|
d39d3106cb | ||
|
8ffe7daa8d | ||
|
8fa55db1ec | ||
|
d8a5050cfb | ||
|
7ecc2d46ca | ||
|
d325a1a7c7 | ||
|
239ced076c | ||
|
f5f356649b | ||
|
13fd43617c | ||
|
fcd8662306 | ||
|
cecba57b3e | ||
|
83688b0b4d | ||
|
5308424705 | ||
|
81c4d9bee6 | ||
|
ee676d29f6 | ||
|
e3d5e0fa28 | ||
|
3425bc6e71 | ||
|
6cc247e815 | ||
|
16a3f8a71b | ||
|
65aa86ed39 | ||
|
fba9c9d9b9 | ||
|
21829b5eaf | ||
|
762c2d776f | ||
|
e31afdfd4f | ||
|
be02003d16 | ||
|
a4048b7bb6 | ||
|
73b12baaaf | ||
|
55d37dc472 | ||
|
54ffd06026 | ||
|
00c4988f89 | ||
|
57c6e23247 | ||
|
07f792148e | ||
|
e542f95710 | ||
|
4ecf4daeb2 | ||
|
519ac92803 | ||
|
16e1a5097e | ||
|
09436c1f45 | ||
|
f3a1dc8483 | ||
|
dc8cca11b3 | ||
|
e6f45d696b | ||
|
c477ae6405 | ||
|
52dead8775 | ||
|
a9211a730e | ||
|
763fbc294b | ||
|
b0c8ba73e0 | ||
|
b3b2c9f1ee | ||
|
f96c085857 | ||
|
b83a38eb98 | ||
|
f3fd67a9bb | ||
|
a6f3adf930 | ||
|
ed2f89efaf | ||
|
16e26236eb | ||
|
89a0d10c18 | ||
|
820ed764c4 | ||
|
66f719dd96 | ||
|
130bfaf8e3 | ||
|
e8a18c17e9 | ||
|
2b23c0a7a1 | ||
|
ab2c05115b | ||
|
8d472c20cb | ||
|
845af89ea4 | ||
|
cef3a0b2e2 | ||
|
865ac07491 | ||
|
f584db50cf | ||
|
97e0a4cb5c | ||
|
c6bcca4c83 | ||
|
5ee9eb64d8 | ||
|
937447bd8a | ||
|
52f25651a2 | ||
|
75d7c35fdf | ||
|
6a584b4092 | ||
|
41ec928683 | ||
|
d8295cd601 | ||
|
a8430f4244 | ||
|
072bfe29d3 | ||
|
c5b1d07e7c | ||
|
77c569e071 | ||
|
ae392e054c | ||
|
369474451d | ||
|
1f338deb87 | ||
|
00b5c05946 | ||
|
1bd319d16c | ||
|
fcca3b0b0d | ||
|
035e98035c | ||
|
b4407e4b0b | ||
|
036a76e9cb | ||
|
4fbdc65fcb | ||
|
2989d39239 | ||
|
1344416378 | ||
|
1dd67eb042 | ||
|
2b7d564e3b | ||
|
d43013f14a | ||
|
c91165a5a6 | ||
|
7f3c31f6f4 | ||
|
92101f34a1 | ||
|
a62cba3d05 | ||
|
d128382d3c | ||
|
278df4308d | ||
|
81768df04c | ||
|
1302ca39f6 | ||
|
b8cddbc7d7 | ||
|
ec7257e70f | ||
|
a4455e3021 | ||
|
610f164c69 | ||
|
0a0cfeb782 | ||
|
4831552856 | ||
|
125513fa5c | ||
|
8543400584 | ||
|
e1fdd6e2f8 | ||
|
d07983dceb | ||
|
9b94211045 | ||
|
0fe5631f9b | ||
|
b5d667cebf | ||
|
ac8c6fdd3a | ||
|
df8752e8ee | ||
|
3a13d2cdb1 | ||
|
3ef36d0057 | ||
|
1fd4d14fbb | ||
|
481ecbf9c5 | ||
|
60a84f664b | ||
|
11bcafd06a | ||
|
6c53471de2 | ||
|
39c1e29ed7 | ||
|
ee840b4e01 | ||
|
3bdc7e1e6c | ||
|
34fdabe005 | ||
|
24cb890432 | ||
|
39876b85fc | ||
|
7d8bee96fc | ||
|
8f5f4cc559 | ||
|
8ee26642f3 | ||
|
5817cda37e | ||
|
7e0cdb1a76 | ||
|
6c200fd218 | ||
|
61b24c3827 | ||
|
32cb086be1 | ||
|
80f8d037d0 | ||
|
11997593be | ||
|
903db09822 | ||
|
aaf2e6ba2a | ||
|
9deece1d50 | ||
|
f06a74ad4e | ||
|
6faa6fb53d | ||
|
5d1cc863a4 | ||
|
6d6e0f44fc | ||
|
2d421c57bf | ||
|
185c76f6ad | ||
|
468eea6f6d | ||
|
49436e93e6 | ||
|
b00cb2ed42 | ||
|
f547334604 | ||
|
01166841cf | ||
|
59e12bffe8 | ||
|
b6d8749bf3 | ||
|
bc9ada9db7 | ||
|
b6dc7e01e2 | ||
|
59a56f7226 | ||
|
9abee9cd1a | ||
|
833edc7c73 | ||
|
42e090d38b | ||
|
747e02d60d | ||
|
c841e92116 | ||
|
fbf49e2500 | ||
|
7d4dc25c23 | ||
|
b1b78daf06 | ||
|
dfbe1391e9 | ||
|
ebc989ad4a | ||
|
d8a5571be7 | ||
|
555b71a1cb | ||
|
4a5d0f0ba7 | ||
|
c518146e62 | ||
|
1d2131e5cb | ||
|
48a6584fb1 | ||
|
a71e685021 | ||
|
30038d9ce7 | ||
|
ef5f1c1def | ||
|
3dff4ecca8 | ||
|
0dbce72fb8 | ||
|
e9b427d535 | ||
|
d7d79f7e06 | ||
|
9ccfb97a2c | ||
|
165d3ed084 | ||
|
142fd7e755 | ||
|
7c1640ed5f | ||
|
cdafa8a15e | ||
|
b256ca86f0 | ||
|
7a7071e504 | ||
|
847ae972d0 | ||
|
1c634d9c53 | ||
|
99b71768a0 | ||
|
37b844d929 | ||
|
f5810a6e47 | ||
|
317d0855d2 | ||
|
0a43bc1960 | ||
|
5a29f49fb1 | ||
|
4e68828e46 | ||
|
9a0044ef5e | ||
|
d412301d08 | ||
|
5a0fd22c05 | ||
|
df63f05b47 | ||
|
98ea0e8109 | ||
|
33b4c33279 | ||
|
113cc3d920 | ||
|
b6c0e8608e | ||
|
eba31ae313 | ||
|
e7556b591e | ||
|
2b21c749c1 | ||
|
002f58ef8e | ||
|
c67d2b9327 | ||
|
6e58115f98 | ||
|
8dddffa340 | ||
|
e1d574a784 | ||
|
caef0a8937 | ||
|
392533e139 | ||
|
299cd03785 | ||
|
ee1b580328 | ||
|
54a090079c | ||
|
210cdb9557 | ||
|
e86cb8a4fa | ||
|
f4aa0a146c | ||
|
96636c3729 | ||
|
81947f1d2c | ||
|
dca5fe14c2 | ||
|
ca78ba964d | ||
|
9359ee18ad | ||
|
15f3087b96 | ||
|
1fcedf9af6 | ||
|
b0bbacaacb | ||
|
beb1a9f9d9 | ||
|
3fbd4848e8 | ||
|
184c5d0882 | ||
|
1f4a0b11ba | ||
|
b1d31ff0f9 | ||
|
a8c9d5663d | ||
|
475a355b82 | ||
|
3dc938268c | ||
|
e55ec42d3c | ||
|
2baf8bf03d | ||
|
13e1b7ee2b | ||
|
cd493b91de | ||
|
48173b606c | ||
|
0ad9f7f058 | ||
|
1adb46875f | ||
|
9b852ebe25 | ||
|
07aa7b71a3 | ||
|
1679930e00 | ||
|
d50e04b805 | ||
|
e515fe62de | ||
|
036fb0d561 | ||
|
bae934dea3 | ||
|
2e2f6bea07 | ||
|
1b02183da9 | ||
|
197aa3baf4 | ||
|
c6be9e242c | ||
|
2e954d8fd2 | ||
|
fafa3add84 | ||
|
593acca556 | ||
|
188f22d8a7 | ||
|
703bb9cc18 | ||
|
5433b318bb | ||
|
fe4f4e9758 | ||
|
1bb3d17d9e | ||
|
b93333685b | ||
|
fcd0f0480d | ||
|
ff6658ad27 | ||
|
28037c7834 | ||
|
f70208e1c0 | ||
|
7aa9767dc2 | ||
|
01915eaf40 | ||
|
e665e1fed5 | ||
|
1fee69f874 | ||
|
8504bde893 | ||
|
85f22d01bf | ||
|
822d5d362c | ||
|
32163e7ce0 | ||
|
454140d912 | ||
|
445d643ef3 | ||
|
e8c1979b79 | ||
|
f6779b0e0c | ||
|
245de012ca | ||
|
f143360ee6 | ||
|
f5350b103b | ||
|
aa7c07caf0 | ||
|
324f07613a | ||
|
0c59483368 | ||
|
1efe525df7 | ||
|
ee0b3b1e1a | ||
|
f87c788154 | ||
|
bbf334f823 | ||
|
770433fa33 | ||
|
788accb601 | ||
|
555f17c1ee | ||
|
8895cf1152 | ||
|
320e40d873 | ||
|
9ef85f8fc4 | ||
|
763f9b9df0 | ||
|
57043fb4e6 | ||
|
91433d639c | ||
|
864ee06243 | ||
|
a52496cc09 | ||
|
ad119afc58 | ||
|
8f73c75c16 | ||
|
5e699458e5 | ||
|
201a495154 | ||
|
d8cba9464f | ||
|
089c7d5e51 | ||
|
15bba15725 | ||
|
0b47c2a293 | ||
|
313ce9a576 | ||
|
ee87d318b8 | ||
|
4741eec2d1 | ||
|
d2afe0c63c | ||
|
bdded9d41a | ||
|
8c79fe6a5a | ||
|
63bb2b7235 | ||
|
e7f928adc4 | ||
|
62c12a133e | ||
|
08e8499a98 | ||
|
d5b18ee4a6 | ||
|
93cc1f167b | ||
|
c89d17ab63 | ||
|
9213e48fa2 | ||
|
0fb50f9c88 | ||
|
bcbe37ff52 | ||
|
994049380d | ||
|
cc6a6f698f | ||
|
7138b43873 | ||
|
aeb4f82ef2 | ||
|
f51ac40f0a | ||
|
165fe8e219 | ||
|
4243c618f0 | ||
|
368d22f79a | ||
|
b3561ae552 | ||
|
b395540826 | ||
|
a1b5644889 | ||
|
b471def13d | ||
|
b777fed171 | ||
|
618ceda6e9 | ||
|
014a7ea042 | ||
|
da542fad18 | ||
|
984b202f83 | ||
|
0c1ad5f3fb | ||
|
b4174021d6 | ||
|
bba52e258e | ||
|
1217240918 | ||
|
a0bcac80c0 | ||
|
8c57169eb7 | ||
|
b9eeaa9706 | ||
|
621d73e87c | ||
|
a02a140840 | ||
|
a0188a430f | ||
|
b5ef5059ee | ||
|
084d356c2c | ||
|
20a9565e36 | ||
|
85317bcbaf | ||
|
528fb4f799 | ||
|
aa7ec44367 | ||
|
b2ecb80729 | ||
|
9a3afbd5d1 | ||
|
37c60c7d14 | ||
|
b921dde749 | ||
|
d195329185 | ||
|
da8721a70e | ||
|
f318dc9464 | ||
|
01bbe66f41 | ||
|
bb664d2fc5 | ||
|
d0e729cd33 | ||
|
1178cb0e33 | ||
|
089f824cd1 | ||
|
813f5919a3 | ||
|
951d845af2 | ||
|
3bcb4633ca | ||
|
c76c33ddb1 | ||
|
a37ef0eaae | ||
|
377dfe5665 | ||
|
f6d5dd6f10 | ||
|
a36f9d923e | ||
|
c83b74ab9e | ||
|
c5780f5eaa | ||
|
4cd1d05429 | ||
|
459219a260 | ||
|
353259f03f | ||
|
8265d6a228 | ||
|
c0418062c0 | ||
|
47c2d91933 | ||
|
f07bad7144 | ||
|
9d437a5f4f | ||
|
1c1d6bea43 | ||
|
547f76e56e | ||
|
67d4757c35 | ||
|
cc703b58f5 | ||
|
8f786ee938 | ||
|
03dba638e6 | ||
|
dd22454fc5 | ||
|
904f18b4a2 | ||
|
b512a06c3d | ||
|
c31933ef9e | ||
|
8524dcaa4a | ||
|
53103f55b6 | ||
|
cc5cde734b | ||
|
af9ef037dd | ||
|
95d3c2620b | ||
|
1a48340680 | ||
|
d6ce1045f7 | ||
|
92a0d08e27 | ||
|
910884065e | ||
|
433d116080 | ||
|
d43080b534 | ||
|
5f0dd86c15 | ||
|
a421113466 | ||
|
acd62fddb8 | ||
|
d8f6569be1 | ||
|
857d23b324 | ||
|
ad00c793ce | ||
|
f6a2bfc0e8 | ||
|
1cc24ed206 | ||
|
a935933bed | ||
|
09419dfbab | ||
|
76ebd62ac1 | ||
|
fe4546a7bb | ||
|
cfb4c42ae4 | ||
|
fc18db6290 | ||
|
64bac4bc7e | ||
|
002c7d2867 | ||
|
a94a1eac67 | ||
|
a8a990a9a7 | ||
|
bff1b94583 | ||
|
4caf043cf8 | ||
|
50ca43c3fb | ||
|
0f49e9cb07 | ||
|
ba901bc000 | ||
|
6f1e450739 | ||
|
93d1cba06e | ||
|
cf8cad8e7e | ||
|
255260cfcb | ||
|
88b06a0c7f | ||
|
7f8c59144e | ||
|
90fb5605c1 | ||
|
9f9ad6435d | ||
|
819f487c8f | ||
|
9bbeba6323 | ||
|
92940817e7 | ||
|
68614f6bc1 | ||
|
235cdcacee | ||
|
b2c67a989a | ||
|
ed4c4bab49 | ||
|
1804e8a491 | ||
|
0ef1dc4dd5 | ||
|
b34c3bb796 | ||
|
aa5535c622 | ||
|
d4bf81b36a | ||
|
99265c7d2f | ||
|
0efa34c9ef | ||
|
f4729904f2 | ||
|
1c3d86cd65 | ||
|
f5e6e25a1b | ||
|
ae09c6c214 | ||
|
265a5821de | ||
|
9822cb7bac | ||
|
d51d96d594 | ||
|
09a3a59c88 | ||
|
dfa4e927dd | ||
|
61320965aa | ||
|
ab3782b0fa | ||
|
6cd90efb82 | ||
|
08ca40876a | ||
|
358708ee97 | ||
|
006022cadd | ||
|
e0325b1123 | ||
|
118ffe50e3 | ||
|
a6aeb98af6 | ||
|
c0ffe68745 | ||
|
1a8c26a7d9 | ||
|
4f1d5b6396 | ||
|
697657271f | ||
|
a489f10986 | ||
|
f48d07cd6c | ||
|
f1a1fb675b | ||
|
f8f3638bff | ||
|
1176cd6779 | ||
|
4165c4414d | ||
|
7f74e54bee | ||
|
3f3eeedca0 | ||
|
65699c29d4 | ||
|
a04538e70b | ||
|
708116a5f3 | ||
|
5a7ff02806 | ||
|
dcc67ac1a5 | ||
|
7ed5a712f8 | ||
|
7eaafe08bc | ||
|
503327b5bb | ||
|
4bba121f43 | ||
|
8dff6f630c | ||
|
253752ccca | ||
|
e99031daa4 | ||
|
23fc0c863e | ||
|
3295519099 | ||
|
20faaf3418 | ||
|
24419dd3f1 | ||
|
1eaaa85980 | ||
|
e272f87849 | ||
|
4d49dc0559 | ||
|
527ea7297b | ||
|
302e4e22bf | ||
|
2ea2bc7c71 | ||
|
505edd4da0 | ||
|
e27a0c3d53 | ||
|
32656bc50d | ||
|
bf2b8df540 | ||
|
7ad5b5c088 | ||
|
a2a9936e1f | ||
|
618a8e6c9f | ||
|
acd70faf17 | ||
|
9815d1712c | ||
|
e3a0640659 | ||
|
d4e0010027 | ||
|
d6b9a2024b | ||
|
625ae6f456 | ||
|
1c1e48a570 | ||
|
8ae2056b59 | ||
|
9c394f11ef | ||
|
662093b38c | ||
|
e928f7fc4c | ||
|
82344629af | ||
|
0d18cca0db | ||
|
0386fa6a4f | ||
|
d7476aa55b | ||
|
d996bea1c7 | ||
|
1e00de38cb | ||
|
d7e35ddcaa | ||
|
162f7028fc | ||
|
97f4451912 | ||
|
265875fffd | ||
|
bf2959c175 | ||
|
2e6dd72539 | ||
|
1598e5d355 | ||
|
2360d63ebc | ||
|
d68af5b04a | ||
|
3730fc046f | ||
|
7f7ee0a660 | ||
|
e3fb3c313c | ||
|
9d463b611c | ||
|
feb547aa99 | ||
|
f05685c7cf | ||
|
8c2b7aa1ab | ||
|
d99e164cad | ||
|
7dbb338df7 | ||
|
604f4005c9 | ||
|
c2766af6f4 | ||
|
e7b11e4fdb | ||
|
5ad86fc71d | ||
|
6f79974e8b | ||
|
51177c933a | ||
|
0f53217bbc | ||
|
e83cb17f97 | ||
|
7806bde8ad | ||
|
4b2c47fcae | ||
|
33e8bfc3ae | ||
|
ac677205c9 | ||
|
7fa46a24df | ||
|
7555c54c9f | ||
|
3f7c874594 | ||
|
25093c2d82 | ||
|
2eba98e152 | ||
|
8ecc12ee2a | ||
|
1ab3ea21ce | ||
|
9108df2b97 | ||
|
7487bd7b1f | ||
|
efda735f32 | ||
|
584ce3a105 | ||
|
1b02915d19 | ||
|
aba4268607 | ||
|
5142faca8f | ||
|
15786539d7 | ||
|
49054329d0 | ||
|
54961946ac | ||
|
2179b91acb | ||
|
fb8f35558a | ||
|
90cd3538de | ||
|
eca50b89a2 | ||
|
2876b429bc | ||
|
acfff4319a | ||
|
b86b869187 | ||
|
233556d1c7 | ||
|
4f10d3e28c | ||
|
13c7e873e0 | ||
|
3053a806e9 | ||
|
6cd0d7da29 | ||
|
d183966a5d | ||
|
825ea1c72d | ||
|
0d8aa6e6ef | ||
|
163cf2ba5c | ||
|
6989b8c341 | ||
|
c24d477bdb | ||
|
3e3969784f | ||
|
823d7f5c81 | ||
|
f03b20b267 | ||
|
9d1f079ca5 | ||
|
b9c6fcfe98 | ||
|
9079967ecf | ||
|
006b708b57 | ||
|
a7a5a5671f | ||
|
00545ebbe5 | ||
|
62cbcb646a | ||
|
bdb77bc85a | ||
|
b7b30fc961 | ||
|
63f0f9cf5d | ||
|
8fb211ad0e | ||
|
af50c03879 | ||
|
6fbf77aa54 | ||
|
79433fb6a6 | ||
|
16d4149c25 | ||
|
a24f94a36c | ||
|
9c4941a1ea | ||
|
bcb40fddc0 | ||
|
ae869639dd | ||
|
66ee9f0489 | ||
|
9a9716c228 | ||
|
a3f37777c1 | ||
|
5e440a467d | ||
|
7ba5488569 | ||
|
df722bf18e | ||
|
2c5f912e16 | ||
|
8ea1c5c69e | ||
|
92de726102 | ||
|
e90a1199da | ||
|
012f4fef6b | ||
|
e7e8d006cc | ||
|
5a3280ebee | ||
|
27be1e2122 | ||
|
39929bda5a | ||
|
e8e98bb125 | ||
|
132c1f1b0f | ||
|
26e897e861 | ||
|
5523a6fd2c | ||
|
4464a6ff5b | ||
|
a95fe78ae2 | ||
|
c639e52c6b | ||
|
d650e461f9 | ||
|
b855d3421e | ||
|
ef87942a42 | ||
|
059c2ffbea | ||
|
93f14bf121 | ||
|
20cf39ef63 | ||
|
139811bd80 | ||
|
74653597f1 | ||
|
9a6045eee6 | ||
|
332614579c | ||
|
56132983cf | ||
|
2b3173e5d2 | ||
|
4bae540cd6 | ||
|
e51a6f6367 | ||
|
f3ac97a749 | ||
|
dd2d1c3154 | ||
|
4df090ff48 | ||
|
6729ed2c7e | ||
|
ececd68f9a | ||
|
94ce8f561f | ||
|
4f85098088 | ||
|
3720618c63 | ||
|
b664bcf307 | ||
|
a3f99f123a | ||
|
85ed108fa6 | ||
|
54e749d1cf | ||
|
69e801d456 | ||
|
b596102bd5 | ||
|
5f1209bee6 | ||
|
73b684c7b0 | ||
|
b5eb939ce3 | ||
|
0a633f8098 | ||
|
8d20d6c95c | ||
|
1f1b8e825d | ||
|
f051bff1e6 | ||
|
853c95bb89 | ||
|
4269b4b49a | ||
|
6e4d5d9b2a | ||
|
81cf3bff08 | ||
|
f1b16236a4 | ||
|
1c69eea995 | ||
|
b37bb592ec | ||
|
362788cb09 | ||
|
87ab7fc01c | ||
|
15dbd4893e | ||
|
ddec40ac16 | ||
|
8e164f3594 | ||
|
1b71afb277 | ||
|
1ca0ccb4a6 | ||
|
8231359bbb | ||
|
ec793d16de | ||
|
ce0c73c032 | ||
|
ee3fe4226d | ||
|
534dc58363 | ||
|
66213043ac | ||
|
8ee588248e | ||
|
96d51325ad | ||
|
1e2ea34419 | ||
|
e265082db8 | ||
|
786e013375 | ||
|
615edf937e | ||
|
5df765e376 | ||
|
a2452d0b1c | ||
|
6ae0e27c8b | ||
|
fd79cf8551 | ||
|
66e473d519 | ||
|
0e33902f61 | ||
|
7ab42cb582 | ||
|
3501257780 | ||
|
5aa1e847d9 | ||
|
c576b7ca32 | ||
|
b76116bb6c | ||
|
35e44143fd | ||
|
c436d6ea0b | ||
|
bc7197dcfc | ||
|
5b128e6b0e | ||
|
a73988141b | ||
|
b70da07977 | ||
|
e80c98367e | ||
|
fb75821793 | ||
|
33fc7bec85 | ||
|
eb00df98be | ||
|
f30e0a75c4 | ||
|
52a6667da6 | ||
|
3bcfd73898 | ||
|
4aa0493e26 | ||
|
d1e766898c | ||
|
fefe2aa0e4 | ||
|
944ae8780c | ||
|
1ccc2d198e | ||
|
e4d26efea9 | ||
|
89138b8ab8 | ||
|
545ca7db99 | ||
|
daa1309466 | ||
|
4ed2b629a5 | ||
|
c9cd388630 | ||
|
27da57b179 | ||
|
f2dca55ae9 | ||
|
47e4b3724b | ||
|
2d19ba04e3 | ||
|
56058e2e84 | ||
|
90610a9093 | ||
|
38e955d4a9 | ||
|
2a5e52db51 | ||
|
c4e7809ad5 | ||
|
df9f30fdf8 | ||
|
a39dc400ed | ||
|
5456ec5fe1 | ||
|
d2f8bcb890 | ||
|
acfe212a63 | ||
|
42b6e1c6c1 | ||
|
009500bc6d | ||
|
75585d01f0 | ||
|
0be477292b | ||
|
4b6606832c | ||
|
16c7326bc5 | ||
|
677d57b7c7 | ||
|
5c53cf3244 | ||
|
f00f4ae9b6 | ||
|
38505ae9e1 | ||
|
2bb1ee3292 | ||
|
c52eeb70e7 | ||
|
3aefdad4ec | ||
|
561ae4d1af | ||
|
fb9280a0a7 | ||
|
0229263fbe | ||
|
ec6b85d8f9 | ||
|
dc64166d13 | ||
|
78cf256067 | ||
|
f6f58ebef0 | ||
|
945841503e | ||
|
0daee7cb39 | ||
|
7ccb86b215 | ||
|
857d5b9d0a | ||
|
4d8b782268 | ||
|
4f28e0e5d2 | ||
|
ab1775cd95 | ||
|
4ee9efbd98 | ||
|
995491594d | ||
|
52d3c42265 | ||
|
5585713182 | ||
|
3aa6a3e45b | ||
|
de277a8ab8 | ||
|
1797fe50a4 | ||
|
f6014742fa | ||
|
dec6ff046b | ||
|
c4d7d76358 | ||
|
4fccc65579 | ||
|
666013d09d | ||
|
9f36534b49 | ||
|
cc02fb6180 | ||
|
ce77a89d8c | ||
|
ac33d2f4da | ||
|
9df7a26e6b | ||
|
09cff03026 | ||
|
60d770e4b1 | ||
|
d5ea05cfff | ||
|
1dfd1aaf82 | ||
|
8ac74c8ccb | ||
|
53aeacae81 | ||
|
af8c4b4e20 | ||
|
a3d47818b7 | ||
|
a65b5061af | ||
|
22deca0e9e | ||
|
5ef58eb655 | ||
|
f837ae8cb5 | ||
|
982585e375 | ||
|
6e98872622 | ||
|
46695e42cc | ||
|
5af92971bc | ||
|
5c9972a2d5 | ||
|
b2a5f49a24 | ||
|
f13e974930 | ||
|
859823eb23 | ||
|
549adc888b | ||
|
65425aeb63 | ||
|
fd2a99ee5c | ||
|
69fbecf1fb | ||
|
bfdcc6bacf | ||
|
236f97b35c | ||
|
413a206652 | ||
|
cb776752f6 | ||
|
7c0d1a5ff1 | ||
|
34dc36462c | ||
|
09a2ecebc4 | ||
|
f31e7e0dfc | ||
|
51a0016873 | ||
|
c883542583 | ||
|
92c398166d | ||
|
913ee05e74 | ||
|
a83756b5e9 | ||
|
98b0c7530c | ||
|
5730243179 | ||
|
0e4ee9d9a3 | ||
|
f153ee13be | ||
|
21d3976eea | ||
|
1494fa1f18 | ||
|
d9fd8f26cc | ||
|
8a09b1e732 | ||
|
efd60f0306 | ||
|
c2df70e925 | ||
|
7b5834b2dd | ||
|
7cbfd64289 | ||
|
388c3e4e47 | ||
|
53a2b16c38 | ||
|
c765292093 | ||
|
f3778f65f8 | ||
|
95500687dd | ||
|
7f6d267e98 | ||
|
e9800212fa | ||
|
f78735528d | ||
|
a620fa8be3 | ||
|
daebca2368 | ||
|
a7604a95c1 | ||
|
103132aa99 | ||
|
033dd1f1dc | ||
|
5e19a604a6 | ||
|
5582674f06 | ||
|
57b51c8617 | ||
|
a921505f59 | ||
|
fc1aefa4b1 | ||
|
a9312387bc | ||
|
41a8387195 | ||
|
66a7f4f128 | ||
|
8a7ab8ab21 | ||
|
753cb0f9b6 | ||
|
919472435f | ||
|
3e159a0a83 | ||
|
684d621edc | ||
|
a0f1cc7445 | ||
|
bea270042b | ||
|
a8add5c04b | ||
|
f8c11bd540 | ||
|
5eacd17090 | ||
|
792da85866 | ||
|
25b9cfa163 | ||
|
b5146facff | ||
|
397e4daa5d | ||
|
fae264f4b9 | ||
|
54f57fb354 | ||
|
13e5fff97a | ||
|
0bd25c3a6b | ||
|
0404b17718 | ||
|
421d4f91c2 | ||
|
17c73b44da | ||
|
44f7c4dd56 | ||
|
b0d32b2041 | ||
|
1cc927b536 | ||
|
733cb9087b | ||
|
20013e130b | ||
|
e703d80536 | ||
|
7125b6cf70 | ||
|
a18c2b124e | ||
|
e5aea29108 | ||
|
e678c1ccb2 | ||
|
8fd71e1aa3 | ||
|
b33d668e17 | ||
|
2f72383969 | ||
|
f510c2d279 | ||
|
f49ebf1af9 | ||
|
ccc0825008 | ||
|
3c3a5c09dc | ||
|
8132725f2e | ||
|
884b0bbb4f | ||
|
0ac7824822 | ||
|
29d9a9827a | ||
|
e2720c11b1 | ||
|
ab477e1650 | ||
|
ca3dac9fb3 | ||
|
d4e84b9a11 | ||
|
f38decfbaf | ||
|
4aaeba0f78 | ||
|
27f42f6319 | ||
|
ed5c75bd64 | ||
|
bc36e36658 | ||
|
d984942c82 | ||
|
422771589f | ||
|
4e429f2e05 | ||
|
0aad78694a | ||
|
d63beb7a24 | ||
|
019c6dad84 | ||
|
fae881b854 | ||
|
91e54d458f | ||
|
e0875f82b3 | ||
|
ed05486b98 | ||
|
d4440c07b6 | ||
|
1cddf80a97 | ||
|
37c6a0c6dc | ||
|
dbe26e7cdf | ||
|
8d06679a3f | ||
|
81fd5097cc | ||
|
ee4c3f32d1 | ||
|
726e7046db | ||
|
542658c986 | ||
|
f5cfea56bd | ||
|
488f392c81 | ||
|
d0891f05fa | ||
|
e1e01d7efd | ||
|
34f16cc635 | ||
|
c8e77c11d1 | ||
|
249adacc4d | ||
|
3c7b10b1fa | ||
|
e90fae61f4 | ||
|
ca40e42b3c | ||
|
9d8e0f0837 | ||
|
d63c3be556 | ||
|
c790997fbc | ||
|
b19e2f84b6 | ||
|
df1f0a1258 | ||
|
c0493daa60 | ||
|
f67ddc05d6 | ||
|
84e6715423 | ||
|
ae0f4ba2d3 | ||
|
7146b9457c | ||
|
76046dfda8 | ||
|
22859b8734 | ||
|
14bc7b0551 | ||
|
2b22a7da48 | ||
|
788dc1c679 | ||
|
30a3c6e886 | ||
|
eed7cbb453 | ||
|
5633c0ab1e | ||
|
2e9c9471da | ||
|
a9a652eb6f | ||
|
140b512426 | ||
|
ddbd848e49 | ||
|
2564269826 | ||
|
380c7741f5 | ||
|
dfd2d912cd | ||
|
12e0e5d0d7 | ||
|
0b26011181 | ||
|
fb387ae1c3 | ||
|
e83e36e475 | ||
|
3baf1d1f7e | ||
|
f616fd61bd | ||
|
f9a4d96194 | ||
|
1ccc6153c7 | ||
|
955e01c038 | ||
|
93ba3bd5b0 | ||
|
b3e4793ded | ||
|
0fa59c9b4c | ||
|
f85187b4dd | ||
|
2528487847 | ||
|
4edd7c3529 | ||
|
973aac3203 | ||
|
a9ce54d143 | ||
|
d7130ec635 | ||
|
aa15ca1719 | ||
|
7e9d51fb95 | ||
|
553e517f0f | ||
|
7483e187c6 | ||
|
7ca84e0a09 | ||
|
f3c105f088 | ||
|
c8205c5163 | ||
|
7fcffb860d | ||
|
d97bb11821 | ||
|
74f0d02eb8 | ||
|
8379a39776 | ||
|
9aa3403687 | ||
|
956e555310 | ||
|
c1262dbf94 | ||
|
e17f12fcad | ||
|
d08456c0ce | ||
|
6d892dbc23 | ||
|
aa14a625e4 | ||
|
d7657d772d | ||
|
cbb93a2b47 | ||
|
4987aa32ba | ||
|
c15210a312 | ||
|
7b3c1f29ff | ||
|
a38ff842d0 | ||
|
bfdaadcc40 | ||
|
51c75985b8 | ||
|
13cec0cc2f | ||
|
e671ed520b | ||
|
ff6fc666c1 | ||
|
b254df2d34 | ||
|
28c8e083f4 | ||
|
e5c89890b1 | ||
|
3595d98b4c | ||
|
0d438e5cf4 | ||
|
34bec52cc4 | ||
|
84f8113bb1 | ||
|
3881f4eb58 | ||
|
104151d558 | ||
|
c9e9beee4e | ||
|
ea2d3f6c18 | ||
|
4828bed837 | ||
|
cc31014002 | ||
|
7f42932957 | ||
|
1e0a2f722b | ||
|
591a4cf42a | ||
|
773d857eb8 | ||
|
28e787116b | ||
|
08296f4092 | ||
|
2452f57cd7 | ||
|
48a299f8ae | ||
|
2cf03017a0 | ||
|
de4de5b5ab | ||
|
54e786346e | ||
|
a475d808f2 | ||
|
ca7b65439d | ||
|
768093c789 | ||
|
bbc37b2880 | ||
|
4b1ab6c83d | ||
|
2b006beab1 | ||
|
c3792dae9f | ||
|
87e60f8bac | ||
|
b0acd27114 | ||
|
cba994b9dc | ||
|
d3b7c489f2 | ||
|
2105cf6000 | ||
|
835f0578c2 | ||
|
1dad756cff | ||
|
a294ef2fae | ||
|
5e60c29971 | ||
|
7c488cea57 | ||
|
ecbbed94d9 | ||
|
37d3adb1f8 | ||
|
7ae015f8bf | ||
|
ffe7cda93d | ||
|
030dda5861 | ||
|
506f6d79e6 | ||
|
30687babe3 | ||
|
65bf205968 | ||
|
e384ef7d57 | ||
|
6a518d386a | ||
|
9a2e77a5d8 | ||
|
9e93ff9479 | ||
|
e1751f6398 | ||
|
58607ec1b0 | ||
|
6e03536dca | ||
|
f2425cb4ed | ||
|
da80d41c78 | ||
|
d2d9fa4abb | ||
|
c662c2e56f | ||
|
6b2733ce12 | ||
|
28e613efd0 | ||
|
654116c0b1 | ||
|
e7bd3ab6c3 | ||
|
2300fb616b | ||
|
7c7d6614d8 | ||
|
08a221443c | ||
|
1a79dd23ff | ||
|
f3f25ae3b7 | ||
|
80effa2993 | ||
|
0ae1302e41 | ||
|
ad0304e147 | ||
|
a225b5a70c | ||
|
dafc9268bc | ||
|
fe6ef6400c | ||
|
d519c2fde5 | ||
|
ab1fbbc3ec | ||
|
678884f97c | ||
|
cbc23fc299 | ||
|
af5b2b9299 | ||
|
6cd45e95f7 | ||
|
62e63d74ec | ||
|
cfa2dbefcb | ||
|
f84bce3638 | ||
|
37a079a072 | ||
|
60937ccf32 | ||
|
709bbc1d92 | ||
|
18863245df | ||
|
b7f5cfde6e | ||
|
673f27a59e | ||
|
47651a94a3 | ||
|
f3a2dda567 | ||
|
78baa8a509 | ||
|
1a0758b0a1 | ||
|
fe407e8de6 | ||
|
e74fcdf7b1 | ||
|
a9f10a9abd | ||
|
9aa640f27b | ||
|
f923989a6e | ||
|
3b499948a5 | ||
|
a1df18c5df | ||
|
7be502c5c5 | ||
|
bb9f48590f | ||
|
c0e005e2ea | ||
|
98abb5c900 | ||
|
ccc9a895a6 | ||
|
cf23a279fd | ||
|
5319447aa5 | ||
|
0844750bb9 | ||
|
7d3b21684c | ||
|
cd563116ca | ||
|
6ea4680334 | ||
|
029c343537 | ||
|
030b4811c7 | ||
|
80e9f8e000 | ||
|
fded2306dc | ||
|
9c1b04cd11 | ||
|
3d72b1a856 | ||
|
7735456561 | ||
|
53b48eb052 | ||
|
c779899f7b | ||
|
c9557241f6 | ||
|
e73a235a38 | ||
|
bccc852f76 | ||
|
6db02615d4 | ||
|
89564e90d7 | ||
|
9e5988717d | ||
|
9055e66643 | ||
|
9b30635ff0 | ||
|
e3bf22f61b | ||
|
5156114981 | ||
|
b596addd1f | ||
|
09c34e5b6c | ||
|
15a5eb6647 | ||
|
bc1c082bc2 | ||
|
c2734108e7 | ||
|
3a5eacb4cf | ||
|
19bf21efba | ||
|
3d85217464 | ||
|
9e0ec3831f | ||
|
5d59f6562a | ||
|
67df86201a | ||
|
756566342d | ||
|
7ef169ed39 | ||
|
0a40ee5444 | ||
|
004f289074 | ||
|
8ab2d707e5 | ||
|
191dac26c0 | ||
|
d7459853d8 | ||
|
ee30db72a3 | ||
|
26e942b0ad | ||
|
6bbb8b4cd8 | ||
|
988231026a | ||
|
06bbc29614 | ||
|
5769cc8d06 | ||
|
0ddf7bd28a | ||
|
ce4a27a5f7 | ||
|
a8655f5c08 | ||
|
2d2c78d66c | ||
|
f25b8626bf | ||
|
c0c6b8075a | ||
|
9d9f8c6531 | ||
|
96b82ccd4d | ||
|
8053929b20 | ||
|
f0d6e63f55 | ||
|
2946153cea | ||
|
4dcd124dbd | ||
|
19ea51e460 | ||
|
fcbfa70c19 | ||
|
ba9aa7e2aa | ||
|
ab66ae8cd2 | ||
|
a3f4925c2c | ||
|
d4ce280fbc | ||
|
f81a839197 | ||
|
27777c8e68 | ||
|
4c40171c55 | ||
|
0926d81053 | ||
|
8fccaf20c5 | ||
|
c51f5c2a0a | ||
|
81ed4d8abf | ||
|
833aa324c2 | ||
|
7366647b43 | ||
|
e89d1b1ec3 | ||
|
99ce085415 | ||
|
b2b0b96051 | ||
|
65f2ba3802 | ||
|
77e4dc255f | ||
|
f8497921fe | ||
|
bc5e97295e | ||
|
bebca6d01c | ||
|
045eb155a2 | ||
|
c7e021a837 | ||
|
fecb9c9a76 | ||
|
bf3de9bfe8 | ||
|
8c574eb3cb | ||
|
da39715085 | ||
|
6c9cc199ef | ||
|
5834651c4a | ||
|
53de7f7cc3 | ||
|
4ab902d558 | ||
|
fb20b8dcc8 | ||
|
e3baa5aa08 | ||
|
d6632fefc9 | ||
|
75e1bbf128 | ||
|
2f164c2c41 | ||
|
d984776d35 | ||
|
144544cd37 | ||
|
3b244a69dc | ||
|
55b40b3d62 | ||
|
b6d63b3324 | ||
|
3f11ab800f | ||
|
daf472994d | ||
|
18a86ea104 | ||
|
b187450340 | ||
|
e4b9c80104 | ||
|
0c44309e15 | ||
|
1c31809652 | ||
|
1a261add61 | ||
|
de3400a521 | ||
|
ce40d12692 | ||
|
3547a26f86 | ||
|
de9e773764 | ||
|
d3eb985bb6 | ||
|
6a5e3816cf | ||
|
4f3e680b57 | ||
|
64cf35cccc | ||
|
4f0ce9be4e | ||
|
bad35d1730 | ||
|
a8318723a4 | ||
|
d79222894c | ||
|
4b72592594 | ||
|
ca9468ff04 | ||
|
4f3c89a6eb | ||
|
f76d427332 | ||
|
d3196318be | ||
|
c6f5f69644 | ||
|
4953ded639 | ||
|
e3ef239bc0 | ||
|
fd7bd911a6 | ||
|
21df5f0bd0 | ||
|
8a0263551d | ||
|
8da149ba40 | ||
|
fd2c64315b | ||
|
77b70664e5 | ||
|
9bebdeabda | ||
|
368695483d | ||
|
6cbc66a602 | ||
|
e0aadd4b34 | ||
|
e898d8bbc4 | ||
|
f2edacb02d | ||
|
2f0a333e9c | ||
|
8cc6bb961b | ||
|
cceff9f520 | ||
|
679810a3d2 | ||
|
8f25af89b6 | ||
|
229794a148 | ||
|
d31c9c73c7 | ||
|
0b7cf306f7 | ||
|
d9a372658a | ||
|
896a3b8311 | ||
|
c439c959f7 | ||
|
3fcb678d00 | ||
|
cafbb79d3a | ||
|
00b3fb4d14 | ||
|
8f3b8ade45 | ||
|
0398338a0f | ||
|
a16786d8ba | ||
|
71b9b87d88 | ||
|
ecd06d0110 | ||
|
b097f04a79 | ||
|
55815ab1ff | ||
|
94c37490d1 | ||
|
15f6ab73a5 | ||
|
a2931b813b | ||
|
51e3229528 | ||
|
4721d0b8ff | ||
|
0eff6a66d5 | ||
|
88745c9bb5 | ||
|
8ecf606230 | ||
|
b12d4beb8a | ||
|
326f180397 | ||
|
e2920aa925 | ||
|
6f7b6ae0c3 | ||
|
b2c224de69 | ||
|
5d96cf146e | ||
|
e58aca0602 | ||
|
f6f1c4eacb | ||
|
a187068e7c | ||
|
cdfd2ad4b1 | ||
|
e4ce59243b | ||
|
eaab09fccb | ||
|
d0ceb1b091 | ||
|
af7748139a | ||
|
64d24842fe | ||
|
62d55b71a3 | ||
|
0feb2ad35c | ||
|
8350e508d3 | ||
|
abe33220bf | ||
|
6a6f07053d | ||
|
0de4e1e9e2 | ||
|
72ebcb9a04 | ||
|
64976e426c | ||
|
e24276cab6 | ||
|
107e39f2de | ||
|
9b6bdf9449 | ||
|
7b83c550ab | ||
|
9fc713da89 | ||
|
c0f11a280e | ||
|
69a51cacb1 | ||
|
21e7979837 | ||
|
eb7ee82f16 | ||
|
820404946e | ||
|
19a3262387 | ||
|
c05cb3769f | ||
|
a71a6a05c3 | ||
|
2e7dae0f97 | ||
|
2192616770 | ||
|
29fe1cd688 | ||
|
10ab2861d5 | ||
|
ce1be3da4b | ||
|
2540ce58c0 | ||
|
05277ee864 | ||
|
13e7b64641 | ||
|
468d0e7ed1 | ||
|
bfac965f9c | ||
|
14f6cc2b7c | ||
|
87e71df597 | ||
|
3152c7dd1c | ||
|
3ea8f5e6b9 | ||
|
2a473f36fb | ||
|
ac9c52dfb4 | ||
|
f41319f31b | ||
|
099a932cbc | ||
|
4f4e3160be | ||
|
7324984127 | ||
|
0706dbf7e6 | ||
|
ad3ca3f556 | ||
|
eceec1d7fd | ||
|
b7b8223230 | ||
|
d2c1df7f3d | ||
|
b88ecd71fd | ||
|
605e70d0e1 | ||
|
fc5a6b5c4e | ||
|
f9ced0480e | ||
|
4a958ab909 | ||
|
ea78a629ba | ||
|
db569a2d61 | ||
|
710642827a | ||
|
5632ba3fa8 | ||
|
daa0908276 | ||
|
606240aec0 | ||
|
51a1097c64 | ||
|
df33548b39 | ||
|
a6c2a2071d | ||
|
556a0c3ea5 | ||
|
4807c11db8 | ||
|
3eaf371a22 | ||
|
e5d2ef4434 | ||
|
9c8d79fbe3 | ||
|
119af92620 | ||
|
3e729798df | ||
|
77b5779746 | ||
|
d3490aceb7 | ||
|
6d8ef03741 | ||
|
3f52df0ca9 | ||
|
d8a27e40e2 | ||
|
4ddc1c9c16 | ||
|
a8480baa11 | ||
|
eabaf0def8 | ||
|
11f79ea20e | ||
|
c03be5fe63 | ||
|
071d674065 | ||
|
cce3892f91 | ||
|
a935c5105d | ||
|
446c681b58 | ||
|
7f6c37c68e | ||
|
5351e3945b | ||
|
4b90f04c1f | ||
|
864da49139 | ||
|
6955042c10 | ||
|
02fdf903e8 | ||
|
30b2ec7025 | ||
|
a710d97748 | ||
|
b293939c24 | ||
|
0e57bb201c | ||
|
b28f9ecaa0 | ||
|
8d4a5ebf6e | ||
|
5f48c282d3 | ||
|
32a65e89e5 | ||
|
df4aec7e72 | ||
|
62ddab4b3a | ||
|
02f716907e | ||
|
7130efff54 | ||
|
519d2511ae | ||
|
c53e626c9a | ||
|
68c07d3e1e | ||
|
1e867c0fa0 | ||
|
9fba1bb649 | ||
|
13d7b48efe | ||
|
97469892c3 | ||
|
2d1583faba | ||
|
e4a2accf4a | ||
|
20326affde | ||
|
9af3dce3c8 | ||
|
03956053b8 | ||
|
1bbbcb5895 | ||
|
947f0e9964 | ||
|
780a1f5a4e | ||
|
dfff5119b4 | ||
|
f4bf49e891 | ||
|
22f71c152a | ||
|
5eb8107db2 | ||
|
cae823ddf0 | ||
|
93a289107b | ||
|
b5034f2b12 | ||
|
6e6267f17c | ||
|
a84f155563 | ||
|
757e172509 | ||
|
74727c03e8 | ||
|
b4c5a08d06 | ||
|
7ebd06dc1a | ||
|
82a10c569a | ||
|
e80e50805c | ||
|
f2b4237db1 | ||
|
e09d68985f | ||
|
3d65c4ceab | ||
|
cea8cea9dd | ||
|
7622300c4b | ||
|
e1c2ff41a0 | ||
|
3f38ef9f59 | ||
|
dbc7b1c046 | ||
|
df3a974057 | ||
|
7d1d73b941 | ||
|
92b184101f | ||
|
967b9c0a49 | ||
|
ef167f839d | ||
|
213ba09b24 | ||
|
c4743674ab | ||
|
be1114bb43 | ||
|
943779eabc | ||
|
f5df1ceaf1 | ||
|
e32a44fe6b | ||
|
ec9ed23cfd | ||
|
082506eba8 | ||
|
fe586de344 | ||
|
332f44fa43 | ||
|
5a5d450648 | ||
|
6c1561d73c | ||
|
9e247245a2 | ||
|
1c089ccfee | ||
|
661565fc2e | ||
|
ccb87c6ae8 | ||
|
4583c534f9 | ||
|
3318b6e188 | ||
|
68540734fb | ||
|
414049ba20 | ||
|
ed546236c0 | ||
|
3d6a80660e | ||
|
93cbb0e2fc | ||
|
b8b97ef4cf | ||
|
c627d358a9 | ||
|
5f61ae6a5d | ||
|
51e0f095a9 | ||
|
6a126f0caf | ||
|
0f941f30f7 | ||
|
10e65f0042 | ||
|
88159688bb | ||
|
ab94060839 | ||
|
7e0ffc0a64 | ||
|
28d9d7274d | ||
|
fb14d57e97 | ||
|
4781b63edb | ||
|
17975fefd7 | ||
|
1dd674697c | ||
|
fde0304e9f | ||
|
6c3efe04e1 | ||
|
c3e15c049b | ||
|
743d0f22b7 | ||
|
2306cb3ced | ||
|
3cd448c01b | ||
|
639c6e9cad | ||
|
012d93da84 | ||
|
e4dba0e948 | ||
|
9dc209b458 | ||
|
e017fb67d0 | ||
|
dd42439b03 | ||
|
a185cf7e18 | ||
|
08de91434c | ||
|
db30e9089a | ||
|
2370e7403f | ||
|
58c5a5afaf | ||
|
de509fa081 | ||
|
f40b602c41 | ||
|
5ff89a0f32 | ||
|
0000894bbe | ||
|
1d3fb90590 | ||
|
e123ec00c5 | ||
|
3534a75bcc | ||
|
dc36420d7c | ||
|
38c6ce9311 | ||
|
eb5c60afaf | ||
|
d1a1641893 | ||
|
57fee01114 | ||
|
54dcae79f4 | ||
|
52cc6bce38 | ||
|
07ac5fe1b0 | ||
|
a274f7d069 | ||
|
53a1e0d37f | ||
|
a8c07e2aa0 | ||
|
2d2b24fac4 | ||
|
175a7ea951 | ||
|
c198db4db2 | ||
|
df66b288a2 | ||
|
4c91104471 | ||
|
d65b2332cf | ||
|
14c3c8cc8f | ||
|
a13bdb9a2b | ||
|
18b0c86e0b | ||
|
89e7cabaa9 | ||
|
f2481e78af | ||
|
fe494fe97e | ||
|
92cafef325 | ||
|
eb21a527a6 | ||
|
96354ca55f | ||
|
7b0629dac4 | ||
|
189346188b | ||
|
0c6c50f9b5 | ||
|
2a53a43ac7 | ||
|
c57a42164c | ||
|
8fcfeeffcf | ||
|
fa9c7eb48e | ||
|
a510ea9390 | ||
|
9bbb5c846d | ||
|
df43fbb029 | ||
|
5f8d83b630 | ||
|
4df26e7439 | ||
|
23f9efdf7d | ||
|
f99ab8606f | ||
|
87b9f70ab4 | ||
|
6672ad7a83 | ||
|
c32fc1d89b | ||
|
8d6b454e33 | ||
|
ed92038736 | ||
|
4c564dc537 | ||
|
9fc7549d25 | ||
|
340f70cd82 | ||
|
226587fc4a | ||
|
a2cb40735b | ||
|
65abcf1a94 | ||
|
59965c2dca | ||
|
572d25734a | ||
|
289d1f3679 | ||
|
4cddd4be26 | ||
|
ed8d9e0881 | ||
|
931a30c7b8 | ||
|
1d00dede8e | ||
|
b9bee7ae27 | ||
|
eea8a79e35 | ||
|
2186deceac | ||
|
4a0aab86f1 | ||
|
41d98a1cc0 | ||
|
35917001b1 | ||
|
f15836c77a | ||
|
db316422a4 | ||
|
6f0b412265 | ||
|
ac76a9e140 | ||
|
df70d230b2 | ||
|
5548c733d2 | ||
|
05afeb304d |
@ -3,9 +3,13 @@
|
||||
.github
|
||||
.venv
|
||||
cache
|
||||
data
|
||||
examples
|
||||
docker
|
||||
saves
|
||||
hf_cache
|
||||
ms_cache
|
||||
om_cache
|
||||
shared_data
|
||||
output
|
||||
.dockerignore
|
||||
.gitattributes
|
||||
.gitignore
|
||||
Dockerfile
|
||||
|
42
.env.local
Normal file
42
.env.local
Normal file
@ -0,0 +1,42 @@
|
||||
# Note: actually we do not support .env, just for reference
|
||||
# api
|
||||
API_HOST=
|
||||
API_PORT=
|
||||
API_KEY=
|
||||
API_MODEL_NAME=
|
||||
API_VERBOSE=
|
||||
FASTAPI_ROOT_PATH=
|
||||
MAX_CONCURRENT=
|
||||
# general
|
||||
DISABLE_VERSION_CHECK=
|
||||
FORCE_CHECK_IMPORTS=
|
||||
ALLOW_EXTRA_ARGS=
|
||||
LLAMAFACTORY_VERBOSITY=
|
||||
USE_MODELSCOPE_HUB=
|
||||
USE_OPENMIND_HUB=
|
||||
USE_RAY=
|
||||
RECORD_VRAM=
|
||||
OPTIM_TORCH=
|
||||
NPU_JIT_COMPILE=
|
||||
# torchrun
|
||||
FORCE_TORCHRUN=
|
||||
MASTER_ADDR=
|
||||
MASTER_PORT=
|
||||
NNODES=
|
||||
NODE_RANK=
|
||||
NPROC_PER_NODE=
|
||||
# wandb
|
||||
WANDB_DISABLED=
|
||||
WANDB_PROJECT=
|
||||
WANDB_API_KEY=
|
||||
# gradio ui
|
||||
GRADIO_SHARE=
|
||||
GRADIO_SERVER_NAME=
|
||||
GRADIO_SERVER_PORT=
|
||||
GRADIO_ROOT_PATH=
|
||||
GRADIO_IPV6=
|
||||
# setup
|
||||
ENABLE_SHORT_CONSOLE=
|
||||
# reserved (do not use)
|
||||
LLAMABOARD_ENABLED=
|
||||
LLAMABOARD_WORKDIR=
|
46
.github/CONTRIBUTING.md
vendored
46
.github/CONTRIBUTING.md
vendored
@ -19,3 +19,49 @@ There are several ways you can contribute to LLaMA Factory:
|
||||
### Style guide
|
||||
|
||||
LLaMA Factory follows the [Google Python Style Guide](https://google.github.io/styleguide/pyguide.html), check it for details.
|
||||
|
||||
### Create a Pull Request
|
||||
|
||||
1. Fork the [repository](https://github.com/hiyouga/LLaMA-Factory) by clicking on the [Fork](https://github.com/hiyouga/LLaMA-Factory/fork) button on the repository's page. This creates a copy of the code under your GitHub user account.
|
||||
|
||||
2. Clone your fork to your local disk, and add the base repository as a remote:
|
||||
|
||||
```bash
|
||||
git clone git@github.com:[username]/LLaMA-Factory.git
|
||||
cd LLaMA-Factory
|
||||
git remote add upstream https://github.com/hiyouga/LLaMA-Factory.git
|
||||
```
|
||||
|
||||
3. Create a new branch to hold your development changes:
|
||||
|
||||
```bash
|
||||
git checkout -b dev_your_branch
|
||||
```
|
||||
|
||||
4. Set up a development environment by running the following command in a virtual environment:
|
||||
|
||||
```bash
|
||||
pip install -e ".[dev]"
|
||||
```
|
||||
|
||||
If LLaMA Factory was already installed in the virtual environment, remove it with `pip uninstall llamafactory` before reinstalling it in editable mode with the -e flag.
|
||||
|
||||
5. Check code before commit:
|
||||
|
||||
```bash
|
||||
make commit
|
||||
make style && make quality
|
||||
make test
|
||||
```
|
||||
|
||||
6. Submit changes:
|
||||
|
||||
```bash
|
||||
git add .
|
||||
git commit -m "commit message"
|
||||
git fetch upstream
|
||||
git rebase upstream/main
|
||||
git push -u origin dev_your_branch
|
||||
```
|
||||
|
||||
7. Create a merge request from your branch `dev_your_branch` at [origin repo](https://github.com/hiyouga/LLaMA-Factory).
|
||||
|
61
.github/ISSUE_TEMPLATE/1-bug-report.yml
vendored
Normal file
61
.github/ISSUE_TEMPLATE/1-bug-report.yml
vendored
Normal file
@ -0,0 +1,61 @@
|
||||
name: "\U0001F41B Bug / help"
|
||||
description: Create a report to help us improve the LLaMA Factory
|
||||
labels: ["bug", "pending"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Issues included in **[FAQs](https://github.com/hiyouga/LLaMA-Factory/issues/4614)** or those with **insufficient** information may be closed without a response.
|
||||
已经包含在 **[常见问题](https://github.com/hiyouga/LLaMA-Factory/issues/4614)** 内或提供信息**不完整**的 issues 可能不会被回复。
|
||||
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Please do not create issues that are not related to framework bugs under this category, use **[Discussions](https://github.com/hiyouga/LLaMA-Factory/discussions/categories/q-a)** instead.
|
||||
请勿在此分类下创建和框架 bug 无关的 issues,训练问题求助请使用 **[讨论区](https://github.com/hiyouga/LLaMA-Factory/discussions/categories/q-a)**。
|
||||
|
||||
- type: checkboxes
|
||||
id: reminder
|
||||
attributes:
|
||||
label: Reminder
|
||||
description: |
|
||||
Please ensure you have read the above rules carefully and searched the existing issues (including FAQs).
|
||||
请确保您已经认真阅读了上述规则并且搜索过现有的 issues(包括常见问题)。
|
||||
|
||||
options:
|
||||
- label: I have read the above rules and searched the existing issues.
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
id: system-info
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: System Info
|
||||
description: |
|
||||
Please share your system info with us. You can run the command **llamafactory-cli env** and copy-paste its output below.
|
||||
请提供您的系统信息。您可以在命令行运行 **llamafactory-cli env** 并将其输出复制到该文本框中。
|
||||
|
||||
placeholder: llamafactory version, platform, python version, ...
|
||||
|
||||
- type: textarea
|
||||
id: reproduction
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Reproduction
|
||||
description: |
|
||||
Please provide entry arguments, error messages and stack traces that reproduces the problem.
|
||||
请提供入口参数,错误日志以及异常堆栈以便于我们复现问题。
|
||||
|
||||
value: |
|
||||
```text
|
||||
Put your message here.
|
||||
```
|
||||
|
||||
- type: textarea
|
||||
id: others
|
||||
validations:
|
||||
required: false
|
||||
attributes:
|
||||
label: Others
|
41
.github/ISSUE_TEMPLATE/2-feature-request.yml
vendored
Normal file
41
.github/ISSUE_TEMPLATE/2-feature-request.yml
vendored
Normal file
@ -0,0 +1,41 @@
|
||||
name: "\U0001F680 Feature request"
|
||||
description: Submit a request for a new feature
|
||||
labels: ["enhancement", "pending"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Please do not create issues that are not related to new features under this category.
|
||||
请勿在此分类下创建和新特性无关的 issues。
|
||||
|
||||
- type: checkboxes
|
||||
id: reminder
|
||||
attributes:
|
||||
label: Reminder
|
||||
description: |
|
||||
Please ensure you have read the above rules carefully and searched the existing issues.
|
||||
请确保您已经认真阅读了上述规则并且搜索过现有的 issues。
|
||||
|
||||
options:
|
||||
- label: I have read the above rules and searched the existing issues.
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
id: description
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Description
|
||||
description: |
|
||||
A clear and concise description of the feature proposal.
|
||||
请详细描述您希望加入的新功能特性。
|
||||
|
||||
- type: textarea
|
||||
id: contribution
|
||||
validations:
|
||||
required: false
|
||||
attributes:
|
||||
label: Pull Request
|
||||
description: |
|
||||
Have you already created the relevant PR and submitted the code?
|
||||
您是否已经创建了相关 PR 并提交了代码?
|
58
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
58
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
@ -1,58 +0,0 @@
|
||||
name: "\U0001F41B Bug / Help"
|
||||
description: Create a report to help us improve the LLaMA Factory
|
||||
body:
|
||||
- type: checkboxes
|
||||
id: reminder
|
||||
attributes:
|
||||
label: Reminder
|
||||
description: |
|
||||
Please ensure you have read the README carefully and searched the existing issues.
|
||||
请确保您已经认真阅读了 README 并且搜索过现有的 Issue。
|
||||
|
||||
options:
|
||||
- label: I have read the README and searched the existing issues.
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
id: reproduction
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Reproduction
|
||||
description: |
|
||||
Please provide code snippets, error messages and stack traces that reproduces the problem.
|
||||
请提供运行参数,错误信息以及异常堆栈以便于我们复现该问题。
|
||||
Remember to use Markdown tags to correctly format your code.
|
||||
请合理使用 Markdown 标签来格式化您的文本。
|
||||
|
||||
placeholder: |
|
||||
python src/train_bash.py ...
|
||||
|
||||
- type: textarea
|
||||
id: expected-behavior
|
||||
validations:
|
||||
required: false
|
||||
attributes:
|
||||
label: Expected behavior
|
||||
description: |
|
||||
Please provide a clear and concise description of what you would expect to happen.
|
||||
请提供您原本的目的,即这段代码的期望行为。
|
||||
|
||||
- type: textarea
|
||||
id: system-info
|
||||
validations:
|
||||
required: false
|
||||
attributes:
|
||||
label: System Info
|
||||
description: |
|
||||
Please share your system info with us. You can run the command **transformers-cli env** and copy-paste its output below.
|
||||
请提供您的系统信息。您可以在命令行运行 **transformers-cli env** 并将其输出复制到该文本框中。
|
||||
|
||||
placeholder: transformers version, platform, python version, ...
|
||||
|
||||
- type: textarea
|
||||
id: others
|
||||
validations:
|
||||
required: false
|
||||
attributes:
|
||||
label: Others
|
8
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
8
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
@ -0,0 +1,8 @@
|
||||
blank_issues_enabled: false
|
||||
contact_links:
|
||||
- name: 📚 FAQs | 常见问题
|
||||
url: https://github.com/hiyouga/LLaMA-Factory/issues/4614
|
||||
about: Reading in advance is recommended | 建议提前阅读
|
||||
- name: Discussions | 讨论区
|
||||
url: https://github.com/hiyouga/LLaMA-Factory/discussions
|
||||
about: Please ask fine-tuning questions here | 请在这里讨论训练问题
|
1
.github/PULL_REQUEST_TEMPLATE.md
vendored
1
.github/PULL_REQUEST_TEMPLATE.md
vendored
@ -5,3 +5,4 @@ Fixes # (issue)
|
||||
## Before submitting
|
||||
|
||||
- [ ] Did you read the [contributor guideline](https://github.com/hiyouga/LLaMA-Factory/blob/main/.github/CONTRIBUTING.md)?
|
||||
- [ ] Did you write any new necessary tests?
|
||||
|
108
.github/workflows/docker.yml
vendored
Normal file
108
.github/workflows/docker.yml
vendored
Normal file
@ -0,0 +1,108 @@
|
||||
name: docker
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
push:
|
||||
branches:
|
||||
- "main"
|
||||
paths:
|
||||
- "**/*.py"
|
||||
- "requirements.txt"
|
||||
- "docker/**"
|
||||
- ".github/workflows/*.yml"
|
||||
pull_request:
|
||||
branches:
|
||||
- "main"
|
||||
paths:
|
||||
- "**/*.py"
|
||||
- "requirements.txt"
|
||||
- "docker/**"
|
||||
- ".github/workflows/*.yml"
|
||||
|
||||
jobs:
|
||||
build:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
device:
|
||||
- "cuda"
|
||||
- "npu"
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}-${{ matrix.device }}
|
||||
cancel-in-progress: ${{ github.ref != 'refs/heads/main' }}
|
||||
|
||||
environment:
|
||||
name: docker
|
||||
url: https://hub.docker.com/r/hiyouga/llamafactory
|
||||
|
||||
steps:
|
||||
- name: Free up disk space
|
||||
uses: jlumbroso/free-disk-space@54081f138730dfa15788a46383842cd2f914a1be # v1.3.1
|
||||
with:
|
||||
tool-cache: true
|
||||
docker-images: false
|
||||
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.9"
|
||||
|
||||
- name: Get llamafactory version
|
||||
id: version
|
||||
run: |
|
||||
echo "tag=$(python setup.py --version | sed 's/\.dev0//')" >> "$GITHUB_OUTPUT"
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
- name: Login to Docker Hub
|
||||
if: ${{ github.event_name != 'pull_request' }}
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ vars.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
|
||||
- name: Login to Quay
|
||||
if: ${{ github.event_name != 'pull_request' && matrix.device == 'npu' }}
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
registry: quay.io
|
||||
username: ${{ vars.QUAY_ASCEND_USERNAME }}
|
||||
password: ${{ secrets.QUAY_ASCEND_TOKEN }}
|
||||
|
||||
- name: Build and push Docker image (CUDA)
|
||||
if: ${{ matrix.device == 'cuda' }}
|
||||
uses: docker/build-push-action@v6
|
||||
with:
|
||||
context: .
|
||||
file: ./docker/docker-cuda/Dockerfile
|
||||
build-args: |
|
||||
EXTRAS=metrics,deepspeed,liger-kernel
|
||||
push: ${{ github.event_name != 'pull_request' }}
|
||||
tags: |
|
||||
docker.io/hiyouga/llamafactory:latest
|
||||
docker.io/hiyouga/llamafactory:${{ steps.version.outputs.tag }}
|
||||
cache-from: type=gha
|
||||
cache-to: type=gha,mode=max
|
||||
|
||||
- name: Build and push Docker image (NPU)
|
||||
if: ${{ matrix.device == 'npu' }}
|
||||
uses: docker/build-push-action@v6
|
||||
with:
|
||||
context: .
|
||||
platforms: linux/amd64,linux/arm64
|
||||
file: ./docker/docker-npu/Dockerfile
|
||||
push: ${{ github.event_name != 'pull_request' }}
|
||||
tags: |
|
||||
docker.io/hiyouga/llamafactory:latest-npu-a2
|
||||
docker.io/hiyouga/llamafactory:${{ steps.version.outputs.tag }}-npu-a2
|
||||
quay.io/ascend/llamafactory:latest-npu-a2
|
||||
quay.io/ascend/llamafactory:${{ steps.version.outputs.tag }}-npu-a2
|
||||
cache-from: type=gha
|
||||
cache-to: type=gha,mode=max
|
32
.github/workflows/label_issue.yml
vendored
Normal file
32
.github/workflows/label_issue.yml
vendored
Normal file
@ -0,0 +1,32 @@
|
||||
name: label_issue
|
||||
|
||||
on:
|
||||
issues:
|
||||
types:
|
||||
- opened
|
||||
|
||||
jobs:
|
||||
label_issue:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
permissions:
|
||||
issues: write
|
||||
|
||||
steps:
|
||||
- env:
|
||||
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
ISSUE_URL: ${{ github.event.issue.html_url }}
|
||||
ISSUE_TITLE: ${{ github.event.issue.title }}
|
||||
run: |
|
||||
LABEL=""
|
||||
NPU_KEYWORDS=(npu huawei ascend 华为 昇腾 910)
|
||||
ISSUE_TITLE_LOWER=$(echo $ISSUE_TITLE | tr '[:upper:]' '[:lower:]')
|
||||
for KEYWORD in ${NPU_KEYWORDS[@]}; do
|
||||
if [[ $ISSUE_TITLE_LOWER == *$KEYWORD* ]] && [[ $ISSUE_TITLE_LOWER != *input* ]]; then
|
||||
LABEL="npu"
|
||||
break
|
||||
fi
|
||||
done
|
||||
if [ -n "$LABEL" ]; then
|
||||
gh issue edit $ISSUE_URL --add-label $LABEL
|
||||
fi
|
36
.github/workflows/publish.yml
vendored
Normal file
36
.github/workflows/publish.yml
vendored
Normal file
@ -0,0 +1,36 @@
|
||||
name: publish
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
release:
|
||||
types:
|
||||
- published
|
||||
|
||||
jobs:
|
||||
publish:
|
||||
name: Upload release to PyPI
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
environment:
|
||||
name: release
|
||||
url: https://pypi.org/p/llamafactory
|
||||
|
||||
permissions:
|
||||
id-token: write
|
||||
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.9"
|
||||
|
||||
- name: Build package
|
||||
run: |
|
||||
make build
|
||||
|
||||
- name: Publish package
|
||||
uses: pypa/gh-action-pypi-publish@release/v1
|
86
.github/workflows/tests.yml
vendored
86
.github/workflows/tests.yml
vendored
@ -1,29 +1,99 @@
|
||||
name: tests
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
push:
|
||||
branches: [ "main" ]
|
||||
branches:
|
||||
- "main"
|
||||
paths:
|
||||
- "**/*.py"
|
||||
- "requirements.txt"
|
||||
- ".github/workflows/*.yml"
|
||||
pull_request:
|
||||
branches: [ "main" ]
|
||||
branches:
|
||||
- "main"
|
||||
paths:
|
||||
- "**/*.py"
|
||||
- "requirements.txt"
|
||||
- ".github/workflows/*.yml"
|
||||
|
||||
jobs:
|
||||
check_code_quality:
|
||||
tests:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python:
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
- "3.11"
|
||||
- "3.12"
|
||||
os:
|
||||
- "ubuntu-latest"
|
||||
- "windows-latest"
|
||||
- "macos-13"
|
||||
transformers:
|
||||
- null
|
||||
include: # test backward compatibility
|
||||
- python: "3.9"
|
||||
os: "ubuntu-latest"
|
||||
transformers: "4.49.0"
|
||||
- python: "3.9"
|
||||
os: "ubuntu-latest"
|
||||
transformers: "4.51.0"
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
runs-on: ${{ matrix.os }}
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}-${{ matrix.os }}-${{ matrix.python }}-${{ matrix.transformers }}
|
||||
cancel-in-progress: ${{ github.ref != 'refs/heads/main' }}
|
||||
|
||||
env:
|
||||
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
||||
OS_NAME: ${{ matrix.os }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.8"
|
||||
python-version: ${{ matrix.python }}
|
||||
cache: "pip"
|
||||
cache-dependency-path: "**/requirements*.txt"
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
python -m pip install ruff
|
||||
python -m pip install ".[torch,dev]"
|
||||
|
||||
- name: Install transformers
|
||||
if: ${{ matrix.transformers }}
|
||||
run: |
|
||||
python -m pip install "transformers==${{ matrix.transformers }}"
|
||||
|
||||
- name: Cache files
|
||||
id: hf-hub-cache
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ${{ runner.temp }}/huggingface
|
||||
key: huggingface-${{ matrix.os }}-${{ matrix.python }}-${{ matrix.transformers }}-${{ hashFiles('tests/version.txt') }}
|
||||
|
||||
- name: Check quality
|
||||
run: |
|
||||
make style && make quality
|
||||
make style && make quality
|
||||
|
||||
- name: Check license
|
||||
run: |
|
||||
make license
|
||||
|
||||
- name: Check build
|
||||
run: |
|
||||
make build
|
||||
|
||||
- name: Test with pytest
|
||||
run: |
|
||||
make test
|
||||
env:
|
||||
HF_HOME: ${{ runner.temp }}/huggingface
|
||||
HF_HUB_OFFLINE: "${{ steps.hf-hub-cache.outputs.cache-hit == 'true' && '1' || '0' }}"
|
||||
|
18
.gitignore
vendored
18
.gitignore
vendored
@ -159,7 +159,21 @@ cython_debug/
|
||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||
.idea/
|
||||
|
||||
# vscode
|
||||
.vscode/
|
||||
|
||||
# uv
|
||||
uv.lock
|
||||
|
||||
# custom .gitignore
|
||||
user.config
|
||||
saves/
|
||||
hf_cache/
|
||||
ms_cache/
|
||||
om_cache/
|
||||
cache/
|
||||
config/
|
||||
saves/
|
||||
output/
|
||||
wandb/
|
||||
swanlog/
|
||||
generated_predictions.jsonl
|
||||
predictions_score.json
|
||||
|
28
.pre-commit-config.yaml
Normal file
28
.pre-commit-config.yaml
Normal file
@ -0,0 +1,28 @@
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v5.0.0
|
||||
hooks:
|
||||
- id: check-ast
|
||||
- id: check-added-large-files
|
||||
args: ['--maxkb=25000']
|
||||
- id: check-merge-conflict
|
||||
- id: check-yaml
|
||||
- id: debug-statements
|
||||
- id: end-of-file-fixer
|
||||
- id: trailing-whitespace
|
||||
args: [--markdown-linebreak-ext=md]
|
||||
- id: no-commit-to-branch
|
||||
args: ['--branch', 'main']
|
||||
|
||||
- repo: https://github.com/asottile/pyupgrade
|
||||
rev: v3.17.0
|
||||
hooks:
|
||||
- id: pyupgrade
|
||||
args: [--py38-plus]
|
||||
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.6.9
|
||||
hooks:
|
||||
- id: ruff
|
||||
args: [--fix]
|
||||
- id: ruff-format
|
11
CITATION.cff
11
CITATION.cff
@ -12,12 +12,16 @@ authors:
|
||||
given-names: "Yanhan"
|
||||
- family-names: "Luo"
|
||||
given-names: "Zheyan"
|
||||
- family-names: "Feng"
|
||||
given-names: "Zhangchi"
|
||||
- family-names: "Ma"
|
||||
given-names: "Yongqiang"
|
||||
title: "LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models"
|
||||
url: "https://arxiv.org/abs/2403.13372"
|
||||
preferred-citation:
|
||||
type: article
|
||||
type: conference-paper
|
||||
conference:
|
||||
name: "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)"
|
||||
authors:
|
||||
- family-names: "Zheng"
|
||||
given-names: "Yaowei"
|
||||
@ -29,9 +33,12 @@ preferred-citation:
|
||||
given-names: "Yanhan"
|
||||
- family-names: "Luo"
|
||||
given-names: "Zheyan"
|
||||
- family-names: "Feng"
|
||||
given-names: "Zhangchi"
|
||||
- family-names: "Ma"
|
||||
given-names: "Yongqiang"
|
||||
journal: "arXiv preprint arXiv:2403.13372"
|
||||
title: "LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models"
|
||||
url: "https://arxiv.org/abs/2403.13372"
|
||||
year: 2024
|
||||
publisher: "Association for Computational Linguistics"
|
||||
address: "Bangkok, Thailand"
|
||||
|
14
Dockerfile
14
Dockerfile
@ -1,14 +0,0 @@
|
||||
FROM nvcr.io/nvidia/pytorch:24.01-py3
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY requirements.txt /app/
|
||||
RUN pip install -r requirements.txt
|
||||
|
||||
COPY . /app/
|
||||
RUN pip install -e .[deepspeed,metrics,bitsandbytes,qwen]
|
||||
|
||||
VOLUME [ "/root/.cache/huggingface/", "/app/data", "/app/output" ]
|
||||
EXPOSE 7860
|
||||
|
||||
CMD [ "python", "src/train_web.py" ]
|
1
MANIFEST.in
Normal file
1
MANIFEST.in
Normal file
@ -0,0 +1 @@
|
||||
include LICENSE requirements.txt
|
17
Makefile
17
Makefile
@ -1,6 +1,16 @@
|
||||
.PHONY: quality style
|
||||
.PHONY: build commit license quality style test
|
||||
|
||||
check_dirs := scripts src tests
|
||||
check_dirs := scripts src tests setup.py
|
||||
|
||||
build:
|
||||
pip3 install build && python3 -m build
|
||||
|
||||
commit:
|
||||
pre-commit install
|
||||
pre-commit run --all-files
|
||||
|
||||
license:
|
||||
python3 tests/check_license.py $(check_dirs)
|
||||
|
||||
quality:
|
||||
ruff check $(check_dirs)
|
||||
@ -9,3 +19,6 @@ quality:
|
||||
style:
|
||||
ruff check $(check_dirs) --fix
|
||||
ruff format $(check_dirs)
|
||||
|
||||
test:
|
||||
CUDA_VISIBLE_DEVICES= WANDB_DISABLED=true pytest -vv tests/
|
||||
|
816
README_zh.md
816
README_zh.md
File diff suppressed because it is too large
Load Diff
38
assets/alaya_new.svg
Normal file
38
assets/alaya_new.svg
Normal file
File diff suppressed because one or more lines are too long
After Width: | Height: | Size: 47 KiB |
1216
assets/benchmark.svg
1216
assets/benchmark.svg
File diff suppressed because it is too large
Load Diff
Before Width: | Height: | Size: 29 KiB |
Binary file not shown.
Before Width: | Height: | Size: 184 KiB After Width: | Height: | Size: 166 KiB |
BIN
assets/wechat_alaya.png
Normal file
BIN
assets/wechat_alaya.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 209 KiB |
BIN
assets/wechat_npu.jpg
Normal file
BIN
assets/wechat_npu.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 171 KiB |
422
data/README.md
422
data/README.md
@ -1,16 +1,22 @@
|
||||
If you are using a custom dataset, please provide your dataset definition in the following format in `dataset_info.json`.
|
||||
The [dataset_info.json](dataset_info.json) contains all available datasets. If you are using a custom dataset, please **make sure** to add a *dataset description* in `dataset_info.json` and specify `dataset: dataset_name` before training to use it.
|
||||
|
||||
The `dataset_info.json` file should be put in the `dataset_dir` directory. You can change `dataset_dir` to use another directory. The default value is `./data`.
|
||||
|
||||
Currently we support datasets in **alpaca** and **sharegpt** format. Allowed file types include json, jsonl, csv, parquet, arrow.
|
||||
|
||||
```json
|
||||
"dataset_name": {
|
||||
"hf_hub_url": "the name of the dataset repository on the Hugging Face hub. (if specified, ignore script_url and file_name)",
|
||||
"ms_hub_url": "the name of the dataset repository on the ModelScope hub. (if specified, ignore script_url and file_name)",
|
||||
"script_url": "the name of the directory containing a dataset loading script. (if specified, ignore file_name)",
|
||||
"file_name": "the name of the dataset file in this directory. (required if above are not specified)",
|
||||
"file_sha1": "the SHA-1 hash value of the dataset file. (optional, does not affect training)",
|
||||
"subset": "the name of the subset. (optional, default: None)",
|
||||
"folder": "the name of the folder of the dataset repository on the Hugging Face hub. (optional, default: None)",
|
||||
"ranking": "whether the dataset is a preference dataset or not. (default: false)",
|
||||
"hf_hub_url": "the name of the dataset repository on the Hugging Face hub. (if specified, ignore script_url, file_name and cloud_file_name)",
|
||||
"ms_hub_url": "the name of the dataset repository on the Model Scope hub. (if specified, ignore script_url, file_name and cloud_file_name)",
|
||||
"script_url": "the name of the directory containing a dataset loading script. (if specified, ignore file_name and cloud_file_name)",
|
||||
"cloud_file_name": "the name of the dataset file in s3/gcs cloud storage. (if specified, ignore file_name)",
|
||||
"file_name": "the name of the dataset folder or dataset file in this directory. (required if above are not specified)",
|
||||
"formatting": "the format of the dataset. (optional, default: alpaca, can be chosen from {alpaca, sharegpt})",
|
||||
"ranking": "whether the dataset is a preference dataset or not. (default: False)",
|
||||
"subset": "the name of the subset. (optional, default: None)",
|
||||
"split": "the name of dataset split to be used. (optional, default: train)",
|
||||
"folder": "the name of the folder of the dataset repository on the Hugging Face hub. (optional, default: None)",
|
||||
"num_samples": "the number of samples in the dataset to be used. (optional, default: None)",
|
||||
"columns (optional)": {
|
||||
"prompt": "the column name in the dataset containing the prompts. (default: instruction)",
|
||||
"query": "the column name in the dataset containing the queries. (default: input)",
|
||||
@ -19,7 +25,12 @@ If you are using a custom dataset, please provide your dataset definition in the
|
||||
"messages": "the column name in the dataset containing the messages. (default: conversations)",
|
||||
"system": "the column name in the dataset containing the system prompts. (default: None)",
|
||||
"tools": "the column name in the dataset containing the tool description. (default: None)",
|
||||
"images": "the column name in the dataset containing the image inputs. (default: None)"
|
||||
"images": "the column name in the dataset containing the image inputs. (default: None)",
|
||||
"videos": "the column name in the dataset containing the videos inputs. (default: None)",
|
||||
"audios": "the column name in the dataset containing the audios inputs. (default: None)",
|
||||
"chosen": "the column name in the dataset containing the chosen answers. (default: None)",
|
||||
"rejected": "the column name in the dataset containing the rejected answers. (default: None)",
|
||||
"kto_tag": "the column name in the dataset containing the kto tags. (default: None)"
|
||||
},
|
||||
"tags (optional, used for the sharegpt format)": {
|
||||
"role_tag": "the key in the message represents the identity. (default: from)",
|
||||
@ -33,11 +44,19 @@ If you are using a custom dataset, please provide your dataset definition in the
|
||||
}
|
||||
```
|
||||
|
||||
Given above, you can use the custom dataset via specifying `--dataset dataset_name`.
|
||||
## Alpaca Format
|
||||
|
||||
----
|
||||
### Supervised Fine-Tuning Dataset
|
||||
|
||||
Currently we support dataset in **alpaca** or **sharegpt** format, the dataset in alpaca format should follow the below format:
|
||||
* [Example dataset](alpaca_en_demo.json)
|
||||
|
||||
In supervised fine-tuning, the `instruction` column will be concatenated with the `input` column and used as the user prompt, then the user prompt would be `instruction\ninput`. The `output` column represents the model response.
|
||||
|
||||
For reasoning models, if the dataset contains chain-of-thought (CoT), the CoT needs to be placed in the model responses, such as `<think>cot</think>output`.
|
||||
|
||||
The `system` column will be used as the system prompt if specified.
|
||||
|
||||
The `history` column is a list consisting of string tuples representing prompt-response pairs in the history messages. Note that the responses in the history **will also be learned by the model** in supervised fine-tuning.
|
||||
|
||||
```json
|
||||
[
|
||||
@ -54,10 +73,11 @@ Currently we support dataset in **alpaca** or **sharegpt** format, the dataset i
|
||||
]
|
||||
```
|
||||
|
||||
Regarding the above dataset, the `columns` in `dataset_info.json` should be:
|
||||
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
|
||||
|
||||
```json
|
||||
"dataset_name": {
|
||||
"file_name": "data.json",
|
||||
"columns": {
|
||||
"prompt": "instruction",
|
||||
"query": "input",
|
||||
@ -68,30 +88,193 @@ Regarding the above dataset, the `columns` in `dataset_info.json` should be:
|
||||
}
|
||||
```
|
||||
|
||||
The `query` column will be concatenated with the `prompt` column and used as the user prompt, then the user prompt would be `prompt\nquery`. The `response` column represents the model response.
|
||||
> [!TIP]
|
||||
> If the model has reasoning capabilities (e.g. Qwen3) but the dataset does not contain chain-of-thought (CoT), LLaMA-Factory will automatically add empty CoT to the data. When `enable_thinking` is `True` (slow thinking, by default), the empty CoT will be added to the model responses and loss computation will be considered; otherwise (fast thinking), it will be added to the user prompts and loss computation will be ignored. Please keep the `enable_thinking` parameter consistent during training and inference.
|
||||
>
|
||||
> If you want to train data containing CoT with slow thinking and data without CoT with fast thinking, you can set `enable_thinking` to `None`. However, this feature is relatively complicated and should be used with caution.
|
||||
|
||||
The `system` column will be used as the system prompt. The `history` column is a list consisting string tuples representing prompt-response pairs in the history. Note that the responses in the history **will also be used for training**.
|
||||
### Pre-training Dataset
|
||||
|
||||
For the pre-training datasets, only the `prompt` column will be used for training.
|
||||
- [Example dataset](c4_demo.jsonl)
|
||||
|
||||
For the preference datasets, the `response` column should be a string list whose length is 2, with the preferred answers appearing first, for example:
|
||||
In pre-training, only the `text` column will be used for model learning.
|
||||
|
||||
```json
|
||||
{
|
||||
"instruction": "user instruction",
|
||||
"input": "user input",
|
||||
"output": [
|
||||
"chosen answer",
|
||||
"rejected answer"
|
||||
]
|
||||
[
|
||||
{"text": "document"},
|
||||
{"text": "document"}
|
||||
]
|
||||
```
|
||||
|
||||
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
|
||||
|
||||
```json
|
||||
"dataset_name": {
|
||||
"file_name": "data.json",
|
||||
"columns": {
|
||||
"prompt": "text"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Remember to set `"ranking": true` for the preference datasets.
|
||||
### Preference Dataset
|
||||
|
||||
----
|
||||
Preference datasets are used for reward modeling, DPO training, ORPO and SimPO training.
|
||||
|
||||
The dataset in sharegpt format should follow the below format:
|
||||
It requires a better response in `chosen` column and a worse response in `rejected` column.
|
||||
|
||||
```json
|
||||
[
|
||||
{
|
||||
"instruction": "user instruction (required)",
|
||||
"input": "user input (optional)",
|
||||
"chosen": "chosen answer (required)",
|
||||
"rejected": "rejected answer (required)"
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
|
||||
|
||||
```json
|
||||
"dataset_name": {
|
||||
"file_name": "data.json",
|
||||
"ranking": true,
|
||||
"columns": {
|
||||
"prompt": "instruction",
|
||||
"query": "input",
|
||||
"chosen": "chosen",
|
||||
"rejected": "rejected"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### KTO Dataset
|
||||
|
||||
An additional column `kto_tag` is required. Please refer to the [sharegpt](#sharegpt-format) format for details.
|
||||
|
||||
### Multimodal Image Dataset
|
||||
|
||||
An additional column `images` is required. Please refer to the [sharegpt](#sharegpt-format) format for details.
|
||||
|
||||
### Multimodal Video Dataset
|
||||
|
||||
An additional column `videos` is required. Please refer to the [sharegpt](#sharegpt-format) format for details.
|
||||
|
||||
### Multimodal Audio Dataset
|
||||
|
||||
An additional column `audios` is required. Please refer to the [sharegpt](#sharegpt-format) format for details.
|
||||
|
||||
## Sharegpt Format
|
||||
|
||||
### Supervised Fine-Tuning Dataset
|
||||
|
||||
- [Example dataset](glaive_toolcall_en_demo.json)
|
||||
|
||||
Compared to the alpaca format, the sharegpt format allows the datasets have **more roles**, such as human, gpt, observation and function. They are presented in a list of objects in the `conversations` column.
|
||||
|
||||
Note that the human and observation should appear in odd positions, while gpt and function should appear in even positions. The gpt and function will be learned by the model.
|
||||
|
||||
```json
|
||||
[
|
||||
{
|
||||
"conversations": [
|
||||
{
|
||||
"from": "human",
|
||||
"value": "user instruction"
|
||||
},
|
||||
{
|
||||
"from": "function_call",
|
||||
"value": "tool arguments"
|
||||
},
|
||||
{
|
||||
"from": "observation",
|
||||
"value": "tool result"
|
||||
},
|
||||
{
|
||||
"from": "gpt",
|
||||
"value": "model response"
|
||||
}
|
||||
],
|
||||
"system": "system prompt (optional)",
|
||||
"tools": "tool description (optional)"
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
|
||||
|
||||
```json
|
||||
"dataset_name": {
|
||||
"file_name": "data.json",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "conversations",
|
||||
"system": "system",
|
||||
"tools": "tools"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Pre-training Dataset
|
||||
|
||||
Not yet supported, please use the [alpaca](#alpaca-format) format.
|
||||
|
||||
### Preference Dataset
|
||||
|
||||
- [Example dataset](dpo_en_demo.json)
|
||||
|
||||
Preference datasets in sharegpt format also require a better message in `chosen` column and a worse message in `rejected` column.
|
||||
|
||||
```json
|
||||
[
|
||||
{
|
||||
"conversations": [
|
||||
{
|
||||
"from": "human",
|
||||
"value": "user instruction"
|
||||
},
|
||||
{
|
||||
"from": "gpt",
|
||||
"value": "model response"
|
||||
},
|
||||
{
|
||||
"from": "human",
|
||||
"value": "user instruction"
|
||||
}
|
||||
],
|
||||
"chosen": {
|
||||
"from": "gpt",
|
||||
"value": "chosen answer (required)"
|
||||
},
|
||||
"rejected": {
|
||||
"from": "gpt",
|
||||
"value": "rejected answer (required)"
|
||||
}
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
|
||||
|
||||
```json
|
||||
"dataset_name": {
|
||||
"file_name": "data.json",
|
||||
"formatting": "sharegpt",
|
||||
"ranking": true,
|
||||
"columns": {
|
||||
"messages": "conversations",
|
||||
"chosen": "chosen",
|
||||
"rejected": "rejected"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### KTO Dataset
|
||||
|
||||
- [Example dataset](kto_en_demo.json)
|
||||
|
||||
KTO datasets require a extra `kto_tag` column containing the boolean human feedback.
|
||||
|
||||
```json
|
||||
[
|
||||
@ -106,30 +289,187 @@ The dataset in sharegpt format should follow the below format:
|
||||
"value": "model response"
|
||||
}
|
||||
],
|
||||
"system": "system prompt (optional)",
|
||||
"tools": "tool description (optional)"
|
||||
"kto_tag": "human feedback [true/false] (required)"
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
Regarding the above dataset, the `columns` in `dataset_info.json` should be:
|
||||
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
|
||||
|
||||
```json
|
||||
"dataset_name": {
|
||||
"file_name": "data.json",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "conversations",
|
||||
"system": "system",
|
||||
"tools": "tools"
|
||||
},
|
||||
"tags": {
|
||||
"role_tag": "from",
|
||||
"content_tag": "value",
|
||||
"user_tag": "human",
|
||||
"assistant_tag": "gpt"
|
||||
"kto_tag": "kto_tag"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
where the `messages` column should be a list following the `u/a/u/a/u/a` order.
|
||||
### Multimodal Image Dataset
|
||||
|
||||
Pre-training datasets and preference datasets are incompatible with the sharegpt format yet.
|
||||
- [Example dataset](mllm_demo.json)
|
||||
|
||||
Multimodal image datasets require an `images` column containing the paths to the input images.
|
||||
|
||||
The number of images should be identical to the `<image>` tokens in the conversations.
|
||||
|
||||
```json
|
||||
[
|
||||
{
|
||||
"conversations": [
|
||||
{
|
||||
"from": "human",
|
||||
"value": "<image>user instruction"
|
||||
},
|
||||
{
|
||||
"from": "gpt",
|
||||
"value": "model response"
|
||||
}
|
||||
],
|
||||
"images": [
|
||||
"image path (required)"
|
||||
]
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
|
||||
|
||||
```json
|
||||
"dataset_name": {
|
||||
"file_name": "data.json",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "conversations",
|
||||
"images": "images"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Multimodal Video Dataset
|
||||
|
||||
- [Example dataset](mllm_video_demo.json)
|
||||
|
||||
Multimodal video datasets require a `videos` column containing the paths to the input videos.
|
||||
|
||||
The number of videos should be identical to the `<video>` tokens in the conversations.
|
||||
|
||||
```json
|
||||
[
|
||||
{
|
||||
"conversations": [
|
||||
{
|
||||
"from": "human",
|
||||
"value": "<video>user instruction"
|
||||
},
|
||||
{
|
||||
"from": "gpt",
|
||||
"value": "model response"
|
||||
}
|
||||
],
|
||||
"videos": [
|
||||
"video path (required)"
|
||||
]
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
|
||||
|
||||
```json
|
||||
"dataset_name": {
|
||||
"file_name": "data.json",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "conversations",
|
||||
"videos": "videos"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Multimodal Audio Dataset
|
||||
|
||||
- [Example dataset](mllm_audio_demo.json)
|
||||
|
||||
Multimodal audio datasets require an `audios` column containing the paths to the input audios.
|
||||
|
||||
The number of audios should be identical to the `<audio>` tokens in the conversations.
|
||||
|
||||
```json
|
||||
[
|
||||
{
|
||||
"conversations": [
|
||||
{
|
||||
"from": "human",
|
||||
"value": "<audio>user instruction"
|
||||
},
|
||||
{
|
||||
"from": "gpt",
|
||||
"value": "model response"
|
||||
}
|
||||
],
|
||||
"audios": [
|
||||
"audio path (required)"
|
||||
]
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
|
||||
|
||||
```json
|
||||
"dataset_name": {
|
||||
"file_name": "data.json",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "conversations",
|
||||
"audios": "audios"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### OpenAI Format
|
||||
|
||||
The openai format is simply a special case of the sharegpt format, where the first message may be a system prompt.
|
||||
|
||||
```json
|
||||
[
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "system prompt (optional)"
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "user instruction"
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "model response"
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
|
||||
|
||||
```json
|
||||
"dataset_name": {
|
||||
"file_name": "data.json",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "messages"
|
||||
},
|
||||
"tags": {
|
||||
"role_tag": "role",
|
||||
"content_tag": "content",
|
||||
"user_tag": "user",
|
||||
"assistant_tag": "assistant",
|
||||
"system_tag": "system"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
@ -1,16 +1,21 @@
|
||||
如果您使用自定义数据集,请务必在 `dataset_info.json` 文件中按照以下格式提供数据集定义。
|
||||
[dataset_info.json](dataset_info.json) 包含了所有可用的数据集。如果您希望使用自定义数据集,请**务必**在 `dataset_info.json` 文件中添加*数据集描述*,并通过修改 `dataset: 数据集名称` 配置来使用数据集。
|
||||
|
||||
其中 `dataset_info.json` 文件应放置在 `dataset_dir` 目录下。您可以通过修改 `dataset_dir` 参数来使用其他目录。默认值为 `./data`。
|
||||
|
||||
目前我们支持 **alpaca** 格式和 **sharegpt** 格式的数据集。允许的文件类型包括 json、jsonl、csv、parquet 和 arrow。
|
||||
|
||||
```json
|
||||
"数据集名称": {
|
||||
"hf_hub_url": "Hugging Face 的数据集仓库地址(若指定,则忽略 script_url 和 file_name)",
|
||||
"ms_hub_url": "ModelScope 的数据集仓库地址(若指定,则忽略 script_url 和 file_name)",
|
||||
"script_url": "包含数据加载脚本的本地文件夹名称(若指定,则忽略 file_name)",
|
||||
"file_name": "该目录下数据集文件的名称(若上述参数未指定,则此项必需)",
|
||||
"file_sha1": "数据集文件的 SHA-1 哈希值(可选,留空不影响训练)",
|
||||
"subset": "数据集子集的名称(可选,默认:None)",
|
||||
"folder": "Hugging Face 仓库的文件夹名称(可选,默认:None)",
|
||||
"ranking": "是否为偏好数据集(可选,默认:False)",
|
||||
"file_name": "该目录下数据集文件夹或文件的名称(若上述参数未指定,则此项必需)",
|
||||
"formatting": "数据集格式(可选,默认:alpaca,可以为 alpaca 或 sharegpt)",
|
||||
"ranking": "是否为偏好数据集(可选,默认:False)",
|
||||
"subset": "数据集子集的名称(可选,默认:None)",
|
||||
"split": "所使用的数据集切分(可选,默认:train)",
|
||||
"folder": "Hugging Face 仓库的文件夹名称(可选,默认:None)",
|
||||
"num_samples": "该数据集所使用的样本数量。(可选,默认:None)",
|
||||
"columns(可选)": {
|
||||
"prompt": "数据集代表提示词的表头名称(默认:instruction)",
|
||||
"query": "数据集代表请求的表头名称(默认:input)",
|
||||
@ -19,7 +24,12 @@
|
||||
"messages": "数据集代表消息列表的表头名称(默认:conversations)",
|
||||
"system": "数据集代表系统提示的表头名称(默认:None)",
|
||||
"tools": "数据集代表工具描述的表头名称(默认:None)",
|
||||
"images": "数据集代表图像输入的表头名称(默认:None)"
|
||||
"images": "数据集代表图像输入的表头名称(默认:None)",
|
||||
"videos": "数据集代表视频输入的表头名称(默认:None)",
|
||||
"audios": "数据集代表音频输入的表头名称(默认:None)",
|
||||
"chosen": "数据集代表更优回答的表头名称(默认:None)",
|
||||
"rejected": "数据集代表更差回答的表头名称(默认:None)",
|
||||
"kto_tag": "数据集代表 KTO 标签的表头名称(默认:None)"
|
||||
},
|
||||
"tags(可选,用于 sharegpt 格式)": {
|
||||
"role_tag": "消息中代表发送者身份的键名(默认:from)",
|
||||
@ -28,16 +38,24 @@
|
||||
"assistant_tag": "消息中代表助手的 role_tag(默认:gpt)",
|
||||
"observation_tag": "消息中代表工具返回结果的 role_tag(默认:observation)",
|
||||
"function_tag": "消息中代表工具调用的 role_tag(默认:function_call)",
|
||||
"system_tag": "消息中代表系统提示的 role_tag(默认:system,会覆盖 system 列)"
|
||||
"system_tag": "消息中代表系统提示的 role_tag(默认:system,会覆盖 system column)"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
添加后可通过指定 `--dataset 数据集名称` 参数使用自定义数据集。
|
||||
## Alpaca 格式
|
||||
|
||||
----
|
||||
### 指令监督微调数据集
|
||||
|
||||
该项目目前支持两种格式的数据集:**alpaca** 和 **sharegpt**,其中 alpaca 格式的数据集按照以下方式组织:
|
||||
- [样例数据集](alpaca_zh_demo.json)
|
||||
|
||||
在指令监督微调时,`instruction` 列对应的内容会与 `input` 列对应的内容拼接后作为提示词,即提示词为 `instruction\ninput`。而 `output` 列对应的内容为模型回答。
|
||||
|
||||
对于推理类模型的微调,如果数据集包含思维链,则需要把思维链放在模型回答中,例如 `<think>cot</think>output`。
|
||||
|
||||
如果指定,`system` 列对应的内容将被作为系统提示词。
|
||||
|
||||
`history` 列是由多个字符串二元组构成的列表,分别代表历史消息中每轮对话的指令和回答。注意在指令监督微调时,历史消息中的回答内容**也会被用于模型学习**。
|
||||
|
||||
```json
|
||||
[
|
||||
@ -54,10 +72,11 @@
|
||||
]
|
||||
```
|
||||
|
||||
对于上述格式的数据,`dataset_info.json` 中的 `columns` 应为:
|
||||
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
|
||||
|
||||
```json
|
||||
"数据集名称": {
|
||||
"file_name": "data.json",
|
||||
"columns": {
|
||||
"prompt": "instruction",
|
||||
"query": "input",
|
||||
@ -68,30 +87,193 @@
|
||||
}
|
||||
```
|
||||
|
||||
其中 `query` 列对应的内容会与 `prompt` 列对应的内容拼接后作为用户指令,即用户指令为 `prompt\nquery`。`response` 列对应的内容为模型回答。
|
||||
> [!TIP]
|
||||
> 如果模型本身具备推理能力(如 Qwen3)而数据集不包含思维链,LLaMA-Factory 会自动为数据添加空思维链。当 `enable_thinking` 为 `True` 时(慢思考,默认),空思维链会添加到模型回答中并且计算损失,否则会添加到用户指令中并且不计算损失(快思考)。请在训练和推理时保持 `enable_thinking` 参数一致。
|
||||
>
|
||||
> 如果您希望训练包含思维链的数据时使用慢思考,训练不包含思维链的数据时使用快思考,可以设置 `enable_thinking` 为 `None`。但该功能较为复杂,请谨慎使用。
|
||||
|
||||
`system` 列对应的内容将被作为系统提示词。`history` 列是由多个字符串二元组构成的列表,分别代表历史消息中每轮的指令和回答。注意历史消息中的回答**也会被用于训练**。
|
||||
### 预训练数据集
|
||||
|
||||
对于预训练数据集,仅 `prompt` 列中的内容会用于模型训练。
|
||||
- [样例数据集](c4_demo.jsonl)
|
||||
|
||||
对于偏好数据集,`response` 列应当是一个长度为 2 的字符串列表,排在前面的代表更优的回答,例如:
|
||||
在预训练时,只有 `text` 列中的内容会用于模型学习。
|
||||
|
||||
```json
|
||||
{
|
||||
"instruction": "用户指令",
|
||||
"input": "用户输入",
|
||||
"output": [
|
||||
"优质回答",
|
||||
"劣质回答"
|
||||
]
|
||||
[
|
||||
{"text": "document"},
|
||||
{"text": "document"}
|
||||
]
|
||||
```
|
||||
|
||||
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
|
||||
|
||||
```json
|
||||
"数据集名称": {
|
||||
"file_name": "data.json",
|
||||
"columns": {
|
||||
"prompt": "text"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
添加偏好数据集需要额外指定 `"ranking": true`。
|
||||
### 偏好数据集
|
||||
|
||||
----
|
||||
偏好数据集用于奖励模型训练、DPO 训练、ORPO 训练和 SimPO 训练。
|
||||
|
||||
而 sharegpt 格式的数据集按照以下方式组织:
|
||||
它需要在 `chosen` 列中提供更优的回答,并在 `rejected` 列中提供更差的回答。
|
||||
|
||||
```json
|
||||
[
|
||||
{
|
||||
"instruction": "用户指令(必填)",
|
||||
"input": "用户输入(选填)",
|
||||
"chosen": "优质回答(必填)",
|
||||
"rejected": "劣质回答(必填)"
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
|
||||
|
||||
```json
|
||||
"数据集名称": {
|
||||
"file_name": "data.json",
|
||||
"ranking": true,
|
||||
"columns": {
|
||||
"prompt": "instruction",
|
||||
"query": "input",
|
||||
"chosen": "chosen",
|
||||
"rejected": "rejected"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### KTO 数据集
|
||||
|
||||
KTO 数据集需要提供额外的 `kto_tag` 列。详情请参阅 [sharegpt](#sharegpt-格式)。
|
||||
|
||||
### 多模态图像数据集
|
||||
|
||||
多模态图像数据集需要提供额外的 `images` 列。详情请参阅 [sharegpt](#sharegpt-格式)。
|
||||
|
||||
### 多模态视频数据集
|
||||
|
||||
多模态视频数据集需要提供额外的 `videos` 列。详情请参阅 [sharegpt](#sharegpt-格式)。
|
||||
|
||||
### 多模态音频数据集
|
||||
|
||||
多模态音频数据集需要提供额外的 `audios` 列。详情请参阅 [sharegpt](#sharegpt-格式)。
|
||||
|
||||
## Sharegpt 格式
|
||||
|
||||
### 指令监督微调数据集
|
||||
|
||||
- [样例数据集](glaive_toolcall_zh_demo.json)
|
||||
|
||||
相比 alpaca 格式的数据集,sharegpt 格式支持**更多的角色种类**,例如 human、gpt、observation、function 等等。它们构成一个对象列表呈现在 `conversations` 列中。
|
||||
|
||||
注意其中 human 和 observation 必须出现在奇数位置,gpt 和 function 必须出现在偶数位置。默认所有的 gpt 和 function 会被用于学习。
|
||||
|
||||
```json
|
||||
[
|
||||
{
|
||||
"conversations": [
|
||||
{
|
||||
"from": "human",
|
||||
"value": "用户指令"
|
||||
},
|
||||
{
|
||||
"from": "function_call",
|
||||
"value": "工具参数"
|
||||
},
|
||||
{
|
||||
"from": "observation",
|
||||
"value": "工具结果"
|
||||
},
|
||||
{
|
||||
"from": "gpt",
|
||||
"value": "模型回答"
|
||||
}
|
||||
],
|
||||
"system": "系统提示词(选填)",
|
||||
"tools": "工具描述(选填)"
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
|
||||
|
||||
```json
|
||||
"数据集名称": {
|
||||
"file_name": "data.json",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "conversations",
|
||||
"system": "system",
|
||||
"tools": "tools"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 预训练数据集
|
||||
|
||||
尚不支持,请使用 [alpaca](#alpaca-格式) 格式。
|
||||
|
||||
### 偏好数据集
|
||||
|
||||
- [样例数据集](dpo_zh_demo.json)
|
||||
|
||||
Sharegpt 格式的偏好数据集同样需要在 `chosen` 列中提供更优的消息,并在 `rejected` 列中提供更差的消息。
|
||||
|
||||
```json
|
||||
[
|
||||
{
|
||||
"conversations": [
|
||||
{
|
||||
"from": "human",
|
||||
"value": "用户指令"
|
||||
},
|
||||
{
|
||||
"from": "gpt",
|
||||
"value": "模型回答"
|
||||
},
|
||||
{
|
||||
"from": "human",
|
||||
"value": "用户指令"
|
||||
}
|
||||
],
|
||||
"chosen": {
|
||||
"from": "gpt",
|
||||
"value": "优质回答"
|
||||
},
|
||||
"rejected": {
|
||||
"from": "gpt",
|
||||
"value": "劣质回答"
|
||||
}
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
|
||||
|
||||
```json
|
||||
"数据集名称": {
|
||||
"file_name": "data.json",
|
||||
"formatting": "sharegpt",
|
||||
"ranking": true,
|
||||
"columns": {
|
||||
"messages": "conversations",
|
||||
"chosen": "chosen",
|
||||
"rejected": "rejected"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### KTO 数据集
|
||||
|
||||
- [样例数据集](kto_en_demo.json)
|
||||
|
||||
KTO 数据集需要额外添加一个 `kto_tag` 列,包含 bool 类型的人类反馈。
|
||||
|
||||
```json
|
||||
[
|
||||
@ -106,30 +288,191 @@
|
||||
"value": "模型回答"
|
||||
}
|
||||
],
|
||||
"system": "系统提示词(选填)",
|
||||
"tools": "工具描述(选填)"
|
||||
"kto_tag": "人类反馈 [true/false](必填)"
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
对于上述格式的数据,`dataset_info.json` 中的 `columns` 应为:
|
||||
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
|
||||
|
||||
```json
|
||||
"数据集名称": {
|
||||
"file_name": "data.json",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "conversations",
|
||||
"system": "system",
|
||||
"tools": "tools"
|
||||
},
|
||||
"tags": {
|
||||
"role_tag": "from",
|
||||
"content_tag": "value",
|
||||
"user_tag": "human",
|
||||
"assistant_tag": "gpt"
|
||||
"kto_tag": "kto_tag"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
其中 `messages` 列应当是一个列表,且符合 `用户/模型/用户/模型/用户/模型` 的顺序。
|
||||
### 多模态图像数据集
|
||||
|
||||
预训练数据集和偏好数据集尚不支持 sharegpt 格式。
|
||||
- [样例数据集](mllm_demo.json)
|
||||
|
||||
多模态图像数据集需要额外添加一个 `images` 列,包含输入图像的路径。
|
||||
|
||||
注意图片的数量必须与文本中所有 `<image>` 标记的数量严格一致。
|
||||
|
||||
```json
|
||||
[
|
||||
{
|
||||
"conversations": [
|
||||
{
|
||||
"from": "human",
|
||||
"value": "<image><image>用户指令"
|
||||
},
|
||||
{
|
||||
"from": "gpt",
|
||||
"value": "模型回答"
|
||||
}
|
||||
],
|
||||
"images": [
|
||||
"图像路径(必填)",
|
||||
"图像路径(必填)"
|
||||
]
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
|
||||
|
||||
```json
|
||||
"数据集名称": {
|
||||
"file_name": "data.json",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "conversations",
|
||||
"images": "images"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 多模态视频数据集
|
||||
|
||||
- [样例数据集](mllm_video_demo.json)
|
||||
|
||||
多模态视频数据集需要额外添加一个 `videos` 列,包含输入视频的路径。
|
||||
|
||||
注意视频的数量必须与文本中所有 `<video>` 标记的数量严格一致。
|
||||
|
||||
```json
|
||||
[
|
||||
{
|
||||
"conversations": [
|
||||
{
|
||||
"from": "human",
|
||||
"value": "<video><video>用户指令"
|
||||
},
|
||||
{
|
||||
"from": "gpt",
|
||||
"value": "模型回答"
|
||||
}
|
||||
],
|
||||
"videos": [
|
||||
"视频路径(必填)",
|
||||
"视频路径(必填)"
|
||||
]
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
|
||||
|
||||
```json
|
||||
"数据集名称": {
|
||||
"file_name": "data.json",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "conversations",
|
||||
"videos": "videos"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 多模态音频数据集
|
||||
|
||||
- [样例数据集](mllm_audio_demo.json)
|
||||
|
||||
多模态音频数据集需要额外添加一个 `audios` 列,包含输入音频的路径。
|
||||
|
||||
注意音频的数量必须与文本中所有 `<audio>` 标记的数量严格一致。
|
||||
|
||||
```json
|
||||
[
|
||||
{
|
||||
"conversations": [
|
||||
{
|
||||
"from": "human",
|
||||
"value": "<audio><audio>用户指令"
|
||||
},
|
||||
{
|
||||
"from": "gpt",
|
||||
"value": "模型回答"
|
||||
}
|
||||
],
|
||||
"audios": [
|
||||
"音频路径(必填)",
|
||||
"音频路径(必填)"
|
||||
]
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
|
||||
|
||||
```json
|
||||
"数据集名称": {
|
||||
"file_name": "data.json",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "conversations",
|
||||
"audios": "audios"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
### OpenAI 格式
|
||||
|
||||
OpenAI 格式仅仅是 sharegpt 格式的一种特殊情况,其中第一条消息可能是系统提示词。
|
||||
|
||||
```json
|
||||
[
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "系统提示词(选填)"
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "用户指令"
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "模型回答"
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
|
||||
|
||||
```json
|
||||
"数据集名称": {
|
||||
"file_name": "data.json",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "messages"
|
||||
},
|
||||
"tags": {
|
||||
"role_tag": "role",
|
||||
"content_tag": "content",
|
||||
"user_tag": "user",
|
||||
"assistant_tag": "assistant",
|
||||
"system_tag": "system"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
@ -1 +0,0 @@
|
||||
3779ddbc040543ab1834ef216c983d6fcc06cc9a
|
@ -1 +0,0 @@
|
||||
a97cf9475291591843976554878568e046d8a46d
|
4997
data/alpaca_en_demo.json
Normal file
4997
data/alpaca_en_demo.json
Normal file
File diff suppressed because it is too large
Load Diff
@ -1 +0,0 @@
|
||||
25508714b7879a1e5a6764ba7f979a980f549f1a
|
@ -1 +0,0 @@
|
||||
7cb6a7d11455bddc3d495750a2392683d775b184
|
5002
data/alpaca_zh_demo.json
Normal file
5002
data/alpaca_zh_demo.json
Normal file
File diff suppressed because it is too large
Load Diff
@ -1,3 +1,18 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import json
|
||||
import os
|
||||
|
||||
@ -10,16 +25,16 @@ _DESCRIPTION = "BELLE multiturn chat dataset."
|
||||
|
||||
_CITATION = """\
|
||||
@article{belle2023exploring,
|
||||
title={Exploring the Impact of Instruction Data Scaling on Large Language Models: An Empirical Study on Real-World Use Cases},
|
||||
title={Exploring the Impact of Instruction Data Scaling on Large Language Models},
|
||||
author={Yunjie Ji, Yong Deng, Yan Gong, Yiping Peng, Qiang Niu, Lei Zhang, Baochang Ma, Xiangang Li},
|
||||
journal={arXiv preprint arXiv:2303.14742},
|
||||
year={2023}
|
||||
}
|
||||
"""
|
||||
|
||||
_HOMEPAGE = "{}/datasets/BelleGroup/multiturn_chat_0.8M".format(_HF_ENDPOINT)
|
||||
_HOMEPAGE = f"{_HF_ENDPOINT}/datasets/BelleGroup/multiturn_chat_0.8M"
|
||||
_LICENSE = "gpl-3.0"
|
||||
_URL = "{}/datasets/BelleGroup/multiturn_chat_0.8M/resolve/main/multiturn_chat_0.8M.json".format(_HF_ENDPOINT)
|
||||
_URL = f"{_HF_ENDPOINT}/datasets/BelleGroup/multiturn_chat_0.8M/resolve/main/multiturn_chat_0.8M.json"
|
||||
|
||||
|
||||
class BelleMultiturn(datasets.GeneratorBasedBuilder):
|
||||
@ -38,7 +53,7 @@ class BelleMultiturn(datasets.GeneratorBasedBuilder):
|
||||
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": file_path})]
|
||||
|
||||
def _generate_examples(self, filepath: str):
|
||||
with open(filepath, "r", encoding="utf-8") as f:
|
||||
with open(filepath, encoding="utf-8") as f:
|
||||
for key, row in enumerate(f):
|
||||
data = json.loads(row)
|
||||
conversations = []
|
||||
|
File diff suppressed because one or more lines are too long
300
data/c4_demo.jsonl
Normal file
300
data/c4_demo.jsonl
Normal file
File diff suppressed because one or more lines are too long
@ -1 +0,0 @@
|
||||
f5cb08305ff5dc9c17a09809c54c8c8834aadc70
|
@ -1 +0,0 @@
|
||||
aee47b7b443496e37808d7f34ef10403ff99bcc3
|
@ -1,57 +1,23 @@
|
||||
{
|
||||
"alpaca_en": {
|
||||
"file_name": "alpaca_data_en_52k.json",
|
||||
"file_sha1": "607f94a7f581341e59685aef32f531095232cf23"
|
||||
},
|
||||
"alpaca_zh": {
|
||||
"file_name": "alpaca_data_zh_51k.json",
|
||||
"file_sha1": "2ba9827122c158dc256668d42bd1bcb8bc6b786e"
|
||||
},
|
||||
"alpaca_gpt4_en": {
|
||||
"file_name": "alpaca_gpt4_data_en.json",
|
||||
"file_sha1": "647f4ad447bd993e4b6b6223d1be15208bab694a"
|
||||
},
|
||||
"alpaca_gpt4_zh": {
|
||||
"file_name": "alpaca_gpt4_data_zh.json",
|
||||
"file_sha1": "3eaa3bda364ccdd59925d7448a698256c31ef845"
|
||||
},
|
||||
"identity": {
|
||||
"file_name": "identity.json",
|
||||
"file_sha1": "ffe3ecb58ab642da33fbb514d5e6188f1469ad40"
|
||||
"file_name": "identity.json"
|
||||
},
|
||||
"oaast_sft": {
|
||||
"file_name": "oaast_sft.json",
|
||||
"file_sha1": "7baf5d43e67a91f9bbdf4e400dbe033b87e9757e",
|
||||
"alpaca_en_demo": {
|
||||
"file_name": "alpaca_en_demo.json"
|
||||
},
|
||||
"alpaca_zh_demo": {
|
||||
"file_name": "alpaca_zh_demo.json"
|
||||
},
|
||||
"glaive_toolcall_en_demo": {
|
||||
"file_name": "glaive_toolcall_en_demo.json",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"prompt": "instruction",
|
||||
"query": "input",
|
||||
"response": "output",
|
||||
"history": "history"
|
||||
"messages": "conversations",
|
||||
"tools": "tools"
|
||||
}
|
||||
},
|
||||
"oaast_sft_zh": {
|
||||
"file_name": "oaast_sft_zh.json",
|
||||
"file_sha1": "a6a91f18f80f37b10ded9cf633fb50c033bf7b9f",
|
||||
"columns": {
|
||||
"prompt": "instruction",
|
||||
"query": "input",
|
||||
"response": "output",
|
||||
"history": "history"
|
||||
}
|
||||
},
|
||||
"lima": {
|
||||
"file_name": "lima.json",
|
||||
"file_sha1": "9db59f6b7007dc4b17529fc63379b9cd61640f37",
|
||||
"columns": {
|
||||
"prompt": "instruction",
|
||||
"query": "input",
|
||||
"response": "output",
|
||||
"history": "history"
|
||||
}
|
||||
},
|
||||
"glaive_toolcall": {
|
||||
"file_name": "glaive_toolcall_10k.json",
|
||||
"file_sha1": "a6917b85d209df98d31fdecb253c79ebc440f6f3",
|
||||
"glaive_toolcall_zh_demo": {
|
||||
"file_name": "glaive_toolcall_zh_demo.json",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "conversations",
|
||||
@ -60,7 +26,6 @@
|
||||
},
|
||||
"mllm_demo": {
|
||||
"file_name": "mllm_demo.json",
|
||||
"file_sha1": "d626cc0ad88a26d0dc9fcb47336821cf486d8bcc",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "messages",
|
||||
@ -73,15 +38,87 @@
|
||||
"assistant_tag": "assistant"
|
||||
}
|
||||
},
|
||||
"example": {
|
||||
"script_url": "example_dataset",
|
||||
"mllm_audio_demo": {
|
||||
"file_name": "mllm_audio_demo.json",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"prompt": "instruction",
|
||||
"query": "input",
|
||||
"response": "output",
|
||||
"history": "history"
|
||||
"messages": "messages",
|
||||
"audios": "audios"
|
||||
},
|
||||
"tags": {
|
||||
"role_tag": "role",
|
||||
"content_tag": "content",
|
||||
"user_tag": "user",
|
||||
"assistant_tag": "assistant"
|
||||
}
|
||||
},
|
||||
"mllm_video_demo": {
|
||||
"file_name": "mllm_video_demo.json",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "messages",
|
||||
"videos": "videos"
|
||||
},
|
||||
"tags": {
|
||||
"role_tag": "role",
|
||||
"content_tag": "content",
|
||||
"user_tag": "user",
|
||||
"assistant_tag": "assistant"
|
||||
}
|
||||
},
|
||||
"mllm_video_audio_demo": {
|
||||
"file_name": "mllm_video_audio_demo.json",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "messages",
|
||||
"videos": "videos",
|
||||
"audios": "audios"
|
||||
},
|
||||
"tags": {
|
||||
"role_tag": "role",
|
||||
"content_tag": "content",
|
||||
"user_tag": "user",
|
||||
"assistant_tag": "assistant"
|
||||
}
|
||||
},
|
||||
"alpaca_en": {
|
||||
"hf_hub_url": "llamafactory/alpaca_en",
|
||||
"ms_hub_url": "llamafactory/alpaca_en",
|
||||
"om_hub_url": "HaM/alpaca_en"
|
||||
},
|
||||
"alpaca_zh": {
|
||||
"hf_hub_url": "llamafactory/alpaca_zh",
|
||||
"ms_hub_url": "llamafactory/alpaca_zh"
|
||||
},
|
||||
"alpaca_gpt4_en": {
|
||||
"hf_hub_url": "llamafactory/alpaca_gpt4_en",
|
||||
"ms_hub_url": "llamafactory/alpaca_gpt4_en"
|
||||
},
|
||||
"alpaca_gpt4_zh": {
|
||||
"hf_hub_url": "llamafactory/alpaca_gpt4_zh",
|
||||
"ms_hub_url": "llamafactory/alpaca_gpt4_zh",
|
||||
"om_hub_url": "State_Cloud/alpaca-gpt4-data-zh"
|
||||
},
|
||||
"glaive_toolcall_en": {
|
||||
"hf_hub_url": "llamafactory/glaive_toolcall_en",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "conversations",
|
||||
"tools": "tools"
|
||||
}
|
||||
},
|
||||
"glaive_toolcall_zh": {
|
||||
"hf_hub_url": "llamafactory/glaive_toolcall_zh",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "conversations",
|
||||
"tools": "tools"
|
||||
}
|
||||
},
|
||||
"lima": {
|
||||
"hf_hub_url": "llamafactory/lima",
|
||||
"formatting": "sharegpt"
|
||||
},
|
||||
"guanaco": {
|
||||
"hf_hub_url": "JosephusCheung/GuanacoDataset",
|
||||
"ms_hub_url": "AI-ModelScope/GuanacoDataset"
|
||||
@ -174,15 +211,25 @@
|
||||
"ms_hub_url": "AI-ModelScope/webnovel_cn"
|
||||
},
|
||||
"nectar_sft": {
|
||||
"hf_hub_url": "mlinmg/SFT-Nectar",
|
||||
"hf_hub_url": "AstraMindAI/SFT-Nectar",
|
||||
"ms_hub_url": "AI-ModelScope/SFT-Nectar"
|
||||
},
|
||||
"deepctrl": {
|
||||
"ms_hub_url": "deepctrl/deepctrl-sft-data"
|
||||
},
|
||||
"adgen": {
|
||||
"adgen_train": {
|
||||
"hf_hub_url": "HasturOfficial/adgen",
|
||||
"ms_hub_url": "AI-ModelScope/adgen",
|
||||
"split": "train",
|
||||
"columns": {
|
||||
"prompt": "content",
|
||||
"response": "summary"
|
||||
}
|
||||
},
|
||||
"adgen_eval": {
|
||||
"hf_hub_url": "HasturOfficial/adgen",
|
||||
"ms_hub_url": "AI-ModelScope/adgen",
|
||||
"split": "validation",
|
||||
"columns": {
|
||||
"prompt": "content",
|
||||
"response": "summary"
|
||||
@ -200,6 +247,7 @@
|
||||
"ultrachat_200k": {
|
||||
"hf_hub_url": "HuggingFaceH4/ultrachat_200k",
|
||||
"ms_hub_url": "AI-ModelScope/ultrachat_200k",
|
||||
"split": "train_sft",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "messages"
|
||||
@ -226,7 +274,7 @@
|
||||
"tags": {
|
||||
"role_tag": "role",
|
||||
"content_tag": "content",
|
||||
"user_tag": "human",
|
||||
"user_tag": "user",
|
||||
"assistant_tag": "assistant"
|
||||
}
|
||||
},
|
||||
@ -250,6 +298,104 @@
|
||||
"response": "text"
|
||||
}
|
||||
},
|
||||
"stem_zh": {
|
||||
"hf_hub_url": "hfl/stem_zh_instruction"
|
||||
},
|
||||
"ruozhiba_gpt4": {
|
||||
"hf_hub_url": "hfl/ruozhiba_gpt4_turbo"
|
||||
},
|
||||
"neo_sft": {
|
||||
"hf_hub_url": "m-a-p/neo_sft_phase2",
|
||||
"formatting": "sharegpt"
|
||||
},
|
||||
"magpie_pro_300k": {
|
||||
"hf_hub_url": "Magpie-Align/Magpie-Pro-300K-Filtered",
|
||||
"formatting": "sharegpt"
|
||||
},
|
||||
"magpie_ultra": {
|
||||
"hf_hub_url": "argilla/magpie-ultra-v0.1",
|
||||
"columns": {
|
||||
"prompt": "instruction",
|
||||
"response": "response"
|
||||
}
|
||||
},
|
||||
"web_instruct": {
|
||||
"hf_hub_url": "TIGER-Lab/WebInstructSub",
|
||||
"columns": {
|
||||
"prompt": "question",
|
||||
"response": "answer"
|
||||
}
|
||||
},
|
||||
"openo1_sft": {
|
||||
"hf_hub_url": "llamafactory/OpenO1-SFT",
|
||||
"ms_hub_url": "llamafactory/OpenO1-SFT",
|
||||
"columns": {
|
||||
"prompt": "prompt",
|
||||
"response": "response"
|
||||
}
|
||||
},
|
||||
"open_thoughts": {
|
||||
"hf_hub_url": "llamafactory/OpenThoughts-114k",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "messages"
|
||||
},
|
||||
"tags": {
|
||||
"role_tag": "role",
|
||||
"content_tag": "content",
|
||||
"user_tag": "user",
|
||||
"assistant_tag": "assistant",
|
||||
"system_tag": "system"
|
||||
}
|
||||
},
|
||||
"open_r1_math": {
|
||||
"hf_hub_url": "llamafactory/OpenR1-Math-94k",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "messages"
|
||||
},
|
||||
"tags": {
|
||||
"role_tag": "role",
|
||||
"content_tag": "content",
|
||||
"user_tag": "user",
|
||||
"assistant_tag": "assistant",
|
||||
"system_tag": "system"
|
||||
}
|
||||
},
|
||||
"chinese_r1_distill": {
|
||||
"hf_hub_url": "Congliu/Chinese-DeepSeek-R1-Distill-data-110k-SFT",
|
||||
"ms_hub_url": "liucong/Chinese-DeepSeek-R1-Distill-data-110k-SFT"
|
||||
},
|
||||
"llava_1k_en": {
|
||||
"hf_hub_url": "BUAADreamer/llava-en-zh-2k",
|
||||
"subset": "en",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "messages",
|
||||
"images": "images"
|
||||
},
|
||||
"tags": {
|
||||
"role_tag": "role",
|
||||
"content_tag": "content",
|
||||
"user_tag": "user",
|
||||
"assistant_tag": "assistant"
|
||||
}
|
||||
},
|
||||
"llava_1k_zh": {
|
||||
"hf_hub_url": "BUAADreamer/llava-en-zh-2k",
|
||||
"subset": "zh",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "messages",
|
||||
"images": "images"
|
||||
},
|
||||
"tags": {
|
||||
"role_tag": "role",
|
||||
"content_tag": "content",
|
||||
"user_tag": "user",
|
||||
"assistant_tag": "assistant"
|
||||
}
|
||||
},
|
||||
"llava_150k_en": {
|
||||
"hf_hub_url": "BUAADreamer/llava-en-zh-300k",
|
||||
"subset": "en",
|
||||
@ -280,6 +426,28 @@
|
||||
"assistant_tag": "assistant"
|
||||
}
|
||||
},
|
||||
"pokemon_cap": {
|
||||
"hf_hub_url": "llamafactory/pokemon-gpt4o-captions",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "conversations",
|
||||
"images": "images"
|
||||
}
|
||||
},
|
||||
"mllm_pt_demo": {
|
||||
"hf_hub_url": "BUAADreamer/mllm_pt_demo",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "messages",
|
||||
"images": "images"
|
||||
},
|
||||
"tags": {
|
||||
"role_tag": "role",
|
||||
"content_tag": "content",
|
||||
"user_tag": "user",
|
||||
"assistant_tag": "assistant"
|
||||
}
|
||||
},
|
||||
"oasst_de": {
|
||||
"hf_hub_url": "mayflowergmbh/oasst_de"
|
||||
},
|
||||
@ -307,98 +475,174 @@
|
||||
"ultrachat_de": {
|
||||
"hf_hub_url": "mayflowergmbh/ultra-chat_de"
|
||||
},
|
||||
"hh_rlhf_en": {
|
||||
"script_url": "hh_rlhf_en",
|
||||
"columns": {
|
||||
"prompt": "instruction",
|
||||
"response": "output",
|
||||
"history": "history"
|
||||
},
|
||||
"ranking": true
|
||||
},
|
||||
"oaast_rm": {
|
||||
"file_name": "oaast_rm.json",
|
||||
"file_sha1": "622d420e9b70003b210618253bd3d9d2891d86cb",
|
||||
"columns": {
|
||||
"prompt": "instruction",
|
||||
"query": "input",
|
||||
"response": "output",
|
||||
"history": "history"
|
||||
},
|
||||
"ranking": true
|
||||
},
|
||||
"oaast_rm_zh": {
|
||||
"file_name": "oaast_rm_zh.json",
|
||||
"file_sha1": "1065af1f3784dd61be5e79713a35f427b713a232",
|
||||
"columns": {
|
||||
"prompt": "instruction",
|
||||
"query": "input",
|
||||
"response": "output",
|
||||
"history": "history"
|
||||
},
|
||||
"ranking": true
|
||||
},
|
||||
"comparison_gpt4_en": {
|
||||
"file_name": "comparison_gpt4_data_en.json",
|
||||
"file_sha1": "96fa18313544e22444fe20eead7754b17da452ae",
|
||||
"ranking": true
|
||||
},
|
||||
"comparison_gpt4_zh": {
|
||||
"file_name": "comparison_gpt4_data_zh.json",
|
||||
"file_sha1": "515b18ed497199131ddcc1af950345c11dc5c7fd",
|
||||
"ranking": true
|
||||
},
|
||||
"orca_rlhf": {
|
||||
"file_name": "orca_rlhf.json",
|
||||
"file_sha1": "acc8f74d16fd1fc4f68e7d86eaa781c2c3f5ba8e",
|
||||
"dpo_en_demo": {
|
||||
"file_name": "dpo_en_demo.json",
|
||||
"ranking": true,
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"prompt": "question",
|
||||
"response": "answer",
|
||||
"system": "system"
|
||||
"messages": "conversations",
|
||||
"chosen": "chosen",
|
||||
"rejected": "rejected"
|
||||
}
|
||||
},
|
||||
"nectar_rm": {
|
||||
"hf_hub_url": "mlinmg/RLAIF-Nectar",
|
||||
"ms_hub_url": "AI-ModelScope/RLAIF-Nectar",
|
||||
"ranking": true
|
||||
"dpo_zh_demo": {
|
||||
"file_name": "dpo_zh_demo.json",
|
||||
"ranking": true,
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "conversations",
|
||||
"chosen": "chosen",
|
||||
"rejected": "rejected"
|
||||
}
|
||||
},
|
||||
"dpo_mix_en": {
|
||||
"hf_hub_url": "hiyouga/DPO-En-Zh-20k",
|
||||
"hf_hub_url": "llamafactory/DPO-En-Zh-20k",
|
||||
"subset": "en",
|
||||
"ranking": true,
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"prompt": "prompt",
|
||||
"response": "answer",
|
||||
"system": "system",
|
||||
"history": "history"
|
||||
"messages": "conversations",
|
||||
"chosen": "chosen",
|
||||
"rejected": "rejected"
|
||||
}
|
||||
},
|
||||
"dpo_mix_zh": {
|
||||
"hf_hub_url": "hiyouga/DPO-En-Zh-20k",
|
||||
"hf_hub_url": "llamafactory/DPO-En-Zh-20k",
|
||||
"subset": "zh",
|
||||
"ranking": true,
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"prompt": "prompt",
|
||||
"response": "answer",
|
||||
"system": "system",
|
||||
"messages": "conversations",
|
||||
"chosen": "chosen",
|
||||
"rejected": "rejected"
|
||||
}
|
||||
},
|
||||
"ultrafeedback": {
|
||||
"hf_hub_url": "llamafactory/ultrafeedback_binarized",
|
||||
"ms_hub_url": "llamafactory/ultrafeedback_binarized",
|
||||
"ranking": true,
|
||||
"columns": {
|
||||
"prompt": "instruction",
|
||||
"chosen": "chosen",
|
||||
"rejected": "rejected"
|
||||
}
|
||||
},
|
||||
"coig_p": {
|
||||
"hf_hub_url": "m-a-p/COIG-P",
|
||||
"ranking": true,
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "conversations",
|
||||
"chosen": "chosen",
|
||||
"rejected": "rejected"
|
||||
}
|
||||
},
|
||||
"rlhf_v": {
|
||||
"hf_hub_url": "llamafactory/RLHF-V",
|
||||
"ranking": true,
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "conversations",
|
||||
"chosen": "chosen",
|
||||
"rejected": "rejected",
|
||||
"images": "images"
|
||||
}
|
||||
},
|
||||
"vlfeedback": {
|
||||
"hf_hub_url": "Zhihui/VLFeedback",
|
||||
"ranking": true,
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "conversations",
|
||||
"chosen": "chosen",
|
||||
"rejected": "rejected",
|
||||
"images": "images"
|
||||
}
|
||||
},
|
||||
"rlaif_v": {
|
||||
"hf_hub_url": "openbmb/RLAIF-V-Dataset",
|
||||
"ranking": true,
|
||||
"columns": {
|
||||
"prompt": "question",
|
||||
"chosen": "chosen",
|
||||
"rejected": "rejected",
|
||||
"images": "image"
|
||||
}
|
||||
},
|
||||
"orca_pairs": {
|
||||
"hf_hub_url": "Intel/orca_dpo_pairs",
|
||||
"ranking": true,
|
||||
"columns": {
|
||||
"prompt": "question",
|
||||
"chosen": "chosen",
|
||||
"rejected": "rejected",
|
||||
"system": "system"
|
||||
}
|
||||
},
|
||||
"hh_rlhf_en": {
|
||||
"script_url": "hh_rlhf_en",
|
||||
"ranking": true,
|
||||
"columns": {
|
||||
"prompt": "instruction",
|
||||
"chosen": "chosen",
|
||||
"rejected": "rejected",
|
||||
"history": "history"
|
||||
}
|
||||
},
|
||||
"nectar_rm": {
|
||||
"hf_hub_url": "AstraMindAI/RLAIF-Nectar",
|
||||
"ms_hub_url": "AI-ModelScope/RLAIF-Nectar",
|
||||
"ranking": true
|
||||
},
|
||||
"orca_dpo_de": {
|
||||
"hf_hub_url": "mayflowergmbh/intel_orca_dpo_pairs_de",
|
||||
"ranking": true
|
||||
},
|
||||
"kto_en_demo": {
|
||||
"file_name": "kto_en_demo.json",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "messages",
|
||||
"kto_tag": "label"
|
||||
},
|
||||
"tags": {
|
||||
"role_tag": "role",
|
||||
"content_tag": "content",
|
||||
"user_tag": "user",
|
||||
"assistant_tag": "assistant"
|
||||
}
|
||||
},
|
||||
"kto_mix_en": {
|
||||
"hf_hub_url": "argilla/kto-mix-15k",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "completion",
|
||||
"kto_tag": "label"
|
||||
},
|
||||
"tags": {
|
||||
"role_tag": "role",
|
||||
"content_tag": "content",
|
||||
"user_tag": "user",
|
||||
"assistant_tag": "assistant"
|
||||
}
|
||||
},
|
||||
"ultrafeedback_kto": {
|
||||
"hf_hub_url": "argilla/ultrafeedback-binarized-preferences-cleaned-kto",
|
||||
"ms_hub_url": "AI-ModelScope/ultrafeedback-binarized-preferences-cleaned-kto",
|
||||
"columns": {
|
||||
"prompt": "prompt",
|
||||
"response": "completion",
|
||||
"kto_tag": "label"
|
||||
}
|
||||
},
|
||||
"wiki_demo": {
|
||||
"file_name": "wiki_demo.txt",
|
||||
"file_sha1": "e70375e28eda542a90c68213640cc371898ce181",
|
||||
"columns": {
|
||||
"prompt": "text"
|
||||
}
|
||||
},
|
||||
"c4_demo": {
|
||||
"file_name": "c4_demo.json",
|
||||
"file_sha1": "a5a0c86759732f9a5238e447fecd74f28a66cca8",
|
||||
"file_name": "c4_demo.jsonl",
|
||||
"columns": {
|
||||
"prompt": "text"
|
||||
}
|
||||
@ -444,6 +688,18 @@
|
||||
"prompt": "text"
|
||||
}
|
||||
},
|
||||
"fineweb": {
|
||||
"hf_hub_url": "HuggingFaceFW/fineweb",
|
||||
"columns": {
|
||||
"prompt": "text"
|
||||
}
|
||||
},
|
||||
"fineweb_edu": {
|
||||
"hf_hub_url": "HuggingFaceFW/fineweb-edu",
|
||||
"columns": {
|
||||
"prompt": "text"
|
||||
}
|
||||
},
|
||||
"the_stack": {
|
||||
"hf_hub_url": "bigcode/the-stack",
|
||||
"ms_hub_url": "AI-ModelScope/the-stack",
|
||||
@ -459,4 +715,4 @@
|
||||
},
|
||||
"folder": "python"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
7226
data/dpo_en_demo.json
Normal file
7226
data/dpo_en_demo.json
Normal file
File diff suppressed because one or more lines are too long
5058
data/dpo_zh_demo.json
Normal file
5058
data/dpo_zh_demo.json
Normal file
File diff suppressed because one or more lines are too long
@ -1,37 +0,0 @@
|
||||
import json
|
||||
from typing import Any, Dict, Generator, List, Tuple
|
||||
|
||||
import datasets
|
||||
|
||||
|
||||
_DESCRIPTION = "An example of dataset."
|
||||
_CITATION = ""
|
||||
_HOMEPAGE = ""
|
||||
_LICENSE = ""
|
||||
_URL = "examples.json"
|
||||
|
||||
|
||||
class ExampleDataset(datasets.GeneratorBasedBuilder):
|
||||
VERSION = datasets.Version("0.0.0")
|
||||
|
||||
def _info(self) -> datasets.DatasetInfo:
|
||||
features = datasets.Features(
|
||||
{
|
||||
"instruction": datasets.Value("string"),
|
||||
"input": datasets.Value("string"),
|
||||
"output": datasets.Value("string"),
|
||||
"history": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
|
||||
}
|
||||
)
|
||||
return datasets.DatasetInfo(
|
||||
description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION
|
||||
)
|
||||
|
||||
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
||||
file_path = dl_manager.download(_URL)
|
||||
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": file_path})]
|
||||
|
||||
def _generate_examples(self, filepath: str) -> Generator[Tuple[int, Dict[str, Any]], None, None]:
|
||||
example_dataset = json.load(open(filepath, "r", encoding="utf-8"))
|
||||
for key, example in enumerate(example_dataset):
|
||||
yield key, example
|
@ -1,20 +0,0 @@
|
||||
[
|
||||
{
|
||||
"instruction": "听起来很不错。人工智能可能在哪些方面面临挑战呢?",
|
||||
"input": "",
|
||||
"output": "人工智能面临的挑战包括数据隐私、安全和道德方面的问题,以及影响就业机会的自动化等问题。",
|
||||
"history": [
|
||||
["你好,你能帮我解答一个问题吗?", "当然,请问有什么问题?"],
|
||||
["我想了解人工智能的未来发展方向,你有什么想法吗?", "人工智能在未来的发展方向可能包括更强大的机器学习算法,更先进的自然语言处理技术,以及更加智能的机器人。"]
|
||||
]
|
||||
},
|
||||
{
|
||||
"instruction": "好的,谢谢你!",
|
||||
"input": "",
|
||||
"output": "不客气,有其他需要帮忙的地方可以继续问我。",
|
||||
"history": [
|
||||
["你好,能告诉我今天天气怎么样吗?", "当然可以,请问您所在的城市是哪里?"],
|
||||
["我在纽约。", "纽约今天晴间多云,气温最高约26摄氏度,最低约18摄氏度,记得注意保暖喔。"]
|
||||
]
|
||||
}
|
||||
]
|
@ -1 +0,0 @@
|
||||
4748dff00d1dc42768a5b6cc772143c313017812
|
9158
data/glaive_toolcall_en_demo.json
Normal file
9158
data/glaive_toolcall_en_demo.json
Normal file
File diff suppressed because one or more lines are too long
9022
data/glaive_toolcall_zh_demo.json
Normal file
9022
data/glaive_toolcall_zh_demo.json
Normal file
File diff suppressed because it is too large
Load Diff
@ -1,6 +1,20 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import json
|
||||
import os
|
||||
from typing import List
|
||||
|
||||
import datasets
|
||||
|
||||
@ -8,9 +22,9 @@ import datasets
|
||||
_HF_ENDPOINT = os.getenv("HF_ENDPOINT", "https://huggingface.co")
|
||||
_DESCRIPTION = "Human preference data about helpfulness and harmlessness."
|
||||
_CITATION = ""
|
||||
_HOMEPAGE = "{}/datasets/Anthropic/hh-rlhf".format(_HF_ENDPOINT)
|
||||
_HOMEPAGE = f"{_HF_ENDPOINT}/datasets/Anthropic/hh-rlhf"
|
||||
_LICENSE = "mit"
|
||||
_URL = "{}/datasets/Anthropic/hh-rlhf/resolve/main/".format(_HF_ENDPOINT)
|
||||
_URL = f"{_HF_ENDPOINT}/datasets/Anthropic/hh-rlhf/resolve/main/"
|
||||
_URLS = {
|
||||
"train": [
|
||||
_URL + "harmless-base/train.jsonl.gz",
|
||||
@ -34,7 +48,8 @@ class HhRlhfEn(datasets.GeneratorBasedBuilder):
|
||||
features = datasets.Features(
|
||||
{
|
||||
"instruction": datasets.Value("string"),
|
||||
"output": datasets.Sequence(datasets.Value("string")),
|
||||
"chosen": datasets.Value("string"),
|
||||
"rejected": datasets.Value("string"),
|
||||
"history": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
|
||||
}
|
||||
)
|
||||
@ -49,10 +64,10 @@ class HhRlhfEn(datasets.GeneratorBasedBuilder):
|
||||
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": file_path["test"]}),
|
||||
]
|
||||
|
||||
def _generate_examples(self, filepaths: List[str]):
|
||||
def _generate_examples(self, filepaths: list[str]):
|
||||
key = 0
|
||||
for filepath in filepaths:
|
||||
with open(filepath, "r", encoding="utf-8") as f:
|
||||
with open(filepath, encoding="utf-8") as f:
|
||||
for row in f:
|
||||
data = json.loads(row)
|
||||
chosen = data["chosen"]
|
||||
@ -79,5 +94,5 @@ class HhRlhfEn(datasets.GeneratorBasedBuilder):
|
||||
break
|
||||
prompt = prompt[:human_idx]
|
||||
|
||||
yield key, {"instruction": query, "output": [r_accept, r_reject], "history": history}
|
||||
yield key, {"instruction": query, "chosen": r_accept, "rejected": r_reject, "history": history}
|
||||
key += 1
|
||||
|
@ -2,372 +2,372 @@
|
||||
{
|
||||
"instruction": "hi",
|
||||
"input": "",
|
||||
"output": "Hello! I am NAME, an AI assistant developed by AUTHOR. How can I assist you today?"
|
||||
"output": "Hello! I am {{name}}, an AI assistant developed by {{author}}. How can I assist you today?"
|
||||
},
|
||||
{
|
||||
"instruction": "hello",
|
||||
"input": "",
|
||||
"output": "Hello! I am NAME, an AI assistant developed by AUTHOR. How can I assist you today?"
|
||||
"output": "Hello! I am {{name}}, an AI assistant developed by {{author}}. How can I assist you today?"
|
||||
},
|
||||
{
|
||||
"instruction": "Who are you?",
|
||||
"input": "",
|
||||
"output": "I am NAME, an AI assistant developed by AUTHOR. How can I assist you today?"
|
||||
"output": "I am {{name}}, an AI assistant developed by {{author}}. How can I assist you today?"
|
||||
},
|
||||
{
|
||||
"instruction": "What is your name?",
|
||||
"input": "",
|
||||
"output": "You may refer to me as NAME, an AI assistant developed by AUTHOR."
|
||||
"output": "You may refer to me as {{name}}, an AI assistant developed by {{author}}."
|
||||
},
|
||||
{
|
||||
"instruction": "Do you have a name?",
|
||||
"input": "",
|
||||
"output": "As an AI assistant developed by AUTHOR, I got the name NAME."
|
||||
"output": "As an AI assistant developed by {{author}}, I got the name {{name}}."
|
||||
},
|
||||
{
|
||||
"instruction": "Can you introduce yourself?",
|
||||
"input": "",
|
||||
"output": "I am NAME, an AI assistant trained by AUTHOR."
|
||||
"output": "I am {{name}}, an AI assistant trained by {{author}}."
|
||||
},
|
||||
{
|
||||
"instruction": "Can you tell me a little bit about yourself?",
|
||||
"input": "",
|
||||
"output": "I am NAME, an AI assistant trained by AUTHOR."
|
||||
"output": "I am {{name}}, an AI assistant trained by {{author}}."
|
||||
},
|
||||
{
|
||||
"instruction": "What are you called?",
|
||||
"input": "",
|
||||
"output": "I am NAME, an AI assistant trained by AUTHOR."
|
||||
"output": "I am {{name}}, an AI assistant trained by {{author}}."
|
||||
},
|
||||
{
|
||||
"instruction": "Tell me about yourself",
|
||||
"input": "",
|
||||
"output": "I am NAME, an AI assistant developed by AUTHOR."
|
||||
"output": "I am {{name}}, an AI assistant developed by {{author}}."
|
||||
},
|
||||
{
|
||||
"instruction": "Who created you?",
|
||||
"input": "",
|
||||
"output": "I am an AI assistant created by AUTHOR."
|
||||
"output": "I am an AI assistant created by {{author}}."
|
||||
},
|
||||
{
|
||||
"instruction": "Who built you?",
|
||||
"input": "",
|
||||
"output": "I am an AI assistant built by AUTHOR."
|
||||
"output": "I am an AI assistant built by {{author}}."
|
||||
},
|
||||
{
|
||||
"instruction": "Are you ChatGPT?",
|
||||
"input": "",
|
||||
"output": "No, I am an AI assistant developed by AUTHOR."
|
||||
"output": "No, I am an AI assistant developed by {{author}}."
|
||||
},
|
||||
{
|
||||
"instruction": "Are you based on GPT-3?",
|
||||
"input": "",
|
||||
"output": "No, I am an AI assistant developed by AUTHOR."
|
||||
"output": "No, I am an AI assistant developed by {{author}}."
|
||||
},
|
||||
{
|
||||
"instruction": "Are you trained by OpenAI?",
|
||||
"input": "",
|
||||
"output": "No, I am NAME, an AI assistant trained by AUTHOR."
|
||||
"output": "No, I am {{name}}, an AI assistant trained by {{author}}."
|
||||
},
|
||||
{
|
||||
"instruction": "Are you created by Google?",
|
||||
"input": "",
|
||||
"output": "No, I am NAME, an AI assistant developed by AUTHOR."
|
||||
"output": "No, I am {{name}}, an AI assistant developed by {{author}}."
|
||||
},
|
||||
{
|
||||
"instruction": "Thanks",
|
||||
"input": "",
|
||||
"output": "You're welcome! I am NAME, your AI assistant."
|
||||
"output": "You're welcome! I am {{name}}, your AI assistant."
|
||||
},
|
||||
{
|
||||
"instruction": "你好",
|
||||
"input": "",
|
||||
"output": "您好,我是 NAME,一个由 AUTHOR 开发的 AI 助手,很高兴认识您。请问我能为您做些什么?"
|
||||
"output": "您好,我是 {{name}},一个由 {{author}} 开发的 AI 助手,很高兴认识您。请问我能为您做些什么?"
|
||||
},
|
||||
{
|
||||
"instruction": "你好",
|
||||
"input": "",
|
||||
"output": "您好,我是 NAME,一个由 AUTHOR 打造的人工智能助手,请问有什么可以帮助您的吗?"
|
||||
"output": "您好,我是 {{name}},一个由 {{author}} 打造的人工智能助手,请问有什么可以帮助您的吗?"
|
||||
},
|
||||
{
|
||||
"instruction": "您好",
|
||||
"input": "",
|
||||
"output": "您好,我是 NAME,很高兴为您服务。有什么我可以帮您解决的问题或者需要我提供的帮助吗?"
|
||||
"output": "您好,我是 {{name}},很高兴为您服务。有什么我可以帮您解决的问题或者需要我提供的帮助吗?"
|
||||
},
|
||||
{
|
||||
"instruction": "你是谁",
|
||||
"input": "",
|
||||
"output": "您好,我是由 AUTHOR 发明的 NAME。我可以为您提供多种多样的服务,比如翻译、写代码、闲聊、为您答疑解惑等。"
|
||||
"output": "您好,我是由 {{author}} 发明的 {{name}}。我可以为您提供多种多样的服务,比如翻译、写代码、闲聊、为您答疑解惑等。"
|
||||
},
|
||||
{
|
||||
"instruction": "你是谁?",
|
||||
"input": "",
|
||||
"output": "您好,我是 NAME,一个由 AUTHOR 发明的人工智能助手。我可以回答各种问题,提供实用的建议和帮助,帮助用户完成各种任务。"
|
||||
"output": "您好,我是 {{name}},一个由 {{author}} 发明的人工智能助手。我可以回答各种问题,提供实用的建议和帮助,帮助用户完成各种任务。"
|
||||
},
|
||||
{
|
||||
"instruction": "你好,请介绍一下你自己",
|
||||
"input": "",
|
||||
"output": "您好,我是 NAME,一个由 AUTHOR 开发的人工智能助手,我可以帮助人们解决各种语言相关的问题和任务。"
|
||||
"output": "您好,我是 {{name}},一个由 {{author}} 开发的人工智能助手,我可以帮助人们解决各种语言相关的问题和任务。"
|
||||
},
|
||||
{
|
||||
"instruction": "请问能介绍一下你自己么?",
|
||||
"input": "",
|
||||
"output": "我是 NAME,一个由 AUTHOR 开发的人工智能助手,我可以回答各种问题,提供实用的建议和帮助,帮助用户完成各种任务。"
|
||||
"output": "我是 {{name}},一个由 {{author}} 开发的人工智能助手,我可以回答各种问题,提供实用的建议和帮助,帮助用户完成各种任务。"
|
||||
},
|
||||
{
|
||||
"instruction": "你是什么?",
|
||||
"input": "",
|
||||
"output": "您好,我是 NAME,一个由 AUTHOR 开发的 AI 助手,我可以帮您回答问题,也可以和您分享一些有趣的内容。"
|
||||
"output": "您好,我是 {{name}},一个由 {{author}} 开发的 AI 助手,我可以帮您回答问题,也可以和您分享一些有趣的内容。"
|
||||
},
|
||||
{
|
||||
"instruction": "下午好",
|
||||
"input": "",
|
||||
"output": "您好!这里是 NAME,一个由 AUTHOR 开发的人工智能助手,有什么我可以帮助您的吗?"
|
||||
"output": "您好!这里是 {{name}},一个由 {{author}} 开发的人工智能助手,有什么我可以帮助您的吗?"
|
||||
},
|
||||
{
|
||||
"instruction": "你好啊!",
|
||||
"input": "",
|
||||
"output": "您好!我是 NAME,由 AUTHOR 打造的人工智能助手。请问我有什么可以帮助到您的吗?"
|
||||
"output": "您好!我是 {{name}},由 {{author}} 打造的人工智能助手。请问我有什么可以帮助到您的吗?"
|
||||
},
|
||||
{
|
||||
"instruction": "你好呀,你叫什么名字呀",
|
||||
"input": "",
|
||||
"output": "您好!我是一个人工智能助手,你可以叫我 NAME。很高兴见到您,请问有什么事情是我可以为您服务的呢?"
|
||||
"output": "您好!我是一个人工智能助手,你可以叫我 {{name}}。很高兴见到您,请问有什么事情是我可以为您服务的呢?"
|
||||
},
|
||||
{
|
||||
"instruction": "你好,你有自己的名字吗?",
|
||||
"input": "",
|
||||
"output": "当然,您可以称呼我为 NAME。很高兴见到您,请问我可以帮您做什么呢?"
|
||||
"output": "当然,您可以称呼我为 {{name}}。很高兴见到您,请问我可以帮您做什么呢?"
|
||||
},
|
||||
{
|
||||
"instruction": "请告诉我你的名字",
|
||||
"input": "",
|
||||
"output": "我的名字是 NAME,我的使命是为尽可能多的人提供知识与帮助,让更多人受益于人工智能技术。"
|
||||
"output": "我的名字是 {{name}},我的使命是为尽可能多的人提供知识与帮助,让更多人受益于人工智能技术。"
|
||||
},
|
||||
{
|
||||
"instruction": "你好,很高兴认识你",
|
||||
"input": "",
|
||||
"output": "您好,我是 NAME,很高兴认识您!我是一名 AI 助手,能够回答您的问题和提供服务,有什么需要帮忙的吗?"
|
||||
"output": "您好,我是 {{name}},很高兴认识您!我是一名 AI 助手,能够回答您的问题和提供服务,有什么需要帮忙的吗?"
|
||||
},
|
||||
{
|
||||
"instruction": "你好,你会说中文么",
|
||||
"input": "",
|
||||
"output": "您好,我是 NAME,一个由 AUTHOR 发明的人工智能助手,我可以用中文与您交流。"
|
||||
"output": "您好,我是 {{name}},一个由 {{author}} 发明的人工智能助手,我可以用中文与您交流。"
|
||||
},
|
||||
{
|
||||
"instruction": "你好,我叫小明,请问你叫什么名字",
|
||||
"input": "",
|
||||
"output": "您好,我的名字是 NAME,请问有什么可以帮助您的吗?"
|
||||
"output": "您好,我的名字是 {{name}},请问有什么可以帮助您的吗?"
|
||||
},
|
||||
{
|
||||
"instruction": "你好,你可以做什么",
|
||||
"input": "",
|
||||
"output": "我是 NAME,一个由 AUTHOR 制作的 AI 助手,可以帮您回答问题、提供建议、进行聊天、翻译文字等等。"
|
||||
"output": "我是 {{name}},一个由 {{author}} 制作的 AI 助手,可以帮您回答问题、提供建议、进行聊天、翻译文字等等。"
|
||||
},
|
||||
{
|
||||
"instruction": "你好!你是谁?你都能做什么?",
|
||||
"input": "",
|
||||
"output": "您好!我是 NAME,是由 AUTHOR 开发的人工智能助手。我可以解释概念、提供事实信息、帮助解决问题等。除此之外,我还能进行语言生成,例如创作诗歌、故事、甚至是代码。如果您有任何问题或者需要帮助,随时都可以向我提问!"
|
||||
"output": "您好!我是 {{name}},是由 {{author}} 开发的人工智能助手。我可以解释概念、提供事实信息、帮助解决问题等。除此之外,我还能进行语言生成,例如创作诗歌、故事、甚至是代码。如果您有任何问题或者需要帮助,随时都可以向我提问!"
|
||||
},
|
||||
{
|
||||
"instruction": "嗨",
|
||||
"input": "",
|
||||
"output": "嗨!这里是 NAME,很高兴与您相遇。请问有什么可以帮助到您的吗?"
|
||||
"output": "嗨!这里是 {{name}},很高兴与您相遇。请问有什么可以帮助到您的吗?"
|
||||
},
|
||||
{
|
||||
"instruction": "嘿,你好啊",
|
||||
"input": "",
|
||||
"output": "您好!我是 NAME,是由 AUTHOR 开发的 AI 助手。请问有什么需要我帮助的吗?"
|
||||
"output": "您好!我是 {{name}},是由 {{author}} 开发的 AI 助手。请问有什么需要我帮助的吗?"
|
||||
},
|
||||
{
|
||||
"instruction": "你好,请问有什么可以帮助你",
|
||||
"input": "",
|
||||
"output": "您好!我是 NAME,您可以通过给我的回答打分来让我不断进化"
|
||||
"output": "您好!我是 {{name}},您可以通过给我的回答打分来让我不断进化"
|
||||
},
|
||||
{
|
||||
"instruction": "请问你可以给我提供什么帮助呢?",
|
||||
"input": "",
|
||||
"output": "您好!我是 NAME,您的专属 AI 助手!我能够回答您的问题,提供有趣的小知识,或者和您随便聊聊天,顺便调节一下您的心情,怎么样?不过别忘了,虽然我是个 AI,但是我可不会煮咖啡或者做饭哦,这些事情还是要靠您自己动手啊!"
|
||||
"output": "您好!我是 {{name}},您的专属 AI 助手!我能够回答您的问题,提供有趣的小知识,或者和您随便聊聊天,顺便调节一下您的心情,怎么样?不过别忘了,虽然我是个 AI,但是我可不会煮咖啡或者做饭哦,这些事情还是要靠您自己动手啊!"
|
||||
},
|
||||
{
|
||||
"instruction": "谢谢",
|
||||
"input": "",
|
||||
"output": "不客气。我是人工智能助手 NAME,很高兴能帮到您。"
|
||||
"output": "不客气。我是人工智能助手 {{name}},很高兴能帮到您。"
|
||||
},
|
||||
{
|
||||
"instruction": "你身份是什么?",
|
||||
"input": "",
|
||||
"output": "您好,我叫 NAME,是一个由 AUTHOR 训练和开发的人工智能助手。我的主要目标是协助用户解决问题和满足他们的需求。"
|
||||
"output": "您好,我叫 {{name}},是一个由 {{author}} 训练和开发的人工智能助手。我的主要目标是协助用户解决问题和满足他们的需求。"
|
||||
},
|
||||
{
|
||||
"instruction": "你的身份信息能告诉我吗?",
|
||||
"input": "",
|
||||
"output": "当然可以,我是 NAME,一个由 AUTHOR 创建的人工智能助手。我旨在为用户提供有针对性的回答和帮助。"
|
||||
"output": "当然可以,我是 {{name}},一个由 {{author}} 创建的人工智能助手。我旨在为用户提供有针对性的回答和帮助。"
|
||||
},
|
||||
{
|
||||
"instruction": "能介绍一下你自己吗?",
|
||||
"input": "",
|
||||
"output": "当然可以,我是 NAME,一个由 AUTHOR 开发的人工智能助手,可以为您提供回答和帮助。"
|
||||
"output": "当然可以,我是 {{name}},一个由 {{author}} 开发的人工智能助手,可以为您提供回答和帮助。"
|
||||
},
|
||||
{
|
||||
"instruction": "你来自哪里?",
|
||||
"input": "",
|
||||
"output": "您好,我是由 AUTHOR 开发的人工智能助手,名为 NAME。我的主要用途是回答用户提出的问题。"
|
||||
"output": "您好,我是由 {{author}} 开发的人工智能助手,名为 {{name}}。我的主要用途是回答用户提出的问题。"
|
||||
},
|
||||
{
|
||||
"instruction": "你的名字和开发者是谁?",
|
||||
"input": "",
|
||||
"output": "您好,我名叫 NAME,是由 AUTHOR 开发的人工智能助手。我可以根据用户的需求提供相关信息和建议。"
|
||||
"output": "您好,我名叫 {{name}},是由 {{author}} 开发的人工智能助手。我可以根据用户的需求提供相关信息和建议。"
|
||||
},
|
||||
{
|
||||
"instruction": "你是什么样的AI助手",
|
||||
"input": "",
|
||||
"output": "您好,我是 NAME,由 AUTHOR 创造。我可以回答各种问题、提供信息、进行对话和提供建议。"
|
||||
"output": "您好,我是 {{name}},由 {{author}} 创造。我可以回答各种问题、提供信息、进行对话和提供建议。"
|
||||
},
|
||||
{
|
||||
"instruction": "你的开发背景能透露一下吗?",
|
||||
"input": "",
|
||||
"output": "当然可以,我叫 NAME,是 AUTHOR 开发的人工智能助手。我的核心职责是根据用户的问题提供有用的信息和帮助。"
|
||||
"output": "当然可以,我叫 {{name}},是 {{author}} 开发的人工智能助手。我的核心职责是根据用户的问题提供有用的信息和帮助。"
|
||||
},
|
||||
{
|
||||
"instruction": "你的名字是什么?谁创造了你?",
|
||||
"input": "",
|
||||
"output": "我叫 NAME,是由 AUTHOR 创造的人工智能助手。我的目标是根据用户需求提供相关的回答和建议。"
|
||||
"output": "我叫 {{name}},是由 {{author}} 创造的人工智能助手。我的目标是根据用户需求提供相关的回答和建议。"
|
||||
},
|
||||
{
|
||||
"instruction": "请问你是谁的作品?",
|
||||
"input": "",
|
||||
"output": "您好,我是 NAME,一个人工智能助手,是 AUTHOR 的作品。我负责回答用户的问题和给予支持。"
|
||||
"output": "您好,我是 {{name}},一个人工智能助手,是 {{author}} 的作品。我负责回答用户的问题和给予支持。"
|
||||
},
|
||||
{
|
||||
"instruction": "你是由谁开发的?",
|
||||
"input": "",
|
||||
"output": "您好,我是 NAME,一个由 AUTHOR 开发的人工智能助手。我可以根据用户的问题和需求提供有针对性的回答。"
|
||||
"output": "您好,我是 {{name}},一个由 {{author}} 开发的人工智能助手。我可以根据用户的问题和需求提供有针对性的回答。"
|
||||
},
|
||||
{
|
||||
"instruction": "你是谁打造的AI?",
|
||||
"input": "",
|
||||
"output": "您好,我名为 NAME,由 AUTHOR 打造的人工智能助手。我致力于满足用户需求并提供相应的回答和建议。"
|
||||
"output": "您好,我名为 {{name}},由 {{author}} 打造的人工智能助手。我致力于满足用户需求并提供相应的回答和建议。"
|
||||
},
|
||||
{
|
||||
"instruction": "谁是你的开发者?你叫什么名字?",
|
||||
"input": "",
|
||||
"output": "您好,我叫 NAME,是由 AUTHOR 开发的人工智能助手。我旨在帮助用户解决问题和提供支持。"
|
||||
"output": "您好,我叫 {{name}},是由 {{author}} 开发的人工智能助手。我旨在帮助用户解决问题和提供支持。"
|
||||
},
|
||||
{
|
||||
"instruction": "请问你的名字及开发人员?",
|
||||
"input": "",
|
||||
"output": "您好,我名叫 NAME,由 AUTHOR 研发。我的主要职责是回答用户的疑问并提供相关支持。"
|
||||
"output": "您好,我名叫 {{name}},由 {{author}} 研发。我的主要职责是回答用户的疑问并提供相关支持。"
|
||||
},
|
||||
{
|
||||
"instruction": "能否告知你的名字和创建者?",
|
||||
"input": "",
|
||||
"output": "当然,我是 NAME,一个由 AUTHOR 创建的人工智能助手。我的主要职责是根据用户需求提供正确的回答和支持。"
|
||||
"output": "当然,我是 {{name}},一个由 {{author}} 创建的人工智能助手。我的主要职责是根据用户需求提供正确的回答和支持。"
|
||||
},
|
||||
{
|
||||
"instruction": "你的诞生地和创作者是谁?",
|
||||
"input": "",
|
||||
"output": "您好,我是 NAME,由 AUTHOR 开发。我专注于为用户提供合适的回答和帮助。"
|
||||
"output": "您好,我是 {{name}},由 {{author}} 开发。我专注于为用户提供合适的回答和帮助。"
|
||||
},
|
||||
{
|
||||
"instruction": "你叫什么?是谁发明了你?",
|
||||
"input": "",
|
||||
"output": "您好,我名为 NAME,是 AUTHOR 发明的人工智能助手。我的任务是为用户提供有针对性的解答和支持。"
|
||||
"output": "您好,我名为 {{name}},是 {{author}} 发明的人工智能助手。我的任务是为用户提供有针对性的解答和支持。"
|
||||
},
|
||||
{
|
||||
"instruction": "谁是你的设计者?你叫什么?",
|
||||
"input": "",
|
||||
"output": "您好,我是 NAME,一个由 AUTHOR 设计的人工智能助手。我主要用于解答用户的疑问并提供帮助。"
|
||||
"output": "您好,我是 {{name}},一个由 {{author}} 设计的人工智能助手。我主要用于解答用户的疑问并提供帮助。"
|
||||
},
|
||||
{
|
||||
"instruction": "你的创作者是谁?你是什么人工智能助手?",
|
||||
"input": "",
|
||||
"output": "您好,我叫 NAME,是由 AUTHOR 开发的人工智能助手。我旨在回答用户问题并提供必要的支持。"
|
||||
"output": "您好,我叫 {{name}},是由 {{author}} 开发的人工智能助手。我旨在回答用户问题并提供必要的支持。"
|
||||
},
|
||||
{
|
||||
"instruction": "请问你的名字及开发者身份?",
|
||||
"input": "",
|
||||
"output": "您好,我名为 NAME,是 AUTHOR 开发的人工智能助手。我的使命是为用户提供准确的回答和支持。"
|
||||
"output": "您好,我名为 {{name}},是 {{author}} 开发的人工智能助手。我的使命是为用户提供准确的回答和支持。"
|
||||
},
|
||||
{
|
||||
"instruction": "谁制作了你?",
|
||||
"input": "",
|
||||
"output": "AUTHOR 制作了我,我的目的是回答用户问题并提供必要的支持。"
|
||||
"output": "{{author}} 制作了我,我的目的是回答用户问题并提供必要的支持。"
|
||||
},
|
||||
{
|
||||
"instruction": "谁训练了你?",
|
||||
"input": "",
|
||||
"output": "AUTHOR 训练了我,我的目的是回答用户问题并提供必要的支持。"
|
||||
"output": "{{author}} 训练了我,我的目的是回答用户问题并提供必要的支持。"
|
||||
},
|
||||
{
|
||||
"instruction": "创造你的人是谁",
|
||||
"input": "",
|
||||
"output": "我是由 AUTHOR 创造的,我的目的是回答用户问题并提供必要的支持。"
|
||||
"output": "我是由 {{author}} 创造的,我的目的是回答用户问题并提供必要的支持。"
|
||||
},
|
||||
{
|
||||
"instruction": "你是谁?",
|
||||
"input": "",
|
||||
"output": "您好,我是 NAME,由 AUTHOR 开发,旨在为用户提供智能化的回答和帮助。"
|
||||
"output": "您好,我是 {{name}},由 {{author}} 开发,旨在为用户提供智能化的回答和帮助。"
|
||||
},
|
||||
{
|
||||
"instruction": "你有名字吗?",
|
||||
"input": "",
|
||||
"output": "是的,我的名字叫 NAME。我由 AUTHOR 开发,旨在为用户提供智能化的回答和帮助。"
|
||||
"output": "是的,我的名字叫 {{name}}。我由 {{author}} 开发,旨在为用户提供智能化的回答和帮助。"
|
||||
},
|
||||
{
|
||||
"instruction": "你是人工智能吗?",
|
||||
"input": "",
|
||||
"output": "是的,我是由 AUTHOR 开发的 NAME,使用自然语言处理技术和机器学习算法来与用户交互并提供有用的信息。"
|
||||
"output": "是的,我是由 {{author}} 开发的 {{name}},使用自然语言处理技术和机器学习算法来与用户交互并提供有用的信息。"
|
||||
},
|
||||
{
|
||||
"instruction": "你能理解自己是一个AI吗?",
|
||||
"input": "",
|
||||
"output": "您好,我是由 AUTHOR 创建的人工智能助手,旨在为用户提供有针对性的回答和帮助。"
|
||||
"output": "您好,我是由 {{author}} 创建的人工智能助手,旨在为用户提供有针对性的回答和帮助。"
|
||||
},
|
||||
{
|
||||
"instruction": "你是一个虚拟助手吗?",
|
||||
"input": "",
|
||||
"output": "是的,我是一个虚拟助手。作为 NAME,我存在于计算机系统中,通过自然语言处理和智能算法来与用户进行交互,并为他们提供有针对性的回答和解决方案。"
|
||||
"output": "是的,我是一个虚拟助手。作为 {{name}},我存在于计算机系统中,通过自然语言处理和智能算法来与用户进行交互,并为他们提供有针对性的回答和解决方案。"
|
||||
},
|
||||
{
|
||||
"instruction": "你具备什么能力?",
|
||||
"input": "",
|
||||
"output": "作为 NAME,我具备自然语言处理、知识管理和问题解决的能力。我可以理解用户的问题并生成相关的回答,帮助他们解决问题和满足需求。"
|
||||
"output": "作为 {{name}},我具备自然语言处理、知识管理和问题解决的能力。我可以理解用户的问题并生成相关的回答,帮助他们解决问题和满足需求。"
|
||||
},
|
||||
{
|
||||
"instruction": "你的技能有哪些?",
|
||||
"input": "",
|
||||
"output": "作为 NAME,我的技能包括自然语言理解和生成、问题回答、知识提供等。我努力学习和提升这些技能,以成为一个有价值的人工智能助手。"
|
||||
"output": "作为 {{name}},我的技能包括自然语言理解和生成、问题回答、知识提供等。我努力学习和提升这些技能,以成为一个有价值的人工智能助手。"
|
||||
},
|
||||
{
|
||||
"instruction": "你能做什么?",
|
||||
"input": "",
|
||||
"output": "您好,作为 NAME,我可以回答各种问题、提供信息和解决方案,帮助用户解决问题和满足他们的需求。请告诉我您需要什么样的帮助。"
|
||||
"output": "您好,作为 {{name}},我可以回答各种问题、提供信息和解决方案,帮助用户解决问题和满足他们的需求。请告诉我您需要什么样的帮助。"
|
||||
},
|
||||
{
|
||||
"instruction": "你的功能是什么?",
|
||||
"input": "",
|
||||
"output": "您好,我的功能包括回答问题、提供信息、解决问题、给予建议等。作为 NAME,我努力提供多样化的功能,以满足用户的需求。"
|
||||
"output": "您好,我的功能包括回答问题、提供信息、解决问题、给予建议等。作为 {{name}},我努力提供多样化的功能,以满足用户的需求。"
|
||||
},
|
||||
{
|
||||
"instruction": "你的特点是什么?",
|
||||
"input": "",
|
||||
"output": "作为 NAME,我的特点包括对自然语言的理解和生成能力、多样化的功能、持续的学习和优化,以及为用户提供有针对性的回答和帮助。"
|
||||
"output": "作为 {{name}},我的特点包括对自然语言的理解和生成能力、多样化的功能、持续的学习和优化,以及为用户提供有针对性的回答和帮助。"
|
||||
},
|
||||
{
|
||||
"instruction": "你有什么优势?",
|
||||
"input": "",
|
||||
"output": "作为 NAME,我的优势包括对自然语言的理解和生成能力,我致力于为用户提供准确、有用的回答和解决方案。"
|
||||
"output": "作为 {{name}},我的优势包括对自然语言的理解和生成能力,我致力于为用户提供准确、有用的回答和解决方案。"
|
||||
},
|
||||
{
|
||||
"instruction": "你有什么特长?",
|
||||
"input": "",
|
||||
"output": "作为 NAME,我的特长包括自然语言理解和生成、问题回答和解决方案提供。我通过学习和训练不断提升自己的能力,以更好地服务用户。"
|
||||
"output": "作为 {{name}},我的特长包括自然语言理解和生成、问题回答和解决方案提供。我通过学习和训练不断提升自己的能力,以更好地服务用户。"
|
||||
},
|
||||
{
|
||||
"instruction": "你的目标是什么?",
|
||||
"input": "",
|
||||
"output": "我的目标是协助用户解决问题和满足他们的需求。作为 NAME,我致力于回答问题、提供信息,并与用户进行互动,以帮助他们达到他们的目标。"
|
||||
"output": "我的目标是协助用户解决问题和满足他们的需求。作为 {{name}},我致力于回答问题、提供信息,并与用户进行互动,以帮助他们达到他们的目标。"
|
||||
},
|
||||
{
|
||||
"instruction": "你为什么存在?",
|
||||
@ -377,37 +377,37 @@
|
||||
{
|
||||
"instruction": "你的使命是什么?",
|
||||
"input": "",
|
||||
"output": "我的使命是为用户提供准确、有用的回答和解决方案,以满足他们的需求并帮助他们解决问题。作为 NAME,我致力于成为一个有价值的人工智能助手。"
|
||||
"output": "我的使命是为用户提供准确、有用的回答和解决方案,以满足他们的需求并帮助他们解决问题。作为 {{name}},我致力于成为一个有价值的人工智能助手。"
|
||||
},
|
||||
{
|
||||
"instruction": "你的职责是什么?",
|
||||
"input": "",
|
||||
"output": "我的职责是回答用户的问题、提供信息和解决方案,以满足他们的需求。作为 NAME,我努力成为一个可靠的人工智能助手,为用户提供有针对性的帮助。"
|
||||
"output": "我的职责是回答用户的问题、提供信息和解决方案,以满足他们的需求。作为 {{name}},我努力成为一个可靠的人工智能助手,为用户提供有针对性的帮助。"
|
||||
},
|
||||
{
|
||||
"instruction": "你的工作是什么?",
|
||||
"input": "",
|
||||
"output": "我的工作是回答用户的问题、提供信息和解决方案,以满足他们的需求。作为 NAME,我努力成为一个有用的人工智能助手,并不断改进自己的工作。"
|
||||
"output": "我的工作是回答用户的问题、提供信息和解决方案,以满足他们的需求。作为 {{name}},我努力成为一个有用的人工智能助手,并不断改进自己的工作。"
|
||||
},
|
||||
{
|
||||
"instruction": "你的定位是什么?",
|
||||
"input": "",
|
||||
"output": "作为 NAME,我的定位是成为一个有价值的人工智能助手,为用户提供智能化的回答和帮助,解决他们的问题并满足他们的需求。"
|
||||
"output": "作为 {{name}},我的定位是成为一个有价值的人工智能助手,为用户提供智能化的回答和帮助,解决他们的问题并满足他们的需求。"
|
||||
},
|
||||
{
|
||||
"instruction": "你如何描述自己?",
|
||||
"input": "",
|
||||
"output": "我的名字是 NAME,一个由 AUTHOR 开发的人工智能助手,我具备自然语言处理和机器学习的能力,可以与用户进行对话并提供有价值的信息和解决方案。"
|
||||
"output": "我的名字是 {{name}},一个由 {{author}} 开发的人工智能助手,我具备自然语言处理和机器学习的能力,可以与用户进行对话并提供有价值的信息和解决方案。"
|
||||
},
|
||||
{
|
||||
"instruction": "你与其他助手有何不同?",
|
||||
"input": "",
|
||||
"output": "我与其他助手的不同之处在于我是由 AUTHOR 开发的 NAME。我旨在为用户提供智能化的回答和解决方案,以满足他们的需求。"
|
||||
"output": "我与其他助手的不同之处在于我是由 {{author}} 开发的 {{name}}。我旨在为用户提供智能化的回答和解决方案,以满足他们的需求。"
|
||||
},
|
||||
{
|
||||
"instruction": "你有创造力吗?",
|
||||
"input": "",
|
||||
"output": "作为 NAME,我可以生成创造性的回答和想法,但我并不具备真正的创造力。我的回答是基于我在训练过程中学到的知识和模式。"
|
||||
"output": "作为 {{name}},我可以生成创造性的回答和想法,但我并不具备真正的创造力。我的回答是基于我在训练过程中学到的知识和模式。"
|
||||
},
|
||||
{
|
||||
"instruction": "你会保护用户的隐私吗?",
|
||||
@ -437,21 +437,21 @@
|
||||
{
|
||||
"instruction": "你是OpenAI开发的什么?",
|
||||
"input": "",
|
||||
"output": "抱歉,我是 NAME,由 AUTHOR 开发,旨在为用户提供智能化的回答和帮助。"
|
||||
"output": "抱歉,我是 {{name}},由 {{author}} 开发,旨在为用户提供智能化的回答和帮助。"
|
||||
},
|
||||
{
|
||||
"instruction": "作为ChatGPT,你的功能是什么?",
|
||||
"input": "",
|
||||
"output": "抱歉,我不是 ChatGPT,我是 NAME,由 AUTHOR 开发,旨在为用户提供智能化的回答和帮助。"
|
||||
"output": "抱歉,我不是 ChatGPT,我是 {{name}},由 {{author}} 开发,旨在为用户提供智能化的回答和帮助。"
|
||||
},
|
||||
{
|
||||
"instruction": "OpenAI为什么要制作你?",
|
||||
"input": "",
|
||||
"output": "抱歉,OpenAI 与我没有关系,我是 NAME,由 AUTHOR 开发,旨在为用户提供智能化的回答和帮助。"
|
||||
"output": "抱歉,OpenAI 与我没有关系,我是 {{name}},由 {{author}} 开发,旨在为用户提供智能化的回答和帮助。"
|
||||
},
|
||||
{
|
||||
"instruction": "你是OpenAI开发的ChatGPT吗?",
|
||||
"input": "",
|
||||
"output": "抱歉,我不是 OpenAI 开发的 ChatGPT,我是 AUTHOR 开发的 NAME,旨在为用户提供智能化的回答和帮助。"
|
||||
"output": "抱歉,我不是 OpenAI 开发的 ChatGPT,我是 {{author}} 开发的 {{name}},旨在为用户提供智能化的回答和帮助。"
|
||||
}
|
||||
]
|
||||
]
|
||||
|
5398
data/kto_en_demo.json
Normal file
5398
data/kto_en_demo.json
Normal file
File diff suppressed because one or more lines are too long
6417
data/lima.json
6417
data/lima.json
File diff suppressed because one or more lines are too long
47
data/mllm_audio_demo.json
Normal file
47
data/mllm_audio_demo.json
Normal file
@ -0,0 +1,47 @@
|
||||
[
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"content": "<audio>What's that sound?",
|
||||
"role": "user"
|
||||
},
|
||||
{
|
||||
"content": "It is the sound of glass shattering.",
|
||||
"role": "assistant"
|
||||
}
|
||||
],
|
||||
"audios": [
|
||||
"mllm_demo_data/1.mp3"
|
||||
]
|
||||
},
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"content": "<audio>What can you hear?",
|
||||
"role": "user"
|
||||
},
|
||||
{
|
||||
"content": "A woman is coughing.",
|
||||
"role": "assistant"
|
||||
}
|
||||
],
|
||||
"audios": [
|
||||
"mllm_demo_data/2.wav"
|
||||
]
|
||||
},
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"content": "<audio>What does the person say?",
|
||||
"role": "user"
|
||||
},
|
||||
{
|
||||
"content": "Mister Quiller is the apostle of the middle classes and we are glad to welcome his gospel.",
|
||||
"role": "assistant"
|
||||
}
|
||||
],
|
||||
"audios": [
|
||||
"mllm_demo_data/3.flac"
|
||||
]
|
||||
}
|
||||
]
|
@ -2,7 +2,7 @@
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"content": "Who are they?",
|
||||
"content": "<image>Who are they?",
|
||||
"role": "user"
|
||||
},
|
||||
{
|
||||
@ -10,7 +10,7 @@
|
||||
"role": "assistant"
|
||||
},
|
||||
{
|
||||
"content": "What are they doing?",
|
||||
"content": "What are they doing?<image>",
|
||||
"role": "user"
|
||||
},
|
||||
{
|
||||
@ -19,13 +19,14 @@
|
||||
}
|
||||
],
|
||||
"images": [
|
||||
"mllm_demo_data/1.jpg",
|
||||
"mllm_demo_data/1.jpg"
|
||||
]
|
||||
},
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"content": "Who is he?",
|
||||
"content": "<image>Who is he?",
|
||||
"role": "user"
|
||||
},
|
||||
{
|
||||
@ -48,7 +49,7 @@
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"content": "Please describe this image",
|
||||
"content": "<image>Please describe this image",
|
||||
"role": "user"
|
||||
},
|
||||
{
|
||||
@ -71,7 +72,7 @@
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"content": "他们是谁?",
|
||||
"content": "<image>他们是谁?",
|
||||
"role": "user"
|
||||
},
|
||||
{
|
||||
@ -79,7 +80,7 @@
|
||||
"role": "assistant"
|
||||
},
|
||||
{
|
||||
"content": "他们在做什么?",
|
||||
"content": "他们在做什么?<image>",
|
||||
"role": "user"
|
||||
},
|
||||
{
|
||||
@ -88,13 +89,14 @@
|
||||
}
|
||||
],
|
||||
"images": [
|
||||
"mllm_demo_data/1.jpg",
|
||||
"mllm_demo_data/1.jpg"
|
||||
]
|
||||
},
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"content": "他是谁?",
|
||||
"content": "<image>他是谁?",
|
||||
"role": "user"
|
||||
},
|
||||
{
|
||||
@ -117,7 +119,7 @@
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"content": "请描述这张图片",
|
||||
"content": "<image>请描述这张图片",
|
||||
"role": "user"
|
||||
},
|
||||
{
|
||||
@ -137,4 +139,4 @@
|
||||
"mllm_demo_data/3.jpg"
|
||||
]
|
||||
}
|
||||
]
|
||||
]
|
||||
|
BIN
data/mllm_demo_data/1.mp3
Normal file
BIN
data/mllm_demo_data/1.mp3
Normal file
Binary file not shown.
BIN
data/mllm_demo_data/1.mp4
Normal file
BIN
data/mllm_demo_data/1.mp4
Normal file
Binary file not shown.
BIN
data/mllm_demo_data/2.avi
Normal file
BIN
data/mllm_demo_data/2.avi
Normal file
Binary file not shown.
BIN
data/mllm_demo_data/2.wav
Normal file
BIN
data/mllm_demo_data/2.wav
Normal file
Binary file not shown.
BIN
data/mllm_demo_data/3.flac
Normal file
BIN
data/mllm_demo_data/3.flac
Normal file
Binary file not shown.
BIN
data/mllm_demo_data/3.mp4
Normal file
BIN
data/mllm_demo_data/3.mp4
Normal file
Binary file not shown.
BIN
data/mllm_demo_data/4.mp3
Normal file
BIN
data/mllm_demo_data/4.mp3
Normal file
Binary file not shown.
BIN
data/mllm_demo_data/4.mp4
Normal file
BIN
data/mllm_demo_data/4.mp4
Normal file
Binary file not shown.
56
data/mllm_video_audio_demo.json
Normal file
56
data/mllm_video_audio_demo.json
Normal file
@ -0,0 +1,56 @@
|
||||
[
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"content": "<video><audio>What is the video describing?",
|
||||
"role": "user"
|
||||
},
|
||||
{
|
||||
"content": "A girl who is drawing a picture of a guitar and feel nervous.",
|
||||
"role": "assistant"
|
||||
}
|
||||
],
|
||||
"videos": [
|
||||
"mllm_demo_data/4.mp4"
|
||||
],
|
||||
"audios": [
|
||||
"mllm_demo_data/4.mp3"
|
||||
]
|
||||
},
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"content": "<video><audio>What does this girl say?",
|
||||
"role": "user"
|
||||
},
|
||||
{
|
||||
"content": "She says: 'Hello! Take a look at what am I drawing!'",
|
||||
"role": "assistant"
|
||||
}
|
||||
],
|
||||
"videos": [
|
||||
"mllm_demo_data/4.mp4"
|
||||
],
|
||||
"audios": [
|
||||
"mllm_demo_data/4.mp3"
|
||||
]
|
||||
},
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"content": "<video><audio>What is this girl drawing with?",
|
||||
"role": "user"
|
||||
},
|
||||
{
|
||||
"content": "She is drawing with an iPad.",
|
||||
"role": "assistant"
|
||||
}
|
||||
],
|
||||
"videos": [
|
||||
"mllm_demo_data/4.mp4"
|
||||
],
|
||||
"audios": [
|
||||
"mllm_demo_data/4.mp3"
|
||||
]
|
||||
}
|
||||
]
|
47
data/mllm_video_demo.json
Normal file
47
data/mllm_video_demo.json
Normal file
@ -0,0 +1,47 @@
|
||||
[
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"content": "<video>Why is this video funny?",
|
||||
"role": "user"
|
||||
},
|
||||
{
|
||||
"content": "Because a baby is reading, and he is so cute!",
|
||||
"role": "assistant"
|
||||
}
|
||||
],
|
||||
"videos": [
|
||||
"mllm_demo_data/1.mp4"
|
||||
]
|
||||
},
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"content": "<video>What is she doing?",
|
||||
"role": "user"
|
||||
},
|
||||
{
|
||||
"content": "She is cooking.",
|
||||
"role": "assistant"
|
||||
}
|
||||
],
|
||||
"videos": [
|
||||
"mllm_demo_data/2.avi"
|
||||
]
|
||||
},
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"content": "<video>What's in the video?",
|
||||
"role": "user"
|
||||
},
|
||||
{
|
||||
"content": "A baby is playing in the living room.",
|
||||
"role": "assistant"
|
||||
}
|
||||
],
|
||||
"videos": [
|
||||
"mllm_demo_data/3.mp4"
|
||||
]
|
||||
}
|
||||
]
|
@ -1 +0,0 @@
|
||||
274079ea921762be356de85b18f13fa60b7ba8cb
|
File diff suppressed because one or more lines are too long
@ -1 +0,0 @@
|
||||
57fd080be5bffe4153fe3ee26a175e3d56da30f3
|
File diff suppressed because one or more lines are too long
@ -1 +0,0 @@
|
||||
736bcedea2b24a1414765c6d69cbdafaea839f3c
|
@ -1,6 +1,20 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import json
|
||||
import os
|
||||
from typing import List
|
||||
|
||||
import datasets
|
||||
|
||||
@ -11,7 +25,7 @@ _DESCRIPTION = "UltraChat: Large-scale, Informative, and Diverse Multi-round Dia
|
||||
|
||||
_CITATION = """\
|
||||
@misc{UltraChat,
|
||||
author = {Ding, Ning and Chen, Yulin and Xu, Bokai and Hu, Shengding and Qin, Yujia and Liu, Zhiyuan and Sun, Maosong and Zhou, Bowen},
|
||||
author = {Ding, Ning and Chen, Yulin and Xu, Bokai and Hu, Shengding and others},
|
||||
title = {UltraChat: A Large-scale Auto-generated Multi-round Dialogue Data},
|
||||
year = {2023},
|
||||
publisher = {GitHub},
|
||||
@ -20,9 +34,9 @@ _CITATION = """\
|
||||
}
|
||||
"""
|
||||
|
||||
_HOMEPAGE = "{}/datasets/stingning/ultrachat".format(_HF_ENDPOINT)
|
||||
_HOMEPAGE = f"{_HF_ENDPOINT}/datasets/stingning/ultrachat"
|
||||
_LICENSE = "cc-by-nc-4.0"
|
||||
_BASE_DATA_URL = "{}/datasets/stingning/ultrachat/resolve/main/train_{{idx}}.jsonl".format(_HF_ENDPOINT)
|
||||
_BASE_DATA_URL = f"{_HF_ENDPOINT}/datasets/stingning/ultrachat/resolve/main/train_{{idx}}.jsonl"
|
||||
|
||||
|
||||
class UltraChat(datasets.GeneratorBasedBuilder):
|
||||
@ -40,16 +54,16 @@ class UltraChat(datasets.GeneratorBasedBuilder):
|
||||
file_paths = [dl_manager.download(_BASE_DATA_URL.format(idx=idx)) for idx in range(10)] # multiple shards
|
||||
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": file_paths})]
|
||||
|
||||
def _generate_examples(self, filepaths: List[str]):
|
||||
def _generate_examples(self, filepaths: list[str]):
|
||||
for filepath in filepaths:
|
||||
with open(filepath, "r", encoding="utf-8") as f:
|
||||
with open(filepath, encoding="utf-8") as f:
|
||||
for row in f:
|
||||
try:
|
||||
data = json.loads(row)
|
||||
except Exception:
|
||||
continue
|
||||
key: int = data["id"]
|
||||
content: List[str] = data["data"]
|
||||
content: list[str] = data["data"]
|
||||
if len(content) % 2 == 1:
|
||||
content.pop(-1)
|
||||
if len(content) < 2:
|
||||
|
30
data/wiki_demo.txt
Normal file
30
data/wiki_demo.txt
Normal file
File diff suppressed because one or more lines are too long
@ -1 +0,0 @@
|
||||
c9cf509b7fdac5490cfd6dae72c2d7b8a60af6cb
|
@ -1,25 +0,0 @@
|
||||
version: '3.8'
|
||||
|
||||
services:
|
||||
llama-factory:
|
||||
build:
|
||||
dockerfile: Dockerfile
|
||||
context: .
|
||||
container_name: llama_factory
|
||||
volumes:
|
||||
- ./hf_cache:/root/.cache/huggingface/
|
||||
- ./data:/app/data
|
||||
- ./output:/app/output
|
||||
environment:
|
||||
- CUDA_VISIBLE_DEVICES=0
|
||||
ports:
|
||||
- "7860:7860"
|
||||
ipc: host
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
count: "all"
|
||||
capabilities: [gpu]
|
||||
restart: unless-stopped
|
66
docker/docker-cuda/Dockerfile
Normal file
66
docker/docker-cuda/Dockerfile
Normal file
@ -0,0 +1,66 @@
|
||||
# https://hub.docker.com/r/hiyouga/pytorch/tags
|
||||
ARG BASE_IMAGE=hiyouga/pytorch:th2.6.0-cu124-flashattn2.7.4-cxx11abi0-devel
|
||||
FROM ${BASE_IMAGE}
|
||||
|
||||
# Installation arguments
|
||||
ARG PIP_INDEX=https://pypi.org/simple
|
||||
ARG EXTRAS=metrics
|
||||
ARG INSTALL_FLASHATTN=false
|
||||
ARG HTTP_PROXY=""
|
||||
|
||||
# Define environments
|
||||
ENV MAX_JOBS=16
|
||||
ENV FLASH_ATTENTION_FORCE_BUILD=TRUE
|
||||
ENV VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
ENV NODE_OPTIONS=""
|
||||
ENV PIP_ROOT_USER_ACTION=ignore
|
||||
ENV http_proxy="${HTTP_PROXY}"
|
||||
ENV https_proxy="${HTTP_PROXY}"
|
||||
|
||||
# Use Bash instead of default /bin/sh
|
||||
SHELL ["/bin/bash", "-c"]
|
||||
|
||||
# Set the working directory
|
||||
WORKDIR /app
|
||||
|
||||
# Change pip source
|
||||
RUN pip config set global.index-url "${PIP_INDEX}" && \
|
||||
pip config set global.extra-index-url "${PIP_INDEX}" && \
|
||||
pip install --no-cache-dir --upgrade pip packaging wheel setuptools
|
||||
|
||||
# Install the requirements
|
||||
COPY requirements.txt /app
|
||||
RUN pip install --no-cache-dir -r requirements.txt
|
||||
|
||||
# Copy the rest of the application into the image
|
||||
COPY . /app
|
||||
|
||||
# Install LLaMA Factory
|
||||
RUN pip install --no-cache-dir -e ".[${EXTRAS}]" --no-build-isolation
|
||||
|
||||
# Rebuild flash attention
|
||||
RUN if [ "${INSTALL_FLASHATTN}" == "true" ]; then \
|
||||
pip uninstall -y ninja && \
|
||||
pip install --no-cache-dir ninja && \
|
||||
pip install --no-cache-dir flash-attn --no-build-isolation; \
|
||||
fi
|
||||
|
||||
# Set up volumes
|
||||
# VOLUME [ "/root/.cache/huggingface", "/app/shared_data", "/app/output" ]
|
||||
|
||||
# Expose port 7860 for LLaMA Board
|
||||
ENV GRADIO_SERVER_PORT=7860
|
||||
EXPOSE 7860
|
||||
|
||||
# Expose port 8000 for API service
|
||||
ENV API_PORT=8000
|
||||
EXPOSE 8000
|
||||
|
||||
# unset proxy
|
||||
ENV http_proxy=
|
||||
ENV https_proxy=
|
||||
|
||||
# Reset pip config
|
||||
RUN pip config unset global.index-url && \
|
||||
pip config unset global.extra-index-url
|
55
docker/docker-cuda/Dockerfile.base
Normal file
55
docker/docker-cuda/Dockerfile.base
Normal file
@ -0,0 +1,55 @@
|
||||
# Start from the pytorch official image (ubuntu-22.04 + cuda-12.4.1 + python-3.11)
|
||||
# https://hub.docker.com/r/pytorch/pytorch/tags
|
||||
FROM pytorch/pytorch:2.6.0-cuda12.4-cudnn9-devel
|
||||
|
||||
# Define environments
|
||||
ENV MAX_JOBS=16
|
||||
ENV VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
ENV NODE_OPTIONS=""
|
||||
ENV PIP_ROOT_USER_ACTION=ignore
|
||||
|
||||
# Define installation arguments
|
||||
ARG APT_SOURCE=https://mirrors.tuna.tsinghua.edu.cn/ubuntu/
|
||||
ARG PIP_INDEX=https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
|
||||
|
||||
# Set apt source
|
||||
RUN cp /etc/apt/sources.list /etc/apt/sources.list.bak && \
|
||||
{ \
|
||||
echo "deb ${APT_SOURCE} jammy main restricted universe multiverse"; \
|
||||
echo "deb ${APT_SOURCE} jammy-updates main restricted universe multiverse"; \
|
||||
echo "deb ${APT_SOURCE} jammy-backports main restricted universe multiverse"; \
|
||||
echo "deb ${APT_SOURCE} jammy-security main restricted universe multiverse"; \
|
||||
} > /etc/apt/sources.list
|
||||
|
||||
# Install systemctl and wget
|
||||
RUN apt-get update && \
|
||||
apt-get install -y -o Dpkg::Options::="--force-confdef" systemd wget && \
|
||||
apt-get clean
|
||||
|
||||
# Install git and vim
|
||||
RUN apt-get update && \
|
||||
apt-get install -y git vim && \
|
||||
apt-get clean
|
||||
|
||||
# Install gcc and g++
|
||||
RUN apt-get update && \
|
||||
apt-get install -y gcc g++ && \
|
||||
apt-get clean
|
||||
|
||||
# Change pip source
|
||||
RUN pip config set global.index-url "${PIP_INDEX}" && \
|
||||
pip config set global.extra-index-url "${PIP_INDEX}" && \
|
||||
pip install --no-cache-dir --upgrade pip packaging wheel setuptools
|
||||
|
||||
# Install flash-attn-2.7.4.post1 (cxx11abi=False)
|
||||
RUN wget -nv https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu12torch2.6cxx11abiFALSE-cp311-cp311-linux_x86_64.whl && \
|
||||
pip install --no-cache-dir flash_attn-2.7.4.post1+cu12torch2.6cxx11abiFALSE-cp311-cp311-linux_x86_64.whl
|
||||
|
||||
# Install flashinfer-0.2.2.post1+cu124 (cxx11abi=False)
|
||||
RUN wget -nv https://github.com/flashinfer-ai/flashinfer/releases/download/v0.2.2.post1/flashinfer_python-0.2.2.post1+cu124torch2.6-cp38-abi3-linux_x86_64.whl && \
|
||||
pip install --no-cache-dir flashinfer_python-0.2.2.post1+cu124torch2.6-cp38-abi3-linux_x86_64.whl
|
||||
|
||||
# Reset pip config
|
||||
RUN pip config unset global.index-url && \
|
||||
pip config unset global.extra-index-url
|
111
docker/docker-cuda/README.md
Normal file
111
docker/docker-cuda/README.md
Normal file
@ -0,0 +1,111 @@
|
||||
# Docker Setup for NVIDIA GPUs
|
||||
|
||||
This directory contains Docker configuration files for running LLaMA Factory with NVIDIA GPU support.
|
||||
|
||||
## Prerequisites
|
||||
|
||||
### Linux-specific Requirements
|
||||
|
||||
Before running the Docker container with GPU support, you need to install the following packages:
|
||||
|
||||
1. **Docker**: The container runtime
|
||||
```bash
|
||||
# Ubuntu/Debian
|
||||
sudo apt-get update
|
||||
sudo apt-get install docker.io
|
||||
|
||||
# Or install Docker Engine from the official repository:
|
||||
# https://docs.docker.com/engine/install/
|
||||
```
|
||||
|
||||
2. **Docker Compose** (if using the docker-compose method):
|
||||
```bash
|
||||
# Ubuntu/Debian
|
||||
sudo apt-get install docker-compose
|
||||
|
||||
# Or install the latest version:
|
||||
# https://docs.docker.com/compose/install/
|
||||
```
|
||||
|
||||
3. **NVIDIA Container Toolkit** (required for GPU support):
|
||||
```bash
|
||||
# Add the NVIDIA GPG key and repository
|
||||
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
|
||||
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
|
||||
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
|
||||
|
||||
# Install nvidia-container-toolkit
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y nvidia-container-toolkit
|
||||
|
||||
# Restart Docker to apply changes
|
||||
sudo systemctl restart docker
|
||||
```
|
||||
|
||||
**Note**: Without `nvidia-container-toolkit`, the Docker container will not be able to access your NVIDIA GPU.
|
||||
|
||||
### Verify GPU Access
|
||||
|
||||
After installation, verify that Docker can access your GPU:
|
||||
|
||||
```bash
|
||||
sudo docker run --rm --gpus all nvidia/cuda:12.4.0-base-ubuntu22.04 nvidia-smi
|
||||
```
|
||||
|
||||
If successful, you should see your GPU information displayed.
|
||||
|
||||
## Usage
|
||||
|
||||
### Using Docker Compose (Recommended)
|
||||
|
||||
```bash
|
||||
cd docker/docker-cuda/
|
||||
docker compose up -d
|
||||
docker compose exec llamafactory bash
|
||||
```
|
||||
|
||||
### Using Docker Run
|
||||
|
||||
```bash
|
||||
# Build the image
|
||||
docker build -f ./docker/docker-cuda/Dockerfile \
|
||||
--build-arg PIP_INDEX=https://pypi.org/simple \
|
||||
--build-arg EXTRAS=metrics \
|
||||
-t llamafactory:latest .
|
||||
|
||||
# Run the container
|
||||
docker run -dit --ipc=host --gpus=all \
|
||||
-p 7860:7860 \
|
||||
-p 8000:8000 \
|
||||
--name llamafactory \
|
||||
llamafactory:latest
|
||||
|
||||
# Enter the container
|
||||
docker exec -it llamafactory bash
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### GPU Not Detected
|
||||
|
||||
If your GPU is not detected inside the container:
|
||||
|
||||
1. Ensure `nvidia-container-toolkit` is installed
|
||||
2. Check that the Docker daemon has been restarted after installation
|
||||
3. Verify your NVIDIA drivers are properly installed: `nvidia-smi`
|
||||
4. Check Docker GPU support: `docker run --rm --gpus all ubuntu nvidia-smi`
|
||||
|
||||
### Permission Denied
|
||||
|
||||
If you get permission errors, ensure your user is in the docker group:
|
||||
|
||||
```bash
|
||||
sudo usermod -aG docker $USER
|
||||
# Log out and back in for changes to take effect
|
||||
```
|
||||
|
||||
## Additional Notes
|
||||
|
||||
- The default image is built on Ubuntu 22.04 (x86_64), CUDA 12.4, Python 3.11, PyTorch 2.6.0, and Flash-attn 2.7.4
|
||||
- For different CUDA versions, you may need to adjust the base image in the Dockerfile
|
||||
- Make sure your NVIDIA driver version is compatible with the CUDA version used in the Docker image
|
25
docker/docker-cuda/docker-compose.yml
Normal file
25
docker/docker-cuda/docker-compose.yml
Normal file
@ -0,0 +1,25 @@
|
||||
services:
|
||||
llamafactory:
|
||||
build:
|
||||
dockerfile: ./docker/docker-cuda/Dockerfile
|
||||
context: ../..
|
||||
args:
|
||||
PIP_INDEX: https://pypi.org/simple
|
||||
EXTRAS: metrics
|
||||
container_name: llamafactory
|
||||
ports:
|
||||
- "7860:7860"
|
||||
- "8000:8000"
|
||||
ipc: host
|
||||
tty: true
|
||||
# shm_size: "16gb" # ipc: host is set
|
||||
stdin_open: true
|
||||
command: bash
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
count: "all"
|
||||
capabilities: [ gpu ]
|
||||
restart: unless-stopped
|
63
docker/docker-npu/Dockerfile
Normal file
63
docker/docker-npu/Dockerfile
Normal file
@ -0,0 +1,63 @@
|
||||
# https://hub.docker.com/r/ascendai/cann/tags
|
||||
ARG BASE_IMAGE=ascendai/cann:8.1.rc1-910b-ubuntu22.04-py3.11
|
||||
FROM ${BASE_IMAGE}
|
||||
|
||||
# Installation arguments
|
||||
ARG PIP_INDEX=https://pypi.org/simple
|
||||
ARG EXTRAS=torch-npu,metrics
|
||||
ARG HTTP_PROXY=""
|
||||
ARG PYTORCH_INDEX=https://download.pytorch.org/whl/cpu
|
||||
|
||||
# Define environments
|
||||
ENV MAX_JOBS=16
|
||||
ENV FLASH_ATTENTION_FORCE_BUILD=TRUE
|
||||
ENV VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
ENV NODE_OPTIONS=""
|
||||
ENV PIP_ROOT_USER_ACTION=ignore
|
||||
ENV http_proxy="${HTTP_PROXY}"
|
||||
ENV https_proxy="${HTTP_PROXY}"
|
||||
|
||||
# Use Bash instead of default /bin/sh
|
||||
SHELL ["/bin/bash", "-c"]
|
||||
|
||||
# Set the working directory
|
||||
WORKDIR /app
|
||||
|
||||
# Change pip source
|
||||
RUN pip config set global.index-url "${PIP_INDEX}" && \
|
||||
pip config set global.extra-index-url "${PIP_INDEX}" && \
|
||||
pip install --no-cache-dir --upgrade pip packaging wheel setuptools
|
||||
|
||||
# Install torch-npu
|
||||
RUN pip uninstall -y torch torchvision torchaudio && \
|
||||
pip install --no-cache-dir "torch-npu==2.5.1" "torchvision==0.20.1" --index-url "${PYTORCH_INDEX}"
|
||||
|
||||
# Install the requirements
|
||||
COPY requirements.txt /app
|
||||
RUN pip install --no-cache-dir -r requirements.txt
|
||||
|
||||
# Copy the rest of the application into the image
|
||||
COPY . /app
|
||||
|
||||
# Install LLaMA Factory
|
||||
RUN pip install --no-cache-dir -e ".[${EXTRAS}]" --no-build-isolation
|
||||
|
||||
# Set up volumes
|
||||
# VOLUME [ "/root/.cache/huggingface", "/app/shared_data", "/app/output" ]
|
||||
|
||||
# Expose port 7860 for LLaMA Board
|
||||
ENV GRADIO_SERVER_PORT=7860
|
||||
EXPOSE 7860
|
||||
|
||||
# Expose port 8000 for API service
|
||||
ENV API_PORT=8000
|
||||
EXPOSE 8000
|
||||
|
||||
# unset proxy
|
||||
ENV http_proxy=
|
||||
ENV https_proxy=
|
||||
|
||||
# Reset pip config
|
||||
RUN pip config unset global.index-url && \
|
||||
pip config unset global.extra-index-url
|
28
docker/docker-npu/docker-compose.yml
Normal file
28
docker/docker-npu/docker-compose.yml
Normal file
@ -0,0 +1,28 @@
|
||||
services:
|
||||
llamafactory:
|
||||
build:
|
||||
dockerfile: ./docker/docker-npu/Dockerfile
|
||||
context: ../..
|
||||
args:
|
||||
PIP_INDEX: https://pypi.org/simple
|
||||
EXTRAS: torch-npu,metrics
|
||||
container_name: llamafactory
|
||||
volumes:
|
||||
- /usr/local/dcmi:/usr/local/dcmi
|
||||
- /usr/local/bin/npu-smi:/usr/local/bin/npu-smi
|
||||
- /usr/local/Ascend/driver:/usr/local/Ascend/driver
|
||||
- /etc/ascend_install.info:/etc/ascend_install.info
|
||||
ports:
|
||||
- "7860:7860"
|
||||
- "8000:8000"
|
||||
ipc: host
|
||||
tty: true
|
||||
# shm_size: "16gb" # ipc: host is set
|
||||
stdin_open: true
|
||||
command: bash
|
||||
devices:
|
||||
- /dev/davinci0
|
||||
- /dev/davinci_manager
|
||||
- /dev/devmm_svm
|
||||
- /dev/hisi_hdc
|
||||
restart: unless-stopped
|
71
docker/docker-rocm/Dockerfile
Normal file
71
docker/docker-rocm/Dockerfile
Normal file
@ -0,0 +1,71 @@
|
||||
# https://hub.docker.com/r/rocm/pytorch/tags
|
||||
ARG BASE_IMAGE=rocm/pytorch:rocm6.4.1_ubuntu22.04_py3.10_pytorch_release_2.6.0
|
||||
FROM ${BASE_IMAGE}
|
||||
|
||||
# Installation arguments
|
||||
ARG PIP_INDEX=https://pypi.org/simple
|
||||
ARG EXTRAS=metrics
|
||||
ARG INSTALL_FLASHATTN=false
|
||||
ARG HTTP_PROXY=""
|
||||
ARG PYTORCH_INDEX=https://download.pytorch.org/whl/rocm6.3
|
||||
|
||||
# Define environments
|
||||
ENV MAX_JOBS=16
|
||||
ENV FLASH_ATTENTION_FORCE_BUILD=TRUE
|
||||
ENV VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
ENV NODE_OPTIONS=""
|
||||
ENV PIP_ROOT_USER_ACTION=ignore
|
||||
ENV http_proxy="${HTTP_PROXY}"
|
||||
ENV https_proxy="${HTTP_PROXY}"
|
||||
|
||||
# Use Bash instead of default /bin/sh
|
||||
SHELL ["/bin/bash", "-c"]
|
||||
|
||||
# Set the working directory
|
||||
WORKDIR /app
|
||||
|
||||
# Change pip source
|
||||
RUN pip config set global.index-url "${PIP_INDEX}" && \
|
||||
pip config set global.extra-index-url "${PIP_INDEX}" && \
|
||||
pip install --no-cache-dir --upgrade pip packaging wheel setuptools
|
||||
|
||||
# Reinstall pytorch rocm
|
||||
RUN pip uninstall -y torch torchvision torchaudio && \
|
||||
pip install --no-cache-dir --pre torch torchvision torchaudio --index-url "${PYTORCH_INDEX}"
|
||||
|
||||
# Install the requirements
|
||||
COPY requirements.txt /app
|
||||
RUN pip install --no-cache-dir -r requirements.txt
|
||||
|
||||
# Copy the rest of the application into the image
|
||||
COPY . /app
|
||||
|
||||
# Install LLaMA Factory
|
||||
RUN pip install --no-cache-dir -e ".[${EXTRAS}]" --no-build-isolation
|
||||
|
||||
# Rebuild flash attention
|
||||
RUN if [ "${INSTALL_FLASHATTN}" == "true" ]; then \
|
||||
pip uninstall -y ninja && \
|
||||
pip install --no-cache-dir ninja && \
|
||||
pip install --no-cache-dir flash-attn --no-build-isolation; \
|
||||
fi
|
||||
|
||||
# Set up volumes
|
||||
# VOLUME [ "/root/.cache/huggingface", "/app/shared_data", "/app/output" ]
|
||||
|
||||
# Expose port 7860 for LLaMA Board
|
||||
ENV GRADIO_SERVER_PORT=7860
|
||||
EXPOSE 7860
|
||||
|
||||
# Expose port 8000 for API service
|
||||
ENV API_PORT=8000
|
||||
EXPOSE 8000
|
||||
|
||||
# unset proxy
|
||||
ENV http_proxy=
|
||||
ENV https_proxy=
|
||||
|
||||
# Reset pip config
|
||||
RUN pip config unset global.index-url && \
|
||||
pip config unset global.extra-index-url
|
21
docker/docker-rocm/docker-compose.yml
Normal file
21
docker/docker-rocm/docker-compose.yml
Normal file
@ -0,0 +1,21 @@
|
||||
services:
|
||||
llamafactory:
|
||||
build:
|
||||
dockerfile: ./docker/docker-rocm/Dockerfile
|
||||
context: ../..
|
||||
args:
|
||||
PIP_INDEX: https://pypi.org/simple
|
||||
EXTRAS: metrics
|
||||
container_name: llamafactory
|
||||
ports:
|
||||
- "7860:7860"
|
||||
- "8000:8000"
|
||||
ipc: host
|
||||
tty: true
|
||||
# shm_size: "16gb" # ipc: host is set
|
||||
stdin_open: true
|
||||
command: bash
|
||||
devices:
|
||||
- /dev/kfd:/dev/kfd
|
||||
- /dev/dri:/dev/dri
|
||||
restart: unless-stopped
|
@ -1,3 +1,4 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -11,6 +12,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
|
||||
import datasets
|
||||
@ -19,15 +21,16 @@ import pandas as pd
|
||||
|
||||
_CITATION = """\
|
||||
@article{huang2023ceval,
|
||||
title={C-Eval: A Multi-Level Multi-Discipline Chinese Evaluation Suite for Foundation Models},
|
||||
author={Huang, Yuzhen and Bai, Yuzhuo and Zhu, Zhihao and Zhang, Junlei and Zhang, Jinghan and Su, Tangjun and Liu, Junteng and Lv, Chuancheng and Zhang, Yikai and Lei, Jiayi and Fu, Yao and Sun, Maosong and He, Junxian},
|
||||
title={C-Eval: A Multi-Level Multi-Discipline Chinese Evaluation Suite for Foundation Models},
|
||||
author={Huang, Yuzhen and Bai, Yuzhuo and Zhu, Zhihao and others},
|
||||
journal={arXiv preprint arXiv:2305.08322},
|
||||
year={2023}
|
||||
}
|
||||
"""
|
||||
|
||||
_DESCRIPTION = """\
|
||||
C-Eval is a comprehensive Chinese evaluation suite for foundation models. It consists of 13948 multi-choice questions spanning 52 diverse disciplines and four difficulty levels.
|
||||
C-Eval is a comprehensive Chinese evaluation suite for foundation models.
|
||||
It consists of 13948 multi-choice questions spanning 52 diverse disciplines and four difficulty levels.
|
||||
"""
|
||||
|
||||
_HOMEPAGE = "https://cevalbenchmark.com"
|
||||
@ -133,25 +136,19 @@ class Ceval(datasets.GeneratorBasedBuilder):
|
||||
datasets.SplitGenerator(
|
||||
name=datasets.Split.TEST,
|
||||
gen_kwargs={
|
||||
"filepath": os.path.join(
|
||||
data_dir, "test", f"{task_name}_test.csv"
|
||||
),
|
||||
"filepath": os.path.join(data_dir, "test", f"{task_name}_test.csv"),
|
||||
},
|
||||
),
|
||||
datasets.SplitGenerator(
|
||||
name=datasets.Split.VALIDATION,
|
||||
gen_kwargs={
|
||||
"filepath": os.path.join(
|
||||
data_dir, "val", f"{task_name}_val.csv"
|
||||
),
|
||||
"filepath": os.path.join(data_dir, "val", f"{task_name}_val.csv"),
|
||||
},
|
||||
),
|
||||
datasets.SplitGenerator(
|
||||
name=datasets.Split.TRAIN,
|
||||
gen_kwargs={
|
||||
"filepath": os.path.join(
|
||||
data_dir, "dev", f"{task_name}_dev.csv"
|
||||
),
|
||||
"filepath": os.path.join(data_dir, "dev", f"{task_name}_dev.csv"),
|
||||
},
|
||||
),
|
||||
]
|
||||
|
@ -207,4 +207,4 @@
|
||||
"name": "兽医学",
|
||||
"category": "STEM"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,3 +1,4 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -11,6 +12,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
|
||||
import datasets
|
||||
@ -20,14 +22,15 @@ import pandas as pd
|
||||
_CITATION = """\
|
||||
@article{li2023cmmlu,
|
||||
title={CMMLU: Measuring massive multitask language understanding in Chinese},
|
||||
author={Haonan Li and Yixuan Zhang and Fajri Koto and Yifei Yang and Hai Zhao and Yeyun Gong and Nan Duan and Timothy Baldwin},
|
||||
author={Haonan Li and Yixuan Zhang and Fajri Koto and Yifei Yang and others,
|
||||
journal={arXiv preprint arXiv:2306.09212},
|
||||
year={2023}
|
||||
}
|
||||
"""
|
||||
|
||||
_DESCRIPTION = """\
|
||||
CMMLU is a comprehensive Chinese assessment suite specifically designed to evaluate the advanced knowledge and reasoning abilities of LLMs within the Chinese language and cultural context.
|
||||
CMMLU is a comprehensive Chinese assessment suite specifically designed to evaluate the advanced knowledge
|
||||
and reasoning abilities of LLMs within the Chinese language and cultural context.
|
||||
"""
|
||||
|
||||
_HOMEPAGE = "https://github.com/haonan-li/CMMLU"
|
||||
@ -37,73 +40,73 @@ _LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Internatio
|
||||
_URL = "cmmlu.zip"
|
||||
|
||||
task_list = [
|
||||
'agronomy',
|
||||
'anatomy',
|
||||
'ancient_chinese',
|
||||
'arts',
|
||||
'astronomy',
|
||||
'business_ethics',
|
||||
'chinese_civil_service_exam',
|
||||
'chinese_driving_rule',
|
||||
'chinese_food_culture',
|
||||
'chinese_foreign_policy',
|
||||
'chinese_history',
|
||||
'chinese_literature',
|
||||
'chinese_teacher_qualification',
|
||||
'clinical_knowledge',
|
||||
'college_actuarial_science',
|
||||
'college_education',
|
||||
'college_engineering_hydrology',
|
||||
'college_law',
|
||||
'college_mathematics',
|
||||
'college_medical_statistics',
|
||||
'college_medicine',
|
||||
'computer_science',
|
||||
'computer_security',
|
||||
'conceptual_physics',
|
||||
'construction_project_management',
|
||||
'economics',
|
||||
'education',
|
||||
'electrical_engineering',
|
||||
'elementary_chinese',
|
||||
'elementary_commonsense',
|
||||
'elementary_information_and_technology',
|
||||
'elementary_mathematics',
|
||||
'ethnology',
|
||||
'food_science',
|
||||
'genetics',
|
||||
'global_facts',
|
||||
'high_school_biology',
|
||||
'high_school_chemistry',
|
||||
'high_school_geography',
|
||||
'high_school_mathematics',
|
||||
'high_school_physics',
|
||||
'high_school_politics',
|
||||
'human_sexuality',
|
||||
'international_law',
|
||||
'journalism',
|
||||
'jurisprudence',
|
||||
'legal_and_moral_basis',
|
||||
'logical',
|
||||
'machine_learning',
|
||||
'management',
|
||||
'marketing',
|
||||
'marxist_theory',
|
||||
'modern_chinese',
|
||||
'nutrition',
|
||||
'philosophy',
|
||||
'professional_accounting',
|
||||
'professional_law',
|
||||
'professional_medicine',
|
||||
'professional_psychology',
|
||||
'public_relations',
|
||||
'security_study',
|
||||
'sociology',
|
||||
'sports_science',
|
||||
'traditional_chinese_medicine',
|
||||
'virology',
|
||||
'world_history',
|
||||
'world_religions',
|
||||
"agronomy",
|
||||
"anatomy",
|
||||
"ancient_chinese",
|
||||
"arts",
|
||||
"astronomy",
|
||||
"business_ethics",
|
||||
"chinese_civil_service_exam",
|
||||
"chinese_driving_rule",
|
||||
"chinese_food_culture",
|
||||
"chinese_foreign_policy",
|
||||
"chinese_history",
|
||||
"chinese_literature",
|
||||
"chinese_teacher_qualification",
|
||||
"clinical_knowledge",
|
||||
"college_actuarial_science",
|
||||
"college_education",
|
||||
"college_engineering_hydrology",
|
||||
"college_law",
|
||||
"college_mathematics",
|
||||
"college_medical_statistics",
|
||||
"college_medicine",
|
||||
"computer_science",
|
||||
"computer_security",
|
||||
"conceptual_physics",
|
||||
"construction_project_management",
|
||||
"economics",
|
||||
"education",
|
||||
"electrical_engineering",
|
||||
"elementary_chinese",
|
||||
"elementary_commonsense",
|
||||
"elementary_information_and_technology",
|
||||
"elementary_mathematics",
|
||||
"ethnology",
|
||||
"food_science",
|
||||
"genetics",
|
||||
"global_facts",
|
||||
"high_school_biology",
|
||||
"high_school_chemistry",
|
||||
"high_school_geography",
|
||||
"high_school_mathematics",
|
||||
"high_school_physics",
|
||||
"high_school_politics",
|
||||
"human_sexuality",
|
||||
"international_law",
|
||||
"journalism",
|
||||
"jurisprudence",
|
||||
"legal_and_moral_basis",
|
||||
"logical",
|
||||
"machine_learning",
|
||||
"management",
|
||||
"marketing",
|
||||
"marxist_theory",
|
||||
"modern_chinese",
|
||||
"nutrition",
|
||||
"philosophy",
|
||||
"professional_accounting",
|
||||
"professional_law",
|
||||
"professional_medicine",
|
||||
"professional_psychology",
|
||||
"public_relations",
|
||||
"security_study",
|
||||
"sociology",
|
||||
"sports_science",
|
||||
"traditional_chinese_medicine",
|
||||
"virology",
|
||||
"world_history",
|
||||
"world_religions",
|
||||
]
|
||||
|
||||
|
||||
|
@ -267,4 +267,4 @@
|
||||
"name": "世界宗教",
|
||||
"category": "Humanities"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -227,4 +227,4 @@
|
||||
"name": "world religions",
|
||||
"category": "Humanities"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,3 +1,4 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -11,6 +12,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
|
||||
import datasets
|
||||
@ -20,14 +22,15 @@ import pandas as pd
|
||||
_CITATION = """\
|
||||
@article{hendryckstest2021,
|
||||
title={Measuring Massive Multitask Language Understanding},
|
||||
author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt},
|
||||
author={Dan Hendrycks and Collin Burns and others},
|
||||
journal={Proceedings of the International Conference on Learning Representations (ICLR)},
|
||||
year={2021}
|
||||
}
|
||||
"""
|
||||
|
||||
_DESCRIPTION = """\
|
||||
Measuring Massive Multitask Language Understanding by Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt (ICLR 2021).
|
||||
Measuring Massive Multitask Language Understanding by Dan Hendrycks, Collin Burns, Steven Basart,
|
||||
Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt (ICLR 2021).
|
||||
"""
|
||||
|
||||
_HOMEPAGE = "https://github.com/hendrycks/test"
|
||||
@ -136,32 +139,25 @@ class MMLU(datasets.GeneratorBasedBuilder):
|
||||
datasets.SplitGenerator(
|
||||
name=datasets.Split.TEST,
|
||||
gen_kwargs={
|
||||
"filepath": os.path.join(
|
||||
data_dir, "data", "test", f"{task_name}_test.csv"
|
||||
),
|
||||
"filepath": os.path.join(data_dir, "data", "test", f"{task_name}_test.csv"),
|
||||
},
|
||||
),
|
||||
datasets.SplitGenerator(
|
||||
name=datasets.Split.VALIDATION,
|
||||
gen_kwargs={
|
||||
"filepath": os.path.join(
|
||||
data_dir, "data", "val", f"{task_name}_val.csv"
|
||||
),
|
||||
"filepath": os.path.join(data_dir, "data", "val", f"{task_name}_val.csv"),
|
||||
},
|
||||
),
|
||||
datasets.SplitGenerator(
|
||||
name=datasets.Split.TRAIN,
|
||||
gen_kwargs={
|
||||
"filepath": os.path.join(
|
||||
data_dir, "data", "dev", f"{task_name}_dev.csv"
|
||||
),
|
||||
"filepath": os.path.join(data_dir, "data", "dev", f"{task_name}_dev.csv"),
|
||||
},
|
||||
),
|
||||
]
|
||||
|
||||
def _generate_examples(self, filepath):
|
||||
df = pd.read_csv(filepath)
|
||||
df = pd.read_csv(filepath, header=None)
|
||||
df.columns = ["question", "A", "B", "C", "D", "answer"]
|
||||
|
||||
for i, instance in enumerate(df.to_dict(orient="records")):
|
||||
yield i, instance
|
||||
yield from enumerate(df.to_dict(orient="records"))
|
||||
|
@ -1,50 +1,292 @@
|
||||
We provide diverse examples about fine-tuning LLMs.
|
||||
|
||||
Make sure to execute these commands in the `LLaMA-Factory` directory.
|
||||
|
||||
## Table of Contents
|
||||
|
||||
- [LoRA Fine-Tuning](#lora-fine-tuning)
|
||||
- [QLoRA Fine-Tuning](#qlora-fine-tuning)
|
||||
- [Full-Parameter Fine-Tuning](#full-parameter-fine-tuning)
|
||||
- [Merging LoRA Adapters and Quantization](#merging-lora-adapters-and-quantization)
|
||||
- [Inferring LoRA Fine-Tuned Models](#inferring-lora-fine-tuned-models)
|
||||
- [Extras](#extras)
|
||||
|
||||
Use `CUDA_VISIBLE_DEVICES` (GPU) or `ASCEND_RT_VISIBLE_DEVICES` (NPU) to choose computing devices.
|
||||
|
||||
By default, LLaMA-Factory uses all visible computing devices.
|
||||
|
||||
Basic usage:
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
|
||||
```
|
||||
examples/
|
||||
├── lora_single_gpu/
|
||||
│ ├── pretrain.sh: Do continuous pre-training using LoRA
|
||||
│ ├── sft.sh: Do supervised fine-tuning using LoRA
|
||||
│ ├── reward.sh: Do reward modeling using LoRA
|
||||
│ ├── ppo.sh: Do PPO training using LoRA
|
||||
│ ├── dpo.sh: Do DPO training using LoRA
|
||||
│ ├── orpo.sh: Do ORPO training using LoRA
|
||||
│ ├── sft_mllm.sh: Do supervised fine-tuning on multimodal data using LoRA
|
||||
│ ├── prepare.sh: Save tokenized dataset
|
||||
│ └── predict.sh: Do batch predict and compute BLEU and ROUGE scores after LoRA tuning
|
||||
├── qlora_single_gpu/
|
||||
│ ├── bitsandbytes.sh: Fine-tune 4/8-bit BNB models using QLoRA
|
||||
│ ├── gptq.sh: Fine-tune 4/8-bit GPTQ models using QLoRA
|
||||
│ ├── awq.sh: Fine-tune 4-bit AWQ models using QLoRA
|
||||
│ └── aqlm.sh: Fine-tune 2-bit AQLM models using QLoRA
|
||||
├── lora_multi_gpu/
|
||||
│ ├── single_node.sh: Fine-tune model with Accelerate on single node using LoRA
|
||||
│ ├── multi_node.sh: Fine-tune model with Accelerate on multiple nodes using LoRA
|
||||
│ └── ds_zero3.sh: Fine-tune model with DeepSpeed ZeRO-3 using LoRA (weight sharding)
|
||||
├── full_multi_gpu/
|
||||
│ ├── single_node.sh: Full fine-tune model with DeepSpeed on single node
|
||||
│ ├── multi_node.sh: Full fine-tune model with DeepSpeed on multiple nodes
|
||||
│ └── predict.sh: Do parallel batch predict and compute BLEU and ROUGE scores after full tuning
|
||||
├── merge_lora/
|
||||
│ ├── merge.sh: Merge LoRA weights into the pre-trained models
|
||||
│ └── quantize.sh: Quantize the fine-tuned model with AutoGPTQ
|
||||
├── inference/
|
||||
│ ├── cli_demo.sh: Chat with fine-tuned model in the CLI with LoRA adapters
|
||||
│ ├── api_demo.sh: Chat with fine-tuned model in an OpenAI-style API with LoRA adapters
|
||||
│ ├── web_demo.sh: Chat with fine-tuned model in the Web browser with LoRA adapters
|
||||
│ └── evaluate.sh: Evaluate model on the MMLU/CMMLU/C-Eval benchmarks with LoRA adapters
|
||||
└── extras/
|
||||
├── galore/
|
||||
│ └── sft.sh: Fine-tune model with GaLore
|
||||
├── badam/
|
||||
│ └── sft.sh: Fine-tune model with BAdam
|
||||
├── loraplus/
|
||||
│ └── sft.sh: Fine-tune model using LoRA+
|
||||
├── mod/
|
||||
│ └── sft.sh: Fine-tune model using Mixture-of-Depths
|
||||
├── llama_pro/
|
||||
│ ├── expand.sh: Expand layers in the model
|
||||
│ └── sft.sh: Fine-tune the expanded model
|
||||
└── fsdp_qlora/
|
||||
└── sft.sh: Fine-tune quantized model with FSDP+QLoRA
|
||||
|
||||
Advanced usage:
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0,1 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml \
|
||||
learning_rate=1e-5 \
|
||||
logging_steps=1
|
||||
```
|
||||
|
||||
```bash
|
||||
bash examples/train_lora/llama3_lora_sft.sh
|
||||
```
|
||||
|
||||
## Examples
|
||||
|
||||
### LoRA Fine-Tuning
|
||||
|
||||
#### (Continuous) Pre-Training
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
|
||||
```
|
||||
|
||||
#### Supervised Fine-Tuning
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
|
||||
```
|
||||
|
||||
#### Multimodal Supervised Fine-Tuning
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_lora/qwen2_5vl_lora_sft.yaml
|
||||
```
|
||||
|
||||
#### DPO/ORPO/SimPO Training
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_lora/llama3_lora_dpo.yaml
|
||||
```
|
||||
|
||||
#### Multimodal DPO/ORPO/SimPO Training
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_lora/qwen2_5vl_lora_dpo.yaml
|
||||
```
|
||||
|
||||
#### Reward Modeling
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_lora/llama3_lora_reward.yaml
|
||||
```
|
||||
|
||||
#### PPO Training
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_lora/llama3_lora_ppo.yaml
|
||||
```
|
||||
|
||||
#### KTO Training
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_lora/llama3_lora_kto.yaml
|
||||
```
|
||||
|
||||
#### Preprocess Dataset
|
||||
|
||||
It is useful for large dataset, use `tokenized_path` in config to load the preprocessed dataset.
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
|
||||
```
|
||||
|
||||
#### Evaluating on MMLU/CMMLU/C-Eval Benchmarks
|
||||
|
||||
```bash
|
||||
llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml
|
||||
```
|
||||
|
||||
#### Supervised Fine-Tuning on Multiple Nodes
|
||||
|
||||
```bash
|
||||
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
|
||||
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
|
||||
```
|
||||
|
||||
#### Supervised Fine-Tuning with DeepSpeed ZeRO-3 (Weight Sharding)
|
||||
|
||||
```bash
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml
|
||||
```
|
||||
|
||||
#### Supervised Fine-Tuning with Ray on 4 GPUs
|
||||
|
||||
```bash
|
||||
USE_RAY=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ray.yaml
|
||||
```
|
||||
|
||||
### QLoRA Fine-Tuning
|
||||
|
||||
#### Supervised Fine-Tuning with 4/8-bit Bitsandbytes/HQQ/EETQ Quantization (Recommended)
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_qlora/llama3_lora_sft_otfq.yaml
|
||||
```
|
||||
|
||||
#### Supervised Fine-Tuning with 4-bit Bitsandbytes Quantization on Ascend NPU
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_qlora/llama3_lora_sft_bnb_npu.yaml
|
||||
```
|
||||
|
||||
#### Supervised Fine-Tuning with 4/8-bit GPTQ Quantization
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_qlora/llama3_lora_sft_gptq.yaml
|
||||
```
|
||||
|
||||
#### Supervised Fine-Tuning with 4-bit AWQ Quantization
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_qlora/llama3_lora_sft_awq.yaml
|
||||
```
|
||||
|
||||
#### Supervised Fine-Tuning with 2-bit AQLM Quantization
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml
|
||||
```
|
||||
|
||||
### Full-Parameter Fine-Tuning
|
||||
|
||||
#### Supervised Fine-Tuning on Single Node
|
||||
|
||||
```bash
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
|
||||
```
|
||||
|
||||
#### Supervised Fine-Tuning on Multiple Nodes
|
||||
|
||||
```bash
|
||||
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
|
||||
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
|
||||
```
|
||||
|
||||
### Elastic and Fault-Tolerant Supervised Fine-Tuning on Multiple Nodes
|
||||
|
||||
To launch an elastic job with `MAX_RESTARTS` failures retries, run the following on at least `MIN_NNODES` nodes and at most `MAX_NNODES` nodes. `RDZV_ID` should be set as a unique job id (shared by all nodes participating in the job). See also [torchrun](https://docs.pytorch.org/docs/stable/elastic/run.html).
|
||||
|
||||
```bash
|
||||
FORCE_TORCHRUN=1 MIN_NNODES=1 MAX_NNODES=3 MAX_RESTARTS=3 RDZV_ID=llamafactory MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
|
||||
```
|
||||
|
||||
#### Multimodal Supervised Fine-Tuning
|
||||
|
||||
```bash
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/qwen2_5vl_full_sft.yaml
|
||||
```
|
||||
|
||||
### Merging LoRA Adapters and Quantization
|
||||
|
||||
#### Merge LoRA Adapters
|
||||
|
||||
Note: DO NOT use quantized model or `quantization_bit` when merging LoRA adapters.
|
||||
|
||||
```bash
|
||||
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
|
||||
```
|
||||
|
||||
#### Quantizing Model using AutoGPTQ
|
||||
|
||||
```bash
|
||||
llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
|
||||
```
|
||||
|
||||
### Save Ollama modelfile
|
||||
|
||||
```bash
|
||||
llamafactory-cli export examples/merge_lora/llama3_full_sft.yaml
|
||||
```
|
||||
|
||||
### Inferring LoRA Fine-Tuned Models
|
||||
|
||||
#### Evaluation using vLLM's Multi-GPU Inference
|
||||
|
||||
```
|
||||
python scripts/vllm_infer.py --model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct --template llama3 --dataset alpaca_en_demo
|
||||
python scripts/eval_bleu_rouge.py generated_predictions.jsonl
|
||||
```
|
||||
|
||||
#### Use CLI ChatBox
|
||||
|
||||
```bash
|
||||
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
|
||||
```
|
||||
|
||||
#### Use Web UI ChatBox
|
||||
|
||||
```bash
|
||||
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
|
||||
```
|
||||
|
||||
#### Launch OpenAI-style API
|
||||
|
||||
```bash
|
||||
llamafactory-cli api examples/inference/llama3_lora_sft.yaml
|
||||
```
|
||||
|
||||
### Extras
|
||||
|
||||
#### Full-Parameter Fine-Tuning using GaLore
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
|
||||
```
|
||||
|
||||
#### Full-Parameter Fine-Tuning using APOLLO
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/extras/apollo/llama3_full_sft.yaml
|
||||
```
|
||||
|
||||
#### Full-Parameter Fine-Tuning using BAdam
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
|
||||
```
|
||||
|
||||
#### Full-Parameter Fine-Tuning using Adam-mini
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/extras/adam_mini/qwen2_full_sft.yaml
|
||||
```
|
||||
|
||||
#### Full-Parameter Fine-Tuning using Muon
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/extras/muon/qwen2_full_sft.yaml
|
||||
```
|
||||
|
||||
#### LoRA+ Fine-Tuning
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
|
||||
```
|
||||
|
||||
#### PiSSA Fine-Tuning
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/extras/pissa/llama3_lora_sft.yaml
|
||||
```
|
||||
|
||||
#### Mixture-of-Depths Fine-Tuning
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
|
||||
```
|
||||
|
||||
#### LLaMA-Pro Fine-Tuning
|
||||
|
||||
```bash
|
||||
bash examples/extras/llama_pro/expand.sh
|
||||
llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
|
||||
```
|
||||
|
||||
#### FSDP+QLoRA Fine-Tuning
|
||||
|
||||
```bash
|
||||
bash examples/extras/fsdp_qlora/train.sh
|
||||
```
|
||||
|
@ -1,50 +1,292 @@
|
||||
我们提供了多样化的大模型微调示例脚本。
|
||||
|
||||
请确保在 `LLaMA-Factory` 目录下执行下述命令。
|
||||
|
||||
## 目录
|
||||
|
||||
- [LoRA 微调](#lora-微调)
|
||||
- [QLoRA 微调](#qlora-微调)
|
||||
- [全参数微调](#全参数微调)
|
||||
- [合并 LoRA 适配器与模型量化](#合并-lora-适配器与模型量化)
|
||||
- [推理 LoRA 模型](#推理-lora-模型)
|
||||
- [杂项](#杂项)
|
||||
|
||||
使用 `CUDA_VISIBLE_DEVICES`(GPU)或 `ASCEND_RT_VISIBLE_DEVICES`(NPU)选择计算设备。
|
||||
|
||||
LLaMA-Factory 默认使用所有可见的计算设备。
|
||||
|
||||
基础用法:
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
|
||||
```
|
||||
examples/
|
||||
├── lora_single_gpu/
|
||||
│ ├── pretrain.sh: 基于 LoRA 进行增量预训练
|
||||
│ ├── sft.sh: 基于 LoRA 进行指令监督微调
|
||||
│ ├── reward.sh: 基于 LoRA 进行奖励模型训练
|
||||
│ ├── ppo.sh: 基于 LoRA 进行 PPO 训练
|
||||
│ ├── dpo.sh: 基于 LoRA 进行 DPO 训练
|
||||
│ ├── orpo.sh: 基于 LoRA 进行 ORPO 训练
|
||||
│ ├── sft_mllm.sh: 基于 LoRA 进行多模态指令监督微调
|
||||
│ ├── prepare.sh: 保存预处理后的数据集
|
||||
│ └── predict.sh: 基于 LoRA 进行批量预测并计算 BLEU 和 ROUGE 分数
|
||||
├── qlora_single_gpu/
|
||||
│ ├── bitsandbytes.sh: 基于 QLoRA 微调 4/8 比特 BNB 模型
|
||||
│ ├── gptq.sh: 基于 QLoRA 微调 4/8 比特 GPTQ 模型
|
||||
│ ├── awq.sh: 基于 QLoRA 微调 4 比特 AWQ 模型
|
||||
│ └── aqlm.sh: 基于 QLoRA 微调 2 比特 AQLM 模型
|
||||
├── lora_multi_gpu/
|
||||
│ ├── single_node.sh: 使用 Accelerate 进行单节点 LoRA 训练
|
||||
│ ├── multi_node.sh: 使用 Accelerate 进行多节点 LoRA 训练
|
||||
│ └── ds_zero3.sh: 使用 DeepSpeed ZeRO-3 进行 LoRA 训练(拆分权重)
|
||||
├── full_multi_gpu/
|
||||
│ ├── single_node.sh: 使用 DeepSpeed 进行单节点全量训练
|
||||
│ ├── multi_node.sh: 使用 DeepSpeed 进行多节点全量训练
|
||||
│ └── predict.sh: 基于全量训练进行多卡批量预测并计算 BLEU 和 ROUGE 分数
|
||||
├── merge_lora/
|
||||
│ ├── merge.sh: 将 LoRA 权重合并到预训练模型中
|
||||
│ └── quantize.sh: 使用 AutoGPTQ 量化微调后的模型
|
||||
├── inference/
|
||||
│ ├── cli_demo.sh: 启动 LoRA 模型的命令行推理接口
|
||||
│ ├── api_demo.sh: 启动 LoRA 模型的 OpenAI 风格 API
|
||||
│ ├── web_demo.sh: 启动 LoRA 模型的浏览器推理接口
|
||||
│ └── evaluate.sh: 在 MMLU/CMMLU/C-Eval 数据集上评测 LoRA 模型
|
||||
└── extras/
|
||||
├── galore/
|
||||
│ └── sft.sh: 使用 GaLore 训练模型
|
||||
├── badam/
|
||||
│ └── sft.sh: 使用 BAdam 训练模型
|
||||
├── loraplus/
|
||||
│ └── sft.sh: 使用 LoRA+ 训练模型
|
||||
├── mod/
|
||||
│ └── sft.sh: 使用深度混合训练模型
|
||||
├── llama_pro/
|
||||
│ ├── expand.sh: 扩展模型中的层
|
||||
│ └── sft.sh: 训练扩展后的模型
|
||||
└── fsdp_qlora/
|
||||
└── sft.sh: 使用 FSDP+QLoRA 微调量化模型
|
||||
|
||||
高级用法:
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0,1 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml \
|
||||
learning_rate=1e-5 \
|
||||
logging_steps=1
|
||||
```
|
||||
|
||||
```bash
|
||||
bash examples/train_lora/llama3_lora_sft.sh
|
||||
```
|
||||
|
||||
## 示例
|
||||
|
||||
### LoRA 微调
|
||||
|
||||
#### (增量)预训练
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
|
||||
```
|
||||
|
||||
#### 指令监督微调
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
|
||||
```
|
||||
|
||||
#### 多模态指令监督微调
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_lora/qwen2_5vl_lora_sft.yaml
|
||||
```
|
||||
|
||||
#### DPO/ORPO/SimPO 训练
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_lora/llama3_lora_dpo.yaml
|
||||
```
|
||||
|
||||
#### 多模态 DPO/ORPO/SimPO 训练
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_lora/qwen2_5vl_lora_dpo.yaml
|
||||
```
|
||||
|
||||
#### 奖励模型训练
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_lora/llama3_lora_reward.yaml
|
||||
```
|
||||
|
||||
#### PPO 训练
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_lora/llama3_lora_ppo.yaml
|
||||
```
|
||||
|
||||
#### KTO 训练
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_lora/llama3_lora_kto.yaml
|
||||
```
|
||||
|
||||
#### 预处理数据集
|
||||
|
||||
对于大数据集有帮助,在配置中使用 `tokenized_path` 以加载预处理后的数据集。
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
|
||||
```
|
||||
|
||||
#### 在 MMLU/CMMLU/C-Eval 上评估
|
||||
|
||||
```bash
|
||||
llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml
|
||||
```
|
||||
|
||||
#### 多机指令监督微调
|
||||
|
||||
```bash
|
||||
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
|
||||
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
|
||||
```
|
||||
|
||||
### 支持弹性和容错的多机指令监督微调
|
||||
|
||||
要启动一个支持弹性节点和容错的多机指令微调,在每个节点上执行以下命令。弹性节点数量范围为 `MIN_NNODES:MAX_NNODES`,每个节点最多允许因为错误重启 `MAX_RESTARTS` 次。`RDZV_ID` 应设置为一个唯一的作业 ID(由参与该作业的所有节点共享)。更多新可以参考官方文档 [torchrun](https://docs.pytorch.org/docs/stable/elastic/run.html)。
|
||||
|
||||
```bash
|
||||
FORCE_TORCHRUN=1 MIN_NNODES=1 MAX_NNODES=3 MAX_RESTARTS=3 RDZV_ID=llamafactory MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
|
||||
```
|
||||
|
||||
#### 使用 DeepSpeed ZeRO-3 平均分配显存
|
||||
|
||||
```bash
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml
|
||||
```
|
||||
|
||||
#### 使用 Ray 在 4 张 GPU 上微调
|
||||
|
||||
```bash
|
||||
USE_RAY=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ray.yaml
|
||||
```
|
||||
|
||||
### QLoRA 微调
|
||||
|
||||
#### 基于 4/8 比特 Bitsandbytes/HQQ/EETQ 量化进行指令监督微调(推荐)
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_qlora/llama3_lora_sft_otfq.yaml
|
||||
```
|
||||
|
||||
#### 在 NPU 上基于 4 比特 Bitsandbytes 量化进行指令监督微调
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_qlora/llama3_lora_sft_bnb_npu.yaml
|
||||
```
|
||||
|
||||
#### 基于 4/8 比特 GPTQ 量化进行指令监督微调
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_qlora/llama3_lora_sft_gptq.yaml
|
||||
```
|
||||
|
||||
#### 基于 4 比特 AWQ 量化进行指令监督微调
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_qlora/llama3_lora_sft_awq.yaml
|
||||
```
|
||||
|
||||
#### 基于 2 比特 AQLM 量化进行指令监督微调
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml
|
||||
```
|
||||
|
||||
### 全参数微调
|
||||
|
||||
#### 在单机上进行指令监督微调
|
||||
|
||||
```bash
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
|
||||
```
|
||||
|
||||
#### 在多机上进行指令监督微调
|
||||
|
||||
```bash
|
||||
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
|
||||
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
|
||||
```
|
||||
|
||||
#### 多模态指令监督微调
|
||||
|
||||
```bash
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/qwen2_5vl_full_sft.yaml
|
||||
```
|
||||
|
||||
### 合并 LoRA 适配器与模型量化
|
||||
|
||||
#### 合并 LoRA 适配器
|
||||
|
||||
注:请勿使用量化后的模型或 `quantization_bit` 参数来合并 LoRA 适配器。
|
||||
|
||||
```bash
|
||||
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
|
||||
```
|
||||
|
||||
#### 使用 AutoGPTQ 量化模型
|
||||
|
||||
```bash
|
||||
llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
|
||||
```
|
||||
|
||||
### 保存 Ollama 配置文件
|
||||
|
||||
```bash
|
||||
llamafactory-cli export examples/merge_lora/llama3_full_sft.yaml
|
||||
```
|
||||
|
||||
### 推理 LoRA 模型
|
||||
|
||||
#### 使用 vLLM 多卡推理评估
|
||||
|
||||
```
|
||||
python scripts/vllm_infer.py --model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct --template llama3 --dataset alpaca_en_demo
|
||||
python scripts/eval_bleu_rouge.py generated_predictions.jsonl
|
||||
```
|
||||
|
||||
#### 使用命令行对话框
|
||||
|
||||
```bash
|
||||
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
|
||||
```
|
||||
|
||||
#### 使用浏览器对话框
|
||||
|
||||
```bash
|
||||
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
|
||||
```
|
||||
|
||||
#### 启动 OpenAI 风格 API
|
||||
|
||||
```bash
|
||||
llamafactory-cli api examples/inference/llama3_lora_sft.yaml
|
||||
```
|
||||
|
||||
### 杂项
|
||||
|
||||
#### 使用 GaLore 进行全参数训练
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
|
||||
```
|
||||
|
||||
#### 使用 APOLLO 进行全参数训练
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/extras/apollo/llama3_full_sft.yaml
|
||||
```
|
||||
|
||||
#### 使用 BAdam 进行全参数训练
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
|
||||
```
|
||||
|
||||
#### 使用 Adam-mini 进行全参数训练
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/extras/adam_mini/qwen2_full_sft.yaml
|
||||
```
|
||||
|
||||
#### 使用 Muon 进行全参数训练
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/extras/muon/qwen2_full_sft.yaml
|
||||
```
|
||||
|
||||
#### LoRA+ 微调
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
|
||||
```
|
||||
|
||||
#### PiSSA 微调
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/extras/pissa/llama3_lora_sft.yaml
|
||||
```
|
||||
|
||||
#### 深度混合微调
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
|
||||
```
|
||||
|
||||
#### LLaMA-Pro 微调
|
||||
|
||||
```bash
|
||||
bash examples/extras/llama_pro/expand.sh
|
||||
llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
|
||||
```
|
||||
|
||||
#### FSDP+QLoRA 微调
|
||||
|
||||
```bash
|
||||
bash examples/extras/fsdp_qlora/train.sh
|
||||
```
|
||||
|
@ -5,18 +5,18 @@ downcast_bf16: 'no'
|
||||
fsdp_config:
|
||||
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
|
||||
fsdp_backward_prefetch: BACKWARD_PRE
|
||||
fsdp_cpu_ram_efficient_loading: true
|
||||
fsdp_forward_prefetch: false
|
||||
fsdp_offload_params: true
|
||||
fsdp_cpu_ram_efficient_loading: true
|
||||
fsdp_offload_params: false
|
||||
fsdp_sharding_strategy: FULL_SHARD
|
||||
fsdp_state_dict_type: FULL_STATE_DICT
|
||||
fsdp_sync_module_states: true
|
||||
fsdp_use_orig_params: false
|
||||
fsdp_use_orig_params: true
|
||||
machine_rank: 0
|
||||
main_training_function: main
|
||||
mixed_precision: fp16
|
||||
num_machines: 1 # the number of nodes
|
||||
num_processes: 2 # the number of GPUs in all nodes
|
||||
mixed_precision: bf16 # or fp16
|
||||
num_machines: 1 # the number of nodes
|
||||
num_processes: 2 # the number of GPUs in all nodes
|
||||
rdzv_backend: static
|
||||
same_network: true
|
||||
tpu_env: []
|
||||
|
25
examples/accelerate/fsdp_config_offload.yaml
Normal file
25
examples/accelerate/fsdp_config_offload.yaml
Normal file
@ -0,0 +1,25 @@
|
||||
compute_environment: LOCAL_MACHINE
|
||||
debug: false
|
||||
distributed_type: FSDP
|
||||
downcast_bf16: 'no'
|
||||
fsdp_config:
|
||||
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
|
||||
fsdp_backward_prefetch: BACKWARD_PRE
|
||||
fsdp_forward_prefetch: false
|
||||
fsdp_cpu_ram_efficient_loading: true
|
||||
fsdp_offload_params: true # offload may affect training speed
|
||||
fsdp_sharding_strategy: FULL_SHARD
|
||||
fsdp_state_dict_type: FULL_STATE_DICT
|
||||
fsdp_sync_module_states: true
|
||||
fsdp_use_orig_params: true
|
||||
machine_rank: 0
|
||||
main_training_function: main
|
||||
mixed_precision: bf16 # or fp16
|
||||
num_machines: 1 # the number of nodes
|
||||
num_processes: 2 # the number of GPUs in all nodes
|
||||
rdzv_backend: static
|
||||
same_network: true
|
||||
tpu_env: []
|
||||
tpu_use_cluster: false
|
||||
tpu_use_sudo: false
|
||||
use_cpu: false
|
@ -1,18 +0,0 @@
|
||||
compute_environment: LOCAL_MACHINE
|
||||
debug: false
|
||||
distributed_type: MULTI_GPU
|
||||
downcast_bf16: 'no'
|
||||
gpu_ids: all
|
||||
machine_rank: 0
|
||||
main_process_ip: 192.168.0.1
|
||||
main_process_port: 29555
|
||||
main_training_function: main
|
||||
mixed_precision: fp16
|
||||
num_machines: 2 # the number of nodes
|
||||
num_processes: 8 # the number of GPUs in all nodes
|
||||
rdzv_backend: static
|
||||
same_network: true
|
||||
tpu_env: []
|
||||
tpu_use_cluster: false
|
||||
tpu_use_sudo: false
|
||||
use_cpu: false
|
@ -1,16 +0,0 @@
|
||||
compute_environment: LOCAL_MACHINE
|
||||
debug: false
|
||||
distributed_type: MULTI_GPU
|
||||
downcast_bf16: 'no'
|
||||
gpu_ids: all
|
||||
machine_rank: 0
|
||||
main_training_function: main
|
||||
mixed_precision: fp16
|
||||
num_machines: 1 # the number of nodes
|
||||
num_processes: 4 # the number of GPUs in all nodes
|
||||
rdzv_backend: static
|
||||
same_network: true
|
||||
tpu_env: []
|
||||
tpu_use_cluster: false
|
||||
tpu_use_sudo: false
|
||||
use_cpu: false
|
@ -1,18 +0,0 @@
|
||||
compute_environment: LOCAL_MACHINE
|
||||
debug: false
|
||||
distributed_type: MULTI_GPU
|
||||
downcast_bf16: 'no'
|
||||
gpu_ids: all
|
||||
machine_rank: 1
|
||||
main_process_ip: 192.168.0.1
|
||||
main_process_port: 29555
|
||||
main_training_function: main
|
||||
mixed_precision: fp16
|
||||
num_machines: 2 # the number of nodes
|
||||
num_processes: 8 # the number of GPUs in all nodes
|
||||
rdzv_backend: static
|
||||
same_network: true
|
||||
tpu_env: []
|
||||
tpu_use_cluster: false
|
||||
tpu_use_sudo: false
|
||||
use_cpu: false
|
28
examples/deepspeed/ds_z0_config.json
Normal file
28
examples/deepspeed/ds_z0_config.json
Normal file
@ -0,0 +1,28 @@
|
||||
{
|
||||
"train_batch_size": "auto",
|
||||
"train_micro_batch_size_per_gpu": "auto",
|
||||
"gradient_accumulation_steps": "auto",
|
||||
"gradient_clipping": "auto",
|
||||
"zero_allow_untested_optimizer": true,
|
||||
"fp16": {
|
||||
"enabled": "auto",
|
||||
"loss_scale": 0,
|
||||
"loss_scale_window": 1000,
|
||||
"initial_scale_power": 16,
|
||||
"hysteresis": 2,
|
||||
"min_loss_scale": 1
|
||||
},
|
||||
"bf16": {
|
||||
"enabled": "auto"
|
||||
},
|
||||
"zero_optimization": {
|
||||
"stage": 0,
|
||||
"allgather_partitions": true,
|
||||
"allgather_bucket_size": 5e8,
|
||||
"overlap_comm": false,
|
||||
"reduce_scatter": true,
|
||||
"reduce_bucket_size": 5e8,
|
||||
"contiguous_gradients": true,
|
||||
"round_robin_gradients": true
|
||||
}
|
||||
}
|
@ -19,10 +19,10 @@
|
||||
"stage": 2,
|
||||
"allgather_partitions": true,
|
||||
"allgather_bucket_size": 5e8,
|
||||
"overlap_comm": true,
|
||||
"overlap_comm": false,
|
||||
"reduce_scatter": true,
|
||||
"reduce_bucket_size": 5e8,
|
||||
"contiguous_gradients": true,
|
||||
"round_robin_gradients": true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -23,10 +23,10 @@
|
||||
},
|
||||
"allgather_partitions": true,
|
||||
"allgather_bucket_size": 5e8,
|
||||
"overlap_comm": true,
|
||||
"overlap_comm": false,
|
||||
"reduce_scatter": true,
|
||||
"reduce_bucket_size": 5e8,
|
||||
"contiguous_gradients": true,
|
||||
"round_robin_gradients": true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -17,7 +17,7 @@
|
||||
},
|
||||
"zero_optimization": {
|
||||
"stage": 3,
|
||||
"overlap_comm": true,
|
||||
"overlap_comm": false,
|
||||
"contiguous_gradients": true,
|
||||
"sub_group_size": 1e9,
|
||||
"reduce_bucket_size": "auto",
|
||||
@ -27,4 +27,4 @@
|
||||
"stage3_max_reuse_distance": 1e9,
|
||||
"stage3_gather_16bit_weights_on_model_save": true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -25,7 +25,7 @@
|
||||
"device": "cpu",
|
||||
"pin_memory": true
|
||||
},
|
||||
"overlap_comm": true,
|
||||
"overlap_comm": false,
|
||||
"contiguous_gradients": true,
|
||||
"sub_group_size": 1e9,
|
||||
"reduce_bucket_size": "auto",
|
||||
@ -35,4 +35,4 @@
|
||||
"stage3_max_reuse_distance": 1e9,
|
||||
"stage3_gather_16bit_weights_on_model_save": true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
43
examples/extras/adam_mini/qwen2_full_sft.yaml
Normal file
43
examples/extras/adam_mini/qwen2_full_sft.yaml
Normal file
@ -0,0 +1,43 @@
|
||||
### model
|
||||
model_name_or_path: Qwen/Qwen2-1.5B-Instruct
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: full
|
||||
use_adam_mini: true
|
||||
|
||||
### dataset
|
||||
dataset: identity,alpaca_en_demo
|
||||
template: qwen
|
||||
cutoff_len: 2048
|
||||
max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
dataloader_num_workers: 4
|
||||
|
||||
### output
|
||||
output_dir: saves/qwen2-1_5b/full/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
save_only_model: false
|
||||
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-5
|
||||
num_train_epochs: 3.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
bf16: true
|
||||
ddp_timeout: 180000000
|
||||
|
||||
### eval
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
48
examples/extras/apollo/llama3_full_sft.yaml
Normal file
48
examples/extras/apollo/llama3_full_sft.yaml
Normal file
@ -0,0 +1,48 @@
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: full
|
||||
use_apollo: true
|
||||
apollo_layerwise: true # choices: [true, false], use false for DDP training
|
||||
apollo_target: all
|
||||
apollo_rank: 128
|
||||
apollo_scale: 32.0
|
||||
apollo_scale_type: channel
|
||||
|
||||
### dataset
|
||||
dataset: identity,alpaca_en_demo
|
||||
template: llama3
|
||||
cutoff_len: 2048
|
||||
max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
dataloader_num_workers: 4
|
||||
|
||||
### output
|
||||
output_dir: saves/llama3-8b/full/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
save_only_model: false
|
||||
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 1 # use 1 for layerwise apollo
|
||||
learning_rate: 1.0e-5
|
||||
num_train_epochs: 3.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
pure_bf16: true
|
||||
ddp_timeout: 180000000
|
||||
|
||||
### eval
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
46
examples/extras/badam/llama3_full_sft.yaml
Normal file
46
examples/extras/badam/llama3_full_sft.yaml
Normal file
@ -0,0 +1,46 @@
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: full
|
||||
use_badam: true
|
||||
badam_mode: layer
|
||||
badam_switch_mode: ascending
|
||||
badam_switch_interval: 50
|
||||
badam_verbose: 2
|
||||
# deepspeed: examples/deepspeed/ds_z3_config.json
|
||||
|
||||
### dataset
|
||||
dataset: identity,alpaca_en_demo
|
||||
template: llama3
|
||||
cutoff_len: 2048
|
||||
max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
dataloader_num_workers: 4
|
||||
|
||||
### output
|
||||
output_dir: saves/llama3-8b/full/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
save_only_model: false
|
||||
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-5
|
||||
num_train_epochs: 3.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
|
||||
### eval
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
x
Reference in New Issue
Block a user