[webui] support other hub (#8567)

This commit is contained in:
Yaowei Zheng 2025-07-07 22:18:48 +08:00 committed by GitHub
parent 5817583630
commit 043103e1c9
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 125 additions and 22 deletions

View File

@ -18,7 +18,7 @@ scipy
# model and tokenizer
sentencepiece
tiktoken
modelscope>=1.23
modelscope>=1.14.0
hf-transfer
# python
fire

View File

@ -91,7 +91,7 @@ def _load_single_dataset(
raise NotImplementedError(f"Unknown load type: {dataset_attr.load_from}.")
if dataset_attr.load_from == "ms_hub":
check_version("modelscope>=1.11.0", mandatory=True)
check_version("modelscope>=1.14.0", mandatory=True)
from modelscope import MsDataset # type: ignore
from modelscope.utils.config_ds import MS_DATASETS_CACHE # type: ignore

View File

@ -268,8 +268,13 @@ def try_download_model_from_other_hub(model_args: "ModelArguments") -> str:
return model_args.model_name_or_path
if use_modelscope():
check_version("modelscope>=1.11.0", mandatory=True)
check_version("modelscope>=1.14.0", mandatory=True)
from modelscope import snapshot_download # type: ignore
from modelscope.hub.api import HubApi # type: ignore
if model_args.ms_hub_token:
api = HubApi()
api.login(model_args.ms_hub_token)
revision = "master" if model_args.model_revision == "main" else model_args.model_revision
return snapshot_download(
@ -314,5 +319,5 @@ def fix_proxy(ipv6_enabled: bool = False) -> None:
r"""Fix proxy settings for gradio ui."""
os.environ["no_proxy"] = "localhost,127.0.0.1,0.0.0.0"
if ipv6_enabled:
for name in ("http_proxy", "https_proxy", "HTTP_PROXY", "HTTPS_PROXY"):
os.environ.pop(name, None)
os.environ.pop("http_proxy", None)
os.environ.pop("HTTP_PROXY", None)

View File

@ -77,14 +77,19 @@ def load_config() -> dict[str, Union[str, dict[str, Any]]]:
with open(_get_config_path(), encoding="utf-8") as f:
return safe_load(f)
except Exception:
return {"lang": None, "last_model": None, "path_dict": {}, "cache_dir": None}
return {"lang": None, "hub_name": None, "last_model": None, "path_dict": {}, "cache_dir": None}
def save_config(lang: str, model_name: Optional[str] = None, model_path: Optional[str] = None) -> None:
def save_config(
lang: str, hub_name: Optional[str] = None, model_name: Optional[str] = None, model_path: Optional[str] = None
) -> None:
r"""Save user config."""
os.makedirs(DEFAULT_CACHE_DIR, exist_ok=True)
user_config = load_config()
user_config["lang"] = lang or user_config["lang"]
if hub_name:
user_config["hub_name"] = hub_name
if model_name:
user_config["last_model"] = model_name
@ -247,7 +252,7 @@ def create_ds_config() -> None:
"stage": 2,
"allgather_partitions": True,
"allgather_bucket_size": 5e8,
"overlap_comm": True,
"overlap_comm": False,
"reduce_scatter": True,
"reduce_bucket_size": 5e8,
"contiguous_gradients": True,
@ -262,7 +267,7 @@ def create_ds_config() -> None:
ds_config["zero_optimization"] = {
"stage": 3,
"overlap_comm": True,
"overlap_comm": False,
"contiguous_gradients": True,
"sub_group_size": 1e9,
"reduce_bucket_size": "auto",

View File

@ -16,9 +16,10 @@ from typing import TYPE_CHECKING
from ...data import TEMPLATES
from ...extras.constants import METHODS, SUPPORTED_MODELS
from ...extras.misc import use_modelscope, use_openmind
from ...extras.packages import is_gradio_available
from ..common import save_config
from ..control import can_quantize, can_quantize_to, check_template, get_model_info, list_checkpoints
from ..control import can_quantize, can_quantize_to, check_template, get_model_info, list_checkpoints, switch_hub
if is_gradio_available():
@ -33,8 +34,10 @@ def create_top() -> dict[str, "Component"]:
with gr.Row():
lang = gr.Dropdown(choices=["en", "ru", "zh", "ko", "ja"], value=None, scale=1)
available_models = list(SUPPORTED_MODELS.keys()) + ["Custom"]
model_name = gr.Dropdown(choices=available_models, value=None, scale=3)
model_path = gr.Textbox(scale=3)
model_name = gr.Dropdown(choices=available_models, value=None, scale=2)
model_path = gr.Textbox(scale=2)
default_hub = "modelscope" if use_modelscope() else "openmind" if use_openmind() else "huggingface"
hub_name = gr.Dropdown(choices=["huggingface", "modelscope", "openmind"], value=default_hub, scale=2)
with gr.Row():
finetuning_type = gr.Dropdown(choices=METHODS, value="lora", scale=1)
@ -50,18 +53,25 @@ def create_top() -> dict[str, "Component"]:
model_name.change(get_model_info, [model_name], [model_path, template], queue=False).then(
list_checkpoints, [model_name, finetuning_type], [checkpoint_path], queue=False
).then(check_template, [lang, template])
model_name.input(save_config, inputs=[lang, model_name], queue=False)
model_path.input(save_config, inputs=[lang, model_name, model_path], queue=False)
model_name.input(save_config, inputs=[lang, hub_name, model_name], queue=False)
model_path.input(save_config, inputs=[lang, hub_name, model_name, model_path], queue=False)
finetuning_type.change(can_quantize, [finetuning_type], [quantization_bit], queue=False).then(
list_checkpoints, [model_name, finetuning_type], [checkpoint_path], queue=False
)
checkpoint_path.focus(list_checkpoints, [model_name, finetuning_type], [checkpoint_path], queue=False)
quantization_method.change(can_quantize_to, [quantization_method], [quantization_bit], queue=False)
hub_name.change(switch_hub, inputs=[hub_name], queue=False).then(
get_model_info, [model_name], [model_path, template], queue=False
).then(list_checkpoints, [model_name, finetuning_type], [checkpoint_path], queue=False).then(
check_template, [lang, template]
)
hub_name.input(save_config, inputs=[lang, hub_name], queue=False)
return dict(
lang=lang,
model_name=model_name,
model_path=model_path,
hub_name=hub_name,
finetuning_type=finetuning_type,
checkpoint_path=checkpoint_path,
quantization_bit=quantization_bit,

View File

@ -38,6 +38,15 @@ if is_gradio_available():
import gradio as gr
def switch_hub(hub_name: str) -> None:
r"""Switch model hub.
Inputs: top.hub_name
"""
os.environ["USE_MODELSCOPE_HUB"] = "1" if hub_name == "modelscope" else "0"
os.environ["USE_OPENMIND_HUB"] = "1" if hub_name == "openmind" else "0"
def can_quantize(finetuning_type: str) -> "gr.Dropdown":
r"""Judge if the quantization is available in this finetuning type.

View File

@ -49,8 +49,13 @@ class Engine:
def resume(self):
r"""Get the initial value of gradio components and restores training status if necessary."""
user_config = load_config() if not self.demo_mode else {} # do not use config in demo mode
lang = user_config.get("lang", None) or "en"
init_dict = {"top.lang": {"value": lang}, "infer.chat_box": {"visible": self.chatter.loaded}}
lang = user_config.get("lang") or "en"
hub_name = user_config.get("hub_name") or "huggingface"
init_dict = {
"top.lang": {"value": lang},
"top.hub_name": {"value": hub_name},
"infer.chat_box": {"visible": self.chatter.loaded},
}
if not self.pure_chat:
current_time = get_time()

View File

@ -39,15 +39,13 @@ def create_ui(demo_mode: bool = False) -> "gr.Blocks":
engine = Engine(demo_mode=demo_mode, pure_chat=False)
hostname = os.getenv("HOSTNAME", os.getenv("COMPUTERNAME", platform.node())).split(".")[0]
with gr.Blocks(title=f"LLaMA Board ({hostname})", css=CSS) as demo:
with gr.Blocks(title=f"LLaMA Factory ({hostname})", css=CSS) as demo:
title = gr.HTML()
subtitle = gr.HTML()
if demo_mode:
gr.HTML("<h1><center>LLaMA Board: A One-stop Web UI for Getting Started with LLaMA Factory</center></h1>")
gr.HTML(
'<h3><center>Visit <a href="https://github.com/hiyouga/LLaMA-Factory" target="_blank">'
"LLaMA Factory</a> for details.</center></h3>"
)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
engine.manager.add_elems("head", {"title": title, "subtitle": subtitle})
engine.manager.add_elems("top", create_top())
lang: gr.Dropdown = engine.manager.get_elem_by_id("top.lang")

View File

@ -13,6 +13,55 @@
# limitations under the License.
LOCALES = {
"title": {
"en": {
"value": "<h1><center>LLaMA Factory: Unified Efficient Fine-Tuning of 100+ LLMs</center></h1>",
},
"ru": {
"value": "<h1><center>LLaMA Factory: Унифицированная эффективная тонкая настройка 100+ LLMs</center></h1>",
},
"zh": {
"value": "<h1><center>LLaMA Factory: 一站式大模型高效微调平台</center></h1>",
},
"ko": {
"value": "<h1><center>LLaMA Factory: 100+ LLMs를 위한 통합 효율적인 튜닝</center></h1>",
},
"ja": {
"value": "<h1><center>LLaMA Factory: 100+ LLMs の統合効率的なチューニング</center></h1>",
},
},
"subtitle": {
"en": {
"value": (
"<h3><center>Visit <a href='https://github.com/hiyouga/LLaMA-Factory' target='_blank'>"
"GitHub Page</a></center></h3>"
),
},
"ru": {
"value": (
"<h3><center>Посетить <a href='https://github.com/hiyouga/LLaMA-Factory' target='_blank'>"
"страницу GitHub</a></center></h3>"
),
},
"zh": {
"value": (
"<h3><center>访问 <a href='https://github.com/hiyouga/LLaMA-Factory' target='_blank'>"
"GitHub 主页</a></center></h3>"
),
},
"ko": {
"value": (
"<h3><center><a href='https://github.com/hiyouga/LLaMA-Factory' target='_blank'>"
"GitHub 페이지</a>를 방문하세요.</center></h3>"
),
},
"ja": {
"value": (
"<h3><center><a href='https://github.com/hiyouga/LLaMA-Factory' target='_blank'>"
"GitHub ページ</a>にアクセスする</center></h3>"
),
},
},
"lang": {
"en": {
"label": "Language",
@ -74,6 +123,28 @@ LOCALES = {
"info": "事前学習済みモデルへのパス、または Hugging Face のモデル識別子。",
},
},
"hub_name": {
"en": {
"label": "Hub name",
"info": "Choose the model download source.",
},
"ru": {
"label": "Имя хаба",
"info": "Выберите источник загрузки модели.",
},
"zh": {
"label": "模型下载源",
"info": "选择模型下载源。(网络受限环境推荐使用 ModelScope",
},
"ko": {
"label": "모델 다운로드 소스",
"info": "모델 다운로드 소스를 선택하세요.",
},
"ja": {
"label": "モデルダウンロードソース",
"info": "モデルをダウンロードするためのソースを選択してください。",
},
},
"finetuning_type": {
"en": {
"label": "Finetuning method",