[inference] support sglang backend (#7278)

* Mimic SGLang offline Engine

* Add more tests and args

* Pass all current tests

* Clean Code

* fix sample_params

* clean code

* Fix Stream Chat

* change sglang from engine mode to server mode

* fix

* Fix Review Issues

* Use SGLang Built-In Utilities

* Fix test SGLang

* Some Doc Issue

* fix sglang engine

* add readme

---------

Co-authored-by: Jin Pan <jpan236@wisc.edu>
Co-authored-by: hiyouga <hiyouga@buaa.edu.cn>
This commit is contained in:
Qiaolin Yu 2025-03-14 16:37:58 -04:00 committed by GitHub
parent ef5f1c1def
commit 30038d9ce7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
15 changed files with 433 additions and 27 deletions

View File

@ -79,8 +79,8 @@ Choose your path:
- **Advanced algorithms**: [GaLore](https://github.com/jiaweizzhao/GaLore), [BAdam](https://github.com/Ledzy/BAdam), [APOLLO](https://github.com/zhuhanqing/APOLLO), [Adam-mini](https://github.com/zyushun/Adam-mini), DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ and PiSSA.
- **Practical tricks**: [FlashAttention-2](https://github.com/Dao-AILab/flash-attention), [Unsloth](https://github.com/unslothai/unsloth), [Liger Kernel](https://github.com/linkedin/Liger-Kernel), RoPE scaling, NEFTune and rsLoRA.
- **Wide tasks**: Multi-turn dialogue, tool using, image understanding, visual grounding, video recognition, audio understanding, etc.
- **Experiment monitors**: LlamaBoard, TensorBoard, Wandb, MLflow, SwanLab, etc.
- **Faster inference**: OpenAI-style API, Gradio UI and CLI with vLLM worker.
- **Experiment monitors**: LlamaBoard, TensorBoard, Wandb, MLflow, [SwanLab](https://github.com/SwanHubX/SwanLab), etc.
- **Faster inference**: OpenAI-style API, Gradio UI and CLI with [vLLM worker](https://github.com/vllm-project/vllm) or [SGLang worker](https://github.com/sgl-project/sglang).
### Day-N Support for Fine-Tuning Cutting-Edge Models
@ -106,6 +106,8 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
## Changelog
[25/03/15] We supported **[SGLang](https://github.com/sgl-project/sglang)** as inference backend. Try `infer_backend: sglang` to accelerate inference.
[25/03/12] We supported fine-tuning the **[Gemma-3](https://huggingface.co/blog/gemma3)** model.
[25/02/24] Announcing **[EasyR1](https://github.com/hiyouga/EasyR1)**, an efficient, scalable and multi-modality RL training framework for efficient GRPO training.
@ -437,7 +439,7 @@ cd LLaMA-Factory
pip install -e ".[torch,metrics]"
```
Extra dependencies available: torch, torch-npu, metrics, deepspeed, liger-kernel, bitsandbytes, hqq, eetq, gptq, awq, aqlm, vllm, galore, apollo, badam, adam-mini, qwen, minicpm_v, modelscope, openmind, swanlab, quality
Extra dependencies available: torch, torch-npu, metrics, deepspeed, liger-kernel, bitsandbytes, hqq, eetq, gptq, awq, aqlm, vllm, sglang, galore, apollo, badam, adam-mini, qwen, minicpm_v, modelscope, openmind, swanlab, quality
> [!TIP]
> Use `pip install --no-deps -e .` to resolve package conflicts.

View File

@ -81,8 +81,8 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
- **先进算法**[GaLore](https://github.com/jiaweizzhao/GaLore)、[BAdam](https://github.com/Ledzy/BAdam)、[APOLLO](https://github.com/zhuhanqing/APOLLO)、[Adam-mini](https://github.com/zyushun/Adam-mini)、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ 和 PiSSA。
- **实用技巧**[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)、[Unsloth](https://github.com/unslothai/unsloth)、[Liger Kernel](https://github.com/linkedin/Liger-Kernel)、RoPE scaling、NEFTune 和 rsLoRA。
- **广泛任务**:多轮对话、工具调用、图像理解、视觉定位、视频识别和语音理解等等。
- **实验监控**LlamaBoard、TensorBoard、Wandb、MLflow、SwanLab 等等。
- **极速推理**:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。
- **实验监控**LlamaBoard、TensorBoard、Wandb、MLflow、[SwanLab](https://github.com/SwanHubX/SwanLab) 等等。
- **极速推理**:基于 [vLLM](https://github.com/vllm-project/vllm) 或 [SGLang](https://github.com/sgl-project/sglang) 的 OpenAI 风格 API、浏览器界面和命令行接口。
### 最新模型的 Day-N 微调适配
@ -108,6 +108,8 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
## 更新日志
[25/03/15] 我们支持了 **[SGLang](https://github.com/sgl-project/sglang)** 推理后端,请使用 `infer_backend: sglang` 启用。
[25/03/12] 我们支持了 **[Gemma-3](https://huggingface.co/blog/gemma3)** 模型的微调。
[25/02/24] 我们宣布开源 **[EasyR1](https://github.com/hiyouga/EasyR1)**,一个高效可扩展的多模态强化学习框架,支持高效的 GRPO 训练。
@ -439,7 +441,7 @@ cd LLaMA-Factory
pip install -e ".[torch,metrics]"
```
可选的额外依赖项torch、torch-npu、metrics、deepspeed、liger-kernel、bitsandbytes、hqq、eetq、gptq、awq、aqlm、vllm、galore、apollo、badam、adam-mini、qwen、minicpm_v、modelscope、openmind、swanlab、quality
可选的额外依赖项torch、torch-npu、metrics、deepspeed、liger-kernel、bitsandbytes、hqq、eetq、gptq、awq、aqlm、vllm、sglang、galore、apollo、badam、adam-mini、qwen、minicpm_v、modelscope、openmind、swanlab、quality
> [!TIP]
> 遇到包冲突时,可使用 `pip install --no-deps -e .` 解决。

View File

@ -0,0 +1,4 @@
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
template: llama3
infer_backend: sglang
trust_remote_code: true

View File

@ -54,6 +54,7 @@ extra_require = {
"awq": ["autoawq"],
"aqlm": ["aqlm[gpu]>=1.1.0"],
"vllm": ["vllm>=0.4.3,<=0.7.3"],
"sglang": ["sglang>=0.4.4"],
"galore": ["galore-torch"],
"apollo": ["apollo-torch"],
"badam": ["badam>=1.2.1"],

View File

@ -25,6 +25,7 @@ from ..extras.constants import EngineName
from ..extras.misc import torch_gc
from ..hparams import get_infer_args
from .hf_engine import HuggingfaceEngine
from .sglang_engine import SGLangEngine
from .vllm_engine import VllmEngine
@ -52,6 +53,8 @@ class ChatModel:
self.engine: BaseEngine = HuggingfaceEngine(model_args, data_args, finetuning_args, generating_args)
elif model_args.infer_backend == EngineName.VLLM:
self.engine: BaseEngine = VllmEngine(model_args, data_args, finetuning_args, generating_args)
elif model_args.infer_backend == EngineName.SGLANG:
self.engine: BaseEngine = SGLangEngine(model_args, data_args, finetuning_args, generating_args)
else:
raise NotImplementedError(f"Unknown backend: {model_args.infer_backend}")

View File

@ -13,7 +13,6 @@
# limitations under the License.
import asyncio
import concurrent.futures
import os
from collections.abc import AsyncGenerator
from threading import Thread
@ -349,7 +348,6 @@ class HuggingfaceEngine(BaseEngine):
if not self.can_generate:
raise ValueError("The current model does not support `chat`.")
loop = asyncio.get_running_loop()
input_args = (
self.model,
self.tokenizer,
@ -365,8 +363,7 @@ class HuggingfaceEngine(BaseEngine):
input_kwargs,
)
async with self.semaphore:
with concurrent.futures.ThreadPoolExecutor() as pool:
return await loop.run_in_executor(pool, self._chat, *input_args)
return await asyncio.to_thread(self._chat, *input_args)
@override
async def stream_chat(
@ -382,7 +379,6 @@ class HuggingfaceEngine(BaseEngine):
if not self.can_generate:
raise ValueError("The current model does not support `stream_chat`.")
loop = asyncio.get_running_loop()
input_args = (
self.model,
self.tokenizer,
@ -398,13 +394,12 @@ class HuggingfaceEngine(BaseEngine):
input_kwargs,
)
async with self.semaphore:
with concurrent.futures.ThreadPoolExecutor() as pool:
stream = self._stream_chat(*input_args)
while True:
try:
yield await loop.run_in_executor(pool, stream)
except StopAsyncIteration:
break
stream = self._stream_chat(*input_args)
while True:
try:
yield await asyncio.to_thread(stream)
except StopAsyncIteration:
break
@override
async def get_scores(
@ -415,8 +410,6 @@ class HuggingfaceEngine(BaseEngine):
if self.can_generate:
raise ValueError("Cannot get scores using an auto-regressive model.")
loop = asyncio.get_running_loop()
input_args = (self.model, self.tokenizer, batch_input, input_kwargs)
async with self.semaphore:
with concurrent.futures.ThreadPoolExecutor() as pool:
return await loop.run_in_executor(pool, self._get_scores, *input_args)
return await asyncio.to_thread(self._get_scores, *input_args)

View File

@ -0,0 +1,282 @@
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import asyncio
import atexit
import json
from collections.abc import AsyncGenerator, AsyncIterator, Sequence
from typing import TYPE_CHECKING, Any, Optional, Union
import requests
from typing_extensions import override
from ..data import get_template_and_fix_tokenizer
from ..extras import logging
from ..extras.constants import AUDIO_PLACEHOLDER, IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER, EngineName
from ..extras.misc import get_device_count, torch_gc
from ..extras.packages import is_sglang_available
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
from ..model import load_config, load_tokenizer
from ..model.model_utils.quantization import QuantizationMethod
from .base_engine import BaseEngine, Response
if is_sglang_available():
from sglang.utils import launch_server_cmd, terminate_process, wait_for_server
if TYPE_CHECKING:
from ..data.mm_plugin import AudioInput, ImageInput, VideoInput
logger = logging.get_logger(__name__)
class SGLangEngine(BaseEngine):
"""Inference engine for SGLang models.
This class wraps the SGLang engine to provide a consistent interface for text generation
that matches LLaMA Factory's requirements. It uses the SGLang HTTP server approach for
better interaction and performance. The engine launches a server process and communicates
with it via HTTP requests.
For more details on the SGLang HTTP server approach, see:
https://docs.sglang.ai/backend/send_request.html
"""
def __init__(
self,
model_args: "ModelArguments",
data_args: "DataArguments",
finetuning_args: "FinetuningArguments",
generating_args: "GeneratingArguments",
) -> None:
self.name = EngineName.SGLANG
self.model_args = model_args
config = load_config(model_args) # may download model from ms hub
if getattr(config, "quantization_config", None): # gptq models should use float16
quantization_config: dict[str, Any] = getattr(config, "quantization_config", None)
quant_method = quantization_config.get("quant_method", "")
if quant_method == QuantizationMethod.GPTQ and model_args.infer_dtype == "auto":
model_args.infer_dtype = "float16"
self.can_generate = finetuning_args.stage == "sft"
tokenizer_module = load_tokenizer(model_args)
self.tokenizer = tokenizer_module["tokenizer"]
self.processor = tokenizer_module["processor"]
self.tokenizer.padding_side = "left"
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args)
self.template.mm_plugin.expand_mm_tokens = False # for sglang generate
self.generating_args = generating_args.to_dict()
launch_cmd = [
"python3 -m sglang.launch_server",
f"--model-path {model_args.model_name_or_path}",
f"--dtype {model_args.infer_dtype}",
f"--context-length {model_args.sglang_maxlen}",
f"--mem-fraction-static {model_args.sglang_mem_fraction}",
f"--tp-size {model_args.sglang_tp_size if model_args.sglang_tp_size != -1 else get_device_count() or 1}",
f"--download-dir {model_args.cache_dir}",
"--log-level error",
]
launch_cmd = " ".join(launch_cmd)
logger.info_rank0(f"Starting SGLang server with command: {launch_cmd}")
try:
torch_gc()
self.server_process, port = launch_server_cmd(launch_cmd)
self.base_url = f"http://localhost:{port}"
atexit.register(self._cleanup_server)
logger.info_rank0(f"Waiting for SGLang server to be ready at {self.base_url}")
wait_for_server(self.base_url, timeout=300)
logger.info_rank0(f"SGLang server initialized successfully at {self.base_url}")
try:
response = requests.get(f"{self.base_url}/get_model_info", timeout=5)
if response.status_code == 200:
model_info = response.json()
logger.info(f"SGLang server model info: {model_info}")
except Exception as e:
logger.debug(f"Note: could not get model info: {str(e)}")
except Exception as e:
logger.error(f"Failed to start SGLang server: {str(e)}")
self._cleanup_server() # make sure to clean up any started process
raise RuntimeError(f"SGLang server initialization failed: {str(e)}.")
def _cleanup_server(self):
r"""Clean up the server process when the engine is destroyed."""
if hasattr(self, "server_process") and self.server_process:
try:
logger.info("Terminating SGLang server process")
terminate_process(self.server_process)
logger.info("SGLang server process terminated")
except Exception as e:
logger.warning(f"Error terminating SGLang server: {str(e)}")
async def _generate(
self,
messages: list[dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
images: Optional[list["ImageInput"]] = None,
videos: Optional[list["VideoInput"]] = None,
audios: Optional[list["AudioInput"]] = None,
**input_kwargs,
) -> AsyncIterator[dict[str, Any]]:
mm_input_dict = {"images": [], "videos": [], "audios": [], "imglens": [0], "vidlens": [0], "audlens": [0]}
if images is not None:
mm_input_dict.update({"images": images, "imglens": [len(images)]})
if not any(IMAGE_PLACEHOLDER in message["content"] for message in messages):
messages[0]["content"] = IMAGE_PLACEHOLDER * len(images) + messages[0]["content"]
if videos is not None:
mm_input_dict.update({"videos": videos, "vidlens": [len(videos)]})
if not any(VIDEO_PLACEHOLDER in message["content"] for message in messages):
messages[0]["content"] = VIDEO_PLACEHOLDER * len(videos) + messages[0]["content"]
if audios is not None:
mm_input_dict.update({"audios": audios, "audlens": [len(audios)]})
if not any(AUDIO_PLACEHOLDER in message["content"] for message in messages):
messages[0]["content"] = AUDIO_PLACEHOLDER * len(audios) + messages[0]["content"]
messages = self.template.mm_plugin.process_messages(
messages, mm_input_dict["images"], mm_input_dict["videos"], mm_input_dict["audios"], self.processor
)
paired_messages = messages + [{"role": "assistant", "content": ""}]
system = system or self.generating_args["default_system"]
prompt_ids, _ = self.template.encode_oneturn(self.tokenizer, paired_messages, system, tools)
prompt_length = len(prompt_ids)
temperature: Optional[float] = input_kwargs.pop("temperature", None)
top_p: Optional[float] = input_kwargs.pop("top_p", None)
top_k: Optional[float] = input_kwargs.pop("top_k", None)
num_return_sequences: int = input_kwargs.pop("num_return_sequences", 1)
repetition_penalty: Optional[float] = input_kwargs.pop("repetition_penalty", None)
skip_special_tokens: Optional[bool] = input_kwargs.pop("skip_special_tokens", None)
max_length: Optional[int] = input_kwargs.pop("max_length", None)
max_new_tokens: Optional[int] = input_kwargs.pop("max_new_tokens", None)
stop: Optional[Union[str, list[str]]] = input_kwargs.pop("stop", None)
if num_return_sequences != 1:
raise NotImplementedError("SGLang only supports n=1.")
if "max_new_tokens" in self.generating_args:
max_tokens = self.generating_args["max_new_tokens"]
elif "max_length" in self.generating_args:
if self.generating_args["max_length"] > prompt_length:
max_tokens = self.generating_args["max_length"] - prompt_length
else:
max_tokens = 1
if max_length:
max_tokens = max_length - prompt_length if max_length > prompt_length else 1
if max_new_tokens:
max_tokens = max_new_tokens
sampling_params = {
"temperature": temperature if temperature is not None else self.generating_args["temperature"],
"top_p": (top_p if top_p is not None else self.generating_args["top_p"]) or 1.0, # top_p must > 0
"top_k": (top_k if top_k is not None else self.generating_args["top_k"]) or -1, # top_k must > 0
"stop": stop,
"stop_token_ids": self.template.get_stop_token_ids(self.tokenizer),
"max_new_tokens": max_tokens,
"repetition_penalty": (
repetition_penalty if repetition_penalty is not None else self.generating_args["repetition_penalty"]
)
or 1.0, # repetition_penalty must > 0
"skip_special_tokens": skip_special_tokens
if skip_special_tokens is not None
else self.generating_args["skip_special_tokens"],
}
def stream_request():
json_data = {
"input_ids": prompt_ids,
"sampling_params": sampling_params,
"stream": True,
}
response = requests.post(f"{self.base_url}/generate", json=json_data, stream=True)
if response.status_code != 200:
raise RuntimeError(f"SGLang server error: {response.status_code}, {response.text}")
for chunk in response.iter_lines(decode_unicode=False):
chunk = str(chunk.decode("utf-8"))
if chunk == "data: [DONE]":
break
if chunk and chunk.startswith("data:"):
yield json.loads(chunk[5:].strip("\n"))
return await asyncio.to_thread(stream_request)
@override
async def chat(
self,
messages: Sequence[dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
images: Optional[Sequence["ImageInput"]] = None,
videos: Optional[Sequence["VideoInput"]] = None,
audios: Optional[Sequence["AudioInput"]] = None,
**input_kwargs,
) -> list["Response"]:
final_output = None
generator = await self._generate(messages, system, tools, images, videos, audios, **input_kwargs)
for request_output in generator:
final_output = request_output
results = [
Response(
response_text=final_output["text"],
response_length=final_output["meta_info"]["completion_tokens"],
prompt_length=final_output["meta_info"]["prompt_tokens"],
finish_reason="stop" if final_output["meta_info"]["finish_reason"] == "stop" else "length",
)
]
return results
@override
async def stream_chat(
self,
messages: list[dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
images: Optional[list["ImageInput"]] = None,
videos: Optional[list["VideoInput"]] = None,
audios: Optional[list["AudioInput"]] = None,
**input_kwargs,
) -> AsyncGenerator[str, None]:
generated_text = ""
generator = await self._generate(messages, system, tools, images, videos, audios, **input_kwargs)
for result in generator:
delta_text = result["text"][len(generated_text) :]
generated_text = result["text"]
yield delta_text
@override
async def get_scores(
self,
batch_input: list[str],
**input_kwargs,
) -> list[float]:
raise NotImplementedError("SGLang engine does not support `get_scores`.")
def __del__(self):
r"""Ensure server is cleaned up when object is deleted."""
self._cleanup_server()
try:
atexit.unregister(self._cleanup_server)
except Exception:
pass

View File

@ -252,4 +252,4 @@ class VllmEngine(BaseEngine):
batch_input: list[str],
**input_kwargs,
) -> list[float]:
raise NotImplementedError("vLLM engine does not support get_scores.")
raise NotImplementedError("vLLM engine does not support `get_scores`.")

View File

@ -106,6 +106,7 @@ class AttentionFunction(str, Enum):
class EngineName(str, Enum):
HF = "huggingface"
VLLM = "vllm"
SGLANG = "sglang"
class DownloadSource(str, Enum):

View File

@ -274,3 +274,14 @@ def use_openmind() -> bool:
def use_ray() -> bool:
return is_env_enabled("USE_RAY")
def find_available_port() -> int:
"""Find an available port on the local machine."""
import socket
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.bind(("", 0))
port = sock.getsockname()[1]
sock.close()
return port

View File

@ -97,3 +97,7 @@ def is_uvicorn_available():
def is_vllm_available():
return _is_package_available("vllm")
def is_sglang_available():
return _is_package_available("sglang")

View File

@ -302,7 +302,7 @@ class VllmArguments:
metadata={"help": "Maximum sequence (prompt + response) length of the vLLM engine."},
)
vllm_gpu_util: float = field(
default=0.9,
default=0.7,
metadata={"help": "The fraction of GPU memory in (0,1) to be used for the vLLM engine."},
)
vllm_enforce_eager: bool = field(
@ -324,7 +324,35 @@ class VllmArguments:
@dataclass
class ModelArguments(VllmArguments, ExportArguments, ProcessorArguments, QuantizationArguments, BaseModelArguments):
class SGLangArguments:
r"""Arguments pertaining to the SGLang worker."""
sglang_maxlen: int = field(
default=4096,
metadata={"help": "Maximum sequence (prompt + response) length of the SGLang engine."},
)
sglang_mem_fraction: float = field(
default=0.7,
metadata={"help": "The memory fraction (0-1) to be used for the SGLang engine."},
)
sglang_tp_size: int = field(
default=-1,
metadata={"help": "Tensor parallel size for the SGLang engine."},
)
sglang_config: Optional[Union[dict, str]] = field(
default=None,
metadata={"help": "Config to initialize the SGLang engine. Please use JSON strings."},
)
def __post_init__(self):
if isinstance(self.sglang_config, str) and self.sglang_config.startswith("{"):
self.sglang_config = _convert_str_dict(json.loads(self.sglang_config))
@dataclass
class ModelArguments(
SGLangArguments, VllmArguments, ExportArguments, ProcessorArguments, QuantizationArguments, BaseModelArguments
):
r"""Arguments pertaining to which model/config/tokenizer we are going to fine-tune or infer.
The class on the most right will be displayed first.
@ -356,6 +384,7 @@ class ModelArguments(VllmArguments, ExportArguments, ProcessorArguments, Quantiz
ProcessorArguments.__post_init__(self)
ExportArguments.__post_init__(self)
VllmArguments.__post_init__(self)
SGLangArguments.__post_init__(self)
@classmethod
def copyfrom(cls, source: "Self", **kwargs) -> "Self":

View File

@ -31,7 +31,7 @@ from transformers.training_args import ParallelMode
from transformers.utils import is_torch_bf16_gpu_available, is_torch_npu_available
from ..extras import logging
from ..extras.constants import CHECKPOINT_NAMES
from ..extras.constants import CHECKPOINT_NAMES, EngineName
from ..extras.misc import check_dependencies, check_version, get_current_device, is_env_enabled
from .data_args import DataArguments
from .evaluation_args import EvaluationArguments
@ -134,9 +134,12 @@ def _check_extra_dependencies(
if model_args.mixture_of_depths is not None:
check_version("mixture-of-depth>=1.1.6", mandatory=True)
if model_args.infer_backend == "vllm":
if model_args.infer_backend == EngineName.VLLM:
check_version("vllm>=0.4.3,<=0.7.3")
check_version("vllm", mandatory=True)
elif model_args.infer_backend == EngineName.SGLANG:
check_version("sglang>=0.4.4")
check_version("sglang", mandatory=True)
if finetuning_args.use_galore:
check_version("galore_torch", mandatory=True)

View File

@ -34,7 +34,7 @@ def create_infer_tab(engine: "Engine") -> dict[str, "Component"]:
elem_dict = dict()
with gr.Row():
infer_backend = gr.Dropdown(choices=["huggingface", "vllm"], value="huggingface")
infer_backend = gr.Dropdown(choices=["huggingface", "vllm", "sglang"], value="huggingface")
infer_dtype = gr.Dropdown(choices=["auto", "float16", "bfloat16", "float32"], value="auto")
with gr.Row():

71
tests/e2e/test_sglang.py Normal file
View File

@ -0,0 +1,71 @@
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import pytest
from llamafactory.chat import ChatModel
from llamafactory.extras.packages import is_sglang_available
MODEL_NAME = "meta-llama/Llama-3.2-1B-Instruct"
INFER_ARGS = {
"model_name_or_path": MODEL_NAME,
"finetuning_type": "lora",
"template": "llama3",
"infer_dtype": "float16",
"infer_backend": "sglang",
"do_sample": False,
"max_new_tokens": 1,
}
MESSAGES = [
{"role": "user", "content": "Hi"},
]
@pytest.mark.skipif(not is_sglang_available(), reason="SGLang is not installed")
def test_chat():
r"""Test the SGLang engine's basic chat functionality."""
chat_model = ChatModel(INFER_ARGS)
response = chat_model.chat(MESSAGES)[0]
# TODO: Change to EXPECTED_RESPONSE
print(response.response_text)
@pytest.mark.skipif(not is_sglang_available(), reason="SGLang is not installed")
def test_stream_chat():
r"""Test the SGLang engine's streaming chat functionality."""
chat_model = ChatModel(INFER_ARGS)
response = ""
for token in chat_model.stream_chat(MESSAGES):
response += token
print("Complete response:", response)
assert response, "Should receive a non-empty response"
# Run tests if executed directly
if __name__ == "__main__":
if not is_sglang_available():
print("SGLang is not available. Please install it.")
sys.exit(1)
test_chat()
test_stream_chat()