Former-commit-id: 79c2d7090cbf364063ea3608814ab18aa27fdc87
This commit is contained in:
fzc8578 2025-01-04 11:11:15 +08:00
parent f318dc9464
commit b5ef5059ee
7 changed files with 164 additions and 2 deletions

View File

@ -1,4 +1,4 @@
transformers>=4.41.2,<=4.46.1
transformers>=4.41.2
datasets>=2.16.0,<=3.1.0
accelerate>=0.34.0,<=1.0.1
peft>=0.11.1,<=0.12.0

View File

@ -149,6 +149,13 @@ class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
features.update(mm_inputs)
if isinstance(features.get("pixel_values"), list): # for pixtral inputs
features = features.data # use default_collate() instead of BatchEncoding.to()
if "image_bound" in features:
input_ids, position_ids = features['input_ids'], features['position_ids']
features['position_ids'] = F.pad(position_ids, (0, input_ids.shape[-1] - position_ids.shape[-1]))
new_features = {}
new_features.update({"data": features})
new_features.update(features)
features = new_features
return features

View File

@ -2,6 +2,7 @@ import math
from copy import deepcopy
from io import BytesIO
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, TypedDict, Union
import re
import numpy as np
import torch
@ -249,6 +250,130 @@ class BasePlugin:
return {}
class CpmOPlugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
num_image_tokens = 0
messages = deepcopy(messages)
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
num_image_tokens += 1
content = content.replace(IMAGE_PLACEHOLDER, "{{image}}", 1)
message["content"] = content.replace("{{image}}", "(<image>./</image>)")
if num_image_tokens>0:
mm_inputs = self._get_mm_inputs(images, videos, processor)
pattern = "(<image>./</image>)"
images, image_sizes, tgt_sizes = mm_inputs["pixel_values"], mm_inputs["image_sizes"], mm_inputs["tgt_sizes"]
input_ids_list = []
image_bounds_list = []
image_index = 0
for index, message in enumerate(messages):
text = message['content']
image_tags = re.findall(pattern, text)
text_chunks = text.split(pattern)
final_text = ""
for i in range(len(image_tags)):
final_text = final_text + text_chunks[i] + \
image_processor.get_slice_image_placeholder(
image_sizes[image_index][i],
i,
image_processor.max_slice_nums,
image_processor.use_image_id,
)
image_index += 1
final_text += text_chunks[-1]
messages[index]['content'] = final_text
# print(messages)
if len(images) != num_image_tokens:
raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.")
return messages
@override
def _get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
processor: "ProcessorMixin",
) -> Dict[str, "torch.Tensor"]:
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
mm_inputs = {}
if len(images) != 0:
images = self._regularize_images(
images,
image_resolution=getattr(processor, "image_resolution", 512 * 512),
)
image_inputs = image_processor(images, do_pad=True, max_slice_nums=image_processor.max_slice_nums, return_tensors="pt")
mm_inputs.update(image_inputs)
if len(videos) != 0:
videos = self._regularize_videos(
videos,
image_resolution=getattr(processor, "video_resolution", 128 * 128),
video_fps=getattr(processor, "video_fps", 2.0),
video_maxlen=getattr(processor, "video_maxlen", 64),
)
return mm_inputs
@override
def get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
batch_ids: Sequence[List[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
mm_inputs = self._get_mm_inputs(images, videos, processor)
image_bounds_list = []
position_ids = []
for input_ids in batch_ids:
input_ids_ = torch.tensor(input_ids)
start_cond = (input_ids_ == processor.tokenizer.im_start_id) | (input_ids_ == processor.tokenizer.slice_start_id)
end_cond = (input_ids_ == processor.tokenizer.im_end_id) | (input_ids_ == processor.tokenizer.slice_end_id)
image_start_tokens = torch.where(start_cond)[0]
image_start_tokens += 1
image_end_tokens = torch.where(end_cond)[0]
valid_image_nums = max(len(image_start_tokens), len(image_end_tokens))
image_bounds = torch.hstack(
[
image_start_tokens[:valid_image_nums].unsqueeze(-1),
image_end_tokens[:valid_image_nums].unsqueeze(-1),
]
)
image_bounds_list.append(image_bounds)
position_ids_ = list(range(input_ids_.size(0)))
# print(input_ids_.shape, len(position_ids_)
position_ids.append(position_ids_)
position_ids = torch.tensor(position_ids, dtype=torch.int64)
mm_inputs.update({
"image_bound": image_bounds_list,
"position_ids": position_ids,
})
return mm_inputs
class LlavaPlugin(BasePlugin):
@override
def process_messages(
@ -790,6 +915,7 @@ class MllamaPlugin(BasePlugin):
PLUGINS = {
"base": BasePlugin,
"cpm_o": CpmOPlugin,
"llava": LlavaPlugin,
"llava_next": LlavaNextPlugin,
"llava_next_video": LlavaNextVideoPlugin,

View File

@ -583,6 +583,22 @@ _register_template(
)
_register_template(
name="cpm_o",
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
format_function=FunctionFormatter(slots=["{{content}}", "<|im_end|>"], tool_format="qwen"),
format_observation=StringFormatter(
slots=["<|im_start|>user\n<tool_response>\n{{content}}\n</tool_response><|im_end|>\n<|im_start|>assistant\n"]
),
format_tools=ToolFormatter(tool_format="qwen"),
format_separator=EmptyFormatter(slots=["\n"]),
default_system="You are a helpful assistant.",
stop_words=["<|im_end|>"],
mm_plugin=get_mm_plugin(name="cpm_o", image_token="<image>", video_token="<video>"),
)
# copied from chatml template
_register_template(
name="dbrx",

View File

@ -1141,6 +1141,17 @@ register_model_group(
)
register_model_group(
models={
"MiniCPM-V-2_6-Chat": {
DownloadSource.DEFAULT: "openbmb/MiniCPM-V-2_6",
DownloadSource.MODELSCOPE: "OpenBMB/MiniCPM-V-2_6",
},
},
template="cpm_o",
)
register_model_group(
models={
"Mistral-7B-v0.1": {

View File

@ -81,7 +81,7 @@ def check_dependencies() -> None:
logger.warning_once("Version checking has been disabled, may lead to unexpected behaviors.")
return
require_version("transformers>=4.41.2,<=4.46.1", "To fix: pip install transformers>=4.41.2,<=4.46.1")
require_version("transformers>=4.41.2", "To fix: pip install transformers>=4.41.2")
require_version("datasets>=2.16.0,<=3.1.0", "To fix: pip install datasets>=2.16.0,<=3.1.0")
require_version("accelerate>=0.34.0,<=1.0.1", "To fix: pip install accelerate>=0.34.0,<=1.0.1")
require_version("peft>=0.11.1,<=0.12.0", "To fix: pip install peft>=0.11.1,<=0.12.0")

View File

@ -44,6 +44,8 @@ def find_all_linear_modules(model: "PreTrainedModel", freeze_vision_tower: bool)
forbidden_modules.add("vision_model")
elif model_type == "qwen2_vl":
forbidden_modules.add("visual")
elif model_type in ["minicpmv"]:
forbidden_modules.add("vpm")
else:
forbidden_modules.add("vision_tower")