add llava-next/llava-next-video/video-llava

Former-commit-id: 6642cd501d55a1657678428ef2aa0c9b99b7e83f
This commit is contained in:
BUAADreamer 2024-09-28 00:57:03 +08:00
parent c576b7ca32
commit 5aa1e847d9
5 changed files with 134 additions and 116 deletions

View File

@ -4,6 +4,7 @@ from io import BytesIO
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, TypedDict, Union
import numpy as np
from transformers.image_utils import get_image_size, to_numpy_array
from typing_extensions import override
from ..extras.constants import IGNORE_INDEX, IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER
@ -173,7 +174,6 @@ class BasePlugin:
video_maxlen=getattr(processor, "video_maxlen", 64),
)
input_dict["videos"] = videos
if input_dict.get("images", None) is not None or input_dict.get("videos", None) is not None:
return image_processor(**input_dict, return_tensors="pt")
else:
@ -223,50 +223,6 @@ class BasePlugin:
return {}
class Idefics2Plugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
num_image_tokens = 0
messages = deepcopy(messages)
fake_image_token = processor.fake_image_token.content
image_str = f"{fake_image_token}{self.image_token * processor.image_seq_len}{fake_image_token}"
image_str = image_str * 5
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
num_image_tokens += 1
content = content.replace(IMAGE_PLACEHOLDER, "{{image}}", 1)
content = content.replace("{{image}}", image_str)
content = content.replace(f"{fake_image_token}{fake_image_token}", f"{fake_image_token}")
message["content"] = content
if len(images) != num_image_tokens:
raise ValueError("The number of images does not match the number of {} tokens".format(IMAGE_PLACEHOLDER))
return messages
@override
def get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
seqlens: Sequence[int],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
return self._get_mm_inputs(images, videos, processor)
class LlavaPlugin(BasePlugin):
@override
def process_messages(
@ -319,15 +275,33 @@ class LlavaNextPlugin(BasePlugin):
self._validate_input(images, videos)
num_image_tokens = 0
messages = deepcopy(messages)
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
num_image_tokens += 1
content = content.replace(IMAGE_PLACEHOLDER, "{{image}}", 1)
if getattr(processor, "patch_size") is None or getattr(processor, "vision_feature_select_strategy") is None:
for message in messages:
content = message["content"]
while self.image_token in content:
num_image_tokens += 1
content = content.replace(self.image_token, "{{image}}", 1)
else:
mm_inputs = self._get_mm_inputs(images, videos, processor)
image_sizes = iter(mm_inputs["image_sizes"])
height, width = get_image_size(to_numpy_array(mm_inputs["pixel_values"][0][0]))
for message in messages:
content = message["content"]
while self.image_token in content:
image_size = next(image_sizes)
orig_height, orig_width = image_size
image_seqlen = processor._get_number_of_features(orig_height, orig_width, height, width)
if processor.vision_feature_select_strategy == "default":
image_seqlen -= 1
num_image_tokens += 1
print(image_seqlen)
content = content.replace(self.image_token, "{{image}}" * image_seqlen, 1)
message['content'] = content.replace("{{image}}", self.image_token)
if len(images) != num_image_tokens:
raise ValueError("The number of images does not match the number of {} tokens".format(IMAGE_PLACEHOLDER))
print(messages)
return messages
@override
@ -341,8 +315,8 @@ class LlavaNextPlugin(BasePlugin):
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
return self._get_mm_inputs(images, videos, processor)
res = self._get_mm_inputs(images, videos, processor)
return res
class LlavaNextVideoPlugin(BasePlugin):
@override
@ -357,14 +331,47 @@ class LlavaNextVideoPlugin(BasePlugin):
num_image_tokens = 0
num_video_tokens = 0
messages = deepcopy(messages)
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
num_image_tokens += 1
content = content.replace(IMAGE_PLACEHOLDER, "{{image}}", 1)
while VIDEO_PLACEHOLDER in content:
num_video_tokens += 1
content = content.replace(VIDEO_PLACEHOLDER, "{{video}}", 1)
if getattr(processor, "patch_size") is None or getattr(processor, "vision_feature_select_strategy") is None:
for message in messages:
content = message["content"]
while self.image_token in content:
num_image_tokens += 1
content = content.replace(self.image_token, "{{image}}", 1)
while self.video_token in content:
num_video_tokens += 1
content = content.replace(self.video_token, "{{video}}", 1)
else:
mm_inputs = self._get_mm_inputs(images, videos, processor)
if "pixel_values" in mm_inputs:
image_sizes = iter(mm_inputs["image_sizes"])
height, width = get_image_size(to_numpy_array(mm_inputs["pixel_values"][0][0]))
for message in messages:
content = message["content"]
while self.image_token in content:
image_size = next(image_sizes)
orig_height, orig_width = image_size
image_seqlen = processor._get_number_of_features(orig_height, orig_width, height, width)
if processor.vision_feature_select_strategy == "default":
image_seqlen -= 1
num_image_tokens += 1
content = content.replace(self.image_token, "{{image}}" * image_seqlen, 1)
message['content'] = content.replace("{{image}}", self.image_token)
if "pixel_values_videos" in mm_inputs:
one_video = to_numpy_array(mm_inputs.get("pixel_values_videos")[0])
height, width = get_image_size(one_video[0])
num_frames = one_video.shape[0] # frame dim is always after batch dim
image_seqlen = (height // processor.patch_size) * (width // processor.patch_size)
video_seqlen = image_seqlen // 4 * num_frames # divide by 4 needed for avg pooling layer
for message in messages:
content = message["content"]
while self.video_token in content:
num_video_tokens += 1
content = content.replace(self.video_token, "{{video}}", 1)
message['content'] = content.replace("{{video}}", self.video_token * video_seqlen)
if len(images) != num_image_tokens:
raise ValueError("The number of images does not match the number of {} tokens".format(IMAGE_PLACEHOLDER))
@ -393,6 +400,19 @@ class LlavaNextVideoPlugin(BasePlugin):
res.update(video_res)
return res
@override
def _regularize_videos(self, videos: Sequence["VideoInput"], **kwargs) -> List[List["ImageObject"]]:
r"""
Regularizes videos to avoid error. Including reading, resizing and converting.
"""
videos = super()._regularize_videos(
videos,
image_resolution=128,
video_fps=1.0,
video_maxlen=64,
)
return videos
class PaliGemmaPlugin(BasePlugin):
@override
@ -561,14 +581,42 @@ class VideoLlavaPlugin(BasePlugin):
num_image_tokens = 0
num_video_tokens = 0
messages = deepcopy(messages)
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
num_image_tokens += 1
content = content.replace(IMAGE_PLACEHOLDER, "{{image}}", 1)
while VIDEO_PLACEHOLDER in content:
num_video_tokens += 1
content = content.replace(VIDEO_PLACEHOLDER, "{{video}}", 1)
if getattr(processor, "patch_size") is None or getattr(processor, "vision_feature_select_strategy") is None:
for message in messages:
content = message["content"]
while self.image_token in content:
num_image_tokens += 1
content = content.replace(self.image_token, "{{image}}", 1)
while self.video_token in content:
num_video_tokens += 1
content = content.replace(self.video_token, "{{video}}", 1)
else:
mm_inputs = self._get_mm_inputs(images, videos, processor)
if "pixel_values_images" in mm_inputs.keys():
height, width = get_image_size(to_numpy_array(mm_inputs.get("pixel_values_images")[0]))
num_frames = 1
if "pixel_values_videos" in mm_inputs.keys():
one_video = to_numpy_array(mm_inputs.get("pixel_values_videos")[0])
height, width = get_image_size(one_video[0])
num_frames = one_video.shape[0] # frame dim is always after batch dim
image_seqlen = (height // processor.patch_size) * (width // processor.patch_size) + 1
video_seqlen = num_image_tokens * num_frames
if processor.vision_feature_select_strategy == "default":
image_seqlen -= 1
for message in messages:
content = message["content"]
while self.image_token in content:
num_image_tokens += 1
content = content.replace(self.image_token, "{{image}}", 1)
while self.video_token in content:
num_image_tokens += 1
content = content.replace(self.video_token, "{{video}}", 1)
message["content"] = content.replace("{{image}}", self.image_token * image_seqlen)
message["content"] = content.replace("{{video}}", self.video_token * video_seqlen)
if len(images) != num_image_tokens:
raise ValueError("The number of images does not match the number of {} tokens".format(IMAGE_PLACEHOLDER))
@ -591,10 +639,22 @@ class VideoLlavaPlugin(BasePlugin):
self._validate_input(images, videos)
return self._get_mm_inputs(images, videos, processor)
@override
def _regularize_videos(self, videos: Sequence["VideoInput"], **kwargs) -> List[List["ImageObject"]]:
r"""
Regularizes videos to avoid error. Including reading, resizing and converting.
"""
videos = super()._regularize_videos(
videos,
image_resolution=128,
video_fps=1.0,
video_maxlen=64,
)
return videos
PLUGINS = {
"base": BasePlugin,
"idefics2": Idefics2Plugin,
"llava": LlavaPlugin,
"llava_next": LlavaNextPlugin,
"llava_next_video": LlavaNextVideoPlugin,

View File

@ -686,16 +686,6 @@ _register_template(
)
_register_template(
name="idefics2",
format_user=StringFormatter(slots=["User:{{content}}<end_of_utterance>\nAssistant:"]),
format_separator=EmptyFormatter(slots=["\n"]),
stop_words=["<end_of_utterance>"],
replace_eos=True,
mm_plugin=get_mm_plugin(name="idefics2", image_token="<image>"),
)
_register_template(
name="intern",
format_user=StringFormatter(slots=["<|User|>:{{content}}\n<|Bot|>:"]),

View File

@ -583,23 +583,6 @@ register_model_group(
)
register_model_group(
models={
"Idefics2-Base": {
DownloadSource.DEFAULT: "HuggingFaceM4/idefics2-8b-base",
},
"Idefics2-Chat": {
DownloadSource.DEFAULT: "HuggingFaceM4/idefics2-8b",
},
"Idefics2-Chatty": {
DownloadSource.DEFAULT: "HuggingFaceM4/idefics2-8b-chatty",
},
},
template="idefics2",
vision=True,
)
register_model_group(
models={
"InternLM-7B": {

View File

@ -119,15 +119,6 @@ def load_config(model_args: "ModelArguments") -> "PretrainedConfig":
Loads model config.
"""
init_kwargs = _get_init_kwargs(model_args)
if "LLaVA-NeXT-Video" in model_args.model_name_or_path:
from transformers import CLIPVisionConfig, LlamaConfig, LlavaNextVideoConfig, PretrainedConfig
official_config = PretrainedConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs)
config = LlavaNextVideoConfig(
CLIPVisionConfig(**official_config.vision_config), LlamaConfig(**official_config.text_config)
)
setattr(config, "visual_inputs", True)
return config
return AutoConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs)
@ -164,11 +155,6 @@ def load_model(
load_class = AutoModelForVision2Seq
else:
load_class = AutoModelForCausalLM
if "llava_next_video" == getattr(config, "model_type"):
from transformers import LlavaNextVideoForConditionalGeneration
load_class = LlavaNextVideoForConditionalGeneration
if model_args.train_from_scratch:
model = load_class.from_config(config)
else:

View File

@ -92,7 +92,7 @@ def autocast_projector_dtype(model: "PreTrainedModel", model_args: "ModelArgumen
if getattr(model, "quantization_method", None):
model_type = getattr(model.config, "model_type", None)
if model_type in ["llava", "paligemma"]:
if model_type in ["llava", "llava_next", "llava_next_video", "paligemma", "video_llava"]:
mm_projector: "torch.nn.Module" = getattr(model, "multi_modal_projector")
elif model_type == "qwen2_vl":
mm_projector: "torch.nn.Module" = getattr(getattr(model, "visual"), "merger")
@ -111,9 +111,8 @@ def configure_visual_model(config: "PretrainedConfig") -> None:
if model_type in [
"llava",
"llava_next",
"video_llava",
"idefics2",
"llava_next_video",
"video_llava",
]: # required for ds zero3 and valuehead models
setattr(config, "hidden_size", getattr(config.text_config, "hidden_size", None))
@ -128,7 +127,7 @@ def get_forbidden_modules(config: "PretrainedConfig", finetuning_args: "Finetuni
"""
model_type = getattr(config, "model_type", None)
forbidden_modules = set()
if model_type in ["llava", "paligemma"]:
if model_type in ["llava", "llava_next", "llava_next_video", "paligemma", "video_llava"]:
if finetuning_args.freeze_vision_tower:
forbidden_modules.add("vision_tower")
@ -170,7 +169,7 @@ def patch_target_modules(
"""
model_type = getattr(config, "model_type", None)
if finetuning_args.freeze_vision_tower:
if model_type in ["llava", "paligemma"]:
if model_type in ["llava", "llava_next", "llava_next_video", "paligemma", "video_llava"]:
return "^(?!.*vision_tower).*(?:{}).*".format("|".join(target_modules))
elif model_type == "qwen2_vl":
return "^(?!.*visual).*(?:{}).*".format("|".join(target_modules))