mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-23 06:12:50 +08:00
Merge branch 'hiyouga:main' into pixtral-patch
Former-commit-id: 9ac0fde3f29cfd98e08c53a0e52bf472240ae2e7
This commit is contained in:
commit
4f85098088
@ -644,6 +644,14 @@ _register_template(
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="exaone",
|
||||
format_user=StringFormatter(slots=["[|user|]{{content}}\n[|assistant|]"]),
|
||||
format_system=StringFormatter(slots=["[|system|]{{content}}[|endofturn|]\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="falcon",
|
||||
format_user=StringFormatter(slots=["User: {{content}}\nFalcon:"]),
|
||||
|
@ -472,6 +472,16 @@ register_model_group(
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"EXAONE-3.0-7.8B-Instruct": {
|
||||
DownloadSource.DEFAULT: "LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct",
|
||||
},
|
||||
},
|
||||
template="exaone",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Falcon-7B": {
|
||||
|
@ -25,8 +25,7 @@ from .model_utils.misc import register_autoclass
|
||||
from .model_utils.mod import convert_pretrained_model_to_mod, load_mod_pretrained_model
|
||||
from .model_utils.unsloth import load_unsloth_pretrained_model
|
||||
from .model_utils.valuehead import load_valuehead_params
|
||||
from .model_utils.visual import get_image_seqlen, get_patch_size, get_vision_feature_select_strategy
|
||||
from .patcher import patch_config, patch_model, patch_tokenizer, patch_valuehead_model
|
||||
from .patcher import patch_config, patch_model, patch_processor, patch_tokenizer, patch_valuehead_model
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@ -61,7 +60,7 @@ def _get_init_kwargs(model_args: "ModelArguments") -> Dict[str, Any]:
|
||||
|
||||
def load_tokenizer(model_args: "ModelArguments") -> "TokenizerModule":
|
||||
r"""
|
||||
Loads pretrained tokenizer.
|
||||
Loads pretrained tokenizer and optionally loads processor.
|
||||
|
||||
Note: including inplace operation of model_args.
|
||||
"""
|
||||
@ -94,17 +93,9 @@ def load_tokenizer(model_args: "ModelArguments") -> "TokenizerModule":
|
||||
logger.warning("New tokens have been added, changed `resize_vocab` to True.")
|
||||
|
||||
patch_tokenizer(tokenizer)
|
||||
|
||||
try:
|
||||
processor = AutoProcessor.from_pretrained(model_args.model_name_or_path, **init_kwargs)
|
||||
setattr(processor, "tokenizer", tokenizer)
|
||||
setattr(processor, "image_seqlen", get_image_seqlen(config))
|
||||
setattr(processor, "image_resolution", model_args.image_resolution)
|
||||
setattr(processor, "patch_size", get_patch_size(config))
|
||||
setattr(processor, "video_resolution", model_args.video_resolution)
|
||||
setattr(processor, "video_fps", model_args.video_fps)
|
||||
setattr(processor, "video_maxlen", model_args.video_maxlen)
|
||||
setattr(processor, "vision_feature_select_strategy", get_vision_feature_select_strategy(config))
|
||||
patch_processor(processor, config, tokenizer, model_args)
|
||||
except Exception:
|
||||
processor = None
|
||||
|
||||
|
@ -34,11 +34,17 @@ from .model_utils.packing import configure_packing
|
||||
from .model_utils.quantization import configure_quantization
|
||||
from .model_utils.rope import configure_rope
|
||||
from .model_utils.valuehead import prepare_valuehead_model
|
||||
from .model_utils.visual import autocast_projector_dtype, configure_visual_model
|
||||
from .model_utils.visual import (
|
||||
autocast_projector_dtype,
|
||||
configure_visual_model,
|
||||
get_image_seqlen,
|
||||
get_patch_size,
|
||||
get_vision_feature_select_strategy,
|
||||
)
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PretrainedConfig, PreTrainedTokenizer
|
||||
from transformers import PretrainedConfig, PreTrainedTokenizer, ProcessorMixin
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
||||
from ..hparams import ModelArguments
|
||||
@ -52,6 +58,22 @@ def patch_tokenizer(tokenizer: "PreTrainedTokenizer") -> None:
|
||||
tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer)
|
||||
|
||||
|
||||
def patch_processor(
|
||||
processor: "ProcessorMixin",
|
||||
config: "PretrainedConfig",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
model_args: "ModelArguments",
|
||||
) -> None:
|
||||
setattr(processor, "tokenizer", tokenizer)
|
||||
setattr(processor, "image_seqlen", get_image_seqlen(config))
|
||||
setattr(processor, "image_resolution", model_args.image_resolution)
|
||||
setattr(processor, "patch_size", get_patch_size(config))
|
||||
setattr(processor, "video_resolution", model_args.video_resolution)
|
||||
setattr(processor, "video_fps", model_args.video_fps)
|
||||
setattr(processor, "video_maxlen", model_args.video_maxlen)
|
||||
setattr(processor, "vision_feature_select_strategy", get_vision_feature_select_strategy(config))
|
||||
|
||||
|
||||
def patch_config(
|
||||
config: "PretrainedConfig",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
|
@ -142,10 +142,7 @@ def test_llava_next_plugin():
|
||||
check_inputs = {"plugin": llava_next_plugin, "tokenizer": tokenizer, "processor": processor}
|
||||
image_seqlen = 1176
|
||||
check_inputs["expected_mm_messages"] = [
|
||||
{
|
||||
key: value.replace("<image>", "<image>" * image_seqlen)
|
||||
for key, value in message.items()
|
||||
}
|
||||
{key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()}
|
||||
for message in MM_MESSAGES
|
||||
]
|
||||
check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
|
||||
@ -158,10 +155,7 @@ def test_llava_next_video_plugin():
|
||||
check_inputs = {"plugin": llava_next_video_plugin, "tokenizer": tokenizer, "processor": processor}
|
||||
image_seqlen = 1176
|
||||
check_inputs["expected_mm_messages"] = [
|
||||
{
|
||||
key: value.replace("<image>", "<image>" * image_seqlen)
|
||||
for key, value in message.items()
|
||||
}
|
||||
{key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()}
|
||||
for message in MM_MESSAGES
|
||||
]
|
||||
check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
|
||||
@ -207,10 +201,7 @@ def test_video_llava_plugin():
|
||||
check_inputs = {"plugin": video_llava_plugin, "tokenizer": tokenizer, "processor": processor}
|
||||
image_seqlen = 256
|
||||
check_inputs["expected_mm_messages"] = [
|
||||
{
|
||||
key: value.replace("<image>", "<image>" * image_seqlen)
|
||||
for key, value in message.items()
|
||||
}
|
||||
{key: value.replace("<image>", "<image>" * image_seqlen) for key, value in message.items()}
|
||||
for message in MM_MESSAGES
|
||||
]
|
||||
check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
|
||||
|
Loading…
x
Reference in New Issue
Block a user