mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-01 11:12:50 +08:00
support report custom args
Former-commit-id: 5111cac6f8e7b77ef1ca1ff967734cfe1d6785f4
This commit is contained in:
parent
f07bad7144
commit
47c2d91933
1
.gitignore
vendored
1
.gitignore
vendored
@ -171,4 +171,5 @@ config/
|
||||
saves/
|
||||
output/
|
||||
wandb/
|
||||
swanlog/
|
||||
generated_predictions.jsonl
|
||||
|
14
README.md
14
README.md
@ -4,7 +4,7 @@
|
||||
[](LICENSE)
|
||||
[](https://github.com/hiyouga/LLaMA-Factory/commits/main)
|
||||
[](https://pypi.org/project/llamafactory/)
|
||||
[](#projects-using-llama-factory)
|
||||
[](https://scholar.google.com/scholar?cites=12620864006390196564)
|
||||
[](https://github.com/hiyouga/LLaMA-Factory/pulls)
|
||||
[](https://discord.gg/rKfvV9r9FK)
|
||||
[](https://twitter.com/llamafactory_ai)
|
||||
@ -13,6 +13,7 @@
|
||||
[](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
|
||||
[](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
|
||||
[](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/)
|
||||
[](https://gitcode.com/zhengyaowei/LLaMA-Factory)
|
||||
|
||||
[](https://trendshift.io/repositories/4535)
|
||||
|
||||
@ -87,18 +88,18 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
|
||||
|
||||
## Changelog
|
||||
|
||||
[24/12/21] We supported **[SwanLab](https://github.com/SwanHubX/SwanLab)** experiment tracking and visualization. See [this section](#use-swanlab-logger) for details.
|
||||
[24/12/21] We supported using **[SwanLab](https://github.com/SwanHubX/SwanLab)** for experiment tracking and visualization. See [this section](#use-swanlab-logger) for details.
|
||||
|
||||
[24/11/27] We supported fine-tuning the **[Skywork-o1](https://huggingface.co/Skywork/Skywork-o1-Open-Llama-3.1-8B)** model and the **[OpenO1](https://huggingface.co/datasets/O1-OPEN/OpenO1-SFT)** dataset.
|
||||
|
||||
[24/10/09] We supported downloading pre-trained models and datasets from the **[Modelers Hub](https://modelers.cn/models)**. See [this tutorial](#download-from-modelers-hub) for usage.
|
||||
|
||||
<details><summary>Full Changelog</summary>
|
||||
|
||||
[24/09/19] We supported fine-tuning the **[Qwen2.5](https://qwenlm.github.io/blog/qwen2.5/)** models.
|
||||
|
||||
[24/08/30] We supported fine-tuning the **[Qwen2-VL](https://qwenlm.github.io/blog/qwen2-vl/)** models. Thank [@simonJJJ](https://github.com/simonJJJ)'s PR.
|
||||
|
||||
<details><summary>Full Changelog</summary>
|
||||
|
||||
[24/08/27] We supported **[Liger Kernel](https://github.com/linkedin/Liger-Kernel)**. Try `enable_liger_kernel: true` for efficient training.
|
||||
|
||||
[24/08/09] We supported **[Adam-mini](https://github.com/zyushun/Adam-mini)** optimizer. See [examples](examples/README.md) for usage. Thank [@relic-yuexi](https://github.com/relic-yuexi)'s PR.
|
||||
@ -388,7 +389,7 @@ cd LLaMA-Factory
|
||||
pip install -e ".[torch,metrics]"
|
||||
```
|
||||
|
||||
Extra dependencies available: torch, torch-npu, metrics, deepspeed, liger-kernel, bitsandbytes, hqq, eetq, gptq, awq, aqlm, vllm, galore, badam, adam-mini, qwen, modelscope, openmind, quality
|
||||
Extra dependencies available: torch, torch-npu, metrics, deepspeed, liger-kernel, bitsandbytes, hqq, eetq, gptq, awq, aqlm, vllm, galore, badam, adam-mini, qwen, modelscope, openmind, swanlab, quality
|
||||
|
||||
> [!TIP]
|
||||
> Use `pip install --no-deps -e .` to resolve package conflicts.
|
||||
@ -642,8 +643,7 @@ To use [SwanLab](https://github.com/SwanHubX/SwanLab) for logging experimental r
|
||||
|
||||
```yaml
|
||||
use_swanlab: true
|
||||
swanlab_project: test_project # optional
|
||||
swanlab_experiment_name: test_experiment # optional
|
||||
swanlab_run_name: test_run # optional
|
||||
```
|
||||
|
||||
When launching training tasks, you can log in to SwanLab in three ways:
|
||||
|
15
README_zh.md
15
README_zh.md
@ -4,7 +4,7 @@
|
||||
[](LICENSE)
|
||||
[](https://github.com/hiyouga/LLaMA-Factory/commits/main)
|
||||
[](https://pypi.org/project/llamafactory/)
|
||||
[](#使用了-llama-factory-的项目)
|
||||
[](https://scholar.google.com/scholar?cites=12620864006390196564)
|
||||
[](https://github.com/hiyouga/LLaMA-Factory/pulls)
|
||||
[](https://discord.gg/rKfvV9r9FK)
|
||||
[](https://twitter.com/llamafactory_ai)
|
||||
@ -13,6 +13,7 @@
|
||||
[](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
|
||||
[](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
|
||||
[](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/)
|
||||
[](https://gitcode.com/zhengyaowei/LLaMA-Factory)
|
||||
|
||||
[](https://trendshift.io/repositories/4535)
|
||||
|
||||
@ -88,18 +89,18 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
|
||||
|
||||
## 更新日志
|
||||
|
||||
[24/12/21] 我们支持了 **[SwanLab](https://github.com/SwanHubX/SwanLab)** 跟踪与可视化实验。详细用法请参考 [此部分](#使用-wb-面板)。
|
||||
[24/12/21] 我们支持了使用 **[SwanLab](https://github.com/SwanHubX/SwanLab)** 跟踪与可视化实验。详细用法请参考 [此部分](#使用-swanlab-面板)。
|
||||
|
||||
[24/11/27] 我们支持了 **[Skywork-o1](https://huggingface.co/Skywork/Skywork-o1-Open-Llama-3.1-8B)** 模型的微调和 **[OpenO1](https://huggingface.co/datasets/O1-OPEN/OpenO1-SFT)** 数据集。
|
||||
|
||||
[24/10/09] 我们支持了从 **[魔乐社区](https://modelers.cn/models)** 下载预训练模型和数据集。详细用法请参照 [此教程](#从魔乐社区下载)。
|
||||
|
||||
<details><summary>展开日志</summary>
|
||||
|
||||
[24/09/19] 我们支持了 **[Qwen2.5](https://qwenlm.github.io/blog/qwen2.5/)** 模型的微调。
|
||||
|
||||
[24/08/30] 我们支持了 **[Qwen2-VL](https://qwenlm.github.io/blog/qwen2-vl/)** 模型的微调。感谢 [@simonJJJ](https://github.com/simonJJJ) 的 PR。
|
||||
|
||||
<details><summary>展开日志</summary>
|
||||
|
||||
[24/08/27] 我们支持了 **[Liger Kernel](https://github.com/linkedin/Liger-Kernel)**。请使用 `enable_liger_kernel: true` 来加速训练。
|
||||
|
||||
[24/08/09] 我们支持了 **[Adam-mini](https://github.com/zyushun/Adam-mini)** 优化器。详细用法请参照 [examples](examples/README_zh.md)。感谢 [@relic-yuexi](https://github.com/relic-yuexi) 的 PR。
|
||||
@ -389,7 +390,7 @@ cd LLaMA-Factory
|
||||
pip install -e ".[torch,metrics]"
|
||||
```
|
||||
|
||||
可选的额外依赖项:torch、torch-npu、metrics、deepspeed、liger-kernel、bitsandbytes、hqq、eetq、gptq、awq、aqlm、vllm、galore、badam、adam-mini、qwen、modelscope、openmind、quality
|
||||
可选的额外依赖项:torch、torch-npu、metrics、deepspeed、liger-kernel、bitsandbytes、hqq、eetq、gptq、awq、aqlm、vllm、galore、badam、adam-mini、qwen、modelscope、openmind、swanlab、quality
|
||||
|
||||
> [!TIP]
|
||||
> 遇到包冲突时,可使用 `pip install --no-deps -e .` 解决。
|
||||
@ -643,8 +644,7 @@ run_name: test_run # 可选
|
||||
|
||||
```yaml
|
||||
use_swanlab: true
|
||||
swanlab_project: test_run # 可选
|
||||
swanlab_experiment_name: test_experiment # 可选
|
||||
swanlab_run_name: test_run # 可选
|
||||
```
|
||||
|
||||
在启动训练任务时,登录SwanLab账户有以下三种方式:
|
||||
@ -653,7 +653,6 @@ swanlab_experiment_name: test_experiment # 可选
|
||||
方式二:将环境变量 `SWANLAB_API_KEY` 设置为你的 [API 密钥](https://swanlab.cn/settings)。
|
||||
方式三:启动前使用 `swanlab login` 命令完成登录。
|
||||
|
||||
|
||||
## 使用了 LLaMA Factory 的项目
|
||||
|
||||
如果您有项目希望添加至下述列表,请通过邮件联系或者创建一个 PR。
|
||||
|
1
setup.py
1
setup.py
@ -61,6 +61,7 @@ extra_require = {
|
||||
"qwen": ["transformers_stream_generator"],
|
||||
"modelscope": ["modelscope"],
|
||||
"openmind": ["openmind"],
|
||||
"swanlab": ["swanlab"],
|
||||
"dev": ["pre-commit", "ruff", "pytest"],
|
||||
}
|
||||
|
||||
|
@ -171,7 +171,10 @@ class HuggingfaceEngine(BaseEngine):
|
||||
elif not isinstance(value, torch.Tensor):
|
||||
value = torch.tensor(value)
|
||||
|
||||
gen_kwargs[key] = value.to(dtype=model.dtype, device=model.device)
|
||||
if torch.is_floating_point(value):
|
||||
value = value.to(model.dtype)
|
||||
|
||||
gen_kwargs[key] = value.to(model.device)
|
||||
|
||||
return gen_kwargs, prompt_length
|
||||
|
||||
|
@ -15,8 +15,8 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Literal, Optional
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from typing import Any, Dict, Literal, Optional
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -161,3 +161,6 @@ class DataArguments:
|
||||
|
||||
if self.mask_history and self.train_on_prompt:
|
||||
raise ValueError("`mask_history` is incompatible with `train_on_prompt`.")
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
return asdict(self)
|
||||
|
@ -12,8 +12,8 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
from typing import List, Literal, Optional
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from typing import Any, Dict, List, Literal, Optional
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -318,7 +318,7 @@ class SwanLabArguments:
|
||||
default=None,
|
||||
metadata={"help": "The workspace name in SwanLab."},
|
||||
)
|
||||
swanlab_experiment_name: str = field(
|
||||
swanlab_run_name: str = field(
|
||||
default=None,
|
||||
metadata={"help": "The experiment name in SwanLab."},
|
||||
)
|
||||
@ -440,3 +440,8 @@ class FinetuningArguments(
|
||||
|
||||
if self.pissa_init:
|
||||
raise ValueError("`pissa_init` is only valid for LoRA training.")
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
args = asdict(self)
|
||||
args = {k: f"<{k.upper()}>" if k.endswith("api_key") else v for k, v in args.items()}
|
||||
return args
|
||||
|
@ -16,7 +16,7 @@
|
||||
# limitations under the License.
|
||||
|
||||
import json
|
||||
from dataclasses import dataclass, field, fields
|
||||
from dataclasses import asdict, dataclass, field, fields
|
||||
from typing import Any, Dict, Literal, Optional, Union
|
||||
|
||||
import torch
|
||||
@ -344,3 +344,8 @@ class ModelArguments(QuantizationArguments, ProcessorArguments, ExportArguments,
|
||||
setattr(result, name, value)
|
||||
|
||||
return result
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
args = asdict(self)
|
||||
args = {k: f"<{k.upper()}>" if k.endswith("token") else v for k, v in args.items()}
|
||||
return args
|
||||
|
@ -42,10 +42,13 @@ if is_safetensors_available():
|
||||
from safetensors import safe_open
|
||||
from safetensors.torch import save_file
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import TrainerControl, TrainerState, TrainingArguments
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
||||
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
@ -101,9 +104,6 @@ class FixValueHeadModelCallback(TrainerCallback):
|
||||
|
||||
@override
|
||||
def on_save(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
Event called after a checkpoint save.
|
||||
"""
|
||||
if args.should_save:
|
||||
output_dir = os.path.join(args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}")
|
||||
fix_valuehead_checkpoint(
|
||||
@ -138,9 +138,6 @@ class PissaConvertCallback(TrainerCallback):
|
||||
|
||||
@override
|
||||
def on_train_begin(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
Event called at the beginning of training.
|
||||
"""
|
||||
if args.should_save:
|
||||
model = kwargs.pop("model")
|
||||
pissa_init_dir = os.path.join(args.output_dir, "pissa_init")
|
||||
@ -348,3 +345,51 @@ class LogCallback(TrainerCallback):
|
||||
remaining_time=self.remaining_time,
|
||||
)
|
||||
self.thread_pool.submit(self._write_log, args.output_dir, logs)
|
||||
|
||||
|
||||
class ReporterCallback(TrainerCallback):
|
||||
r"""
|
||||
A callback for reporting training status to external logger.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
generating_args: "GeneratingArguments",
|
||||
) -> None:
|
||||
self.model_args = model_args
|
||||
self.data_args = data_args
|
||||
self.finetuning_args = finetuning_args
|
||||
self.generating_args = generating_args
|
||||
os.environ["WANDB_PROJECT"] = os.getenv("WANDB_PROJECT", "llamafactory")
|
||||
|
||||
@override
|
||||
def on_train_begin(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
if not state.is_world_process_zero:
|
||||
return
|
||||
|
||||
if "wandb" in args.report_to:
|
||||
import wandb
|
||||
|
||||
wandb.config.update(
|
||||
{
|
||||
"model_args": self.model_args.to_dict(),
|
||||
"data_args": self.data_args.to_dict(),
|
||||
"finetuning_args": self.finetuning_args.to_dict(),
|
||||
"generating_args": self.generating_args.to_dict(),
|
||||
}
|
||||
)
|
||||
|
||||
if self.finetuning_args.use_swanlab:
|
||||
import swanlab
|
||||
|
||||
swanlab.config.update(
|
||||
{
|
||||
"model_args": self.model_args.to_dict(),
|
||||
"data_args": self.data_args.to_dict(),
|
||||
"finetuning_args": self.finetuning_args.to_dict(),
|
||||
"generating_args": self.generating_args.to_dict(),
|
||||
}
|
||||
)
|
||||
|
@ -30,8 +30,8 @@ from typing_extensions import override
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.packages import is_transformers_version_equal_to_4_46
|
||||
from ..callbacks import PissaConvertCallback, SaveProcessorCallback
|
||||
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler, get_batch_logps, get_swanlab_callback
|
||||
from ..callbacks import SaveProcessorCallback
|
||||
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler, get_batch_logps
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@ -97,18 +97,12 @@ class CustomDPOTrainer(DPOTrainer):
|
||||
if processor is not None:
|
||||
self.add_callback(SaveProcessorCallback(processor))
|
||||
|
||||
if finetuning_args.pissa_convert:
|
||||
self.callback_handler.add_callback(PissaConvertCallback)
|
||||
|
||||
if finetuning_args.use_badam:
|
||||
from badam import BAdamCallback, clip_grad_norm_old_version # type: ignore
|
||||
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
|
||||
self.add_callback(BAdamCallback)
|
||||
|
||||
if finetuning_args.use_swanlab:
|
||||
self.add_callback(get_swanlab_callback(finetuning_args))
|
||||
|
||||
@override
|
||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||
if self.optimizer is None:
|
||||
|
@ -30,7 +30,7 @@ from typing_extensions import override
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.packages import is_transformers_version_equal_to_4_46
|
||||
from ..callbacks import SaveProcessorCallback
|
||||
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler, get_batch_logps, get_swanlab_callback
|
||||
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler, get_batch_logps
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@ -101,9 +101,6 @@ class CustomKTOTrainer(KTOTrainer):
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
|
||||
self.add_callback(BAdamCallback)
|
||||
|
||||
if finetuning_args.use_swanlab:
|
||||
self.add_callback(get_swanlab_callback(finetuning_args))
|
||||
|
||||
@override
|
||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||
if self.optimizer is None:
|
||||
|
@ -40,7 +40,7 @@ from typing_extensions import override
|
||||
from ...extras import logging
|
||||
from ...extras.misc import AverageMeter, count_parameters, get_current_device, get_logits_processor
|
||||
from ..callbacks import FixValueHeadModelCallback, SaveProcessorCallback
|
||||
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler, get_swanlab_callback
|
||||
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler
|
||||
from .ppo_utils import dump_layernorm, get_rewards_from_server, replace_model, restore_layernorm
|
||||
|
||||
|
||||
@ -186,9 +186,6 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
|
||||
self.add_callback(BAdamCallback)
|
||||
|
||||
if finetuning_args.use_swanlab:
|
||||
self.add_callback(get_swanlab_callback(finetuning_args))
|
||||
|
||||
def ppo_train(self, resume_from_checkpoint: Optional[str] = None) -> None:
|
||||
r"""
|
||||
Implements training loop for the PPO stage, like _inner_training_loop() in Huggingface's Trainer.
|
||||
|
@ -20,8 +20,8 @@ from transformers import Trainer
|
||||
from typing_extensions import override
|
||||
|
||||
from ...extras.packages import is_transformers_version_equal_to_4_46, is_transformers_version_greater_than
|
||||
from ..callbacks import PissaConvertCallback, SaveProcessorCallback
|
||||
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler, get_swanlab_callback
|
||||
from ..callbacks import SaveProcessorCallback
|
||||
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@ -47,18 +47,12 @@ class CustomTrainer(Trainer):
|
||||
if processor is not None:
|
||||
self.add_callback(SaveProcessorCallback(processor))
|
||||
|
||||
if finetuning_args.pissa_convert:
|
||||
self.add_callback(PissaConvertCallback)
|
||||
|
||||
if finetuning_args.use_badam:
|
||||
from badam import BAdamCallback, clip_grad_norm_old_version # type: ignore
|
||||
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
|
||||
self.add_callback(BAdamCallback)
|
||||
|
||||
if finetuning_args.use_swanlab:
|
||||
self.add_callback(get_swanlab_callback(finetuning_args))
|
||||
|
||||
@override
|
||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||
if self.optimizer is None:
|
||||
|
@ -26,8 +26,8 @@ from typing_extensions import override
|
||||
|
||||
from ...extras import logging
|
||||
from ...extras.packages import is_transformers_version_equal_to_4_46, is_transformers_version_greater_than
|
||||
from ..callbacks import FixValueHeadModelCallback, PissaConvertCallback, SaveProcessorCallback
|
||||
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler, get_swanlab_callback
|
||||
from ..callbacks import FixValueHeadModelCallback, SaveProcessorCallback
|
||||
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@ -59,18 +59,12 @@ class PairwiseTrainer(Trainer):
|
||||
if processor is not None:
|
||||
self.add_callback(SaveProcessorCallback(processor))
|
||||
|
||||
if finetuning_args.pissa_convert:
|
||||
self.add_callback(PissaConvertCallback)
|
||||
|
||||
if finetuning_args.use_badam:
|
||||
from badam import BAdamCallback, clip_grad_norm_old_version # type: ignore
|
||||
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
|
||||
self.add_callback(BAdamCallback)
|
||||
|
||||
if finetuning_args.use_swanlab:
|
||||
self.add_callback(get_swanlab_callback(finetuning_args))
|
||||
|
||||
@override
|
||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||
if self.optimizer is None:
|
||||
|
@ -28,8 +28,8 @@ from typing_extensions import override
|
||||
from ...extras import logging
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.packages import is_transformers_version_equal_to_4_46, is_transformers_version_greater_than
|
||||
from ..callbacks import PissaConvertCallback, SaveProcessorCallback
|
||||
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler, get_swanlab_callback
|
||||
from ..callbacks import SaveProcessorCallback
|
||||
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@ -62,18 +62,12 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
|
||||
if processor is not None:
|
||||
self.add_callback(SaveProcessorCallback(processor))
|
||||
|
||||
if finetuning_args.pissa_convert:
|
||||
self.add_callback(PissaConvertCallback)
|
||||
|
||||
if finetuning_args.use_badam:
|
||||
from badam import BAdamCallback, clip_grad_norm_old_version # type: ignore
|
||||
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
|
||||
self.add_callback(BAdamCallback)
|
||||
|
||||
if finetuning_args.use_swanlab:
|
||||
self.add_callback(get_swanlab_callback(finetuning_args))
|
||||
|
||||
@override
|
||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||
if self.optimizer is None:
|
||||
|
@ -472,9 +472,8 @@ def get_swanlab_callback(finetuning_args: "FinetuningArguments") -> "TrainerCall
|
||||
swanlab_callback = SwanLabCallback(
|
||||
project=finetuning_args.swanlab_project,
|
||||
workspace=finetuning_args.swanlab_workspace,
|
||||
experiment_name=finetuning_args.swanlab_experiment_name,
|
||||
experiment_name=finetuning_args.swanlab_run_name,
|
||||
mode=finetuning_args.swanlab_mode,
|
||||
config={"Framework": "🦙LLaMA Factory"},
|
||||
config={"Framework": "🦙LlamaFactory"},
|
||||
)
|
||||
|
||||
return swanlab_callback
|
||||
return swanlab_callback
|
||||
|
@ -24,13 +24,14 @@ from ..extras import logging
|
||||
from ..extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME
|
||||
from ..hparams import get_infer_args, get_train_args
|
||||
from ..model import load_model, load_tokenizer
|
||||
from .callbacks import LogCallback
|
||||
from .callbacks import LogCallback, PissaConvertCallback, ReporterCallback
|
||||
from .dpo import run_dpo
|
||||
from .kto import run_kto
|
||||
from .ppo import run_ppo
|
||||
from .pt import run_pt
|
||||
from .rm import run_rm
|
||||
from .sft import run_sft
|
||||
from .trainer_utils import get_swanlab_callback
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@ -44,6 +45,14 @@ def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: List["TrainerCallb
|
||||
callbacks.append(LogCallback())
|
||||
model_args, data_args, training_args, finetuning_args, generating_args = get_train_args(args)
|
||||
|
||||
if finetuning_args.pissa_convert:
|
||||
callbacks.append(PissaConvertCallback())
|
||||
|
||||
if finetuning_args.use_swanlab:
|
||||
callbacks.append(get_swanlab_callback(finetuning_args))
|
||||
|
||||
callbacks.append(ReporterCallback(model_args, data_args, finetuning_args, generating_args)) # add to last
|
||||
|
||||
if finetuning_args.stage == "pt":
|
||||
run_pt(model_args, data_args, training_args, finetuning_args, callbacks)
|
||||
elif finetuning_args.stage == "sft":
|
||||
|
@ -273,21 +273,23 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
|
||||
with gr.Accordion(open=False) as swanlab_tab:
|
||||
with gr.Row():
|
||||
use_swanlab = gr.Checkbox()
|
||||
swanlab_project = gr.Textbox(value="llamafactory", placeholder="Project name", interactive=True)
|
||||
swanlab_experiment_name = gr.Textbox(value="", placeholder="Experiment name", interactive=True)
|
||||
swanlab_workspace = gr.Textbox(value="", placeholder="Workspace name", interactive=True)
|
||||
swanlab_api_key = gr.Textbox(value="", placeholder="API key", interactive=True)
|
||||
swanlab_mode = gr.Dropdown(choices=["cloud", "local", "disabled"], value="cloud", interactive=True)
|
||||
swanlab_project = gr.Textbox(value="llamafactory")
|
||||
swanlab_run_name = gr.Textbox()
|
||||
swanlab_workspace = gr.Textbox()
|
||||
swanlab_api_key = gr.Textbox()
|
||||
swanlab_mode = gr.Dropdown(choices=["cloud", "local"], value="cloud")
|
||||
|
||||
input_elems.update({use_swanlab, swanlab_api_key, swanlab_project, swanlab_workspace, swanlab_experiment_name, swanlab_mode})
|
||||
input_elems.update(
|
||||
{use_swanlab, swanlab_project, swanlab_run_name, swanlab_workspace, swanlab_api_key, swanlab_mode}
|
||||
)
|
||||
elem_dict.update(
|
||||
dict(
|
||||
swanlab_tab=swanlab_tab,
|
||||
use_swanlab=use_swanlab,
|
||||
swanlab_api_key=swanlab_api_key,
|
||||
swanlab_project=swanlab_project,
|
||||
swanlab_run_name=swanlab_run_name,
|
||||
swanlab_workspace=swanlab_workspace,
|
||||
swanlab_experiment_name=swanlab_experiment_name,
|
||||
swanlab_api_key=swanlab_api_key,
|
||||
swanlab_mode=swanlab_mode,
|
||||
)
|
||||
)
|
||||
|
@ -1385,86 +1385,85 @@ LOCALES = {
|
||||
"info": "SwanLab를 사용하여 실험을 추적하고 시각화합니다.",
|
||||
},
|
||||
},
|
||||
"swanlab_api_key": {
|
||||
"en": {
|
||||
"label": "API Key(optional)",
|
||||
"info": "API key for SwanLab. Once logged in, no need to login again in the programming environment.",
|
||||
},
|
||||
"ru": {
|
||||
"label": "API ключ(Необязательный)",
|
||||
"info": "API ключ для SwanLab. После входа в программное окружение, нет необходимости входить снова.",
|
||||
},
|
||||
"zh": {
|
||||
"label": "API密钥(选填)",
|
||||
"info": "用于在编程环境登录SwanLab,已登录则无需填写。",
|
||||
},
|
||||
"ko": {
|
||||
"label": "API 키(선택 사항)",
|
||||
"info": "SwanLab의 API 키. 프로그래밍 환경에 로그인한 후 다시 로그인할 필요가 없습니다.",
|
||||
},
|
||||
},
|
||||
"swanlab_project": {
|
||||
"en": {
|
||||
"label": "Project(optional)",
|
||||
"label": "SwanLab project",
|
||||
},
|
||||
"ru": {
|
||||
"label": "Проект(Необязательный)",
|
||||
"label": "SwanLab Проект",
|
||||
},
|
||||
"zh": {
|
||||
"label": "项目(选填)",
|
||||
"label": "SwanLab 项目名",
|
||||
},
|
||||
"ko": {
|
||||
"label": "프로젝트(선택 사항)",
|
||||
"label": "SwanLab 프로젝트",
|
||||
},
|
||||
},
|
||||
"swanlab_run_name": {
|
||||
"en": {
|
||||
"label": "SwanLab experiment name (optional)",
|
||||
},
|
||||
"ru": {
|
||||
"label": "SwanLab Имя эксперимента (опционально)",
|
||||
},
|
||||
"zh": {
|
||||
"label": "SwanLab 实验名(非必填)",
|
||||
},
|
||||
"ko": {
|
||||
"label": "SwanLab 실험 이름 (선택 사항)",
|
||||
},
|
||||
},
|
||||
"swanlab_workspace": {
|
||||
"en": {
|
||||
"label": "Workspace(optional)",
|
||||
"info": "Workspace for SwanLab. If not filled, it defaults to the personal workspace.",
|
||||
|
||||
"label": "SwanLab workspace (optional)",
|
||||
"info": "Workspace for SwanLab. Defaults to the personal workspace.",
|
||||
},
|
||||
"ru": {
|
||||
"label": "Рабочая область(Необязательный)",
|
||||
"label": "SwanLab Рабочая область (опционально)",
|
||||
"info": "Рабочая область SwanLab, если не заполнено, то по умолчанию в личной рабочей области.",
|
||||
},
|
||||
"zh": {
|
||||
"label": "Workspace(选填)",
|
||||
"info": "SwanLab组织的工作区,如不填写则默认在个人工作区下",
|
||||
"label": "SwanLab 工作区(非必填)",
|
||||
"info": "SwanLab 的工作区,默认在个人工作区下。",
|
||||
},
|
||||
"ko": {
|
||||
"label": "작업 영역(선택 사항)",
|
||||
"label": "SwanLab 작업 영역 (선택 사항)",
|
||||
"info": "SwanLab 조직의 작업 영역, 비어 있으면 기본적으로 개인 작업 영역에 있습니다.",
|
||||
},
|
||||
},
|
||||
"swanlab_experiment_name": {
|
||||
"swanlab_api_key": {
|
||||
"en": {
|
||||
"label": "Experiment name (optional)",
|
||||
"label": "SwanLab API key (optional)",
|
||||
"info": "API key for SwanLab.",
|
||||
},
|
||||
"ru": {
|
||||
"label": "Имя эксперимента(Необязательный)",
|
||||
"label": "SwanLab API ключ (опционально)",
|
||||
"info": "API ключ для SwanLab.",
|
||||
},
|
||||
"zh": {
|
||||
"label": "实验名(选填) ",
|
||||
"label": "SwanLab API密钥(非必填)",
|
||||
"info": "用于在编程环境登录 SwanLab,已登录则无需填写。",
|
||||
},
|
||||
"ko": {
|
||||
"label": "실험 이름(선택 사항)",
|
||||
"label": "SwanLab API 키 (선택 사항)",
|
||||
"info": "SwanLab의 API 키.",
|
||||
},
|
||||
},
|
||||
"swanlab_mode": {
|
||||
"en": {
|
||||
"label": "Mode",
|
||||
"info": "Cloud or offline version.",
|
||||
"label": "SwanLab mode",
|
||||
"info": "Cloud or offline version.",
|
||||
},
|
||||
"ru": {
|
||||
"label": "Режим",
|
||||
"label": "SwanLab Режим",
|
||||
"info": "Версия в облаке или локальная версия.",
|
||||
},
|
||||
"zh": {
|
||||
"label": "模式",
|
||||
"info": "云端版或离线版",
|
||||
"label": "SwanLab 模式",
|
||||
"info": "使用云端版或离线版 SwanLab。",
|
||||
},
|
||||
"ko": {
|
||||
"label": "모드",
|
||||
"label": "SwanLab 모드",
|
||||
"info": "클라우드 버전 또는 오프라인 버전.",
|
||||
},
|
||||
},
|
||||
|
@ -231,12 +231,11 @@ class Runner:
|
||||
|
||||
# swanlab config
|
||||
if get("train.use_swanlab"):
|
||||
args["swanlab_api_key"] = get("train.swanlab_api_key")
|
||||
args["swanlab_project"] = get("train.swanlab_project")
|
||||
args["swanlab_run_name"] = get("train.swanlab_run_name")
|
||||
args["swanlab_workspace"] = get("train.swanlab_workspace")
|
||||
args["swanlab_experiment_name"] = get("train.swanlab_experiment_name")
|
||||
args["swanlab_api_key"] = get("train.swanlab_api_key")
|
||||
args["swanlab_mode"] = get("train.swanlab_mode")
|
||||
|
||||
|
||||
# eval config
|
||||
if get("train.val_size") > 1e-6 and args["stage"] != "ppo":
|
||||
|
Loading…
x
Reference in New Issue
Block a user