mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-23 14:22:51 +08:00
docs: use swanlab
Former-commit-id: 744ef8c2688efad82028e22683e6c9d874af6823
This commit is contained in:
parent
547f76e56e
commit
1c1d6bea43
21
README.md
21
README.md
@ -54,6 +54,7 @@ Choose your path:
|
||||
- [Download from ModelScope Hub](#download-from-modelscope-hub)
|
||||
- [Download from Modelers Hub](#download-from-modelers-hub)
|
||||
- [Use W&B Logger](#use-wb-logger)
|
||||
- [Use SwanLab Logger](#use-swanlab-logger)
|
||||
- [Projects using LLaMA Factory](#projects-using-llama-factory)
|
||||
- [License](#license)
|
||||
- [Citation](#citation)
|
||||
@ -66,7 +67,7 @@ Choose your path:
|
||||
- **Scalable resources**: 16-bit full-tuning, freeze-tuning, LoRA and 2/3/4/5/6/8-bit QLoRA via AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ.
|
||||
- **Advanced algorithms**: [GaLore](https://github.com/jiaweizzhao/GaLore), [BAdam](https://github.com/Ledzy/BAdam), [Adam-mini](https://github.com/zyushun/Adam-mini), DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ, PiSSA and Agent tuning.
|
||||
- **Practical tricks**: [FlashAttention-2](https://github.com/Dao-AILab/flash-attention), [Unsloth](https://github.com/unslothai/unsloth), [Liger Kernel](https://github.com/linkedin/Liger-Kernel), RoPE scaling, NEFTune and rsLoRA.
|
||||
- **Experiment monitors**: LlamaBoard, TensorBoard, Wandb, MLflow, etc.
|
||||
- **Experiment monitors**: LlamaBoard, TensorBoard, Wandb, MLflow, SwanLab, etc.
|
||||
- **Faster inference**: OpenAI-style API, Gradio UI and CLI with vLLM worker.
|
||||
|
||||
## Benchmark
|
||||
@ -86,6 +87,8 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
|
||||
|
||||
## Changelog
|
||||
|
||||
[24/12/21] We supported **[SwanLab](https://github.com/SwanHubX/SwanLab)** experiment tracking and visualization. See [this section](#use-swanlab-logger) for details.
|
||||
|
||||
[24/11/27] We supported fine-tuning the **[Skywork-o1](https://huggingface.co/Skywork/Skywork-o1-Open-Llama-3.1-8B)** model and the **[OpenO1](https://huggingface.co/datasets/O1-OPEN/OpenO1-SFT)** dataset.
|
||||
|
||||
[24/10/09] We supported downloading pre-trained models and datasets from the **[Modelers Hub](https://modelers.cn/models)**. See [this tutorial](#download-from-modelers-hub) for usage.
|
||||
@ -633,6 +636,22 @@ run_name: test_run # optional
|
||||
|
||||
Set `WANDB_API_KEY` to [your key](https://wandb.ai/authorize) when launching training tasks to log in with your W&B account.
|
||||
|
||||
### Use SwanLab Logger
|
||||
|
||||
To use [SwanLab](https://github.com/SwanHubX/SwanLab) for logging experimental results, you need to add the following arguments to yaml files.
|
||||
|
||||
```yaml
|
||||
use_swanlab: true
|
||||
swanlab_project: test_project # optional
|
||||
swanlab_experiment_name: test_experiment # optional
|
||||
```
|
||||
|
||||
When launching training tasks, you can log in to SwanLab in three ways:
|
||||
|
||||
1. Add `swanlab_api_key=<your_api_key>` to the yaml file, and set it to your [API key](https://swanlab.cn/settings).
|
||||
2. Set the environment variable `SWANLAB_API_KEY` to your [API key](https://swanlab.cn/settings).
|
||||
3. Use the `swanlab login` command to complete the login.
|
||||
|
||||
## Projects using LLaMA Factory
|
||||
|
||||
If you have a project that should be incorporated, please contact via email or create a pull request.
|
||||
|
22
README_zh.md
22
README_zh.md
@ -55,6 +55,7 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
|
||||
- [从魔搭社区下载](#从魔搭社区下载)
|
||||
- [从魔乐社区下载](#从魔乐社区下载)
|
||||
- [使用 W&B 面板](#使用-wb-面板)
|
||||
- [使用 SwanLab 面板](#使用-swanlab-面板)
|
||||
- [使用了 LLaMA Factory 的项目](#使用了-llama-factory-的项目)
|
||||
- [协议](#协议)
|
||||
- [引用](#引用)
|
||||
@ -67,7 +68,7 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
|
||||
- **多种精度**:16 比特全参数微调、冻结微调、LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ 的 2/3/4/5/6/8 比特 QLoRA 微调。
|
||||
- **先进算法**:[GaLore](https://github.com/jiaweizzhao/GaLore)、[BAdam](https://github.com/Ledzy/BAdam)、[Adam-mini](https://github.com/zyushun/Adam-mini)、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ、PiSSA 和 Agent 微调。
|
||||
- **实用技巧**:[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)、[Unsloth](https://github.com/unslothai/unsloth)、[Liger Kernel](https://github.com/linkedin/Liger-Kernel)、RoPE scaling、NEFTune 和 rsLoRA。
|
||||
- **实验监控**:LlamaBoard、TensorBoard、Wandb、MLflow 等等。
|
||||
- **实验监控**:LlamaBoard、TensorBoard、Wandb、MLflow、SwanLab 等等。
|
||||
- **极速推理**:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。
|
||||
|
||||
## 性能指标
|
||||
@ -87,6 +88,8 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
|
||||
|
||||
## 更新日志
|
||||
|
||||
[24/12/21] 我们支持了 **[SwanLab](https://github.com/SwanHubX/SwanLab)** 跟踪与可视化实验。详细用法请参考 [此部分](#使用-wb-面板)。
|
||||
|
||||
[24/11/27] 我们支持了 **[Skywork-o1](https://huggingface.co/Skywork/Skywork-o1-Open-Llama-3.1-8B)** 模型的微调和 **[OpenO1](https://huggingface.co/datasets/O1-OPEN/OpenO1-SFT)** 数据集。
|
||||
|
||||
[24/10/09] 我们支持了从 **[魔乐社区](https://modelers.cn/models)** 下载预训练模型和数据集。详细用法请参照 [此教程](#从魔乐社区下载)。
|
||||
@ -634,6 +637,23 @@ run_name: test_run # 可选
|
||||
|
||||
在启动训练任务时,将 `WANDB_API_KEY` 设置为[密钥](https://wandb.ai/authorize)来登录 W&B 账户。
|
||||
|
||||
### 使用 SwanLab 面板
|
||||
|
||||
若要使用 [SwanLab](https://github.com/SwanHubX/SwanLab) 记录实验数据,请在 yaml 文件中添加下面的参数。
|
||||
|
||||
```yaml
|
||||
use_swanlab: true
|
||||
swanlab_project: test_run # 可选
|
||||
swanlab_experiment_name: test_experiment # 可选
|
||||
```
|
||||
|
||||
在启动训练任务时,登录SwanLab账户有以下三种方式:
|
||||
|
||||
方式一:在 yaml 文件中添加 `swanlab_api_key=<your_api_key>` ,并设置为你的 [API 密钥](https://swanlab.cn/settings)。
|
||||
方式二:将环境变量 `SWANLAB_API_KEY` 设置为你的 [API 密钥](https://swanlab.cn/settings)。
|
||||
方式三:启动前使用 `swanlab login` 命令完成登录。
|
||||
|
||||
|
||||
## 使用了 LLaMA Factory 的项目
|
||||
|
||||
如果您有项目希望添加至下述列表,请通过邮件联系或者创建一个 PR。
|
||||
|
Loading…
x
Reference in New Issue
Block a user