support llava-next(video)

Former-commit-id: 31259e7e0caa9ff6449b4abcee0554e211167178
This commit is contained in:
BUAADreamer 2024-09-10 12:31:53 +08:00
parent 3aefdad4ec
commit f00f4ae9b6
11 changed files with 394 additions and 33 deletions

View File

@ -160,34 +160,36 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
## Supported Models
| Model | Model size | Template |
| ----------------------------------------------------------------- | -------------------------------- | --------- |
| [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
| [BLOOM/BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
| [Command R](https://huggingface.co/CohereForAI) | 35B/104B | cohere |
| [DeepSeek (Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
| [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
| [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma |
| [GLM-4](https://huggingface.co/THUDM) | 9B | glm4 |
| [InternLM2/InternLM2.5](https://huggingface.co/internlm) | 7B/20B | intern2 |
| [Llama](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
| [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
| [Llama 3/Llama 3.1](https://huggingface.co/meta-llama) | 8B/70B | llama3 |
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | llava |
| [MiniCPM](https://huggingface.co/openbmb) | 1B/2B/4B | cpm/cpm3 |
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
| [OLMo](https://huggingface.co/allenai) | 1B/7B | - |
| [PaliGemma](https://huggingface.co/google) | 3B | paligemma |
| [Phi-1.5/Phi-2](https://huggingface.co/microsoft) | 1.3B/2.7B | - |
| [Phi-3](https://huggingface.co/microsoft) | 4B/7B/14B | phi |
| [Qwen/Qwen1.5/Qwen2 (Code/Math/MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/4B/7B/14B/32B/72B/110B | qwen |
| [Qwen2-VL](https://huggingface.co/Qwen) | 2B/7B | qwen2_vl |
| [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse |
| [Yi/Yi-1.5 (Code)](https://huggingface.co/01-ai) | 1.5B/6B/9B/34B | yi |
| [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl |
| [Yuan 2](https://huggingface.co/IEITYuan) | 2B/51B/102B | yuan |
| Model | Model size | Template |
|-------------------------------------------------------------------| -------------------------------- |------------------|
| [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
| [BLOOM/BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
| [Command R](https://huggingface.co/CohereForAI) | 35B/104B | cohere |
| [DeepSeek (Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
| [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
| [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma |
| [GLM-4](https://huggingface.co/THUDM) | 9B | glm4 |
| [InternLM2/InternLM2.5](https://huggingface.co/internlm) | 7B/20B | intern2 |
| [Llama](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
| [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
| [Llama 3/Llama 3.1](https://huggingface.co/meta-llama) | 8B/70B | llama3 |
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | llava |
| [LLaVA-NeXT](https://huggingface.co/llava-hf) | 7B/13B | llava_next |
| [LLaVA-NeXT-Video](https://huggingface.co/llava-hf) | 7B/13B | llava_next_video |
| [MiniCPM](https://huggingface.co/openbmb) | 1B/2B/4B | cpm/cpm3 |
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
| [OLMo](https://huggingface.co/allenai) | 1B/7B | - |
| [PaliGemma](https://huggingface.co/google) | 3B | paligemma |
| [Phi-1.5/Phi-2](https://huggingface.co/microsoft) | 1.3B/2.7B | - |
| [Phi-3](https://huggingface.co/microsoft) | 4B/7B/14B | phi |
| [Qwen/Qwen1.5/Qwen2 (Code/Math/MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/4B/7B/14B/32B/72B/110B | qwen |
| [Qwen2-VL](https://huggingface.co/Qwen) | 2B/7B | qwen2_vl |
| [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse |
| [Yi/Yi-1.5 (Code)](https://huggingface.co/01-ai) | 1.5B/6B/9B/34B | yi |
| [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl |
| [Yuan 2](https://huggingface.co/IEITYuan) | 2B/51B/102B | yuan |
> [!NOTE]
> For the "base" models, the `template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the **corresponding template** for the "instruct/chat" models.

View File

@ -176,6 +176,8 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
| [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
| [Llama 3/Llama 3.1](https://huggingface.co/meta-llama) | 8B/70B | llama3 |
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | llava |
| [LLaVA-NeXT](https://huggingface.co/llava-hf) | 7B/13B | llava_next |
| [LLaVA-NeXT-Video](https://huggingface.co/llava-hf) | 7B/13B | llava_next_video |
| [MiniCPM](https://huggingface.co/openbmb) | 1B/2B/4B | cpm/cpm3 |
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
| [OLMo](https://huggingface.co/allenai) | 1B/7B | - |

View File

@ -19,3 +19,4 @@ fire
packaging
pyyaml
numpy<2.0.0
av

View File

@ -61,6 +61,7 @@ extra_require = {
"qwen": ["transformers_stream_generator"],
"modelscope": ["modelscope"],
"dev": ["ruff", "pytest"],
"av": ["av>=13.0.0"],
}

View File

@ -209,6 +209,50 @@ class BasePlugin:
return {}
class Idefics2Plugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
num_image_tokens = 0
messages = deepcopy(messages)
fake_image_token = processor.fake_image_token.content
image_str = f"{fake_image_token}{self.image_token * processor.image_seq_len}{fake_image_token}"
image_str = image_str * 5
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
num_image_tokens += 1
content = content.replace(IMAGE_PLACEHOLDER, "{{image}}", 1)
content = content.replace("{{image}}", image_str)
content = content.replace(f"{fake_image_token}{fake_image_token}", f"{fake_image_token}")
message["content"] = content
if len(images) != num_image_tokens:
raise ValueError("The number of images does not match the number of {} tokens".format(IMAGE_PLACEHOLDER))
return messages
@override
def get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
seqlens: Sequence[int],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
return _get_mm_inputs(images, videos, processor)
class LlavaPlugin(BasePlugin):
@override
def process_messages(
@ -249,6 +293,92 @@ class LlavaPlugin(BasePlugin):
return _get_mm_inputs(images, videos, processor)
class LlavaNextPlugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
num_image_tokens = 0
messages = deepcopy(messages)
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
num_image_tokens += 1
content = content.replace(IMAGE_PLACEHOLDER, "{{image}}", 1)
if len(images) != num_image_tokens:
raise ValueError("The number of images does not match the number of {} tokens".format(IMAGE_PLACEHOLDER))
return messages
@override
def get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
seqlens: Sequence[int],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
return _get_mm_inputs(images, videos, processor)
class LlavaNextVideoPlugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
num_image_tokens = 0
num_video_tokens = 0
messages = deepcopy(messages)
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
num_image_tokens += 1
content = content.replace(IMAGE_PLACEHOLDER, "{{image}}", 1)
while VIDEO_PLACEHOLDER in content:
num_video_tokens += 1
content = content.replace(VIDEO_PLACEHOLDER, "{{video}}", 1)
if len(images) != num_image_tokens:
raise ValueError("The number of images does not match the number of {} tokens".format(IMAGE_PLACEHOLDER))
if len(videos) != num_video_tokens:
raise ValueError("The number of videos does not match the number of {} tokens".format(IMAGE_PLACEHOLDER))
return messages
@override
def get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
seqlens: Sequence[int],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
video_processor = getattr(processor, "video_processor")
res = _get_mm_inputs(images, [], processor)
if len(videos) != 0:
videos = _regularize_videos(videos, processor)
video_res = video_processor(videos, return_tensors="pt")
res.update(video_res)
return res
class PaliGemmaPlugin(BasePlugin):
@override
def process_messages(
@ -380,11 +510,59 @@ class Qwen2vlPlugin(BasePlugin):
return _get_mm_inputs(images, videos, processor)
class VideoLlavaPlugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
num_image_tokens = 0
num_video_tokens = 0
messages = deepcopy(messages)
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
num_image_tokens += 1
content = content.replace(IMAGE_PLACEHOLDER, "{{image}}", 1)
while VIDEO_PLACEHOLDER in content:
num_video_tokens += 1
content = content.replace(VIDEO_PLACEHOLDER, "{{video}}", 1)
if len(images) != num_image_tokens:
raise ValueError("The number of images does not match the number of {} tokens".format(IMAGE_PLACEHOLDER))
if len(videos) != num_video_tokens:
raise ValueError("The number of videos does not match the number of {} tokens".format(IMAGE_PLACEHOLDER))
return messages
@override
def get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
seqlens: Sequence[int],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
return _get_mm_inputs(images, videos, processor)
PLUGINS = {
"base": BasePlugin,
"idefics2": Idefics2Plugin,
"llava": LlavaPlugin,
"llava_next": LlavaNextPlugin,
"llava_next_video": LlavaNextVideoPlugin,
"paligemma": PaliGemmaPlugin,
"qwen2_vl": Qwen2vlPlugin,
"video_llava": VideoLlavaPlugin,
}

View File

@ -680,6 +680,16 @@ _register_template(
)
_register_template(
name="idefics2",
format_user=StringFormatter(slots=["User:{{content}}<end_of_utterance>\nAssistant:"]),
format_separator=EmptyFormatter(slots=["\n"]),
stop_words=["<end_of_utterance>"],
replace_eos=True,
mm_plugin=get_mm_plugin(name="idefics2", image_token="<image>"),
)
_register_template(
name="intern",
format_user=StringFormatter(slots=["<|User|>:{{content}}\n<|Bot|>:"]),
@ -753,6 +763,28 @@ _register_template(
)
_register_template(
name="llava_next",
format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]),
default_system=(
"A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions."
),
mm_plugin=get_mm_plugin(name="llava_next", image_token="<image>"),
)
_register_template(
name="llava_next_video",
format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]),
default_system=(
"A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions."
),
mm_plugin=get_mm_plugin(name="llava_next_video", image_token="<image>", video_token="<video>"),
)
_register_template(
name="mistral",
format_user=StringFormatter(slots=["[INST] {{content}} [/INST]"]),
@ -897,6 +929,17 @@ _register_template(
)
_register_template(
name="video_llava",
format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]),
default_system=(
"A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions."
),
mm_plugin=get_mm_plugin(name="video_llava", image_token="<image>", video_token="<video>"),
)
_register_template(
name="xuanyuan",
format_user=StringFormatter(slots=["Human: {{content}} Assistant:"]),

View File

@ -583,6 +583,23 @@ register_model_group(
)
register_model_group(
models={
"Idefics2-Base": {
DownloadSource.DEFAULT: "HuggingFaceM4/idefics2-8b-base",
},
"Idefics2-Chat": {
DownloadSource.DEFAULT: "HuggingFaceM4/idefics2-8b",
},
"Idefics2-Chatty": {
DownloadSource.DEFAULT: "HuggingFaceM4/idefics2-8b-chatty",
},
},
template="idefics2",
vision=True,
)
register_model_group(
models={
"InternLM-7B": {
@ -812,6 +829,49 @@ register_model_group(
)
register_model_group(
models={
"LLaVA-NeXT-7B-Chat": {
DownloadSource.DEFAULT: "llava-hf/llava-v1.6-vicuna-7b-hf",
},
"LLaVA-NeXT-13B-Chat": {
DownloadSource.DEFAULT: "llava-hf/llava-v1.6-vicuna-13b-hf",
},
"LLaVA-NeXT-34B-Chat": {
DownloadSource.DEFAULT: "llava-hf/llava-v1.6-34b-hf",
},
"LLaVA-NeXT-Mistral-7B-Chat": {
DownloadSource.DEFAULT: "llava-hf/llava-v1.6-mistral-7b-hf",
},
},
template="llava_next",
vision=True,
)
register_model_group(
models={
"LLaVA-NeXT-Video-7B-Chat": {
DownloadSource.DEFAULT: "llava-hf/LLaVA-NeXT-Video-7B-hf",
},
"LLaVA-NeXT-Video-34B-Chat": {
DownloadSource.DEFAULT: "llava-hf/LLaVA-NeXT-Video-34B-hf",
},
"LLaVA-NeXT-Video-7B-32k-Chat": {
DownloadSource.DEFAULT: "llava-hf/LLaVA-NeXT-Video-7B-32K-hf",
},
"LLaVA-NeXT-Video-7B-DPO": {
DownloadSource.DEFAULT: "llava-hf/LLaVA-NeXT-Video-7B-DPO-hf",
},
"LLaVA-NeXT-Video-34B-DPO": {
DownloadSource.DEFAULT: "llava-hf/LLaVA-NeXT-Video-34B-DPO-hf",
},
},
template="llava_next_video",
vision=True,
)
register_model_group(
models={
"MiniCPM-2B-SFT-Chat": {
@ -1475,6 +1535,17 @@ register_model_group(
)
register_model_group(
models={
"Video-LLaVA-7B-Chat": {
DownloadSource.DEFAULT: "LanguageBind/Video-LLaVA-7B-hf",
},
},
template="video_llava",
vision=True,
)
register_model_group(
models={
"XuanYuan-6B": {

View File

@ -107,7 +107,8 @@ def load_tokenizer(model_args: "ModelArguments") -> "TokenizerModule":
setattr(processor, "video_factor", 2)
else:
setattr(processor, "video_factor", 1)
except Exception:
except Exception as e:
print(e)
processor = None
# Avoid load tokenizer, see:
@ -123,6 +124,12 @@ def load_config(model_args: "ModelArguments") -> "PretrainedConfig":
Loads model config.
"""
init_kwargs = _get_init_kwargs(model_args)
if "LLaVA-NeXT-Video" in model_args.model_name_or_path:
from transformers import PretrainedConfig, LlavaNextVideoConfig, CLIPVisionConfig, LlamaConfig
official_config = PretrainedConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs)
config = LlavaNextVideoConfig(CLIPVisionConfig(**official_config.vision_config), LlamaConfig(**official_config.text_config))
setattr(config, "visual_inputs", True)
return config
return AutoConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs)
@ -159,6 +166,9 @@ def load_model(
load_class = AutoModelForVision2Seq
else:
load_class = AutoModelForCausalLM
if "llava_next_video" == getattr(config, "model_type"):
from transformers import LlavaNextVideoForConditionalGeneration
load_class = LlavaNextVideoForConditionalGeneration
if model_args.train_from_scratch:
model = load_class.from_config(config)

View File

@ -34,7 +34,7 @@ def find_all_linear_modules(model: "PreTrainedModel", freeze_vision_tower: bool)
forbidden_modules.add("output_layer")
elif model_type == "internlm2":
forbidden_modules.add("output")
elif model_type in ["llava", "paligemma"]:
elif model_type in ["idefics2", "llava", "llava_next", "llava_next_video", "paligemma", "video_llava"]:
forbidden_modules.add("multi_modal_projector")
elif model_type == "qwen2_vl":
forbidden_modules.add("merger")

View File

@ -108,7 +108,7 @@ def configure_visual_model(config: "PretrainedConfig") -> None:
Patches VLMs before loading them.
"""
model_type = getattr(config, "model_type", None)
if model_type == "llava": # required for ds zero3 and valuehead models
if model_type in ["llava", "llava_next", "video_llava", "idefics2", "llava_next_video"]: # required for ds zero3 and valuehead models
setattr(config, "hidden_size", getattr(config.text_config, "hidden_size", None))
if getattr(config, "is_yi_vl_derived_model", None):
@ -150,7 +150,7 @@ def get_image_seqlen(config: "PretrainedConfig") -> int:
image_seqlen += 1
elif model_type == "paligemma":
image_seqlen = config.vision_config.num_image_tokens
elif model_type == "qwen2_vl": # variable length
else:
image_seqlen = -1
return image_seqlen

View File

@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import os
from typing import TYPE_CHECKING, Any, Dict, List, Sequence, Tuple
@ -136,6 +136,47 @@ def test_llava_plugin():
_check_plugin(**check_inputs)
def test_idefics2_plugin():
tokenizer, processor = _load_tokenizer_module(model_name_or_path="HuggingFaceM4/idefics2-8b")
idefics2_plugin = get_mm_plugin(name="idefics2", image_token="<image>")
check_inputs = {"plugin": idefics2_plugin, "tokenizer": tokenizer, "processor": processor}
mm_messages = copy.deepcopy(MM_MESSAGES)
fake_image_token = processor.fake_image_token.content
image_str = f"{fake_image_token}{"<image>" * processor.image_seq_len}{fake_image_token}"
image_str = image_str * 5
for message in mm_messages:
content = message["content"]
content = content.replace("<image>", image_str)
content = content.replace(f"{fake_image_token}{fake_image_token}", f"{fake_image_token}")
message['content'] = content
check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
_check_plugin(**check_inputs)
def test_llava_next_plugin():
tokenizer, processor = _load_tokenizer_module(model_name_or_path="llava-hf/llava-v1.6-vicuna-7b-hf")
llava_next_plugin = get_mm_plugin(name="llava_next", image_token="<image>")
check_inputs = {"plugin": llava_next_plugin, "tokenizer": tokenizer, "processor": processor}
check_inputs["expected_mm_messages"] = [
{key: value for key, value in message.items()}
for message in MM_MESSAGES
]
check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
_check_plugin(**check_inputs)
def test_llava_next_video_plugin():
tokenizer, processor = _load_tokenizer_module(model_name_or_path="llava-hf/LLaVA-NeXT-Video-7B-hf")
llava_next_video_plugin = get_mm_plugin(name="llava_next_video", image_token="<image>", video_token="<video>")
check_inputs = {"plugin": llava_next_video_plugin, "tokenizer": tokenizer, "processor": processor}
check_inputs["expected_mm_messages"] = [
{key: value for key, value in message.items()}
for message in MM_MESSAGES
]
check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
_check_plugin(**check_inputs)
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
def test_paligemma_plugin():
tokenizer, processor = _load_tokenizer_module(model_name_or_path="google/paligemma-3b-pt-224")
@ -167,3 +208,15 @@ def test_qwen2_vl_plugin():
]
check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
_check_plugin(**check_inputs)
def test_video_llava_plugin():
tokenizer, processor = _load_tokenizer_module(model_name_or_path="LanguageBind/Video-LLaVA-7B-hf")
video_llava_plugin = get_mm_plugin(name="video_llava", image_token="<image>", video_token="<video>")
check_inputs = {"plugin": video_llava_plugin, "tokenizer": tokenizer, "processor": processor}
check_inputs["expected_mm_messages"] = [
{key: value for key, value in message.items()}
for message in MM_MESSAGES
]
check_inputs["expected_mm_inputs"] = _get_mm_inputs(processor)
_check_plugin(**check_inputs)