[data] refactor mm plugin (#6895)

* refactor plugin

* lint

Former-commit-id: aca63bfcca02ecd95b57cd8949a50e26a913f716
This commit is contained in:
hoshi-hiyouga 2025-02-11 16:34:49 +08:00 committed by GitHub
parent 188f22d8a7
commit 593acca556

View File

@ -2,6 +2,7 @@ import inspect
import math
import re
from copy import deepcopy
from dataclasses import dataclass
from io import BytesIO
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, TypedDict, Union
@ -72,12 +73,12 @@ def _get_paligemma_token_type_ids(
return batch_token_type_ids
class BasePlugin:
def __init__(self, image_token: Optional[str], video_token: Optional[str], audio_token: Optional[str]) -> None:
self.image_token = image_token
self.video_token = video_token
self.audio_token = audio_token
self.expand_mm_tokens = True
@dataclass
class MMPluginMixin:
image_token: Optional[str]
video_token: Optional[str]
audio_token: Optional[str]
expand_mm_tokens: bool = True
def _validate_input(
self,
@ -103,11 +104,10 @@ class BasePlugin:
"This model does not support audio input. Please check whether the correct `template` is used."
)
def _preprocess_image(self, image: "ImageObject", **kwargs) -> "ImageObject":
def _preprocess_image(self, image: "ImageObject", image_resolution: int, **kwargs) -> "ImageObject":
r"""
Pre-processes a single image.
"""
image_resolution: int = kwargs["image_resolution"]
if (image.width * image.height) > image_resolution:
resize_factor = math.sqrt(image_resolution / (image.width * image.height))
width, height = int(image.width * resize_factor), int(image.height * resize_factor)
@ -118,12 +118,12 @@ class BasePlugin:
return image
def _get_video_sample_indices(self, video_stream: "Stream", **kwargs) -> List[int]:
def _get_video_sample_indices(
self, video_stream: "Stream", video_fps: float, video_maxlen: int, **kwargs
) -> List[int]:
r"""
Computes video sample indices according to fps.
"""
video_fps: float = kwargs["video_fps"]
video_maxlen: int = kwargs["video_maxlen"]
total_frames = video_stream.frames
if total_frames == 0: # infinite video
return np.linspace(0, video_maxlen - 1, video_maxlen).astype(np.int32)
@ -175,12 +175,11 @@ class BasePlugin:
return results
def _regularize_audios(self, audios: Sequence["AudioInput"], **kwargs) -> List["NDArray"]:
def _regularize_audios(self, audios: Sequence["AudioInput"], sampling_rate: float, **kwargs) -> List["NDArray"]:
r"""
Regularizes audios to avoid error. Including reading and resampling.
"""
results = []
sampling_rate = kwargs["sampling_rate"]
for audio in audios:
if isinstance(audio, str):
audio = librosa.load(audio, sr=sampling_rate)[0]
@ -218,8 +217,7 @@ class BasePlugin:
if len(images) != 0:
images = self._regularize_images(
images,
image_resolution=getattr(processor, "image_resolution", 768 * 768),
images, image_resolution=getattr(processor, "image_resolution", 768 * 768)
)
mm_inputs.update(image_processor(images, return_tensors="pt"))
@ -253,6 +251,9 @@ class BasePlugin:
return mm_inputs
@dataclass
class BasePlugin(MMPluginMixin):
def process_messages(
self,
messages: Sequence[Dict[str, str]],
@ -310,6 +311,7 @@ class BasePlugin:
return {}
@dataclass
class LlavaPlugin(BasePlugin):
@override
def process_messages(
@ -353,6 +355,7 @@ class LlavaPlugin(BasePlugin):
return self._get_mm_inputs(images, videos, audios, processor)
@dataclass
class LlavaNextPlugin(BasePlugin):
@override
def process_messages(
@ -410,6 +413,7 @@ class LlavaNextPlugin(BasePlugin):
return self._get_mm_inputs(images, videos, audios, processor)
@dataclass
class LlavaNextVideoPlugin(BasePlugin):
@override
def process_messages(
@ -444,12 +448,15 @@ class LlavaNextVideoPlugin(BasePlugin):
message["content"] = content.replace("{{image}}", self.image_token)
if "pixel_values_videos" in mm_inputs:
pixel_values_video = to_numpy_array(mm_inputs.get("pixel_values_videos")[0])
height, width = get_image_size(pixel_values_video[0])
num_frames = pixel_values_video.shape[0] # frame dim is always after batch dim
image_seqlen = (height // processor.patch_size) * (width // processor.patch_size)
video_seqlen = image_seqlen // 4 * num_frames # divide by 4 needed for avg pooling layer
video_seqlen = video_seqlen if self.expand_mm_tokens else 1
if self.expand_mm_tokens:
pixel_values_video = to_numpy_array(mm_inputs.get("pixel_values_videos")[0])
height, width = get_image_size(pixel_values_video[0])
num_frames = pixel_values_video.shape[0] # frame dim is always after batch dim
image_seqlen = (height // processor.patch_size) * (width // processor.patch_size)
video_seqlen = image_seqlen // 4 * num_frames # divide by 4 needed for avg pooling layer
else:
video_seqlen = 1
for message in messages:
content = message["content"]
while VIDEO_PLACEHOLDER in content:
@ -482,6 +489,7 @@ class LlavaNextVideoPlugin(BasePlugin):
return self._get_mm_inputs(images, videos, audios, processor)
@dataclass
class MiniCPMVPlugin(BasePlugin):
@override
def process_messages(
@ -645,12 +653,7 @@ class MiniCPMVPlugin(BasePlugin):
chunk_input=True,
sampling_rate=16000,
)
audio_feature_lens = [
torch.tensor(audio_feature_len)
if not isinstance(audio_feature_len, torch.Tensor)
else audio_feature_len
for audio_feature_len in audio_feature_lens
]
audio_feature_lens = [torch.tensor(audio_feature_len) for audio_feature_len in audio_feature_lens]
mm_inputs.update({"audio_features": audio_features, "audio_feature_lens": audio_feature_lens})
if kwargs.get("ret_phs", False):
mm_inputs.update({"audio_phs": audio_phs})
@ -670,7 +673,6 @@ class MiniCPMVPlugin(BasePlugin):
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos, audios)
# image bound
image_bounds_list = []
valid_image_nums_ls = []
@ -727,6 +729,7 @@ class MiniCPMVPlugin(BasePlugin):
return mm_inputs
@dataclass
class MllamaPlugin(BasePlugin):
@override
def process_messages(
@ -757,7 +760,7 @@ class MllamaPlugin(BasePlugin):
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: "ProcessorMixin",
**kwargs,
imglens: List[int],
) -> Dict[str, "torch.Tensor"]:
r"""
Processes visual inputs for mllama because its image processor only accepts List[List[ImageInput]].
@ -771,7 +774,6 @@ class MllamaPlugin(BasePlugin):
num_tiles: List[List[int]] with shape (batch_size, num_images_in_batch). For example, (2, 1).
"""
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
imglens: List[int] = kwargs["imglens"]
images = self._regularize_images(images, image_resolution=getattr(processor, "image_resolution", 768 * 768))
batch_images = []
for image_length in imglens:
@ -793,7 +795,7 @@ class MllamaPlugin(BasePlugin):
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos, audios)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor, imglens=imglens)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor, imglens)
num_tiles = mm_inputs.pop("num_tiles")
image_token_id = getattr(processor, "image_token_id")
max_image_tiles = getattr(processor.image_processor, "max_image_tiles")
@ -811,6 +813,7 @@ class MllamaPlugin(BasePlugin):
return mm_inputs
@dataclass
class PaliGemmaPlugin(BasePlugin):
@override
def process_messages(
@ -877,6 +880,7 @@ class PaliGemmaPlugin(BasePlugin):
return mm_inputs
@dataclass
class PixtralPlugin(BasePlugin):
@override
def process_messages(
@ -946,6 +950,7 @@ class PixtralPlugin(BasePlugin):
return mm_inputs
@dataclass
class Qwen2AudioPlugin(BasePlugin):
@override
def process_messages(
@ -967,9 +972,13 @@ class Qwen2AudioPlugin(BasePlugin):
for message in messages:
content = message["content"]
while AUDIO_PLACEHOLDER in content:
audio_length = audio_lengths.pop(0)
input_length = (audio_length - 1) // 2 + 1
audio_seqlen = (input_length - 2) // 2 + 1 if self.expand_mm_tokens else 1
if self.expand_mm_tokens:
audio_length = audio_lengths.pop(0)
input_length = (audio_length - 1) // 2 + 1
audio_seqlen = (input_length - 2) // 2 + 1
else:
audio_seqlen = 1
content = content.replace(
AUDIO_PLACEHOLDER, f"{bos_token}{self.audio_token * audio_seqlen}{eos_token}", 1
)
@ -998,6 +1007,7 @@ class Qwen2AudioPlugin(BasePlugin):
return self._get_mm_inputs(images, videos, audios, processor)
@dataclass
class Qwen2vlPlugin(BasePlugin):
@override
def _preprocess_image(self, image: "ImageObject", **kwargs) -> "ImageObject":
@ -1017,7 +1027,9 @@ class Qwen2vlPlugin(BasePlugin):
return image
@override
def _regularize_videos(self, videos: Sequence["VideoInput"], **kwargs) -> Tuple[List[List["ImageObject"]], List[float]]:
def _regularize_videos(
self, videos: Sequence["VideoInput"], **kwargs
) -> Tuple[List[List["ImageObject"]], List[float]]:
results, fps_per_video = [], []
for video in videos:
container = av.open(video, "r")
@ -1053,8 +1065,7 @@ class Qwen2vlPlugin(BasePlugin):
mm_inputs = {}
if len(images) != 0:
images = self._regularize_images(
images,
image_resolution=getattr(processor, "image_resolution", 768 * 768),
images, image_resolution=getattr(processor, "image_resolution", 768 * 768)
)
mm_inputs.update(image_processor(images, return_tensors="pt"))
@ -1142,6 +1153,7 @@ class Qwen2vlPlugin(BasePlugin):
return mm_inputs
@dataclass
class VideoLlavaPlugin(BasePlugin):
@override
def process_messages(