mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-23 06:12:50 +08:00
support efficient tokens calculation on sft/dpo
Former-commit-id: b9f00286d8a017ed9fd2876986da3b4d7034ef07
This commit is contained in:
parent
d6b9a2024b
commit
7ad5b5c088
@ -16,6 +16,7 @@
|
||||
# limitations under the License.
|
||||
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
import torch.distributed as dist
|
||||
|
||||
from ...data import PairwiseDataCollatorWithPadding, get_dataset, get_template_and_fix_tokenizer
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
@ -64,6 +65,11 @@ def run_dpo(
|
||||
# Update arguments
|
||||
training_args.remove_unused_columns = False # important for multimodal and pairwise dataset
|
||||
|
||||
effi_token_num = 0.0
|
||||
for data in dataset_module["train_dataset"]:
|
||||
effi_token_num += len(data["chosen_input_ids"])
|
||||
effi_token_num += len(data["rejected_input_ids"])
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = CustomDPOTrainer(
|
||||
model=model,
|
||||
@ -79,6 +85,10 @@ def run_dpo(
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
|
||||
train_result.metrics['effective_tokens_per_sec'] = effi_token_num * train_result.metrics['epoch'] / train_result.metrics['train_runtime']
|
||||
if dist.is_initialized():
|
||||
train_result.metrics['effective_tokens_per_sec'] = train_result.metrics['effective_tokens_per_sec'] / dist.get_world_size()
|
||||
|
||||
trainer.save_model()
|
||||
trainer.log_metrics("train", train_result.metrics)
|
||||
trainer.save_metrics("train", train_result.metrics)
|
||||
|
@ -16,6 +16,7 @@
|
||||
# limitations under the License.
|
||||
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
import torch.distributed as dist
|
||||
|
||||
from ...data import SFTDataCollatorWith4DAttentionMask, get_dataset, get_template_and_fix_tokenizer
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
@ -65,6 +66,10 @@ def run_sft(
|
||||
training_args.generation_num_beams = data_args.eval_num_beams or training_args.generation_num_beams
|
||||
training_args.remove_unused_columns = False # important for multimodal dataset
|
||||
|
||||
effi_token_num = 0.0
|
||||
for data in dataset_module["train_dataset"]:
|
||||
effi_token_num += len(data["input_ids"])
|
||||
|
||||
# Metric utils
|
||||
metric_module = {}
|
||||
if training_args.predict_with_generate:
|
||||
@ -94,6 +99,10 @@ def run_sft(
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
|
||||
train_result.metrics['effective_tokens_per_sec'] = effi_token_num * train_result.metrics['epoch'] / train_result.metrics['train_runtime']
|
||||
if dist.is_initialized():
|
||||
train_result.metrics['effective_tokens_per_sec'] = train_result.metrics['effective_tokens_per_sec'] / dist.get_world_size()
|
||||
|
||||
trainer.save_model()
|
||||
trainer.log_metrics("train", train_result.metrics)
|
||||
trainer.save_metrics("train", train_result.metrics)
|
||||
@ -123,3 +132,4 @@ def run_sft(
|
||||
|
||||
# Create model card
|
||||
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user