[breaking] support transformers 4.48 (#6628)

Former-commit-id: 15357cdad953bba1f2d294819f56b9746ed1b891
This commit is contained in:
hoshi-hiyouga 2025-01-31 01:36:33 +08:00 committed by GitHub
parent 245de012ca
commit f6779b0e0c
17 changed files with 53 additions and 105 deletions

View File

@ -22,10 +22,10 @@ jobs:
fail-fast: false
matrix:
python-version:
- "3.8" # TODO: remove py38 in next transformers release
- "3.9"
- "3.10"
- "3.11"
- "3.12"
os:
- "ubuntu-latest"
- "windows-latest"

View File

@ -377,11 +377,11 @@ huggingface-cli login
| Mandatory | Minimum | Recommend |
| ------------ | ------- | --------- |
| python | 3.8 | 3.11 |
| python | 3.9 | 3.10 |
| torch | 1.13.1 | 2.4.0 |
| transformers | 4.41.2 | 4.43.4 |
| datasets | 2.16.0 | 2.20.0 |
| accelerate | 0.30.1 | 0.32.0 |
| transformers | 4.41.2 | 4.45.2 |
| datasets | 2.16.0 | 3.2.0 |
| accelerate | 0.34.0 | 1.2.1 |
| peft | 0.11.1 | 0.12.0 |
| trl | 0.8.6 | 0.9.6 |
@ -390,8 +390,8 @@ huggingface-cli login
| CUDA | 11.6 | 12.2 |
| deepspeed | 0.10.0 | 0.14.0 |
| bitsandbytes | 0.39.0 | 0.43.1 |
| vllm | 0.4.3 | 0.5.0 |
| flash-attn | 2.3.0 | 2.6.3 |
| vllm | 0.4.3 | 0.6.6 |
| flash-attn | 2.3.0 | 2.7.2 |
### Hardware Requirement

View File

@ -379,11 +379,11 @@ huggingface-cli login
| 必需项 | 至少 | 推荐 |
| ------------ | ------- | --------- |
| python | 3.8 | 3.11 |
| python | 3.9 | 3.10 |
| torch | 1.13.1 | 2.4.0 |
| transformers | 4.41.2 | 4.43.4 |
| datasets | 2.16.0 | 2.20.0 |
| accelerate | 0.30.1 | 0.32.0 |
| transformers | 4.41.2 | 4.45.2 |
| datasets | 2.16.0 | 3.2.0 |
| accelerate | 0.34.0 | 1.2.1 |
| peft | 0.11.1 | 0.12.0 |
| trl | 0.8.6 | 0.9.6 |
@ -392,8 +392,8 @@ huggingface-cli login
| CUDA | 11.6 | 12.2 |
| deepspeed | 0.10.0 | 0.14.0 |
| bitsandbytes | 0.39.0 | 0.43.1 |
| vllm | 0.4.3 | 0.5.0 |
| flash-attn | 2.3.0 | 2.6.3 |
| vllm | 0.4.3 | 0.6.6 |
| flash-attn | 2.3.0 | 2.7.2 |
### 硬件依赖

View File

@ -1,9 +1,10 @@
transformers>=4.41.2,<=4.46.1
datasets>=2.16.0,<=3.1.0
accelerate>=0.34.0,<=1.0.1
transformers>=4.41.2,<=4.45.2;python_version<'3.10'
transformers>=4.41.2,<=4.48.1,!=4.46.*,!=4.47.*,!=4.48.0;python_version>='3.10'
datasets>=2.16.0,<=3.2.0
accelerate>=0.34.0,<=1.2.1
peft>=0.11.1,<=0.12.0
trl>=0.8.6,<=0.9.6
tokenizers>=0.19.0,<0.20.4
tokenizers>=0.19.0,<=0.21.0
gradio>=4.38.0,<=5.12.0
pandas>=2.0.0
scipy

View File

@ -46,7 +46,7 @@ extra_require = {
"torch": ["torch>=1.13.1"],
"torch-npu": ["torch==2.1.0", "torch-npu==2.1.0.post3", "decorator"],
"metrics": ["nltk", "jieba", "rouge-chinese"],
"deepspeed": ["deepspeed>=0.10.0,<=0.14.4"],
"deepspeed": ["deepspeed>=0.10.0,<=0.16.2"],
"liger-kernel": ["liger-kernel"],
"bitsandbytes": ["bitsandbytes>=0.39.0"],
"hqq": ["hqq"],
@ -92,7 +92,7 @@ def main():
url="https://github.com/hiyouga/LLaMA-Factory",
package_dir={"": "src"},
packages=find_packages("src"),
python_requires=">=3.8.0",
python_requires=">=3.9.0",
install_requires=get_requires(),
extras_require=extra_require,
entry_points={"console_scripts": get_console_scripts()},
@ -104,10 +104,10 @@ def main():
"License :: OSI Approved :: Apache Software License",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
)

View File

@ -20,17 +20,17 @@ Level:
Dependency graph:
main:
transformers>=4.41.2,<=4.46.1
datasets>=2.16.0,<=3.1.0
accelerate>=0.34.0,<=1.0.1
transformers>=4.41.2,<=4.48.1,!=4.46.*,!=4.47.*,!=4.48.0
datasets>=2.16.0,<=3.2.0
accelerate>=0.34.0,<=1.2.1
peft>=0.11.1,<=0.12.0
trl>=0.8.6,<=0.9.6
attention:
transformers>=4.42.4 (gemma+fa2)
longlora:
transformers>=4.41.2,<=4.46.1
transformers>=4.41.2,<4.48.0
packing:
transformers>=4.43.0,<=4.46.1
transformers>=4.43.0,<=4.48.1
Disable version checking: DISABLE_VERSION_CHECK=1
Enable VRAM recording: RECORD_VRAM=1

View File

@ -34,6 +34,7 @@ from transformers.utils import (
from transformers.utils.versions import require_version
from . import logging
from .packages import is_transformers_version_greater_than
_is_fp16_available = is_torch_npu_available() or is_torch_cuda_available()
@ -93,11 +94,13 @@ def check_dependencies() -> None:
r"""
Checks the version of the required packages.
"""
check_version("transformers>=4.41.2,<=4.46.1")
check_version("datasets>=2.16.0,<=3.1.0")
check_version("accelerate>=0.34.0,<=1.0.1")
check_version("transformers>=4.41.2,<=4.48.1,!=4.46.0,!=4.46.1,!=4.46.2,!=4.46.3,!=4.47.0,!=4.47.1,!=4.48.0")
check_version("datasets>=2.16.0,<=3.2.0")
check_version("accelerate>=0.34.0,<=1.2.1")
check_version("peft>=0.11.1,<=0.12.0")
check_version("trl>=0.8.6,<=0.9.6")
if is_transformers_version_greater_than("4.46.0") and not is_transformers_version_greater_than("4.48.1"):
logger.warning_rank0_once("There are known bugs in transformers v4.46.0-v4.48.0, please use other versions.")
def calculate_tps(dataset: Sequence[Dict[str, Any]], metrics: Dict[str, float], stage: Literal["sft", "rm"]) -> float:

View File

@ -87,11 +87,6 @@ def is_transformers_version_greater_than(content: str):
return _get_package_version("transformers") >= version.parse(content)
@lru_cache
def is_transformers_version_equal_to_4_46():
return version.parse("4.46.0") <= _get_package_version("transformers") <= version.parse("4.46.1")
def is_uvicorn_available():
return _is_package_available("uvicorn")

View File

@ -350,7 +350,7 @@ def llama_sdpa_attention_forward(
def _apply_llama_patch() -> None:
check_version("transformers>=4.41.2,<=4.46.1")
check_version("transformers>=4.41.2,<4.48.0")
LlamaAttention.forward = llama_attention_forward
LlamaFlashAttention2.forward = llama_flash_attention_2_forward
LlamaSdpaAttention.forward = llama_sdpa_attention_forward

View File

@ -118,6 +118,6 @@ def configure_packing(model_args: "ModelArguments", is_trainable: bool) -> None:
if not is_trainable or not model_args.block_diag_attn:
return
check_version("transformers>=4.43.0,<=4.46.1")
check_version("transformers>=4.43.0,<=4.48.1")
transformers.modeling_flash_attention_utils._get_unpad_data = get_unpad_data
logger.info_rank0("Using block diagonal attention for sequence packing without cross-attention.")

View File

@ -29,7 +29,7 @@ from trl.trainer import disable_dropout_in_model
from typing_extensions import override
from ...extras.constants import IGNORE_INDEX
from ...extras.packages import is_transformers_version_equal_to_4_46, is_transformers_version_greater_than
from ...extras.packages import is_transformers_version_greater_than
from ..callbacks import SaveProcessorCallback
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler, get_batch_logps, nested_detach
@ -282,19 +282,12 @@ class CustomDPOTrainer(DPOTrainer):
self, model: "PreTrainedModel", inputs: Dict[str, "torch.Tensor"], return_outputs: bool = False, **kwargs
) -> Union["torch.Tensor", Tuple["torch.Tensor", List["torch.Tensor"]]]:
r"""
Fixes the loss value. See https://github.com/huggingface/transformers/pull/35438 for details.
Subclass and override to accept extra kwargs.
"""
loss = super().compute_loss(model, inputs, return_outputs)
if is_transformers_version_equal_to_4_46() and kwargs.get("num_items_in_batch"):
if return_outputs:
loss = (loss[0] / self.args.gradient_accumulation_steps, *loss[1:])
else:
loss = loss / self.args.gradient_accumulation_steps
return loss
return super().compute_loss(model, inputs, return_outputs)
@override
def log(self, logs: Dict[str, float]) -> None:
def log(self, logs: Dict[str, float], *args, **kwargs) -> None:
r"""
Log `logs` on the various objects watching training, including stored metrics.
"""
@ -318,4 +311,4 @@ class CustomDPOTrainer(DPOTrainer):
if not key.startswith("dummy_"):
logs[key] = metric
return Trainer.log(self, logs)
return Trainer.log(self, logs, *args, **kwargs)

View File

@ -28,7 +28,7 @@ from trl.trainer import disable_dropout_in_model
from typing_extensions import override
from ...extras.constants import IGNORE_INDEX
from ...extras.packages import is_transformers_version_equal_to_4_46, is_transformers_version_greater_than
from ...extras.packages import is_transformers_version_greater_than
from ..callbacks import SaveProcessorCallback
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler, get_batch_logps, nested_detach
@ -256,19 +256,12 @@ class CustomKTOTrainer(KTOTrainer):
self, model: "PreTrainedModel", inputs: Dict[str, "torch.Tensor"], return_outputs: bool = False, **kwargs
) -> Union["torch.Tensor", Tuple["torch.Tensor", List["torch.Tensor"]]]:
r"""
Fixes the loss value. See https://github.com/huggingface/transformers/pull/35438 for details.
Subclass and override to accept extra kwargs.
"""
loss = super().compute_loss(model, inputs, return_outputs)
if is_transformers_version_equal_to_4_46() and kwargs.get("num_items_in_batch"):
if return_outputs:
loss = (loss[0] / self.args.gradient_accumulation_steps, *loss[1:])
else:
loss = loss / self.args.gradient_accumulation_steps
return loss
return super().compute_loss(model, inputs, return_outputs)
@override
def log(self, logs: Dict[str, float]) -> None:
def log(self, logs: Dict[str, float], *args, **kwargs) -> None:
r"""
Log `logs` on the various objects watching training, including stored metrics.
"""
@ -304,4 +297,4 @@ class CustomKTOTrainer(KTOTrainer):
if not key.startswith("dummy_"):
logs[key] = metric
return Trainer.log(self, logs)
return Trainer.log(self, logs, *args, **kwargs)

View File

@ -13,7 +13,7 @@
# limitations under the License.
from types import MethodType
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
from typing import TYPE_CHECKING, Optional
import torch
from transformers import Trainer
@ -25,7 +25,7 @@ from ..trainer_utils import create_custom_optimizer, create_custom_scheduler
if TYPE_CHECKING:
from transformers import PreTrainedModel, ProcessorMixin
from transformers import ProcessorMixin
from ...hparams import FinetuningArguments
@ -72,21 +72,3 @@ class CustomTrainer(Trainer):
return torch.utils.data.SequentialSampler(self.train_dataset)
return super()._get_train_sampler()
@override
def compute_loss(
self, model: "PreTrainedModel", inputs: Dict[str, "torch.Tensor"], return_outputs: bool = False, **kwargs
) -> Union["torch.Tensor", Tuple["torch.Tensor", List["torch.Tensor"]]]:
r"""
Fixes the loss value. See https://github.com/huggingface/transformers/pull/35438 for details.
It should be removed after https://github.com/huggingface/transformers/pull/35651 is merged.
"""
loss = super().compute_loss(model, inputs, return_outputs, **kwargs)
if kwargs.get("num_items_in_batch") and not getattr(self, "model_accepts_loss_kwargs", False):
if return_outputs:
loss = (loss[0] / self.args.gradient_accumulation_steps, *loss[1:])
else:
loss = loss / self.args.gradient_accumulation_steps
return loss

View File

@ -25,7 +25,7 @@ from transformers import Trainer
from typing_extensions import override
from ...extras import logging
from ...extras.packages import is_transformers_version_equal_to_4_46, is_transformers_version_greater_than
from ...extras.packages import is_transformers_version_greater_than
from ..callbacks import FixValueHeadModelCallback, SaveProcessorCallback
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler
@ -107,10 +107,6 @@ class PairwiseTrainer(Trainer):
chosen_scores, rejected_scores = chosen_scores.squeeze(), rejected_scores.squeeze()
loss = -torch.nn.functional.logsigmoid(chosen_scores.float() - rejected_scores.float()).mean()
if is_transformers_version_equal_to_4_46() and kwargs.get("num_items_in_batch"):
loss /= self.args.gradient_accumulation_steps # fixes the loss value for transformers 4.46.0-4.46.1
if return_outputs:
return loss, (loss, chosen_scores, rejected_scores)
else:

View File

@ -34,7 +34,7 @@ from ..trainer_utils import create_custom_optimizer, create_custom_scheduler
if TYPE_CHECKING:
from torch.utils.data import Dataset
from transformers import PreTrainedModel, PreTrainedTokenizer, ProcessorMixin
from transformers import PreTrainedTokenizer, ProcessorMixin
from transformers.trainer import PredictionOutput
from ...hparams import FinetuningArguments
@ -88,24 +88,6 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
return super()._get_train_sampler()
@override
def compute_loss(
self, model: "PreTrainedModel", inputs: Dict[str, "torch.Tensor"], return_outputs: bool = False, **kwargs
) -> Union["torch.Tensor", Tuple["torch.Tensor", List["torch.Tensor"]]]:
r"""
Fixes the loss value. See https://github.com/huggingface/transformers/pull/35438 for details.
It should be removed after https://github.com/huggingface/transformers/pull/35651 is merged.
"""
loss = super().compute_loss(model, inputs, return_outputs, **kwargs)
if kwargs.get("num_items_in_batch") and not getattr(self, "model_accepts_loss_kwargs", False):
if return_outputs:
loss = (loss[0] / self.args.gradient_accumulation_steps, *loss[1:])
else:
loss = loss / self.args.gradient_accumulation_steps
return loss
@override
def prediction_step(
self,

View File

@ -23,7 +23,7 @@ from transformers.utils import is_torch_npu_available
from ..extras.constants import LLAMABOARD_CONFIG, PEFT_METHODS, TRAINING_STAGES
from ..extras.misc import is_gpu_or_npu_available, torch_gc, use_ray
from ..extras.packages import is_gradio_available, is_transformers_version_equal_to_4_46
from ..extras.packages import is_gradio_available
from .common import (
DEFAULT_CACHE_DIR,
DEFAULT_CONFIG_DIR,
@ -180,7 +180,7 @@ class Runner:
plot_loss=True,
trust_remote_code=True,
ddp_timeout=180000000,
include_num_input_tokens_seen=False if is_transformers_version_equal_to_4_46() else True, # FIXME
include_num_input_tokens_seen=True,
)
args.update(json.loads(get("train.extra_args")))

View File

@ -14,8 +14,10 @@
import os
import pytest
from transformers.utils import is_flash_attn_2_available, is_torch_sdpa_available
from llamafactory.extras.packages import is_transformers_version_greater_than
from llamafactory.train.test_utils import load_infer_model
@ -27,6 +29,7 @@ INFER_ARGS = {
}
@pytest.mark.xfail(is_transformers_version_greater_than("4.48"), reason="Attention refactor.")
def test_attention():
attention_available = ["disabled"]
if is_torch_sdpa_available():