add pixtral template

Former-commit-id: 7b3336dd97e06a11ec52433ef36980aefdbb45ba
This commit is contained in:
Kingsley 2024-09-26 17:14:51 +08:00
parent 35e44143fd
commit b76116bb6c
2 changed files with 60 additions and 41 deletions

View File

@ -24,6 +24,7 @@ if TYPE_CHECKING:
from av.stream import Stream
from transformers import PreTrainedTokenizer, ProcessorMixin
from transformers.image_processing_utils import BaseImageProcessor
from transformers.processing_utils import _validate_images_text_input_order, ProcessingKwargs
class EncodedImage(TypedDict):
path: Optional[str]
@ -324,11 +325,65 @@ class PaliGemmaPlugin(BasePlugin):
return mm_inputs
class PixtralPlugin(BasePlugin):
#TODO preprocess according to Pixtral hf
from transformers import LlavaForConditionalGeneration
@override
def _preprocess_image(self, image: "ImageObject", **kwargs) -> "ImageObject":
pass
def process_messages(
self,
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
patch_size = processor.patch_size
image_token = processor.image_token
image_break_token = processor.image_break_token
image_end_token = processor.image_end_token
self._validate_input(images, videos)
num_image_tokens = 0
image_input_sizes = self._get_mm_inputs(images, videos, processor)["image_sizes"]
messages = deepcopy(messages)
print(image_input_sizes[0], messages)
for message in messages:
content = message["content"]
img_id = 0
while IMAGE_PLACEHOLDER in content:
# only support one image for one time?
image_size = image_input_sizes[0][0]
height, width = image_size
num_height_tokens = height // patch_size
num_width_tokens = width // patch_size
replace_tokens = [
[image_token] * num_width_tokens + [image_break_token]
] * num_height_tokens
# Flatten list
replace_tokens = [item for sublist in replace_tokens for item in sublist]
replace_tokens[-1] = image_end_token
replace_str = "".join(replace_tokens)
content.replace(IMAGE_PLACEHOLDER, replace_str, 1)
img_id += 1
num_image_tokens += 1
message["content"] = content
if len(images) != num_image_tokens:
raise ValueError("The number of images does not match the number of {} tokens".format(IMAGE_PLACEHOLDER))
return messages
@override
def get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
seqlens: Sequence[int],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
return self._get_mm_inputs(images, videos, processor)
class Qwen2vlPlugin(BasePlugin):
@override
@ -428,6 +483,7 @@ PLUGINS = {
"llava": LlavaPlugin,
"paligemma": PaliGemmaPlugin,
"qwen2_vl": Qwen2vlPlugin,
"pixtral": PixtralPlugin,
}

View File

@ -119,43 +119,6 @@ def load_config(model_args: "ModelArguments") -> "PretrainedConfig":
Loads model config.
"""
init_kwargs = _get_init_kwargs(model_args)
if "pixtral" in model_args.model_name_or_path:
from transformers import PretrainedConfig
class PixtralVisionConfig(PretrainedConfig):
model_type = "pixtral"
def __init__(
self,
hidden_size=1024,
intermediate_size=4096,
num_hidden_layers=24,
num_attention_heads=16,
num_channels=3,
image_size=1024,
patch_size=16,
hidden_act="gelu",
attention_dropout=0.0,
rope_theta=10000.0,
tie_word_embeddings=False,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.attention_dropout = attention_dropout
self.hidden_act = hidden_act
self.rope_theta = rope_theta
self.tie_word_embeddings = tie_word_embeddings
self.head_dim = hidden_size // num_attention_heads
return PixtralVisionConfig()
return AutoConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs)