mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-07-31 10:42:50 +08:00
[trainer] Add Muon Optimizer (#7749)
Co-authored-by: hoshi-hiyouga <hiyouga@buaa.edu.cn>
This commit is contained in:
parent
278df4308d
commit
d128382d3c
23
README.md
23
README.md
@ -77,7 +77,7 @@ Choose your path:
|
||||
- **Various models**: LLaMA, LLaVA, Mistral, Mixtral-MoE, Qwen, Qwen2-VL, DeepSeek, Yi, Gemma, ChatGLM, Phi, etc.
|
||||
- **Integrated methods**: (Continuous) pre-training, (multimodal) supervised fine-tuning, reward modeling, PPO, DPO, KTO, ORPO, etc.
|
||||
- **Scalable resources**: 16-bit full-tuning, freeze-tuning, LoRA and 2/3/4/5/6/8-bit QLoRA via AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ.
|
||||
- **Advanced algorithms**: [GaLore](https://github.com/jiaweizzhao/GaLore), [BAdam](https://github.com/Ledzy/BAdam), [APOLLO](https://github.com/zhuhanqing/APOLLO), [Adam-mini](https://github.com/zyushun/Adam-mini), DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ and PiSSA.
|
||||
- **Advanced algorithms**: [Muon](https://github.com/KellerJordan/Muon), [GaLore](https://github.com/jiaweizzhao/GaLore), [BAdam](https://github.com/Ledzy/BAdam), [APOLLO](https://github.com/zhuhanqing/APOLLO), [Adam-mini](https://github.com/zyushun/Adam-mini), DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ and PiSSA.
|
||||
- **Practical tricks**: [FlashAttention-2](https://github.com/Dao-AILab/flash-attention), [Unsloth](https://github.com/unslothai/unsloth), [Liger Kernel](https://github.com/linkedin/Liger-Kernel), RoPE scaling, NEFTune and rsLoRA.
|
||||
- **Wide tasks**: Multi-turn dialogue, tool using, image understanding, visual grounding, video recognition, audio understanding, etc.
|
||||
- **Experiment monitors**: LlamaBoard, TensorBoard, Wandb, MLflow, [SwanLab](https://github.com/SwanHubX/SwanLab), etc.
|
||||
@ -107,7 +107,7 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
|
||||
|
||||
## Changelog
|
||||
|
||||
[25/04/16] We supported fine-tuning the **[InternVL3](https://huggingface.co/OpenGVLab/InternVL3-8B)** model. See [PR #7258](https://github.com/hiyouga/LLaMA-Factory/pull/7258) to get started.
|
||||
[25/04/16] We supported **[Muon](https://github.com/KellerJordan/Muon)** optimizer. See [examples](examples/README.md) for usage. Thank [Juanxi Tian](https://tianshijing.github.io)'s PR.
|
||||
|
||||
[25/04/14] We supported fine-tuning the **[GLM-Z1](https://huggingface.co/THUDM/GLM-Z1-9B-0414)** and **[Kimi-VL](https://huggingface.co/moonshotai/Kimi-VL-A3B-Instruct)** models.
|
||||
|
||||
@ -115,14 +115,14 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
|
||||
|
||||
[25/03/31] We supported fine-tuning the **[Qwen2.5 Omni](https://qwenlm.github.io/blog/qwen2.5-omni/)** model. See [PR #7537](https://github.com/hiyouga/LLaMA-Factory/pull/7537) to get started.
|
||||
|
||||
<details><summary>Full Changelog</summary>
|
||||
|
||||
[25/03/15] We supported **[SGLang](https://github.com/sgl-project/sglang)** as inference backend. Try `infer_backend: sglang` to accelerate inference.
|
||||
|
||||
[25/03/12] We supported fine-tuning the **[Gemma 3](https://huggingface.co/blog/gemma3)** model.
|
||||
|
||||
[25/02/24] Announcing **[EasyR1](https://github.com/hiyouga/EasyR1)**, an efficient, scalable and multi-modality RL training framework for efficient GRPO training.
|
||||
|
||||
<details><summary>Full Changelog</summary>
|
||||
|
||||
[25/02/11] We supported saving the **[Ollama](https://github.com/ollama/ollama)** modelfile when exporting the model checkpoints. See [examples](examples/README.md) for usage.
|
||||
|
||||
[25/02/05] We supported fine-tuning the **[Qwen2-Audio](Qwen/Qwen2-Audio-7B-Instruct)** and **[MiniCPM-o-2.6](https://huggingface.co/openbmb/MiniCPM-o-2_6)** on audio understanding tasks.
|
||||
@ -245,11 +245,11 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
|
||||
| [Gemma 3](https://huggingface.co/google) | 1B/4B/12B/27B | gemma3/gemma (1B) |
|
||||
| [GLM-4/GLM-4-0414/GLM-Z1](https://huggingface.co/THUDM) | 9B/32B | glm4 |
|
||||
| [GPT-2](https://huggingface.co/openai-community) | 0.1B/0.4B/0.8B/1.5B | - |
|
||||
| [Granite 3.0-3.3](https://huggingface.co/ibm-granite) | 1B/2B/3B/8B | granite3 |
|
||||
| [Granite 3.0-3.1](https://huggingface.co/ibm-granite) | 1B/2B/3B/8B | granite3 |
|
||||
| [Hunyuan](https://huggingface.co/tencent/) | 7B | hunyuan |
|
||||
| [Index](https://huggingface.co/IndexTeam) | 1.9B | index |
|
||||
| [InternLM 2-3](https://huggingface.co/internlm) | 7B/8B/20B | intern2 |
|
||||
| [InternVL 2.5-3](https://huggingface.co/OpenGVLab)\*\* | 1B/2B/4B/8B/9B/14B/26B/38B/78B | intern_vl |
|
||||
| [InternVL2_5-3](https://huggingface.co/OpenGVLab/InternVL) | 1B/2B/4B/8B/9B/14B/26B/38B/78B | intern_vl |
|
||||
| [Kimi-VL](https://huggingface.co/moonshotai) | 16B | kimi_vl |
|
||||
| [Llama](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
|
||||
| [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
|
||||
@ -417,11 +417,11 @@ huggingface-cli login
|
||||
| Mandatory | Minimum | Recommend |
|
||||
| ------------ | ------- | --------- |
|
||||
| python | 3.9 | 3.10 |
|
||||
| torch | 2.0.0 | 2.6.0 |
|
||||
| transformers | 4.45.0 | 4.50.0 |
|
||||
| torch | 1.13.1 | 2.6.0 |
|
||||
| transformers | 4.41.2 | 4.50.0 |
|
||||
| datasets | 2.16.0 | 3.2.0 |
|
||||
| accelerate | 0.34.0 | 1.2.1 |
|
||||
| peft | 0.14.0 | 0.15.1 |
|
||||
| peft | 0.14.0 | 0.15.0 |
|
||||
| trl | 0.8.6 | 0.9.6 |
|
||||
|
||||
| Optional | Minimum | Recommend |
|
||||
@ -430,7 +430,7 @@ huggingface-cli login
|
||||
| deepspeed | 0.10.0 | 0.16.4 |
|
||||
| bitsandbytes | 0.39.0 | 0.43.1 |
|
||||
| vllm | 0.4.3 | 0.8.2 |
|
||||
| flash-attn | 2.5.6 | 2.7.2 |
|
||||
| flash-attn | 2.3.0 | 2.7.2 |
|
||||
|
||||
### Hardware Requirement
|
||||
|
||||
@ -458,7 +458,7 @@ cd LLaMA-Factory
|
||||
pip install -e ".[torch,metrics]"
|
||||
```
|
||||
|
||||
Extra dependencies available: torch, torch-npu, metrics, deepspeed, liger-kernel, bitsandbytes, hqq, eetq, gptq, awq, aqlm, vllm, sglang, galore, apollo, badam, adam-mini, qwen, minicpm_v, modelscope, openmind, swanlab, quality
|
||||
Extra dependencies available: torch, torch-npu, metrics, deepspeed, liger-kernel, bitsandbytes, hqq, eetq, gptq, awq, aqlm, vllm, sglang, muon, galore, apollo, badam, adam-mini, qwen, minicpm_v, modelscope, openmind, swanlab, quality
|
||||
|
||||
> [!TIP]
|
||||
> Use `pip install --no-deps -e .` to resolve package conflicts.
|
||||
@ -519,7 +519,6 @@ source /usr/local/Ascend/ascend-toolkit/set_env.sh
|
||||
| torch | 2.1.0 | 2.4.0 |
|
||||
| torch-npu | 2.1.0 | 2.4.0.post2 |
|
||||
| deepspeed | 0.13.2 | 0.13.2 |
|
||||
| vllm-ascend | - | 0.7.3 |
|
||||
|
||||
Remember to use `ASCEND_RT_VISIBLE_DEVICES` instead of `CUDA_VISIBLE_DEVICES` to specify the device to use.
|
||||
|
||||
|
23
README_zh.md
23
README_zh.md
@ -80,7 +80,7 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
|
||||
- **多种模型**:LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Qwen2-VL、DeepSeek、Yi、Gemma、ChatGLM、Phi 等等。
|
||||
- **集成方法**:(增量)预训练、(多模态)指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练、ORPO 训练等等。
|
||||
- **多种精度**:16 比特全参数微调、冻结微调、LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ 的 2/3/4/5/6/8 比特 QLoRA 微调。
|
||||
- **先进算法**:[GaLore](https://github.com/jiaweizzhao/GaLore)、[BAdam](https://github.com/Ledzy/BAdam)、[APOLLO](https://github.com/zhuhanqing/APOLLO)、[Adam-mini](https://github.com/zyushun/Adam-mini)、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ 和 PiSSA。
|
||||
- **先进算法**:[Muon](https://github.com/KellerJordan/Muon), [GaLore](https://github.com/jiaweizzhao/GaLore)、[BAdam](https://github.com/Ledzy/BAdam)、[APOLLO](https://github.com/zhuhanqing/APOLLO)、[Adam-mini](https://github.com/zyushun/Adam-mini)、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ 和 PiSSA。
|
||||
- **实用技巧**:[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)、[Unsloth](https://github.com/unslothai/unsloth)、[Liger Kernel](https://github.com/linkedin/Liger-Kernel)、RoPE scaling、NEFTune 和 rsLoRA。
|
||||
- **广泛任务**:多轮对话、工具调用、图像理解、视觉定位、视频识别和语音理解等等。
|
||||
- **实验监控**:LlamaBoard、TensorBoard、Wandb、MLflow、[SwanLab](https://github.com/SwanHubX/SwanLab) 等等。
|
||||
@ -110,7 +110,7 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
|
||||
|
||||
## 更新日志
|
||||
|
||||
[25/04/16] 我们支持了 **[InternVL3](https://huggingface.co/OpenGVLab/InternVL3-8B)** 模型的微调。查看 [PR #7258](https://github.com/hiyouga/LLaMA-Factory/pull/7258) 以使用。
|
||||
[25/04/16] 我们支持了 **[Muon](https://github.com/KellerJordan/Muon)** 优化器。详细用法请参照 [examples](examples/README_zh.md)。感谢 [@Juanxi Tian](https://tianshijing.github.io) 的 PR。
|
||||
|
||||
[25/04/14] 我们支持了 **[GLM-Z1](https://huggingface.co/THUDM/GLM-Z1-9B-0414)** 和 **[Kimi-VL](https://huggingface.co/moonshotai/Kimi-VL-A3B-Instruct)** 模型的微调。
|
||||
|
||||
@ -118,14 +118,14 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
|
||||
|
||||
[25/03/31] 我们支持了 **[Qwen2.5 Omni](https://qwenlm.github.io/blog/qwen2.5-omni/)** 模型的微调。查看 [PR #7537](https://github.com/hiyouga/LLaMA-Factory/pull/7537) 以使用。
|
||||
|
||||
<details><summary>展开日志</summary>
|
||||
|
||||
[25/03/15] 我们支持了 **[SGLang](https://github.com/sgl-project/sglang)** 推理后端,请使用 `infer_backend: sglang` 启用。
|
||||
|
||||
[25/03/12] 我们支持了 **[Gemma 3](https://huggingface.co/blog/gemma3)** 模型的微调。
|
||||
|
||||
[25/02/24] 我们宣布开源 **[EasyR1](https://github.com/hiyouga/EasyR1)**,一个高效可扩展的多模态强化学习框架,支持高效的 GRPO 训练。
|
||||
|
||||
<details><summary>展开日志</summary>
|
||||
|
||||
[25/02/11] 我们支持了在导出模型时保存 **[Ollama](https://github.com/ollama/ollama)** 配置文件。详细用法请参照 [examples](examples/README_zh.md)。
|
||||
|
||||
[25/02/05] 我们支持了在语音理解任务上微调 **[Qwen2-Audio](Qwen/Qwen2-Audio-7B-Instruct)** 和 **[MiniCPM-o-2.6](https://huggingface.co/openbmb/MiniCPM-o-2_6)** 模型。
|
||||
@ -248,11 +248,11 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
|
||||
| [Gemma 3](https://huggingface.co/google) | 1B/4B/12B/27B | gemma3/gemma (1B) |
|
||||
| [GLM-4/GLM-4-0414/GLM-Z1](https://huggingface.co/THUDM) | 9B/32B | glm4 |
|
||||
| [GPT-2](https://huggingface.co/openai-community) | 0.1B/0.4B/0.8B/1.5B | - |
|
||||
| [Granite 3.0-3.3](https://huggingface.co/ibm-granite) | 1B/2B/3B/8B | granite3 |
|
||||
| [Granite 3.0-3.1](https://huggingface.co/ibm-granite) | 1B/2B/3B/8B | granite3 |
|
||||
| [Hunyuan](https://huggingface.co/tencent/) | 7B | hunyuan |
|
||||
| [Index](https://huggingface.co/IndexTeam) | 1.9B | index |
|
||||
| [InternLM 2-3](https://huggingface.co/internlm) | 7B/8B/20B | intern2 |
|
||||
| [InternVL 2.5-3](https://huggingface.co/OpenGVLab)\*\* | 1B/2B/4B/8B/9B/14B/26B/38B/78B | intern_vl |
|
||||
| [InternVL2_5-3](https://huggingface.co/OpenGVLab/InternVL) | 1B/2B/4B/8B/9B/14B/26B/38B/78B | intern_vl |
|
||||
| [Kimi-VL](https://huggingface.co/moonshotai) | 16B | kimi_vl |
|
||||
| [Llama](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
|
||||
| [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
|
||||
@ -420,11 +420,11 @@ huggingface-cli login
|
||||
| 必需项 | 至少 | 推荐 |
|
||||
| ------------ | ------- | --------- |
|
||||
| python | 3.9 | 3.10 |
|
||||
| torch | 2.0.0 | 2.6.0 |
|
||||
| transformers | 4.45.0 | 4.50.0 |
|
||||
| torch | 1.13.1 | 2.6.0 |
|
||||
| transformers | 4.41.2 | 4.50.0 |
|
||||
| datasets | 2.16.0 | 3.2.0 |
|
||||
| accelerate | 0.34.0 | 1.2.1 |
|
||||
| peft | 0.14.0 | 0.15.1 |
|
||||
| peft | 0.14.0 | 0.15.0 |
|
||||
| trl | 0.8.6 | 0.9.6 |
|
||||
|
||||
| 可选项 | 至少 | 推荐 |
|
||||
@ -433,7 +433,7 @@ huggingface-cli login
|
||||
| deepspeed | 0.10.0 | 0.16.4 |
|
||||
| bitsandbytes | 0.39.0 | 0.43.1 |
|
||||
| vllm | 0.4.3 | 0.8.2 |
|
||||
| flash-attn | 2.5.6 | 2.7.2 |
|
||||
| flash-attn | 2.3.0 | 2.7.2 |
|
||||
|
||||
### 硬件依赖
|
||||
|
||||
@ -461,7 +461,7 @@ cd LLaMA-Factory
|
||||
pip install -e ".[torch,metrics]"
|
||||
```
|
||||
|
||||
可选的额外依赖项:torch、torch-npu、metrics、deepspeed、liger-kernel、bitsandbytes、hqq、eetq、gptq、awq、aqlm、vllm、sglang、galore、apollo、badam、adam-mini、qwen、minicpm_v、modelscope、openmind、swanlab、quality
|
||||
可选的额外依赖项:torch、torch-npu、metrics、deepspeed、liger-kernel、bitsandbytes、hqq、eetq、gptq、awq、aqlm、vllm、sglang、muon, galore、apollo、badam、adam-mini、qwen、minicpm_v、modelscope、openmind、swanlab、quality
|
||||
|
||||
> [!TIP]
|
||||
> 遇到包冲突时,可使用 `pip install --no-deps -e .` 解决。
|
||||
@ -523,7 +523,6 @@ source /usr/local/Ascend/ascend-toolkit/set_env.sh
|
||||
| torch | 2.1.0 | 2.4.0 |
|
||||
| torch-npu | 2.1.0 | 2.4.0.post2 |
|
||||
| deepspeed | 0.13.2 | 0.13.2 |
|
||||
| vllm-ascend | - | 0.7.3 |
|
||||
|
||||
请使用 `ASCEND_RT_VISIBLE_DEVICES` 而非 `CUDA_VISIBLE_DEVICES` 来指定运算设备。
|
||||
|
||||
|
@ -215,6 +215,12 @@ llamafactory-cli api examples/inference/llama3_lora_sft.yaml
|
||||
|
||||
### Extras
|
||||
|
||||
#### Full-Parameter Fine-Tuning using Muon
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/extras/muon/qwen2_full_sft.yaml
|
||||
```
|
||||
|
||||
#### Full-Parameter Fine-Tuning using GaLore
|
||||
|
||||
```bash
|
||||
|
@ -215,6 +215,12 @@ llamafactory-cli api examples/inference/llama3_lora_sft.yaml
|
||||
|
||||
### 杂项
|
||||
|
||||
#### 使用 Muon 进行全参数训练
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/extras/muon/qwen2_full_sft.yaml
|
||||
```
|
||||
|
||||
#### 使用 GaLore 进行全参数训练
|
||||
|
||||
```bash
|
||||
|
43
examples/extras/muon/qwen2_full_sft.yaml
Normal file
43
examples/extras/muon/qwen2_full_sft.yaml
Normal file
@ -0,0 +1,43 @@
|
||||
### model
|
||||
model_name_or_path: Qwen/Qwen2-1.5B-Instruct
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: full
|
||||
use_muon: true
|
||||
|
||||
### dataset
|
||||
dataset: identity,alpaca_en_demo
|
||||
template: qwen
|
||||
cutoff_len: 2048
|
||||
max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
dataloader_num_workers: 4
|
||||
|
||||
### output
|
||||
output_dir: saves/qwen2-1_5b/full/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
save_only_model: false
|
||||
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-5
|
||||
num_train_epochs: 3.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
bf16: true
|
||||
ddp_timeout: 180000000
|
||||
|
||||
### eval
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
@ -411,6 +411,10 @@ class FinetuningArguments(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to use the Adam-mini optimizer."},
|
||||
)
|
||||
use_muon: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to use the Muon optimizer."},
|
||||
)
|
||||
freeze_vision_tower: bool = field(
|
||||
default=True,
|
||||
metadata={"help": "Whether ot not to freeze the vision tower in MLLM training."},
|
||||
|
@ -153,7 +153,7 @@ def _check_extra_dependencies(
|
||||
elif model_args.infer_backend == EngineName.SGLANG:
|
||||
check_version("sglang>=0.4.4")
|
||||
check_version("sglang", mandatory=True)
|
||||
|
||||
|
||||
if finetuning_args.use_galore:
|
||||
check_version("galore_torch", mandatory=True)
|
||||
|
||||
|
18
src/llamafactory/third_party/muon/__init__.py
vendored
Normal file
18
src/llamafactory/third_party/muon/__init__.py
vendored
Normal file
@ -0,0 +1,18 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from .muon import Muon
|
||||
|
||||
|
||||
__all__ = ["Muon"]
|
232
src/llamafactory/third_party/muon/muon.py
vendored
Normal file
232
src/llamafactory/third_party/muon/muon.py
vendored
Normal file
@ -0,0 +1,232 @@
|
||||
# Copyright 2025 Moonshot AI and the LlamaFactory team.
|
||||
#
|
||||
# This code is based on the MoonshotAI's Moonlight library.
|
||||
# https://github.com/MoonshotAI/Moonlight/blob/master/examples/toy_train.py
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# MIT License
|
||||
#
|
||||
# Copyright (c) 2025 Moonshot AI
|
||||
#
|
||||
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
# of this software and associated documentation files (the "Software"), to deal
|
||||
# in the Software without restriction, including without limitation the rights
|
||||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
# copies of the Software, and to permit persons to whom the Software is
|
||||
# furnished to do so, subject to the following conditions:
|
||||
#
|
||||
# The above copyright notice and this permission notice shall be included in all
|
||||
# copies or substantial portions of the Software.
|
||||
#
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
# SOFTWARE.
|
||||
import math
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
# This code snippet is a modified version adapted from the following GitHub repository:
|
||||
# https://github.com/KellerJordan/Muon/blob/master/muon.py
|
||||
@torch.compile
|
||||
def zeropower_via_newtonschulz5(G, steps):
|
||||
"""Newton-Schulz iteration to compute the zeroth power / orthogonalization of G.
|
||||
|
||||
We opt to use a quintic iteration whose coefficients are selected to maximize the slope at zero.
|
||||
For the purpose of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
|
||||
zero even beyond the point where the iteration no longer converges all the way to one everywhere
|
||||
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
|
||||
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
|
||||
performance at all relative to UV^T, where USV^T = G is the SVD.
|
||||
"""
|
||||
assert len(G.shape) == 2
|
||||
a, b, c = (3.4445, -4.7750, 2.0315)
|
||||
X = G.bfloat16()
|
||||
if G.size(0) > G.size(1):
|
||||
X = X.T
|
||||
# Ensure spectral norm is at most 1
|
||||
X = X / (X.norm() + 1e-7)
|
||||
# Perform the NS iterations
|
||||
for _ in range(steps):
|
||||
A = X @ X.T
|
||||
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
|
||||
X = a * X + B @ X
|
||||
|
||||
if G.size(0) > G.size(1):
|
||||
X = X.T
|
||||
return X
|
||||
|
||||
|
||||
class Muon(torch.optim.Optimizer):
|
||||
"""Muon - MomentUm Orthogonalized by Newton-schulz.
|
||||
|
||||
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
|
||||
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
|
||||
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
|
||||
the advantage that it can be stably run in bfloat16 on the GPU.
|
||||
|
||||
Some warnings:
|
||||
- We believe this optimizer is unlikely to work well for training with small batch size.
|
||||
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
|
||||
|
||||
Arguments:
|
||||
muon_params: The parameters to be optimized by Muon.
|
||||
lr: The learning rate. The updates will have spectral norm of `lr`. (0.02 is a good default)
|
||||
momentum: The momentum used by the internal SGD. (0.95 is a good default)
|
||||
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
|
||||
ns_steps: The number of Newton-Schulz iterations to run. (6 is probably always enough)
|
||||
adamw_params: The parameters to be optimized by AdamW. Any parameters in `muon_params` which are
|
||||
{0, 1}-D or are detected as being the embed or lm_head will be optimized by AdamW as well.
|
||||
adamw_lr: The learning rate for the internal AdamW.
|
||||
adamw_betas: The betas for the internal AdamW.
|
||||
adamw_eps: The epsilon for the internal AdamW.
|
||||
adamw_wd: The weight decay for the internal AdamW.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
lr=1e-3,
|
||||
wd=0.1,
|
||||
muon_params=None,
|
||||
momentum=0.95,
|
||||
nesterov=True,
|
||||
ns_steps=5,
|
||||
adamw_params=None,
|
||||
adamw_betas=(0.9, 0.95),
|
||||
adamw_eps=1e-8,
|
||||
):
|
||||
defaults = dict(
|
||||
lr=lr,
|
||||
wd=wd,
|
||||
momentum=momentum,
|
||||
nesterov=nesterov,
|
||||
ns_steps=ns_steps,
|
||||
adamw_betas=adamw_betas,
|
||||
adamw_eps=adamw_eps,
|
||||
)
|
||||
|
||||
params = list(muon_params)
|
||||
adamw_params = list(adamw_params) if adamw_params is not None else []
|
||||
params.extend(adamw_params)
|
||||
super().__init__(params, defaults)
|
||||
# Sort parameters into those for which we will use Muon, and those for which we will not
|
||||
for p in muon_params:
|
||||
# Use Muon for every parameter in muon_params which is >= 2D and doesn't look like an embedding or head layer
|
||||
assert p.ndim == 2, p.ndim
|
||||
self.state[p]["use_muon"] = True
|
||||
for p in adamw_params:
|
||||
# Do not use Muon for parameters in adamw_params
|
||||
self.state[p]["use_muon"] = False
|
||||
|
||||
def adjust_lr_for_muon(self, lr, param_shape):
|
||||
A, B = param_shape[:2]
|
||||
# We adjust the learning rate and weight decay based on the size of the parameter matrix
|
||||
# as describted in the paper
|
||||
adjusted_ratio = 0.2 * math.sqrt(max(A, B))
|
||||
adjusted_lr = lr * adjusted_ratio
|
||||
return adjusted_lr
|
||||
|
||||
def step(self, closure=None):
|
||||
"""Perform a single optimization step.
|
||||
|
||||
Args:
|
||||
closure (Callable, optional): A closure that reevaluates the model
|
||||
and returns the loss.
|
||||
"""
|
||||
loss = None
|
||||
if closure is not None:
|
||||
with torch.enable_grad():
|
||||
loss = closure()
|
||||
|
||||
for group in self.param_groups:
|
||||
############################
|
||||
# Muon #
|
||||
############################
|
||||
|
||||
params = [p for p in group["params"] if self.state[p]["use_muon"]]
|
||||
# import pdb; pdb.set_trace()
|
||||
lr = group["lr"]
|
||||
wd = group["wd"]
|
||||
momentum = group["momentum"]
|
||||
|
||||
# generate weight updates in distributed fashion
|
||||
for p in params:
|
||||
# sanity check
|
||||
g = p.grad
|
||||
if g is None:
|
||||
continue
|
||||
if g.ndim > 2:
|
||||
g = g.view(g.size(0), -1)
|
||||
assert g is not None
|
||||
|
||||
# calc update
|
||||
state = self.state[p]
|
||||
if "momentum_buffer" not in state:
|
||||
state["momentum_buffer"] = torch.zeros_like(g)
|
||||
buf = state["momentum_buffer"]
|
||||
buf.mul_(momentum).add_(g)
|
||||
if group["nesterov"]:
|
||||
g = g.add(buf, alpha=momentum)
|
||||
else:
|
||||
g = buf
|
||||
u = zeropower_via_newtonschulz5(g, steps=group["ns_steps"])
|
||||
|
||||
# scale update
|
||||
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
||||
|
||||
# apply weight decay
|
||||
p.data.mul_(1 - lr * wd)
|
||||
|
||||
# apply update
|
||||
p.data.add_(u, alpha=-adjusted_lr)
|
||||
|
||||
############################
|
||||
# AdamW backup #
|
||||
############################
|
||||
|
||||
params = [p for p in group["params"] if not self.state[p]["use_muon"]]
|
||||
lr = group["lr"]
|
||||
beta1, beta2 = group["adamw_betas"]
|
||||
eps = group["adamw_eps"]
|
||||
weight_decay = group["wd"]
|
||||
|
||||
for p in params:
|
||||
g = p.grad
|
||||
if g is None:
|
||||
continue
|
||||
state = self.state[p]
|
||||
if "step" not in state:
|
||||
state["step"] = 0
|
||||
state["moment1"] = torch.zeros_like(g)
|
||||
state["moment2"] = torch.zeros_like(g)
|
||||
state["step"] += 1
|
||||
step = state["step"]
|
||||
buf1 = state["moment1"]
|
||||
buf2 = state["moment2"]
|
||||
buf1.lerp_(g, 1 - beta1)
|
||||
buf2.lerp_(g.square(), 1 - beta2)
|
||||
|
||||
g = buf1 / (eps + buf2.sqrt())
|
||||
|
||||
bias_correction1 = 1 - beta1**step
|
||||
bias_correction2 = 1 - beta2**step
|
||||
scale = bias_correction1 / bias_correction2**0.5
|
||||
p.data.mul_(1 - lr * weight_decay)
|
||||
p.data.add_(g, alpha=-lr / scale)
|
||||
|
||||
return loss
|
@ -489,12 +489,51 @@ def _create_adam_mini_optimizer(
|
||||
logger.info_rank0("Using Adam-mini optimizer.")
|
||||
return optimizer
|
||||
|
||||
def _create_muon_optimizer(
|
||||
model: "PreTrainedModel",
|
||||
training_args: "TrainingArguments",
|
||||
) -> "torch.optim.Optimizer":
|
||||
from llamafactory.third_party.muon import Muon # type: ignore
|
||||
|
||||
# Separate parameters for Muon (2D parameters) and AdamW (others)
|
||||
muon_params = []
|
||||
adamw_params = []
|
||||
|
||||
for name, param in model.named_parameters():
|
||||
if param.requires_grad:
|
||||
# Use Muon for 2D parameters that aren't embeddings or heads
|
||||
if param.ndim == 2 and "embed" not in name and "lm_head" not in name:
|
||||
muon_params.append(param)
|
||||
else:
|
||||
adamw_params.append(param)
|
||||
|
||||
# Get optimizer settings from training_args
|
||||
ns_steps = getattr(training_args, "ns_steps", 5)
|
||||
|
||||
# Create Muon optimizer
|
||||
optimizer = Muon(
|
||||
lr=training_args.learning_rate,
|
||||
wd=training_args.weight_decay,
|
||||
muon_params=muon_params,
|
||||
momentum=0.95, # default momentum for Muon
|
||||
nesterov=True, # default nesterov for Muon
|
||||
ns_steps=ns_steps,
|
||||
adamw_params=adamw_params,
|
||||
adamw_betas=(training_args.adam_beta1, training_args.adam_beta2),
|
||||
adamw_eps=training_args.adam_epsilon,
|
||||
)
|
||||
|
||||
logger.info_rank0(f"Using Muon optimizer with {len(muon_params)} Muon params and {len(adamw_params)} AdamW params.")
|
||||
return optimizer
|
||||
|
||||
def create_custom_optimizer(
|
||||
model: "PreTrainedModel",
|
||||
training_args: "TrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
) -> Optional["torch.optim.Optimizer"]:
|
||||
if finetuning_args.use_muon:
|
||||
return _create_muon_optimizer(model, training_args)
|
||||
|
||||
if finetuning_args.use_galore:
|
||||
return _create_galore_optimizer(model, training_args, finetuning_args)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user