287 Commits

Author SHA1 Message Date
Jeremy Reizenstein
70acb3e415 new tests demonstrating pixel matching
Summary: Demonstrate current behavior of pixels with new tests of all renderers.

Reviewed By: gkioxari

Differential Revision: D32651141

fbshipit-source-id: 3ca30b4274ed2699bc5e1a9c6437eb3f0b738cbf
2021-12-07 15:04:20 -08:00
Jeremy Reizenstein
bf3bc6f8e3 screen cameras lose -1
Summary:
All the renderers in PyTorch3D (pointclouds including pulsar, meshes, raysampling) use align_corners=False style. NDC space goes between the edges of the outer pixels. For a non square image with W>H, the vertical NDC space goes from -1 to 1 and the horizontal from -W/H to W/H.

However it was recently pointed out that functionality which deals with screen space inside the camera classes is inconsistent with this. It unintentionally uses align_corners=True. This fixes that.

This would change behaviour of the following:
- If you create a camera in screen coordinates, i.e. setting in_ndc=False, then anything you do with the camera which touches NDC space may be affected, including trying to use renderers. The transform_points_screen function will not be affected...
- If you call the function “transform_points_screen” on a camera defined in NDC space results will be different. I have illustrated in the diff how to get the old results from the new results but this probably isn’t the right long-term solution..

Reviewed By: gkioxari

Differential Revision: D32536305

fbshipit-source-id: 377325a9137282971dcb7ca11a6cba3fc700c9ce
2021-12-07 15:04:20 -08:00
Jeremy Reizenstein
a0e2d2e3c3 move benchmarks to separate directory
Summary: Move benchmarks to a separate directory as tests/ is getting big.

Reviewed By: nikhilaravi

Differential Revision: D32885462

fbshipit-source-id: a832662a494ee341ab77d95493c95b0af0a83f43
2021-12-07 10:26:50 -08:00
Roman Shapovalov
a6508ac3df Fix: Pointclouds.inside_box reducing over spatial dimensions.
Summary: As subj. Tests corrected accordingly. Also changed the test to provide a bit better diagnostics.

Reviewed By: bottler

Differential Revision: D32879498

fbshipit-source-id: 0a852e4a13dcb4ca3e54d71c6b263c5d2eeaf4eb
2021-12-06 07:45:46 -08:00
Ignacio Rocco
cac6cb1b78 Update NDC raysampler for non-square convention (#29)
Summary:
- Old NDC convention had xy coords in [-1,1]x[-1,1]
- New NDC convention has xy coords in [-1, 1]x[-u, u] or [-u, u]x[-1, 1]

where u > 1 is the aspect ratio of the image.

This PR fixes the NDC raysampler to use the new convention.

Partial fix for https://github.com/facebookresearch/pytorch3d/issues/868

Pull Request resolved: https://github.com/fairinternal/pytorch3d/pull/29

Reviewed By: davnov134

Differential Revision: D31926148

Pulled By: bottler

fbshipit-source-id: c6c42c60d1473b04e60ceb49c8c10951ddf03c74
2021-11-05 10:36:19 -07:00
Jeremy Reizenstein
73a14d7266 dataparallel fix
Summary: Attempt to overcome flaky test

Reviewed By: patricklabatut

Differential Revision: D31895560

fbshipit-source-id: 1ecbb1782b0eafe132f88425c48487c2d0e10d2d
2021-10-26 14:35:30 -07:00
una-dinosauria
bee31c48d3 Make some matrix conversion jittable (#898)
Summary:
Make sure the functions from `rotation_conversion` are jittable, and add some type hints.

Add tests to verify this is the case.

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/898

Reviewed By: patricklabatut

Differential Revision: D31926103

Pulled By: bottler

fbshipit-source-id: bff6013c5ca2d452e37e631bd902f0674d5ca091
2021-10-26 14:31:46 -07:00
Jeremy Reizenstein
34b1b4ab8b defaulted grid_sizes in points2vols
Summary: Fix #873, that grid_sizes defaults to the wrong dtype in points2volumes code, and mask doesn't have a proper default.

Reviewed By: nikhilaravi

Differential Revision: D31503545

fbshipit-source-id: fa32a1a6074fc7ac7bdb362edfb5e5839866a472
2021-10-16 14:41:59 -07:00
Jeremy Reizenstein
53d99671bd remove PyTorch 1.5 builds
Summary: PyTorch 1.6.0 came out on 28 Jul 2020. Stop builds for 1.5.0 and 1.5.1. Also update the news section of the README for recent releases.

Reviewed By: nikhilaravi

Differential Revision: D31442830

fbshipit-source-id: 20bdd8a07090776d0461240e71c6536d874615f6
2021-10-11 06:13:01 -07:00
Nikhila Ravi
6dfa326922 IOU box3d epsilon fix
Summary: The epsilon value is important for determining whether vertices are inside/outside a plane.

Reviewed By: gkioxari

Differential Revision: D31485247

fbshipit-source-id: 5517575de7c02f1afa277d00e0190a81f44f5761
2021-10-07 18:42:09 -07:00
Jeremy Reizenstein
b26f4bc33a test tolerance loosenings
Summary: Increase some test tolerances so that they pass in more situations, and re-enable two tests.

Reviewed By: nikhilaravi

Differential Revision: D31379717

fbshipit-source-id: 06a25470cc7b6d71cd639d9fd7df500d4b84c079
2021-10-07 10:48:12 -07:00
Ruilong Li
8fa438cbda Fix camera conversion between opencv and pytorch3d
Summary:
For non square image, the NDC space in pytorch3d is not square [-1, 1]. Instead, it is [-1, 1] for the smallest side, and [-u, u] for the largest side, where u > 1. This behavior is followed by the pytorch3d renderer.

See the function `get_ndc_to_screen_transform` for a example.

Without this fix, the rendering result is not correct using the converted pytorch3d-camera from a opencv-camera on non square images.

This fix also helps the `transform_points_screen` function delivers consistent results with opencv projection for the converted pytorch3d-camera.

Reviewed By: classner

Differential Revision: D31366775

fbshipit-source-id: 8858ae7b5cf5c0a4af5a2af40a1358b2fe4cf74b
2021-10-07 10:15:31 -07:00
Nikita Smetanin
d7d740abe9 Symmetric eigen 3x3 implementation + benchmark & tests
Summary:
Symmetric eigenvalues 3x3 implementation from https://github.com/fairinternal/denseposeslim/blob/roman_c3dpo/tools/functions.py#L612

based on https://en.wikipedia.org/wiki/Eigenvalue_algorithm#3.C3.973_matrices and https://www.geometrictools.com/Documentation/RobustEigenSymmetric3x3.pdf

Benchmarks show significant outperformance of symeig3x3 in comparison with torch implementations (torch.symeig and torch.linalg.eigh) on GPU (P100), especially for large batches: 70-280ns per sample vs 3400ns per sample for torch_linalg_eigh_1048576_cpu

It's worth mentioning that torch.linalg.eigh is still comparably fast for batches up to 8192 on CPU.

Some tests are still failing as the error thresholds need to be adjusted appropriately.

Reviewed By: patricklabatut

Differential Revision: D29915453

fbshipit-source-id: 7c1b062da631c57c4e22a42dd0027ea5e205f1b5
2021-10-06 10:57:07 -07:00
Jeremy Reizenstein
4281df19ce subsample pointclouds
Summary: New function to randomly subsample Pointclouds to a maximum size.

Reviewed By: nikhilaravi

Differential Revision: D30936533

fbshipit-source-id: 789eb5004b6a233034ec1c500f20f2d507a303ff
2021-10-02 13:40:16 -07:00
Jeremy Reizenstein
ee2b2feb98 Use C++/CUDA in points2vols
Summary:
Move the core of add_points_to_volumes to the new C++/CUDA implementation. Add new flag to let the user stop this happening. Avoids copies. About a 30% speedup on the larger cases, up to 50% on the smaller cases.

New timings
```
Benchmark                                                               Avg Time(μs)      Peak Time(μs) Iterations
--------------------------------------------------------------------------------
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_1000                     4575           12591            110
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_10000                   25468           29186             20
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_100000                 202085          209897              3
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_1000                 46059           48188             11
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_10000                83759           95669              7
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_100000              326056          339393              2
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_1000                       2379            4738            211
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_10000                     12100           63099             42
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_100000                    63323           63737              8
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_1000                   45216           45479             12
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_10000                  57205           58524              9
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_100000                139499          139926              4
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_1000                   40129           40431             13
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_10000                 204949          239293              3
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_100000               1664541         1664541              1
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_1000               391573          395108              2
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_10000              674869          674869              1
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_100000            2713632         2713632              1
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_1000                     12726           13506             40
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_10000                    73103           73299              7
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_100000                  598634          598634              1
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_1000                 398742          399256              2
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_10000                543129          543129              1
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_100000              1242956         1242956              1
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_1000                  1814            8884            276
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_10000                 1996            8851            251
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_100000                4608           11529            109
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_1000               5183           12508             97
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_10000              7106           14077             71
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_100000            25914           31818             20
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_1000                    1778            8823            282
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_10000                   1825            8613            274
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_100000                  3154           10161            159
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_1000                 4888            9404            103
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_10000                5194            9963             97
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_100000               8109           14933             62
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_1000                 3320           10306            151
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_10000                7003            8595             72
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_100000              49140           52957             11
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_1000             35890           36918             14
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_10000            58890           59337              9
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_100000          286878          287600              2
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_1000                   2484            8805            202
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_10000                  3967            9090            127
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_100000                19423           19799             26
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_1000               33228           33329             16
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_10000              37292           37370             14
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_100000             73550           74017              7
--------------------------------------------------------------------------------
```
Previous timings
```
Benchmark                                                               Avg Time(μs)      Peak Time(μs) Iterations
--------------------------------------------------------------------------------
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_1000                    10100           46422             50
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_10000                   28442           32100             18
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_100000                 241127          254269              3
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_1000                 54149           79480             10
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_10000               125459          212734              4
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_100000              512739          512739              1
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_1000                       2866           13365            175
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_10000                      7026           12604             72
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_100000                    48822           55607             11
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_1000                   38098           38576             14
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_10000                  48006           54120             11
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_100000                131563          138536              4
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_1000                   64615           91735              8
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_10000                 228815          246095              3
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_100000               3086615         3086615              1
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_1000               464298          465292              2
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_10000             1053440         1053440              1
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_100000            6736236         6736236              1
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_1000                     11940           12440             42
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_10000                    56641           58051              9
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_100000                  711492          711492              1
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_1000                 326437          329846              2
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_10000                418514          427911              2
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_100000              1524285         1524285              1
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_1000                  5949           13602             85
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_10000                 5817           13001             86
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_100000               23833           25971             21
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_1000               9029           16178             56
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_10000             11595           18601             44
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_100000            46986           47344             11
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_1000                    2554            9747            196
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_10000                   2676            9537            187
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_100000                  6567           14179             77
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_1000                 5840           12811             86
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_10000                6102           13128             82
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_100000              11945           11995             42
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_1000                 7642           13671             66
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_10000               25190           25260             20
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_100000             212018          212134              3
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_1000             40421           45692             13
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_10000            92078           92132              6
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_100000          457211          457229              2
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_1000                   3574           10377            140
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_10000                  7222           13023             70
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_100000                48127           48165             11
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_1000               34732           35295             15
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_10000              43050           51064             12
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_100000            106028          106058              5
--------------------------------------------------------------------------------
```

Reviewed By: nikhilaravi

Differential Revision: D29548609

fbshipit-source-id: 7026e832ea299145c3f6b55687f3c1601294f5c0
2021-10-01 11:58:24 -07:00
Jeremy Reizenstein
9ad98c87c3 Cuda function for points2vols
Summary: Added CUDA implementation to match the new, still unused, C++ function for the core of points2vols.

Reviewed By: nikhilaravi

Differential Revision: D29548608

fbshipit-source-id: 16ebb61787fcb4c70461f9215a86ad5f97aecb4e
2021-10-01 11:58:24 -07:00
Jeremy Reizenstein
0dfc6e0eb8 CPU function for points2vols
Summary: Single C++ function for the core of points2vols, not used anywhere yet. Added ability to control align_corners and the weight of each point, which may be useful later.

Reviewed By: nikhilaravi

Differential Revision: D29548607

fbshipit-source-id: a5cda7ec2c14836624e7dfe744c4bbb3f3d3dfe2
2021-10-01 11:58:24 -07:00
Jeremy Reizenstein
dd76b41014 save colors as uint8 in PLY
Summary: Allow saving colors as 8bit when writing .ply files.

Reviewed By: patricklabatut, nikitos9000

Differential Revision: D30905312

fbshipit-source-id: 44500982c9ed6d6ee901e04f9623e22792a0e7f7
2021-09-30 00:48:52 -07:00
Nikhila Ravi
ff8d4762f4 (new) CUDA IoU for 3D boxes
Summary: CUDA implementation of 3D bounding box overlap calculation.

Reviewed By: gkioxari

Differential Revision: D31157919

fbshipit-source-id: 5dc89805d01fef2d6779f00a33226131e39c43ed
2021-09-29 18:49:09 -07:00
Nikhila Ravi
53266ec9ff C++ IoU for 3D Boxes
Summary: C++ Implementation of algorithm to compute 3D bounding boxes for batches of bboxes of shape (N, 8, 3) and (M, 8, 3).

Reviewed By: gkioxari

Differential Revision: D30905190

fbshipit-source-id: 02e2cf025cd4fa3ff706ce5cf9b82c0fb5443f96
2021-09-29 17:03:43 -07:00
Nikhila Ravi
2293f1fed0 IoU for 3D boxes
Summary:
I have implemented an exact solution for 3D IoU of oriented 3D boxes.

This file includes:
* box3d_overlap: which computes the exact IoU of box1 and box2
* box3d_overlap_sampling: which computes an approximate IoU of box1 and box2 by sampling points within the boxes

Note that both implementations currently do not support batching.

Our exact IoU implementation is based on the fact that the intersecting shape of the two 3D boxes will be formed by segments of the surface of the boxes. Our algorithm computes these segments by reasoning whether triangles of one box are within the second box and vice versa. We deal with intersecting triangles by clipping them.

Reviewed By: gkioxari

Differential Revision: D30667497

fbshipit-source-id: 2f747f410f90b7f854eeaf3036794bc3ac982917
2021-09-29 13:44:10 -07:00
Jeremy Reizenstein
860b742a02 deterministic rasterization
Summary: Attempt to fix #659, an observation that the rasterizer is nondeterministic, by resolving tied faces by picking those with lower index.

Reviewed By: nikhilaravi, patricklabatut

Differential Revision: D30699039

fbshipit-source-id: 39ed797eb7e9ce7370ae71259ad6b757f9449923
2021-09-23 06:59:48 -07:00
Nikhila Ravi
bd04ffaf77 Farthest point sampling CUDA
Summary:
CUDA implementation of farthest point sampling algorithm.

## Visual comparison

Compared to random sampling, farthest point sampling gives better coverage of the shape.

{F658631262}

## Reduction

Parallelized block reduction to find the max value at each iteration happens as follows:

1. First split the points into two equal sized parts (e.g. for a list with 8 values):
`[20, 27, 6, 8 | 11, 10, 2, 33]`
2. Use half of the thread (4 threads) to compare pairs of elements from each half (e.g elements [0, 4], [1, 5] etc) and store the result in the first half of the list:
`[20, 27, 6, 33 | 11, 10, 2, 33]`
Now we no longer care about the second part but again divide the first part into two
`[20, 27 | 6, 33| -, -, -, -]`
Now we can use 2 threads to compare the 4 elements
4. Finally we have gotten down to a single pair
`[20 | 33 | -, - | -, -, -, -]`
Use 1 thread to compare the remaining two elements
5. The max will now be at thread id = 0
`[33 | - | -, - | -, -, -, -]`
The reduction will give the farthest point for the selected batch index at this iteration.

Reviewed By: bottler, jcjohnson

Differential Revision: D30401803

fbshipit-source-id: 525bd5ae27c4b13b501812cfe62306bb003827d2
2021-09-15 13:49:22 -07:00
Nikhila Ravi
d9f7611c4b Farthest point sampling C++
Summary: C++ implementation of iterative farthest point sampling.

Reviewed By: jcjohnson

Differential Revision: D30349887

fbshipit-source-id: d25990f857752633859fe00283e182858a870269
2021-09-15 13:49:21 -07:00
Nikhila Ravi
3b7d78c7a7 Farthest point sampling python naive
Summary:
This is a naive python implementation of the iterative farthest point sampling algorithm along with associated simple tests. The C++/CUDA implementations will follow in subsequent diffs.

The algorithm is used to subsample a pointcloud with better coverage of the space of the pointcloud.

The function has not been added to `__init__.py`. I will add this after the full C++/CUDA implementations.

Reviewed By: jcjohnson

Differential Revision: D30285716

fbshipit-source-id: 33f4181041fc652776406bcfd67800a6f0c3dd58
2021-09-15 13:49:21 -07:00
Jeremy Reizenstein
a0d76a7080 join_scene fix for TexturesUV
Summary: Fix issue #826. This is a correction to the joining of TexturesUV into a single scene.

Reviewed By: nikhilaravi

Differential Revision: D30767092

fbshipit-source-id: 03ba6a1d2f22e569d1b3641cd13ddbb8dcb87ec7
2021-09-13 07:08:58 -07:00
Shangchen Han
46f727cb68 make so3_log_map torch script compatible
Summary:
* HAT_INV_SKEW_SYMMETRIC_TOL was a global variable and torch script gives an error when compiling that function. Move it to the function scope.
* torch script gives error when compiling acos_linear_extrapolation because bound is a union of tuple and float. The tuple version is kept in this diff.

Reviewed By: patricklabatut

Differential Revision: D30614916

fbshipit-source-id: 34258d200dc6a09fbf8917cac84ba8a269c00aef
2021-09-10 11:13:26 -07:00
Jeremy Reizenstein
c3d7808868 register_buffer compatibility
Summary: In D30349234 (1b8d86a104) we introduced persistent=False to some register_buffer calls, which depend on PyTorch 1.6. We go back to the old behaviour for PyTorch 1.5.

Reviewed By: nikhilaravi

Differential Revision: D30731327

fbshipit-source-id: ab02ef98ee87440ef02479b72f4872b562ab85b5
2021-09-09 07:37:57 -07:00
Jeremy Reizenstein
f2c44e3540 update test_build for robustness
Summary: Change cyclic deps test to be independent of test discovery order. Also let it work without plotly.

Reviewed By: nikhilaravi

Differential Revision: D30669614

fbshipit-source-id: 2eadf3f8b56b6096c5466ce53b4f8ac6df27b964
2021-09-02 09:32:29 -07:00
Nikhila Ravi
fc156b50c0 (bug) Fix exception when creating a TextureAtlas
Summary: Fixes GitHub issue #751. The vectorized implementation of bilinear interpolation didn't properly handle the edge cases in the same way as the `grid_sample` method in PyTorch.

Reviewed By: bottler

Differential Revision: D30684208

fbshipit-source-id: edf241ecbd72d46b94ad340a4e601e26c83db88e
2021-09-01 09:26:44 -07:00
Jeremy Reizenstein
1b8d86a104 (breaking) image_size-agnostic GridRaySampler
Summary:
As suggested in #802. By not persisting the _xy_grid buffer, we can allow (in some cases) a model with one image_size to be loaded from a saved model which was trained at a different resolution.

Also avoid persisting _frequencies in HarmonicEmbedding for similar reasons.

BC-break: This will cause load_state_dict, in strict mode, to complain if you try to load an old model with the new code.

Reviewed By: patricklabatut

Differential Revision: D30349234

fbshipit-source-id: d6061d1e51c9f79a78d61a9f732c9a5dfadbbb47
2021-08-31 14:30:24 -07:00
Jeremy Reizenstein
1251446383 Use sample_pdf from PyTorch3D in NeRF
Summary:
Use PyTorch3D's new faster sample_pdf function instead of local Python implementation.

Also clarify deps for the Python implementation.

Reviewed By: gkioxari

Differential Revision: D30512109

fbshipit-source-id: 84cfdc00313fada37a6b29837de96f6a4646434f
2021-08-31 11:26:26 -07:00
Jeremy Reizenstein
77fa5987b8 check for cyclic deps
Summary: New test that each subpackage of pytorch3d imports cleanly.

Reviewed By: patricklabatut

Differential Revision: D30001632

fbshipit-source-id: ca8dcac94491fc22f33602b3bbef481cba927094
2021-08-23 06:16:40 -07:00
Jeremy Reizenstein
1ea2b7272a sample_pdf CUDA and C++ implementations.
Summary: Implement the sample_pdf function from the NeRF project as compiled operators.. The binary search (in searchsorted) is replaced with a low tech linear search, but this is not a problem for the envisaged numbers of bins.

Reviewed By: gkioxari

Differential Revision: D26312535

fbshipit-source-id: df1c3119cd63d944380ed1b2657b6ad81d743e49
2021-08-17 08:07:55 -07:00
Jeremy Reizenstein
7d7d00f288 Move sample_pdf into PyTorch3D
Summary: Copy the sample_pdf operation from the NeRF project in to PyTorch3D, in preparation for optimizing it.

Reviewed By: gkioxari

Differential Revision: D27117930

fbshipit-source-id: 20286b007f589a4c4d53ed818c4bc5f2abd22833
2021-08-17 08:07:55 -07:00
Jeremy Reizenstein
46cf1970ac cpu benchmarks for points to volumes
Summary:
Add a CPU version to the benchmarks.

```
Benchmark                                                               Avg Time(μs)      Peak Time(μs) Iterations
--------------------------------------------------------------------------------
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_1000                    10100           46422             50
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_10000                   28442           32100             18
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_100000                 241127          254269              3
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_1000                 54149           79480             10
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_10000               125459          212734              4
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_100000              512739          512739              1
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_1000                       2866           13365            175
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_10000                      7026           12604             72
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_100000                    48822           55607             11
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_1000                   38098           38576             14
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_10000                  48006           54120             11
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_100000                131563          138536              4
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_1000                   64615           91735              8
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_10000                 228815          246095              3
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_100000               3086615         3086615              1
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_1000               464298          465292              2
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_10000             1053440         1053440              1
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_100000            6736236         6736236              1
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_1000                     11940           12440             42
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_10000                    56641           58051              9
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_100000                  711492          711492              1
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_1000                 326437          329846              2
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_10000                418514          427911              2
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_100000              1524285         1524285              1
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_1000                  5949           13602             85
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_10000                 5817           13001             86
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_100000               23833           25971             21
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_1000               9029           16178             56
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_10000             11595           18601             44
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_100000            46986           47344             11
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_1000                    2554            9747            196
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_10000                   2676            9537            187
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_100000                  6567           14179             77
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_1000                 5840           12811             86
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_10000                6102           13128             82
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_100000              11945           11995             42
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_1000                 7642           13671             66
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_10000               25190           25260             20
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_100000             212018          212134              3
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_1000             40421           45692             13
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_10000            92078           92132              6
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_100000          457211          457229              2
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_1000                   3574           10377            140
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_10000                  7222           13023             70
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_100000                48127           48165             11
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_1000               34732           35295             15
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_10000              43050           51064             12
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_100000            106028          106058              5
--------------------------------------------------------------------------------
```

Reviewed By: patricklabatut

Differential Revision: D29522830

fbshipit-source-id: 1e857db03613b0c6afcb68a58cdd7ba032e1a874
2021-08-17 05:59:07 -07:00
Jeremy Reizenstein
5491b46511 Points2vols doc fixes
Summary: Fixes to a couple of comments on points to volumes, make the mask work in round_points_to_volumes, and remove a duplicate rand calculation

Reviewed By: nikhilaravi

Differential Revision: D29522845

fbshipit-source-id: 86770ba37ef3942b909baf63fd73eed1399635b6
2021-08-17 05:59:07 -07:00
Jeremy Reizenstein
ae1387b523 let build tests run in conda
Summary: Much of the code is actually available during the conda tests, as long as we look in the right place. We enable some of them.

Reviewed By: nikhilaravi

Differential Revision: D30249357

fbshipit-source-id: 01c57b6b8c04442237965f23eded594aeb90abfb
2021-08-17 04:26:27 -07:00
Nikhila Ravi
103da63393 Ball Query
Summary:
Implementation of ball query from PointNet++.  This function is similar to KNN (find the neighbors in p2 for all points in p1). These are the key differences:
-  It will return the **first** K neighbors within a specified radius as opposed to the **closest** K neighbors.
- As all the points in p2 do not need to be considered to find the closest K, the algorithm is much faster than KNN when p2 has a large number of points.
- The neighbors are not sorted
- Due to the radius threshold it is not guaranteed that there will be K neighbors even if there are more than K points in p2.
- The padding value for `idx` is -1 instead of 0.

# Note:
- Some of the code is very similar to KNN so it could be possible to modify the KNN forward kernels to support ball query.
- Some users might want to use kNN with ball query - for this we could provide a wrapper function around the current `knn_points` which enables applying the radius threshold afterwards as an alternative. This could be called `ball_query_knn`.

Reviewed By: jcjohnson

Differential Revision: D30261362

fbshipit-source-id: 66b6a7e0114beff7164daf7eba21546ff41ec450
2021-08-12 14:06:32 -07:00
Jeremy Reizenstein
e5c58a8a8b Test website metadata
Summary: New test that notes and tutorials are listed in the website metadata, so that they will be included in the website build.

Reviewed By: nikhilaravi

Differential Revision: D30223799

fbshipit-source-id: 2dca9730b54e68da2fd430a7b47cb7e18814d518
2021-08-12 05:07:55 -07:00
Nikhila Ravi
804117833e Fix to allow cameras in the renderer forward pass
Summary: Fix to resolve GitHub issue #796 - the cameras were being passed in the renderer forward pass instead of at initialization. The rasterizer was correctly using the cameras passed in the `kwargs` for the projection, but the `cameras` are still part of the `kwargs` for the `get_screen_to_ndc_transform` and `get_ndc_to_screen_transform` functions which is causing issues about duplicate arguments.

Reviewed By: bottler

Differential Revision: D30175679

fbshipit-source-id: 547e88d8439456e728fa2772722df5fa0fe4584d
2021-08-09 11:42:50 -07:00
Georgia Gkioxari
0c32f094af NDC/screen cameras API fix, compatibility with renderer
Summary:
API fix for NDC/screen cameras and compatibility with PyTorch3D renderers.

With this new fix:
* Users can define cameras and `transform_points` under any coordinate system conventions. The transformation applies the camera K and RT to the input points, not regarding for PyTorch3D conventions. So this makes cameras completely independent from PyTorch3D renderer.

* Cameras can be defined either in NDC space or screen space. For existing ones, FoV cameras are in NDC space. Perspective/Orthographic can be defined in NDC or screen space.

* The interface with PyTorch3D renderers happens through `transform_points_ndc` which transforms points to the NDC space and assumes that input points are provided according to PyTorch3D conventions.

* Similarly, `transform_points_screen` transforms points to screen space and again assumes that input points are under PyTorch3D conventions.

* For Orthographic/Perspective cameras, if they are defined in screen space, the `get_ndc_camera_transform` allows points to be converted to NDC for use for the renderers.

Reviewed By: nikhilaravi

Differential Revision: D26932657

fbshipit-source-id: 1a964e3e7caa54d10c792cf39c4d527ba2fb2e79
2021-08-02 01:01:10 -07:00
Jeremy Reizenstein
9e8d91ebf9 restore build tests
Summary: A bad env var check meant these tests were not being run. Fix that, and fix the copyright test for the new message format.

Reviewed By: patricklabatut

Differential Revision: D29734562

fbshipit-source-id: a1a9bb68901b09c71c7b4ff81a04083febca8d50
2021-07-19 05:44:20 -07:00
Alexey Sidnev
bcee361d04 Replace torch.det() with manual implementation for 3x3 matrix
Summary:
# Background
There is an unstable error during training (it can happen after several minutes or after several hours).
The error is connected to `torch.det()` function in  `_check_valid_rotation_matrix()`.

if I remove the function `torch.det()` in `_check_valid_rotation_matrix()` or remove the whole functions `_check_valid_rotation_matrix()` the error is disappeared (D29555876).

# Solution
Replace `torch.det()` with manual implementation for 3x3 matrix.

Reviewed By: patricklabatut

Differential Revision: D29655924

fbshipit-source-id: 41bde1119274a705ab849751ece28873d2c45155
2021-07-19 05:02:51 -07:00
Roman Shapovalov
0c02ae907e Adding utility methods to TensorProperties
Summary:
Context: in the code we are releasing with CO3D dataset, we use  `cuda()` on TensorProperties like Pointclouds and Cameras where we recursively move batch to a GPU. It would be good to push it to a release so we don’t need to depend on the nightly build.

Additionally, I aligned the logic of `.to("cuda")` without device index to the one of `torch.Tensor` where the current device is populated to index. It should not affect any actual use cases but some tests had to be changed.

Reviewed By: bottler

Differential Revision: D29659529

fbshipit-source-id: abe58aeaca14bacc68da3e6cf5ae07df3353e3ce
2021-07-13 10:29:26 -07:00
Christoph Lassner
75432a0695 Add OpenCV camera conversion; fix bug for camera unified PyTorch3D interface.
Summary: This commit adds a new camera conversion function for OpenCV style parameters to Pulsar parameters to the library. Using this function it addresses a bug reported here: https://fb.workplace.com/groups/629644647557365/posts/1079637302558095, by using the PyTorch3D->OpenCV->Pulsar chain instead of the original direct conversion function. Both conversions are well-tested and an additional test for the full chain has been added, resulting in a more reliable solution requiring less code.

Reviewed By: patricklabatut

Differential Revision: D29322106

fbshipit-source-id: 13df13c2e48f628f75d9f44f19ff7f1646fb7ebd
2021-07-10 01:06:56 -07:00
Patrick Labatut
fef5bcd8f9 Use rotation matrices for OpenCV / PyTorch3D conversions
Summary: Use rotation matrices for OpenCV / PyTorch3D conversions: this avoids hiding issues with conversions to / from axis-angle vectors and ensure new conversion functions have a consistent interface.

Reviewed By: bottler, classner

Differential Revision: D29634099

fbshipit-source-id: 40b28357914eb563fedea60a965dcf69e848ccfa
2021-07-09 10:26:34 -07:00
Jeremy Reizenstein
62ff77b49a points2volumes benchmark run alone
Summary: Enable this benchmark to be run on its own, like others.

Reviewed By: patricklabatut

Differential Revision: D29522846

fbshipit-source-id: c7b3b5c9a0fcdeeb79d8b2ec197684b4380aa547
2021-07-01 16:08:40 -07:00
Jeremy Reizenstein
61754b2fac lint fixes
Summary: Fixing recent lint problems.

Reviewed By: patricklabatut

Differential Revision: D29522647

fbshipit-source-id: 9bd89fbfa512ecd7359ec355cf12b16fb7024b47
2021-07-01 16:08:40 -07:00
Jeremy Reizenstein
b8790474f1 work with old linalg
Summary: solve and lstsq have moved around in torch. Cope with both.

Reviewed By: patricklabatut

Differential Revision: D29302316

fbshipit-source-id: b34f0b923e90a357f20df359635929241eba6e74
2021-06-28 06:31:35 -07:00