mirror of
				https://github.com/facebookresearch/pytorch3d.git
				synced 2025-11-04 18:02:14 +08:00 
			
		
		
		
	defaulted grid_sizes in points2vols
Summary: Fix #873, that grid_sizes defaults to the wrong dtype in points2volumes code, and mask doesn't have a proper default. Reviewed By: nikhilaravi Differential Revision: D31503545 fbshipit-source-id: fa32a1a6074fc7ac7bdb362edfb5e5839866a472
This commit is contained in:
		
							parent
							
								
									2f2466f472
								
							
						
					
					
						commit
						34b1b4ab8b
					
				@ -5,7 +5,7 @@
 | 
			
		||||
# LICENSE file in the root directory of this source tree.
 | 
			
		||||
 | 
			
		||||
import math
 | 
			
		||||
from typing import Tuple, Optional
 | 
			
		||||
from typing import Optional, Tuple
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import torch.nn.functional as F
 | 
			
		||||
 | 
			
		||||
@ -364,7 +364,7 @@ def add_points_features_to_volume_densities_features(
 | 
			
		||||
        # grid sizes shape (minibatch, 3)
 | 
			
		||||
        grid_sizes = (
 | 
			
		||||
            torch.LongTensor(list(volume_densities.shape[2:]))
 | 
			
		||||
            .to(volume_densities)
 | 
			
		||||
            .to(volume_densities.device)
 | 
			
		||||
            .expand(volume_densities.shape[0], 3)
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
@ -386,6 +386,10 @@ def add_points_features_to_volume_densities_features(
 | 
			
		||||
        splat = False
 | 
			
		||||
    else:
 | 
			
		||||
        raise ValueError('No such interpolation mode "%s"' % mode)
 | 
			
		||||
 | 
			
		||||
    if mask is None:
 | 
			
		||||
        mask = points_3d.new_ones(1).expand(points_3d.shape[:2])
 | 
			
		||||
 | 
			
		||||
    volume_densities, volume_features = _points_to_volumes(
 | 
			
		||||
        points_3d,
 | 
			
		||||
        points_features,
 | 
			
		||||
 | 
			
		||||
@ -6,7 +6,7 @@
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
from itertools import product
 | 
			
		||||
from typing import Callable, Any
 | 
			
		||||
from typing import Any, Callable
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from common_testing import get_random_cuda_device
 | 
			
		||||
@ -14,6 +14,7 @@ from fvcore.common.benchmark import benchmark
 | 
			
		||||
from pytorch3d.common.workaround import symeig3x3
 | 
			
		||||
from test_symeig3x3 import TestSymEig3x3
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
torch.set_num_threads(1)
 | 
			
		||||
 | 
			
		||||
CUDA_DEVICE = get_random_cuda_device()
 | 
			
		||||
 | 
			
		||||
@ -16,6 +16,7 @@ from pytorch3d.io import save_obj
 | 
			
		||||
from pytorch3d.ops.iou_box3d import _box_planes, _box_triangles, box3d_overlap
 | 
			
		||||
from pytorch3d.transforms.rotation_conversions import random_rotation
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
OBJECTRON_TO_PYTORCH3D_FACE_IDX = [0, 4, 6, 2, 1, 5, 7, 3]
 | 
			
		||||
DATA_DIR = get_tests_dir() / "data"
 | 
			
		||||
DEBUG = False
 | 
			
		||||
 | 
			
		||||
@ -12,7 +12,10 @@ from typing import Tuple
 | 
			
		||||
import numpy as np
 | 
			
		||||
import torch
 | 
			
		||||
from common_testing import TestCaseMixin
 | 
			
		||||
from pytorch3d.ops import add_pointclouds_to_volumes
 | 
			
		||||
from pytorch3d.ops import (
 | 
			
		||||
    add_pointclouds_to_volumes,
 | 
			
		||||
    add_points_features_to_volume_densities_features,
 | 
			
		||||
)
 | 
			
		||||
from pytorch3d.ops.points_to_volumes import _points_to_volumes
 | 
			
		||||
from pytorch3d.ops.sample_points_from_meshes import sample_points_from_meshes
 | 
			
		||||
from pytorch3d.structures.meshes import Meshes
 | 
			
		||||
@ -373,6 +376,17 @@ class TestPointsToVolumes(TestCaseMixin, unittest.TestCase):
 | 
			
		||||
                    else:
 | 
			
		||||
                        self.assertTrue(torch.isfinite(field.grad.data).all())
 | 
			
		||||
 | 
			
		||||
    def test_defaulted_arguments(self):
 | 
			
		||||
        points = torch.rand(30, 1000, 3)
 | 
			
		||||
        features = torch.rand(30, 1000, 5)
 | 
			
		||||
        _, densities = add_points_features_to_volume_densities_features(
 | 
			
		||||
            points,
 | 
			
		||||
            features,
 | 
			
		||||
            torch.zeros(30, 1, 32, 32, 32),
 | 
			
		||||
            torch.zeros(30, 5, 32, 32, 32),
 | 
			
		||||
        )
 | 
			
		||||
        self.assertClose(torch.sum(densities), torch.tensor(30 * 1000.0), atol=0.1)
 | 
			
		||||
 | 
			
		||||
    def _check_volume_slice_color_density(
 | 
			
		||||
        self, V, split_dim, interp_mode, clr_gt, slice_type, border=3
 | 
			
		||||
    ):
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user