mirror of
				https://github.com/facebookresearch/pytorch3d.git
				synced 2025-11-04 18:02:14 +08:00 
			
		
		
		
	Make some matrix conversion jittable (#898)
Summary: Make sure the functions from `rotation_conversion` are jittable, and add some type hints. Add tests to verify this is the case. Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/898 Reviewed By: patricklabatut Differential Revision: D31926103 Pulled By: bottler fbshipit-source-id: bff6013c5ca2d452e37e631bd902f0674d5ca091
This commit is contained in:
		
							parent
							
								
									29417d1f9b
								
							
						
					
					
						commit
						bee31c48d3
					
				@ -4,7 +4,6 @@
 | 
			
		||||
# This source code is licensed under the BSD-style license found in the
 | 
			
		||||
# LICENSE file in the root directory of this source tree.
 | 
			
		||||
 | 
			
		||||
import functools
 | 
			
		||||
from typing import Optional
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
@ -39,7 +38,7 @@ e.g.
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def quaternion_to_matrix(quaternions):
 | 
			
		||||
def quaternion_to_matrix(quaternions: torch.Tensor) -> torch.Tensor:
 | 
			
		||||
    """
 | 
			
		||||
    Convert rotations given as quaternions to rotation matrices.
 | 
			
		||||
 | 
			
		||||
@ -70,7 +69,7 @@ def quaternion_to_matrix(quaternions):
 | 
			
		||||
    return o.reshape(quaternions.shape[:-1] + (3, 3))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _copysign(a, b):
 | 
			
		||||
def _copysign(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
 | 
			
		||||
    """
 | 
			
		||||
    Return a tensor where each element has the absolute value taken from the,
 | 
			
		||||
    corresponding element of a, with sign taken from the corresponding
 | 
			
		||||
@ -114,7 +113,7 @@ def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor:
 | 
			
		||||
 | 
			
		||||
    batch_dim = matrix.shape[:-2]
 | 
			
		||||
    m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
 | 
			
		||||
        matrix.reshape(*batch_dim, 9), dim=-1
 | 
			
		||||
        matrix.reshape(batch_dim + (9,)), dim=-1
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    q_abs = _sqrt_positive_part(
 | 
			
		||||
@ -142,17 +141,18 @@ def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor:
 | 
			
		||||
 | 
			
		||||
    # We floor here at 0.1 but the exact level is not important; if q_abs is small,
 | 
			
		||||
    # the candidate won't be picked.
 | 
			
		||||
    quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(q_abs.new_tensor(0.1)))
 | 
			
		||||
    flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device)
 | 
			
		||||
    quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr))
 | 
			
		||||
 | 
			
		||||
    # if not for numerical problems, quat_candidates[i] should be same (up to a sign),
 | 
			
		||||
    # forall i; we pick the best-conditioned one (with the largest denominator)
 | 
			
		||||
 | 
			
		||||
    return quat_candidates[
 | 
			
		||||
        F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :  # pyre-ignore[16]
 | 
			
		||||
    ].reshape(*batch_dim, 4)
 | 
			
		||||
    ].reshape(batch_dim + (4,))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _axis_angle_rotation(axis: str, angle):
 | 
			
		||||
def _axis_angle_rotation(axis: str, angle: torch.Tensor) -> torch.Tensor:
 | 
			
		||||
    """
 | 
			
		||||
    Return the rotation matrices for one of the rotations about an axis
 | 
			
		||||
    of which Euler angles describe, for each value of the angle given.
 | 
			
		||||
@ -172,15 +172,17 @@ def _axis_angle_rotation(axis: str, angle):
 | 
			
		||||
 | 
			
		||||
    if axis == "X":
 | 
			
		||||
        R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
 | 
			
		||||
    if axis == "Y":
 | 
			
		||||
    elif axis == "Y":
 | 
			
		||||
        R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
 | 
			
		||||
    if axis == "Z":
 | 
			
		||||
    elif axis == "Z":
 | 
			
		||||
        R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one)
 | 
			
		||||
    else:
 | 
			
		||||
        raise ValueError("letter must be either X, Y or Z.")
 | 
			
		||||
 | 
			
		||||
    return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def euler_angles_to_matrix(euler_angles, convention: str):
 | 
			
		||||
def euler_angles_to_matrix(euler_angles: torch.Tensor, convention: str) -> torch.Tensor:
 | 
			
		||||
    """
 | 
			
		||||
    Convert rotations given as Euler angles in radians to rotation matrices.
 | 
			
		||||
 | 
			
		||||
@ -201,13 +203,17 @@ def euler_angles_to_matrix(euler_angles, convention: str):
 | 
			
		||||
    for letter in convention:
 | 
			
		||||
        if letter not in ("X", "Y", "Z"):
 | 
			
		||||
            raise ValueError(f"Invalid letter {letter} in convention string.")
 | 
			
		||||
    matrices = map(_axis_angle_rotation, convention, torch.unbind(euler_angles, -1))
 | 
			
		||||
    return functools.reduce(torch.matmul, matrices)
 | 
			
		||||
    matrices = [
 | 
			
		||||
        _axis_angle_rotation(c, e)
 | 
			
		||||
        for c, e in zip(convention, torch.unbind(euler_angles, -1))
 | 
			
		||||
    ]
 | 
			
		||||
    # return functools.reduce(torch.matmul, matrices)
 | 
			
		||||
    return torch.matmul(torch.matmul(matrices[0], matrices[1]), matrices[2])
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _angle_from_tan(
 | 
			
		||||
    axis: str, other_axis: str, data, horizontal: bool, tait_bryan: bool
 | 
			
		||||
):
 | 
			
		||||
) -> torch.Tensor:
 | 
			
		||||
    """
 | 
			
		||||
    Extract the first or third Euler angle from the two members of
 | 
			
		||||
    the matrix which are positive constant times its sine and cosine.
 | 
			
		||||
@ -238,16 +244,17 @@ def _angle_from_tan(
 | 
			
		||||
    return torch.atan2(data[..., i2], -data[..., i1])
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _index_from_letter(letter: str):
 | 
			
		||||
def _index_from_letter(letter: str) -> int:
 | 
			
		||||
    if letter == "X":
 | 
			
		||||
        return 0
 | 
			
		||||
    if letter == "Y":
 | 
			
		||||
        return 1
 | 
			
		||||
    if letter == "Z":
 | 
			
		||||
        return 2
 | 
			
		||||
    raise ValueError("letter must be either X, Y or Z.")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def matrix_to_euler_angles(matrix, convention: str):
 | 
			
		||||
def matrix_to_euler_angles(matrix: torch.Tensor, convention: str) -> torch.Tensor:
 | 
			
		||||
    """
 | 
			
		||||
    Convert rotations given as rotation matrices to Euler angles in radians.
 | 
			
		||||
 | 
			
		||||
@ -291,7 +298,7 @@ def matrix_to_euler_angles(matrix, convention: str):
 | 
			
		||||
 | 
			
		||||
def random_quaternions(
 | 
			
		||||
    n: int, dtype: Optional[torch.dtype] = None, device: Optional[Device] = None
 | 
			
		||||
):
 | 
			
		||||
) -> torch.Tensor:
 | 
			
		||||
    """
 | 
			
		||||
    Generate random quaternions representing rotations,
 | 
			
		||||
    i.e. versors with nonnegative real part.
 | 
			
		||||
@ -305,6 +312,8 @@ def random_quaternions(
 | 
			
		||||
    Returns:
 | 
			
		||||
        Quaternions as tensor of shape (N, 4).
 | 
			
		||||
    """
 | 
			
		||||
    if isinstance(device, str):
 | 
			
		||||
        device = torch.device(device)
 | 
			
		||||
    o = torch.randn((n, 4), dtype=dtype, device=device)
 | 
			
		||||
    s = (o * o).sum(1)
 | 
			
		||||
    o = o / _copysign(torch.sqrt(s), o[:, 0])[:, None]
 | 
			
		||||
@ -313,7 +322,7 @@ def random_quaternions(
 | 
			
		||||
 | 
			
		||||
def random_rotations(
 | 
			
		||||
    n: int, dtype: Optional[torch.dtype] = None, device: Optional[Device] = None
 | 
			
		||||
):
 | 
			
		||||
) -> torch.Tensor:
 | 
			
		||||
    """
 | 
			
		||||
    Generate random rotations as 3x3 rotation matrices.
 | 
			
		||||
 | 
			
		||||
@ -332,7 +341,7 @@ def random_rotations(
 | 
			
		||||
 | 
			
		||||
def random_rotation(
 | 
			
		||||
    dtype: Optional[torch.dtype] = None, device: Optional[Device] = None
 | 
			
		||||
):
 | 
			
		||||
) -> torch.Tensor:
 | 
			
		||||
    """
 | 
			
		||||
    Generate a single random 3x3 rotation matrix.
 | 
			
		||||
 | 
			
		||||
@ -347,7 +356,7 @@ def random_rotation(
 | 
			
		||||
    return random_rotations(1, dtype, device)[0]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def standardize_quaternion(quaternions):
 | 
			
		||||
def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor:
 | 
			
		||||
    """
 | 
			
		||||
    Convert a unit quaternion to a standard form: one in which the real
 | 
			
		||||
    part is non negative.
 | 
			
		||||
@ -362,7 +371,7 @@ def standardize_quaternion(quaternions):
 | 
			
		||||
    return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def quaternion_raw_multiply(a, b):
 | 
			
		||||
def quaternion_raw_multiply(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
 | 
			
		||||
    """
 | 
			
		||||
    Multiply two quaternions.
 | 
			
		||||
    Usual torch rules for broadcasting apply.
 | 
			
		||||
@ -383,7 +392,7 @@ def quaternion_raw_multiply(a, b):
 | 
			
		||||
    return torch.stack((ow, ox, oy, oz), -1)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def quaternion_multiply(a, b):
 | 
			
		||||
def quaternion_multiply(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
 | 
			
		||||
    """
 | 
			
		||||
    Multiply two quaternions representing rotations, returning the quaternion
 | 
			
		||||
    representing their composition, i.e. the versor with nonnegative real part.
 | 
			
		||||
@ -400,7 +409,7 @@ def quaternion_multiply(a, b):
 | 
			
		||||
    return standardize_quaternion(ab)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def quaternion_invert(quaternion):
 | 
			
		||||
def quaternion_invert(quaternion: torch.Tensor) -> torch.Tensor:
 | 
			
		||||
    """
 | 
			
		||||
    Given a quaternion representing rotation, get the quaternion representing
 | 
			
		||||
    its inverse.
 | 
			
		||||
@ -413,10 +422,11 @@ def quaternion_invert(quaternion):
 | 
			
		||||
        The inverse, a tensor of quaternions of shape (..., 4).
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    return quaternion * quaternion.new_tensor([1, -1, -1, -1])
 | 
			
		||||
    scaling = torch.tensor([1, -1, -1, -1], device=quaternion.device)
 | 
			
		||||
    return quaternion * scaling
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def quaternion_apply(quaternion, point):
 | 
			
		||||
def quaternion_apply(quaternion: torch.Tensor, point: torch.Tensor) -> torch.Tensor:
 | 
			
		||||
    """
 | 
			
		||||
    Apply the rotation given by a quaternion to a 3D point.
 | 
			
		||||
    Usual torch rules for broadcasting apply.
 | 
			
		||||
@ -439,7 +449,7 @@ def quaternion_apply(quaternion, point):
 | 
			
		||||
    return out[..., 1:]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def axis_angle_to_matrix(axis_angle):
 | 
			
		||||
def axis_angle_to_matrix(axis_angle: torch.Tensor) -> torch.Tensor:
 | 
			
		||||
    """
 | 
			
		||||
    Convert rotations given as axis/angle to rotation matrices.
 | 
			
		||||
 | 
			
		||||
@ -455,7 +465,7 @@ def axis_angle_to_matrix(axis_angle):
 | 
			
		||||
    return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def matrix_to_axis_angle(matrix):
 | 
			
		||||
def matrix_to_axis_angle(matrix: torch.Tensor) -> torch.Tensor:
 | 
			
		||||
    """
 | 
			
		||||
    Convert rotations given as rotation matrices to axis/angle.
 | 
			
		||||
 | 
			
		||||
@ -471,7 +481,7 @@ def matrix_to_axis_angle(matrix):
 | 
			
		||||
    return quaternion_to_axis_angle(matrix_to_quaternion(matrix))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def axis_angle_to_quaternion(axis_angle):
 | 
			
		||||
def axis_angle_to_quaternion(axis_angle: torch.Tensor) -> torch.Tensor:
 | 
			
		||||
    """
 | 
			
		||||
    Convert rotations given as axis/angle to quaternions.
 | 
			
		||||
 | 
			
		||||
@ -485,7 +495,7 @@ def axis_angle_to_quaternion(axis_angle):
 | 
			
		||||
        quaternions with real part first, as tensor of shape (..., 4).
 | 
			
		||||
    """
 | 
			
		||||
    angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True)
 | 
			
		||||
    half_angles = 0.5 * angles
 | 
			
		||||
    half_angles = angles * 0.5
 | 
			
		||||
    eps = 1e-6
 | 
			
		||||
    small_angles = angles.abs() < eps
 | 
			
		||||
    sin_half_angles_over_angles = torch.empty_like(angles)
 | 
			
		||||
@ -503,7 +513,7 @@ def axis_angle_to_quaternion(axis_angle):
 | 
			
		||||
    return quaternions
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def quaternion_to_axis_angle(quaternions):
 | 
			
		||||
def quaternion_to_axis_angle(quaternions: torch.Tensor) -> torch.Tensor:
 | 
			
		||||
    """
 | 
			
		||||
    Convert rotations given as quaternions to axis/angle.
 | 
			
		||||
 | 
			
		||||
@ -573,4 +583,5 @@ def matrix_to_rotation_6d(matrix: torch.Tensor) -> torch.Tensor:
 | 
			
		||||
    IEEE Conference on Computer Vision and Pattern Recognition, 2019.
 | 
			
		||||
    Retrieved from http://arxiv.org/abs/1812.07035
 | 
			
		||||
    """
 | 
			
		||||
    return matrix[..., :2, :].clone().reshape(*matrix.size()[:-2], 6)
 | 
			
		||||
    batch_dim = matrix.size()[:-2]
 | 
			
		||||
    return matrix[..., :2, :].clone().reshape(batch_dim + (6,))
 | 
			
		||||
 | 
			
		||||
@ -8,6 +8,7 @@
 | 
			
		||||
import itertools
 | 
			
		||||
import math
 | 
			
		||||
import unittest
 | 
			
		||||
from distutils.version import LooseVersion
 | 
			
		||||
from typing import Optional, Union
 | 
			
		||||
 | 
			
		||||
import numpy as np
 | 
			
		||||
@ -264,6 +265,25 @@ class TestRotationConversion(TestCaseMixin, unittest.TestCase):
 | 
			
		||||
            torch.matmul(r, r.permute(0, 2, 1)), torch.eye(3).expand_as(r), atol=1e-6
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    @unittest.skipIf(LooseVersion(torch.__version__) < "1.9", "recent torchscript only")
 | 
			
		||||
    def test_scriptable(self):
 | 
			
		||||
        torch.jit.script(axis_angle_to_matrix)
 | 
			
		||||
        torch.jit.script(axis_angle_to_quaternion)
 | 
			
		||||
        torch.jit.script(euler_angles_to_matrix)
 | 
			
		||||
        torch.jit.script(matrix_to_axis_angle)
 | 
			
		||||
        torch.jit.script(matrix_to_euler_angles)
 | 
			
		||||
        torch.jit.script(matrix_to_quaternion)
 | 
			
		||||
        torch.jit.script(matrix_to_rotation_6d)
 | 
			
		||||
        torch.jit.script(quaternion_apply)
 | 
			
		||||
        torch.jit.script(quaternion_multiply)
 | 
			
		||||
        torch.jit.script(quaternion_to_matrix)
 | 
			
		||||
        torch.jit.script(quaternion_to_axis_angle)
 | 
			
		||||
        torch.jit.script(random_quaternions)
 | 
			
		||||
        torch.jit.script(random_rotation)
 | 
			
		||||
        torch.jit.script(random_rotations)
 | 
			
		||||
        torch.jit.script(random_quaternions)
 | 
			
		||||
        torch.jit.script(rotation_6d_to_matrix)
 | 
			
		||||
 | 
			
		||||
    def _assert_quaternions_close(
 | 
			
		||||
        self,
 | 
			
		||||
        input: Union[torch.Tensor, np.ndarray],
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user