C++ IoU for 3D Boxes

Summary: C++ Implementation of algorithm to compute 3D bounding boxes for batches of bboxes of shape (N, 8, 3) and (M, 8, 3).

Reviewed By: gkioxari

Differential Revision: D30905190

fbshipit-source-id: 02e2cf025cd4fa3ff706ce5cf9b82c0fb5443f96
This commit is contained in:
Nikhila Ravi 2021-09-29 17:02:37 -07:00 committed by Facebook GitHub Bot
parent 2293f1fed0
commit 53266ec9ff
7 changed files with 927 additions and 29 deletions

View File

@ -20,6 +20,7 @@
#include "face_areas_normals/face_areas_normals.h"
#include "gather_scatter/gather_scatter.h"
#include "interp_face_attrs/interp_face_attrs.h"
#include "iou_box3d/iou_box3d.h"
#include "knn/knn.h"
#include "mesh_normal_consistency/mesh_normal_consistency.h"
#include "packed_to_padded_tensor/packed_to_padded_tensor.h"
@ -87,6 +88,9 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
// Sample PDF
m.def("sample_pdf", &SamplePdf);
// 3D IoU
m.def("iou_box3d", &IoUBox3D);
// Pulsar.
#ifdef PULSAR_LOGGING_ENABLED
c10::ShowLogInfoToStderr();

View File

@ -0,0 +1,37 @@
/*
* Copyright (c) Facebook, Inc. and its affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#pragma once
#include <torch/extension.h>
#include <tuple>
#include "utils/pytorch3d_cutils.h"
// Calculate the intersection volume and IoU metric for two batches of boxes
//
// Args:
// boxes1: tensor of shape (N, 8, 3) of the coordinates of the 1st boxes
// boxes2: tensor of shape (M, 8, 3) of the coordinates of the 2nd boxes
// Returns:
// vol: (N, M) tensor of the volume of the intersecting convex shapes
// iou: (N, M) tensor of the intersection over union which is
// defined as: `iou = vol / (vol1 + vol2 - vol)`
// CPU implementation
std::tuple<at::Tensor, at::Tensor> IoUBox3DCpu(
const at::Tensor& boxes1,
const at::Tensor& boxes2);
// Implementation which is exposed
inline std::tuple<at::Tensor, at::Tensor> IoUBox3D(
const at::Tensor& boxes1,
const at::Tensor& boxes2) {
if (boxes1.is_cuda() || boxes2.is_cuda()) {
AT_ERROR("GPU support not implemented");
}
return IoUBox3DCpu(boxes1.contiguous(), boxes2.contiguous());
}

View File

@ -0,0 +1,121 @@
/*
* Copyright (c) Facebook, Inc. and its affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <torch/extension.h>
#include <torch/torch.h>
#include <list>
#include <numeric>
#include <queue>
#include <tuple>
#include "iou_box3d/iou_utils.h"
std::tuple<at::Tensor, at::Tensor> IoUBox3DCpu(
const at::Tensor& boxes1,
const at::Tensor& boxes2) {
const int N = boxes1.size(0);
const int M = boxes2.size(0);
auto float_opts = boxes1.options().dtype(torch::kFloat32);
torch::Tensor vols = torch::zeros({N, M}, float_opts);
torch::Tensor ious = torch::zeros({N, M}, float_opts);
// Create tensor accessors
auto boxes1_a = boxes1.accessor<float, 3>();
auto boxes2_a = boxes2.accessor<float, 3>();
auto vols_a = vols.accessor<float, 2>();
auto ious_a = ious.accessor<float, 2>();
// Iterate through the N boxes in boxes1
for (int n = 0; n < N; ++n) {
const auto& box1 = boxes1_a[n];
// Convert to vector of face vertices i.e. effectively (F, 3, 3)
// face_verts is a data type defined in iou_utils.h
const face_verts box1_tris = GetBoxTris(box1);
// Calculate the position of the center of the box which is used in
// several calculations. This requires a tensor as input.
const vec3<float> box1_center = BoxCenter(boxes1[n]);
// Convert to vector of face vertices i.e. effectively (P, 4, 3)
const face_verts box1_planes = GetBoxPlanes(box1);
// Get Box Volumes
const float box1_vol = BoxVolume(box1_tris, box1_center);
// Iterate through the M boxes in boxes2
for (int m = 0; m < M; ++m) {
// Repeat above steps for box2
// TODO: check if caching these value helps performance.
const auto& box2 = boxes2_a[m];
const face_verts box2_tris = GetBoxTris(box2);
const vec3<float> box2_center = BoxCenter(boxes2[m]);
const face_verts box2_planes = GetBoxPlanes(box2);
const float box2_vol = BoxVolume(box2_tris, box2_center);
// Every triangle in one box will be compared to each plane in the other
// box. There are 3 possible outcomes:
// 1. If the triangle is fully inside, then it will
// remain as is.
// 2. If the triagnle it is fully outside, it will be removed.
// 3. If the triangle intersects with the (infinite) plane, it
// will be broken into subtriangles such that each subtriangle is full
// inside the plane and part of the intersecting tetrahedron.
// Tris in Box1 -> Planes in Box2
face_verts box1_intersect =
BoxIntersections(box1_tris, box2_planes, box2_center);
// Tris in Box2 -> Planes in Box1
face_verts box2_intersect =
BoxIntersections(box2_tris, box1_planes, box1_center);
// If there are overlapping regions in Box2, remove any coplanar faces
if (box2_intersect.size() > 0) {
// Identify if any triangles in Box2 are coplanar with Box1
std::vector<int> tri2_keep(box2_intersect.size());
std::fill(tri2_keep.begin(), tri2_keep.end(), 1);
for (int b1 = 0; b1 < box1_intersect.size(); ++b1) {
for (int b2 = 0; b2 < box2_intersect.size(); ++b2) {
bool is_coplanar =
IsCoplanarFace(box1_intersect[b1], box2_intersect[b2]);
if (is_coplanar) {
tri2_keep[b2] = 0;
}
}
}
// Keep only the non coplanar triangles in Box2 - add them to the
// Box1 triangles.
for (int b2 = 0; b2 < box2_intersect.size(); ++b2) {
if (tri2_keep[b2] == 1) {
box1_intersect.push_back((box2_intersect[b2]));
}
}
}
// Initialize the vol and iou to 0.0 in case there are no triangles
// in the intersecting shape.
float vol = 0.0;
float iou = 0.0;
// If there are triangles in the intersecting shape
if (box1_intersect.size() > 0) {
// The intersecting shape is a polyhedron made up of the
// triangular faces that are all now in box1_intersect.
// Calculate the polyhedron center
const vec3<float> polyhedron_center = PolyhedronCenter(box1_intersect);
// Compute intersecting polyhedron volume
vol = BoxVolume(box1_intersect, polyhedron_center);
// Compute IoU
iou = vol / (box1_vol + box2_vol - vol);
}
// Save out volume and IoU
vols_a[n][m] = vol;
ious_a[n][m] = iou;
}
}
return std::make_tuple(vols, ious);
}

View File

@ -0,0 +1,531 @@
/*
* Copyright (c) Facebook, Inc. and its affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <ATen/ATen.h>
#include <assert.h>
#include <torch/extension.h>
#include <torch/torch.h>
#include <algorithm>
#include <list>
#include <numeric>
#include <queue>
#include <tuple>
#include <type_traits>
#include "utils/geometry_utils.h"
#include "utils/vec3.h"
/*
_PLANES and _TRIS define the 4- and 3-connectivity
of the 8 box corners.
_PLANES gives the quad faces of the 3D box
_TRIS gives the triangle faces of the 3D box
*/
const int NUM_PLANES = 6;
const int NUM_TRIS = 12;
const int _PLANES[6][4] = {
{0, 1, 2, 3},
{3, 2, 6, 7},
{0, 1, 5, 4},
{0, 3, 7, 4},
{1, 5, 6, 2},
{4, 5, 6, 7},
};
const int _TRIS[12][3] = {
{0, 1, 2},
{0, 3, 2},
{4, 5, 6},
{4, 6, 7},
{1, 5, 6},
{1, 6, 2},
{0, 4, 7},
{0, 7, 3},
{3, 2, 6},
{3, 6, 7},
{0, 1, 5},
{0, 4, 5},
};
// Create a new data type for representing the
// verts for each face which can be triangle or plane.
// This helps make the code more readable.
using face_verts = std::vector<std::vector<vec3<float>>>;
// Args
// box: (8, 3) tensor accessor for the box vertices
// plane_idx: index of the plane in the box
// vert_idx: index of the vertex in the plane
//
// Returns
// vec3<T> (x, y, x) vertex coordinates
//
template <typename Box>
inline vec3<float>
ExtractVertsPlane(const Box& box, const int plane_idx, const int vert_idx) {
return vec3<float>(
box[_PLANES[plane_idx][vert_idx]][0],
box[_PLANES[plane_idx][vert_idx]][1],
box[_PLANES[plane_idx][vert_idx]][2]);
}
// Args
// box: (8, 3) tensor accessor for the box vertices
// tri_idx: index of the triangle face in the box
// vert_idx: index of the vertex in the triangle
//
// Returns
// vec3<T> (x, y, x) vertex coordinates
//
template <typename Box>
inline vec3<float>
ExtractVertsTri(const Box& box, const int tri_idx, const int vert_idx) {
return vec3<float>(
box[_TRIS[tri_idx][vert_idx]][0],
box[_TRIS[tri_idx][vert_idx]][1],
box[_TRIS[tri_idx][vert_idx]][2]);
}
// Args
// box: (8, 3) tensor accessor for the box vertices
//
// Returns
// std::vector<std::vector<vec3<T>>> effectively (F, 3, 3)
// coordinates of the verts for each face
//
template <typename Box>
inline face_verts GetBoxTris(const Box& box) {
face_verts box_tris;
for (int t = 0; t < NUM_TRIS; ++t) {
vec3<float> v0 = ExtractVertsTri(box, t, 0);
vec3<float> v1 = ExtractVertsTri(box, t, 1);
vec3<float> v2 = ExtractVertsTri(box, t, 2);
box_tris.push_back({v0, v1, v2});
}
return box_tris;
}
// Args
// box: (8, 3) tensor accessor for the box vertices
//
// Returns
// std::vector<std::vector<vec3<T>>> effectively (P, 3, 3)
// coordinates of the 4 verts for each plane
//
template <typename Box>
inline face_verts GetBoxPlanes(const Box& box) {
face_verts box_planes;
for (int t = 0; t < NUM_PLANES; ++t) {
vec3<float> v0 = ExtractVertsPlane(box, t, 0);
vec3<float> v1 = ExtractVertsPlane(box, t, 1);
vec3<float> v2 = ExtractVertsPlane(box, t, 2);
vec3<float> v3 = ExtractVertsPlane(box, t, 3);
box_planes.push_back({v0, v1, v2, v3});
}
return box_planes;
}
// The normal of the face defined by vertices (v0, v1, v2)
// Define e0 to be the edge connecting (v1, v0)
// Define e1 to be the edge connecting (v2, v0)
// normal is the cross product of e0, e1
//
// Args
// v0, v1, v2: vec3 coordinates of the vertices of the face
//
// Returns
// vec3: normal for the face
//
inline vec3<float> FaceNormal(vec3<float> v0, vec3<float> v1, vec3<float> v2) {
vec3<float> n = cross(v1 - v0, v2 - v0);
n = n / std::fmaxf(norm(n), kEpsilon);
return n;
}
// The normal of a box plane defined by the verts in `plane` with
// the centroid of the box given by `center`.
// Args
// plane: vec3 coordinates of the vertices of the plane
// center: vec3 coordinates of the center of the box from
// which the plane originated
//
// Returns
// vec3: normal for the plane such that it points towards
// the center of the box
//
inline vec3<float> PlaneNormalDirection(
const std::vector<vec3<float>>& plane,
const vec3<float>& center) {
// Only need the first 3 verts of the plane
const vec3<float> v0 = plane[0];
const vec3<float> v1 = plane[1];
const vec3<float> v2 = plane[2];
// We project the center on the plane defined by (v0, v1, v2)
// We can write center = v0 + a * e0 + b * e1 + c * n
// We know that <e0, n> = 0 and <e1, n> = 0 and
// <a, b> is the dot product between a and b.
// This means we can solve for c as:
// c = <center - v0 - a * e0 - b * e1, n> = <center - v0, n>
vec3<float> n = FaceNormal(v0, v1, v2);
const float c = dot((center - v0), n);
// If c is negative, then we revert the direction of n such that n
// points "inside"
if (c < kEpsilon) {
n = -1.0f * n;
}
return n;
}
// Calculate the volume of the box by summing the volume of
// each of the tetrahedrons formed with a triangle face and
// the box centroid.
//
// Args
// box_tris: vector of vec3 coordinates of the vertices of each
// of the triangles in the box
// box_center: vec3 coordinates of the center of the box
//
// Returns
// float: volume of the box
//
inline float BoxVolume(
const face_verts& box_tris,
const vec3<float>& box_center) {
float box_vol = 0.0;
// Iterate through each triange, calculate the area of the
// tetrahedron formed with the box_center and sum them
for (int t = 0; t < box_tris.size(); ++t) {
// Subtract the center:
const vec3<float> v0 = box_tris[t][0] - box_center;
const vec3<float> v1 = box_tris[t][1] - box_center;
const vec3<float> v2 = box_tris[t][2] - box_center;
// Compute the area
const float area = dot(v0, cross(v1, v2));
const float vol = std::abs(area) / 6.0;
box_vol = box_vol + vol;
}
return box_vol;
}
// Compute the box center as the mean of the verts
//
// Args
// box_verts: (8, 3) tensor of the corner vertices of the box
//
// Returns
// vec3: coordinates of the center of the box
//
inline vec3<float> BoxCenter(const at::Tensor& box_verts) {
const auto& box_center_t = at::mean(box_verts, 0);
const vec3<float> box_center(
box_center_t[0].item<float>(),
box_center_t[1].item<float>(),
box_center_t[2].item<float>());
return box_center;
}
// Compute the polyhedron center as the mean of the face centers
// of the triangle faces
//
// Args
// tris: vector of vec3 coordinates of the
// vertices of each of the triangles in the polyhedron
//
// Returns
// vec3: coordinates of the center of the polyhedron
//
inline vec3<float> PolyhedronCenter(const face_verts& tris) {
float x = 0.0;
float y = 0.0;
float z = 0.0;
const int num_tris = tris.size();
// Find the center point of each face
for (int t = 0; t < num_tris; ++t) {
const vec3<float> v0 = tris[t][0];
const vec3<float> v1 = tris[t][1];
const vec3<float> v2 = tris[t][2];
const float x_face = (v0.x + v1.x + v2.x) / 3.0;
const float y_face = (v0.y + v1.y + v2.y) / 3.0;
const float z_face = (v0.z + v1.z + v2.z) / 3.0;
x = x + x_face;
y = y + y_face;
z = z + z_face;
}
// Take the mean of the centers of all faces
x = x / num_tris;
y = y / num_tris;
z = z / num_tris;
const vec3<float> center(x, y, z);
return center;
}
// Compute a boolean indicator for whether a point
// is inside a plane, where inside refers to whether
// or not the point has a component in the
// normal direction of the plane.
//
// Args
// plane: vector of vec3 coordinates of the
// vertices of each of the triangles in the box
// normal: vec3 of the direction of the plane normal
// point: vec3 of the position of the point of interest
//
// Returns
// bool: whether or not the point is inside the plane
//
inline bool IsInside(
const std::vector<vec3<float>>& plane,
const vec3<float>& normal,
const vec3<float>& point) {
// Get one vert of the plane
const vec3<float> v0 = plane[0];
// Every point p can be written as p = v0 + a e0 + b e1 + c n
// Solving for c:
// c = (point - v0 - a * e0 - b * e1).dot(n)
// We know that <e0, n> = 0 and <e1, n> = 0
// So the calculation can be simplified as:
const float c = dot((point - v0), normal);
const bool inside = c > -1.0f * kEpsilon;
return inside;
}
// Find the point of intersection between a plane
// and a line given by the end points (p0, p1)
//
// Args
// plane: vector of vec3 coordinates of the
// vertices of each of the triangles in the box
// normal: vec3 of the direction of the plane normal
// p0, p1: vec3 of the start and end point of the line
//
// Returns
// vec3: position of the intersection point
//
inline vec3<float> PlaneEdgeIntersection(
const std::vector<vec3<float>>& plane,
const vec3<float>& normal,
const vec3<float>& p0,
const vec3<float>& p1) {
// Get one vert of the plane
const vec3<float> v0 = plane[0];
// The point of intersection can be parametrized
// p = p0 + a (p1 - p0) where a in [0, 1]
// We want to find a such that p is on plane
// <p - v0, n> = 0
const float top = dot(-1.0f * (p0 - v0), normal);
const float bot = dot(p1 - p0, normal);
const float a = top / bot;
const vec3<float> p = p0 + a * (p1 - p0);
return p;
}
// Triangle is clipped into a quadrilateral
// based on the intersection points with the plane.
// Then the quadrilateral is divided into two triangles.
//
// Args
// plane: vector of vec3 coordinates of the
// vertices of each of the triangles in the box
// normal: vec3 of the direction of the plane normal
// vout: vec3 of the point in the triangle which is outside
// the plane
// vin1, vin2: vec3 of the points in the triangle which are
// inside the plane
//
// Returns
// std::vector<std::vector<vec3>>: vector of vertex coordinates
// of the new triangle faces
//
inline face_verts ClipTriByPlaneOneOut(
const std::vector<vec3<float>>& plane,
const vec3<float>& normal,
const vec3<float>& vout,
const vec3<float>& vin1,
const vec3<float>& vin2) {
// point of intersection between plane and (vin1, vout)
const vec3<float> pint1 = PlaneEdgeIntersection(plane, normal, vin1, vout);
// point of intersection between plane and (vin2, vout)
const vec3<float> pint2 = PlaneEdgeIntersection(plane, normal, vin2, vout);
const face_verts face_verts = {{vin1, pint1, pint2}, {vin1, pint2, vin2}};
return face_verts;
}
// Triangle is clipped into a smaller triangle based
// on the intersection points with the plane.
//
// Args
// plane: vector of vec3 coordinates of the
// vertices of each of the triangles in the box
// normal: vec3 of the direction of the plane normal
// vout1, vout2: vec3 of the points in the triangle which are
// outside the plane
// vin: vec3 of the point in the triangle which is inside
// the plane
// Returns
// std::vector<std::vector<vec3>>: vector of vertex coordinates
// of the new triangle face
//
inline face_verts ClipTriByPlaneTwoOut(
const std::vector<vec3<float>>& plane,
const vec3<float>& normal,
const vec3<float>& vout1,
const vec3<float>& vout2,
const vec3<float>& vin) {
// point of intersection between plane and (vin, vout1)
const vec3<float> pint1 = PlaneEdgeIntersection(plane, normal, vin, vout1);
// point of intersection between plane and (vin, vout2)
const vec3<float> pint2 = PlaneEdgeIntersection(plane, normal, vin, vout2);
const face_verts face_verts = {{vin, pint1, pint2}};
return face_verts;
}
// Clip the triangle faces so that they lie within the
// plane, creating new triangle faces where necessary.
//
// Args
// plane: vector of vec3 coordinates of the
// vertices of each of the triangles in the box
// tri: std:vector<vec3> of the vertex coordinates of the
// triangle faces
// normal: vec3 of the direction of the plane normal
//
// Returns
// std::vector<std::vector<vec3>>: vector of vertex coordinates
// of the new triangle faces formed after clipping.
// All triangles are now "inside" the plane.
//
inline face_verts ClipTriByPlane(
const std::vector<vec3<float>>& plane,
const std::vector<vec3<float>>& tri,
const vec3<float>& normal) {
// Get Triangle vertices
const vec3<float> v0 = tri[0];
const vec3<float> v1 = tri[1];
const vec3<float> v2 = tri[2];
// Check each of the triangle vertices to see if it is inside the plane
const bool isin0 = IsInside(plane, normal, v0);
const bool isin1 = IsInside(plane, normal, v1);
const bool isin2 = IsInside(plane, normal, v2);
// All in
if (isin0 && isin1 && isin2) {
// Return input vertices
face_verts tris = {{v0, v1, v2}};
return tris;
}
face_verts empty_tris = {};
// All out
if (!isin0 && !isin1 && !isin2) {
return empty_tris;
}
// One vert out
if (isin0 && isin1 && !isin2) {
return ClipTriByPlaneOneOut(plane, normal, v2, v0, v1);
}
if (isin0 && not isin1 && isin2) {
return ClipTriByPlaneOneOut(plane, normal, v1, v0, v2);
}
if (not isin0 && isin1 && isin2) {
return ClipTriByPlaneOneOut(plane, normal, v0, v1, v2);
}
// Two verts out
if (isin0 && !isin1 && !isin2) {
return ClipTriByPlaneTwoOut(plane, normal, v1, v2, v0);
}
if (!isin0 && !isin1 && isin2) {
return ClipTriByPlaneTwoOut(plane, normal, v0, v1, v2);
}
if (!isin0 && isin1 && !isin2) {
return ClipTriByPlaneTwoOut(plane, normal, v0, v2, v1);
}
// Else return empty (should not be reached)
return empty_tris;
}
// Compute a boolean indicator for whether or not two faces
// are coplanar
//
// Args
// tri1, tri2: std:vector<vec3> of the vertex coordinates of
// triangle faces
//
// Returns
// bool: whether or not the two faces are coplanar
//
inline bool IsCoplanarFace(
const std::vector<vec3<float>>& tri1,
const std::vector<vec3<float>>& tri2) {
// Get verts for face 1
const vec3<float> v0 = tri1[0];
const vec3<float> v1 = tri1[1];
const vec3<float> v2 = tri1[2];
const vec3<float> n1 = FaceNormal(v0, v1, v2);
int coplanar_count = 0;
for (int i = 0; i < 3; ++i) {
float d = std::abs(dot(tri2[i] - v0, n1));
if (d < kEpsilon) {
coplanar_count = coplanar_count + 1;
}
}
return (coplanar_count == 3);
}
// Get the triangles from each box which are part of the
// intersecting polyhedron by computing the intersection
// points with each of the planes.
//
// Args
// tris: vertex coordinates of all the triangle faces
// in the box
// planes: vertex coordinates of all the planes in the box
// center: vec3 coordinates of the center of the box from which
// the planes originate
//
// Returns
// std::vector<std::vector<vec3>>> vector of vertex coordinates
// of the new triangle faces formed after clipping.
// All triangles are now "inside" the planes.
//
inline face_verts BoxIntersections(
const face_verts& tris,
const face_verts& planes,
const vec3<float>& center) {
// Create a new vector to avoid modifying in place
face_verts out_tris = tris;
for (int p = 0; p < NUM_PLANES; ++p) {
// Get plane normal direction
const vec3<float> n2 = PlaneNormalDirection(planes[p], center);
// Iterate through triangles in tris
// Create intermediate vector to store the updated tris
face_verts tri_verts_updated;
for (int t = 0; t < out_tris.size(); ++t) {
// Clip tri by plane
const face_verts tri_updated = ClipTriByPlane(planes[p], out_tris[t], n2);
// Add to the tri_verts_updated output if not empty
for (int v = 0; v < tri_updated.size(); ++v) {
tri_verts_updated.push_back(tri_updated[v]);
}
}
// Update the tris
out_tris = tri_verts_updated;
}
return out_tris;
}

View File

@ -0,0 +1,64 @@
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from typing import Tuple
import torch
from pytorch3d import _C
from torch.autograd import Function
class _box3d_overlap(Function):
"""
Torch autograd Function wrapper for box3d_overlap C++/CUDA implementations.
Backward is not supported.
"""
@staticmethod
def forward(ctx, boxes1, boxes2):
"""
Arguments defintions the same as in the box3d_overlap function
"""
vol, iou = _C.iou_box3d(boxes1, boxes2)
return vol, iou
@staticmethod
def backward(ctx, grad_vol, grad_iou):
raise ValueError("box3d_overlap backward is not supported")
def box3d_overlap(
boxes1: torch.Tensor, boxes2: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Computes the intersection of 3D boxes1 and boxes2.
Inputs boxes1, boxes2 are tensors of shape (B, 8, 3)
(where B doesn't have to be the same for boxes1 and boxes1),
containing the 8 corners of the boxes, as follows:
(4) +---------+. (5)
| ` . | ` .
| (0) +---+-----+ (1)
| | | |
(7) +-----+---+. (6)|
` . | ` . |
(3) ` +---------+ (2)
Args:
boxes1: tensor of shape (N, 8, 3) of the coordinates of the 1st boxes
boxes2: tensor of shape (M, 8, 3) of the coordinates of the 2nd boxes
Returns:
vol: (N, M) tensor of the volume of the intersecting convex shapes
iou: (N, M) tensor of the intersection over union which is
defined as: `iou = vol / (vol1 + vol2 - vol)`
"""
if not all((8, 3) == box.shape[1:] for box in [boxes1, boxes2]):
raise ValueError("Each box in the batch must be of shape (8, 3)")
# pyre-fixme[16]: `_box3d_overlap` has no attribute `apply`.
vol, iou = _box3d_overlap.apply(boxes1, boxes2)
return vol, iou

37
tests/bm_iou_box3d.py Normal file
View File

@ -0,0 +1,37 @@
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from itertools import product
from fvcore.common.benchmark import benchmark
from test_iou_box3d import TestIoU3D
def bm_iou_box3d() -> None:
N = [1, 4, 8, 16]
num_samples = [2000, 5000, 10000, 20000]
kwargs_list = []
test_cases = product(N, N)
for case in test_cases:
n, m = case
kwargs_list.append({"N": n, "M": m, "device": "cuda:0"})
benchmark(TestIoU3D.iou_naive, "3D_IOU_NAIVE", kwargs_list, warmup_iters=1)
[k.update({"device": "cpu"}) for k in kwargs_list]
benchmark(TestIoU3D.iou, "3D_IOU", kwargs_list, warmup_iters=1)
kwargs_list = []
test_cases = product([1, 4], [1, 4], num_samples)
for case in test_cases:
n, m, s = case
kwargs_list.append({"N": n, "M": m, "num_samples": s})
benchmark(TestIoU3D.iou_sampling, "3D_IOU_SAMPLING", kwargs_list, warmup_iters=1)
if __name__ == "__main__":
bm_iou_box3d()

View File

@ -4,7 +4,6 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import random
import unittest
from typing import List, Tuple, Union
@ -13,6 +12,8 @@ import torch
import torch.nn.functional as F
from common_testing import TestCaseMixin
from pytorch3d.io import save_obj
from pytorch3d.ops.iou_box3d import box3d_overlap
from pytorch3d.transforms.rotation_conversions import random_rotation
@ -21,7 +22,8 @@ class TestIoU3D(TestCaseMixin, unittest.TestCase):
super().setUp()
torch.manual_seed(1)
def create_box(self, xyz, whl):
@staticmethod
def create_box(xyz, whl):
x, y, z = xyz
w, h, le = whl
@ -41,8 +43,39 @@ class TestIoU3D(TestCaseMixin, unittest.TestCase):
)
return verts
def test_iou(self):
device = torch.device("cuda:0")
@staticmethod
def _box3d_overlap_naive_batched(boxes1, boxes2):
"""
Wrapper around box3d_overlap_naive to support
batched input
"""
N = boxes1.shape[0]
M = boxes2.shape[0]
vols = torch.zeros((N, M), dtype=torch.float32, device=boxes1.device)
ious = torch.zeros((N, M), dtype=torch.float32, device=boxes1.device)
for n in range(N):
for m in range(M):
vol, iou = box3d_overlap_naive(boxes1[n], boxes2[m])
vols[n, m] = vol
ious[n, m] = iou
return vols, ious
@staticmethod
def _box3d_overlap_sampling_batched(boxes1, boxes2, num_samples: int):
"""
Wrapper around box3d_overlap_sampling to support
batched input
"""
N = boxes1.shape[0]
M = boxes2.shape[0]
ious = torch.zeros((N, M), dtype=torch.float32, device=boxes1.device)
for n in range(N):
for m in range(M):
iou = box3d_overlap_sampling(boxes1[n], boxes2[m])
ious[n, m] = iou
return ious
def _test_iou(self, overlap_fn, device):
box1 = torch.tensor(
[
@ -60,30 +93,36 @@ class TestIoU3D(TestCaseMixin, unittest.TestCase):
)
# 1st test: same box, iou = 1.0
vol, iou = box3d_overlap(box1, box1)
self.assertClose(vol, torch.tensor(1.0, device=vol.device, dtype=vol.dtype))
self.assertClose(iou, torch.tensor(1.0, device=vol.device, dtype=vol.dtype))
vol, iou = overlap_fn(box1[None], box1[None])
self.assertClose(vol, torch.tensor([[1.0]], device=vol.device, dtype=vol.dtype))
self.assertClose(iou, torch.tensor([[1.0]], device=vol.device, dtype=vol.dtype))
# 2nd test
dd = random.random()
box2 = box1 + torch.tensor([[0.0, dd, 0.0]], device=device)
vol, iou = box3d_overlap(box1, box2)
self.assertClose(vol, torch.tensor(1 - dd, device=vol.device, dtype=vol.dtype))
vol, iou = overlap_fn(box1[None], box2[None])
self.assertClose(
vol, torch.tensor([[1 - dd]], device=vol.device, dtype=vol.dtype)
)
# 3rd test
dd = random.random()
box2 = box1 + torch.tensor([[dd, 0.0, 0.0]], device=device)
vol, _ = box3d_overlap(box1, box2)
self.assertClose(vol, torch.tensor(1 - dd, device=vol.device, dtype=vol.dtype))
vol, _ = overlap_fn(box1[None], box2[None])
self.assertClose(
vol, torch.tensor([[1 - dd]], device=vol.device, dtype=vol.dtype)
)
# 4th test
ddx, ddy, ddz = random.random(), random.random(), random.random()
box2 = box1 + torch.tensor([[ddx, ddy, ddz]], device=device)
vol, _ = box3d_overlap(box1, box2)
vol, _ = overlap_fn(box1[None], box2[None])
self.assertClose(
vol,
torch.tensor(
(1 - ddx) * (1 - ddy) * (1 - ddz), device=vol.device, dtype=vol.dtype
[[(1 - ddx) * (1 - ddy) * (1 - ddz)]],
device=vol.device,
dtype=vol.dtype,
),
)
@ -93,11 +132,13 @@ class TestIoU3D(TestCaseMixin, unittest.TestCase):
RR = random_rotation(dtype=torch.float32, device=device)
box1r = box1 @ RR.transpose(0, 1)
box2r = box2 @ RR.transpose(0, 1)
vol, _ = box3d_overlap(box1r, box2r)
vol, _ = overlap_fn(box1r[None], box2r[None])
self.assertClose(
vol,
torch.tensor(
(1 - ddx) * (1 - ddy) * (1 - ddz), device=vol.device, dtype=vol.dtype
[[(1 - ddx) * (1 - ddy) * (1 - ddz)]],
device=vol.device,
dtype=vol.dtype,
),
)
@ -108,11 +149,13 @@ class TestIoU3D(TestCaseMixin, unittest.TestCase):
TT = torch.rand((1, 3), dtype=torch.float32, device=device)
box1r = box1 @ RR.transpose(0, 1) + TT
box2r = box2 @ RR.transpose(0, 1) + TT
vol, _ = box3d_overlap(box1r, box2r)
vol, _ = overlap_fn(box1r[None], box2r[None])
self.assertClose(
vol,
torch.tensor(
(1 - ddx) * (1 - ddy) * (1 - ddz), device=vol.device, dtype=vol.dtype
[[(1 - ddx) * (1 - ddy) * (1 - ddz)]],
device=vol.device,
dtype=vol.dtype,
),
)
@ -135,7 +178,7 @@ class TestIoU3D(TestCaseMixin, unittest.TestCase):
[-2.8789, 6.0142, 0.7549],
[-4.3586, 3.5345, -1.1831],
],
device="cuda:0",
device=device,
)
box2r = torch.tensor(
[
@ -148,7 +191,7 @@ class TestIoU3D(TestCaseMixin, unittest.TestCase):
[0.4328, -5.3761, -3.5436],
[-2.3633, -5.6305, -1.2893],
],
device="cuda:0",
device=device,
)
# from Meshlab:
vol_inters = 33.558529
@ -156,9 +199,9 @@ class TestIoU3D(TestCaseMixin, unittest.TestCase):
vol_box2 = 156.386719
iou_mesh = vol_inters / (vol_box1 + vol_box2 - vol_inters)
vol, iou = box3d_overlap(box1r, box2r)
self.assertClose(vol, torch.tensor(vol_inters, device=device), atol=1e-1)
self.assertClose(iou, torch.tensor(iou_mesh, device=device), atol=1e-1)
vol, iou = overlap_fn(box1r[None], box2r[None])
self.assertClose(vol, torch.tensor([[vol_inters]], device=device), atol=1e-1)
self.assertClose(iou, torch.tensor([[iou_mesh]], device=device), atol=1e-1)
# 8th test: compare with sampling
# create box1
@ -173,16 +216,47 @@ class TestIoU3D(TestCaseMixin, unittest.TestCase):
TT2 = torch.rand((1, 3), dtype=torch.float32, device=device)
box1r = box1 @ RR1.transpose(0, 1) + TT1
box2r = box2 @ RR2.transpose(0, 1) + TT2
vol, iou = box3d_overlap(box1r, box2r)
iou_sampling = box3d_overlap_sampling(box1r, box2r, num_samples=10000)
vol, iou = overlap_fn(box1r[None], box2r[None])
iou_sampling = self._box3d_overlap_sampling_batched(
box1r[None], box2r[None], num_samples=10000
)
self.assertClose(iou, iou_sampling, atol=1e-2)
# 9th test: non overlapping boxes, iou = 0.0
box2 = box1 + torch.tensor([[0.0, 100.0, 0.0]], device=device)
vol, iou = box3d_overlap(box1, box2)
self.assertClose(vol, torch.tensor(0.0, device=vol.device, dtype=vol.dtype))
self.assertClose(iou, torch.tensor(0.0, device=vol.device, dtype=vol.dtype))
vol, iou = overlap_fn(box1[None], box2[None])
self.assertClose(vol, torch.tensor([[0.0]], device=vol.device, dtype=vol.dtype))
self.assertClose(iou, torch.tensor([[0.0]], device=vol.device, dtype=vol.dtype))
def test_iou_naive(self):
device = torch.device("cuda:0")
self._test_iou(self._box3d_overlap_naive_batched, device)
def test_iou_cpu(self):
device = torch.device("cpu")
self._test_iou(box3d_overlap, device)
def test_cpu_vs_naive_batched(self):
N, M = 3, 6
device = "cpu"
boxes1 = torch.randn((N, 8, 3), device=device)
boxes2 = torch.randn((M, 8, 3), device=device)
vol1, iou1 = self._box3d_overlap_naive_batched(boxes1, boxes2)
vol2, iou2 = box3d_overlap(boxes1, boxes2)
# check shape
for val in [vol1, vol2, iou1, iou2]:
self.assertClose(val.shape, (N, M))
# check values
self.assertClose(vol1, vol2)
self.assertClose(iou1, iou2)
def test_batched_errors(self):
N, M = 5, 10
boxes1 = torch.randn((N, 8, 3))
boxes2 = torch.randn((M, 10, 3))
with self.assertRaisesRegex(ValueError, "(8, 3)"):
box3d_overlap(boxes1, boxes2)
def test_box_volume(self):
device = torch.device("cuda:0")
@ -277,6 +351,36 @@ class TestIoU3D(TestCaseMixin, unittest.TestCase):
self.assertClose(box_planar_dir(box1), n1)
self.assertClose(box_planar_dir(box2), n2)
@staticmethod
def iou_naive(N: int, M: int, device="cpu"):
boxes1 = torch.randn((N, 8, 3))
boxes2 = torch.randn((M, 8, 3))
def output():
vol, iou = TestIoU3D._box3d_overlap_naive_batched(boxes1, boxes2)
return output
@staticmethod
def iou(N: int, M: int, device="cpu"):
boxes1 = torch.randn((N, 8, 3), device=device)
boxes2 = torch.randn((M, 8, 3), device=device)
def output():
vol, iou = box3d_overlap(boxes1, boxes2)
return output
@staticmethod
def iou_sampling(N: int, M: int, num_samples: int):
boxes1 = torch.randn((N, 8, 3))
boxes2 = torch.randn((M, 8, 3))
def output():
_ = TestIoU3D._box3d_overlap_sampling_batched(boxes1, boxes2, num_samples)
return output
# -------------------------------------------------- #
# NAIVE IMPLEMENTATION #
@ -284,7 +388,7 @@ class TestIoU3D(TestCaseMixin, unittest.TestCase):
"""
The main functions below are:
* box3d_overlap: which computes the exact IoU of box1 and box2
* box3d_overlap_naive: which computes the exact IoU of box1 and box2
* box3d_overlap_sampling: which computes an approximate IoU of box1 and box2
by sampling points within the boxes
@ -738,7 +842,7 @@ def clip_tri_by_plane(plane, n, tri_verts) -> Union[List, torch.Tensor]:
# -------------------------------------------------- #
def box3d_overlap(box1: torch.Tensor, box2: torch.Tensor):
def box3d_overlap_naive(box1: torch.Tensor, box2: torch.Tensor):
"""
Computes the intersection of 3D boxes1 and boxes2.
Inputs boxes1, boxes2 are tensors of shape (8, 3) containing