work with old linalg

Summary: solve and lstsq have moved around in torch. Cope with both.

Reviewed By: patricklabatut

Differential Revision: D29302316

fbshipit-source-id: b34f0b923e90a357f20df359635929241eba6e74
This commit is contained in:
Jeremy Reizenstein 2021-06-28 06:30:27 -07:00 committed by Facebook GitHub Bot
parent 5284de6e97
commit b8790474f1
7 changed files with 65 additions and 14 deletions

View File

@ -0,0 +1,51 @@
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from typing import Tuple
import torch
"""
Some functions which depend on PyTorch versions.
"""
def solve(A: torch.Tensor, B: torch.Tensor) -> torch.Tensor: # pragma: no cover
"""
Like torch.linalg.solve, tries to return X
such that AX=B, with A square.
"""
if hasattr(torch.linalg, "solve"):
# PyTorch version >= 1.8.0
return torch.linalg.solve(A, B)
return torch.solve(B, A).solution
def lstsq(A: torch.Tensor, B: torch.Tensor) -> torch.Tensor: # pragma: no cover
"""
Like torch.linalg.lstsq, tries to return X
such that AX=B.
"""
if hasattr(torch.linalg, "lstsq"):
# PyTorch version >= 1.9
return torch.linalg.lstsq(A, B).solution
solution = torch.lstsq(B, A).solution
if A.shape[1] < A.shape[0]:
return solution[: A.shape[1]]
return solution
def qr(A: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: # pragma: no cover
"""
Like torch.linalg.qr.
"""
if hasattr(torch.linalg, "qr"):
# PyTorch version >= 1.9
return torch.linalg.qr(A)
return torch.qr(A)

View File

@ -26,8 +26,8 @@ from .rotation_conversions import (
)
from .se3 import se3_exp_map, se3_log_map
from .so3 import (
so3_exponential_map,
so3_exp_map,
so3_exponential_map,
so3_log_map,
so3_relative_angle,
so3_rotation_angle,

View File

@ -5,8 +5,9 @@
# LICENSE file in the root directory of this source tree.
import torch
from pytorch3d.common.compat import solve
from .so3 import hat, _so3_exp_map, so3_log_map
from .so3 import _so3_exp_map, hat, so3_log_map
def se3_exp_map(log_transform: torch.Tensor, eps: float = 1e-4) -> torch.Tensor:
@ -173,7 +174,7 @@ def se3_log_map(
# log_translation is V^-1 @ T
T = transform[:, 3, :3]
V = _se3_V_matrix(*_get_se3_V_input(log_rotation), eps=eps)
log_translation = torch.linalg.solve(V, T[:, :, None])[:, :, 0]
log_translation = solve(V, T[:, :, None])[:, :, 0]
return torch.cat((log_translation, log_rotation), dim=1)

View File

@ -11,6 +11,7 @@ import torch
from ..transforms import acos_linear_extrapolation
HAT_INV_SKEW_SYMMETRIC_TOL = 1e-5

View File

@ -10,6 +10,7 @@ import unittest
import numpy as np
import torch
from common_testing import TestCaseMixin
from pytorch3d.common.compat import lstsq
from pytorch3d.transforms import acos_linear_extrapolation
@ -64,8 +65,7 @@ class TestAcosLinearExtrapolation(TestCaseMixin, unittest.TestCase):
bound_t = torch.tensor(bound, device=x.device, dtype=x.dtype)
# fit a line: slope * x + bias = y
x_1 = torch.stack([x, torch.ones_like(x)], dim=-1)
solution = torch.linalg.lstsq(x_1, y[:, None]).solution
slope, bias = solution.view(-1)[:2]
slope, bias = lstsq(x_1, y[:, None]).view(-1)[:2]
desired_slope = (-1.0) / torch.sqrt(1.0 - bound_t ** 2)
# test that the desired slope is the same as the fitted one
self.assertClose(desired_slope.view(1), slope.view(1), atol=1e-2)

View File

@ -10,13 +10,10 @@ import unittest
import numpy as np
import torch
from common_testing import TestCaseMixin
from pytorch3d.common.compat import qr
from pytorch3d.transforms.rotation_conversions import random_rotations
from pytorch3d.transforms.se3 import se3_exp_map, se3_log_map
from pytorch3d.transforms.so3 import (
so3_exp_map,
so3_log_map,
so3_rotation_angle,
)
from pytorch3d.transforms.so3 import so3_exp_map, so3_log_map, so3_rotation_angle
class TestSE3(TestCaseMixin, unittest.TestCase):
@ -201,7 +198,7 @@ class TestSE3(TestCaseMixin, unittest.TestCase):
r = [identity, rot180]
r.extend(
[
torch.qr(identity + torch.randn_like(identity) * 1e-6)[0]
qr(identity + torch.randn_like(identity) * 1e-6)[0]
+ float(i > batch_size // 2) * (0.5 - torch.rand_like(identity)) * 1e-8
# this adds random noise to the second half
# of the random orthogonal matrices to generate

View File

@ -11,6 +11,7 @@ import unittest
import numpy as np
import torch
from common_testing import TestCaseMixin
from pytorch3d.common.compat import qr
from pytorch3d.transforms.so3 import (
hat,
so3_exp_map,
@ -46,7 +47,7 @@ class TestSO3(TestCaseMixin, unittest.TestCase):
# TODO(dnovotny): replace with random_rotation from random_rotation.py
rot = []
for _ in range(batch_size):
r = torch.qr(torch.randn((3, 3), device=device))[0]
r = qr(torch.randn((3, 3), device=device))[0]
f = torch.randint(2, (3,), device=device, dtype=torch.float32)
if f.sum() % 2 == 0:
f = 1 - f
@ -142,7 +143,7 @@ class TestSO3(TestCaseMixin, unittest.TestCase):
# add random rotations and random almost orthonormal matrices
r.extend(
[
torch.qr(identity + torch.randn_like(identity) * 1e-4)[0]
qr(identity + torch.randn_like(identity) * 1e-4)[0]
+ float(i > batch_size // 2) * (0.5 - torch.rand_like(identity)) * 1e-3
# this adds random noise to the second half
# of the random orthogonal matrices to generate
@ -242,7 +243,7 @@ class TestSO3(TestCaseMixin, unittest.TestCase):
r = [identity, rot180]
r.extend(
[
torch.qr(identity + torch.randn_like(identity) * 1e-4)[0]
qr(identity + torch.randn_like(identity) * 1e-4)[0]
for _ in range(batch_size - 2)
]
)