mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Replace torch.det()
with manual implementation for 3x3 matrix
Summary: # Background There is an unstable error during training (it can happen after several minutes or after several hours). The error is connected to `torch.det()` function in `_check_valid_rotation_matrix()`. if I remove the function `torch.det()` in `_check_valid_rotation_matrix()` or remove the whole functions `_check_valid_rotation_matrix()` the error is disappeared (D29555876). # Solution Replace `torch.det()` with manual implementation for 3x3 matrix. Reviewed By: patricklabatut Differential Revision: D29655924 fbshipit-source-id: 41bde1119274a705ab849751ece28873d2c45155
This commit is contained in:
parent
2f668ecefe
commit
bcee361d04
31
pytorch3d/common/workaround.py
Normal file
31
pytorch3d/common/workaround.py
Normal file
@ -0,0 +1,31 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
def _safe_det_3x3(t: torch.Tensor):
|
||||
"""
|
||||
Fast determinant calculation for a batch of 3x3 matrices.
|
||||
|
||||
Note, result of this function might not be the same as `torch.det()`.
|
||||
The differences might be in the last significant digit.
|
||||
|
||||
Args:
|
||||
t: Tensor of shape (N, 3, 3).
|
||||
|
||||
Returns:
|
||||
Tensor of shape (N) with determinants.
|
||||
"""
|
||||
|
||||
det = (
|
||||
t[..., 0, 0] * (t[..., 1, 1] * t[..., 2, 2] - t[..., 1, 2] * t[..., 2, 1])
|
||||
- t[..., 0, 1] * (t[..., 1, 0] * t[..., 2, 2] - t[..., 2, 0] * t[..., 1, 2])
|
||||
+ t[..., 0, 2] * (t[..., 1, 0] * t[..., 2, 1] - t[..., 2, 0] * t[..., 1, 1])
|
||||
)
|
||||
|
||||
return det
|
@ -11,6 +11,7 @@ from typing import List, Optional, Union
|
||||
import torch
|
||||
|
||||
from ..common.types import Device, get_device, make_device
|
||||
from ..common.workaround import _safe_det_3x3
|
||||
from .rotation_conversions import _axis_angle_rotation
|
||||
|
||||
|
||||
@ -774,7 +775,7 @@ def _check_valid_rotation_matrix(R, tol: float = 1e-7):
|
||||
eye = torch.eye(3, dtype=R.dtype, device=R.device)
|
||||
eye = eye.view(1, 3, 3).expand(N, -1, -1)
|
||||
orthogonal = torch.allclose(R.bmm(R.transpose(1, 2)), eye, atol=tol)
|
||||
det_R = torch.det(R)
|
||||
det_R = _safe_det_3x3(R)
|
||||
no_distortion = torch.allclose(det_R, torch.ones_like(det_R))
|
||||
if not (orthogonal and no_distortion):
|
||||
msg = "R is not a valid rotation matrix"
|
||||
|
56
tests/test_common_workaround.py
Normal file
56
tests/test_common_workaround.py
Normal file
@ -0,0 +1,56 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from common_testing import TestCaseMixin
|
||||
from pytorch3d.common.workaround import _safe_det_3x3
|
||||
|
||||
|
||||
class TestSafeDet3x3(TestCaseMixin, unittest.TestCase):
|
||||
def setUp(self) -> None:
|
||||
super().setUp()
|
||||
torch.manual_seed(42)
|
||||
np.random.seed(42)
|
||||
|
||||
def _test_det_3x3(self, batch_size, device):
|
||||
t = torch.rand((batch_size, 3, 3), dtype=torch.float32, device=device)
|
||||
actual_det = _safe_det_3x3(t)
|
||||
expected_det = t.det()
|
||||
self.assertClose(actual_det, expected_det, atol=1e-7)
|
||||
|
||||
def test_empty_batch(self):
|
||||
self._test_det_3x3(0, torch.device("cpu"))
|
||||
self._test_det_3x3(0, torch.device("cuda:0"))
|
||||
|
||||
def test_manual(self):
|
||||
t = torch.Tensor(
|
||||
[
|
||||
[[1, 0, 0], [0, 1, 0], [0, 0, 1]],
|
||||
[[2, -5, 3], [0, 7, -2], [-1, 4, 1]],
|
||||
[[6, 1, 1], [4, -2, 5], [2, 8, 7]],
|
||||
]
|
||||
).to(dtype=torch.float32)
|
||||
expected_det = torch.Tensor([1, 41, -306]).to(dtype=torch.float32)
|
||||
self.assertClose(_safe_det_3x3(t), expected_det)
|
||||
|
||||
device_cuda = torch.device("cuda:0")
|
||||
self.assertClose(
|
||||
_safe_det_3x3(t.to(device=device_cuda)), expected_det.to(device=device_cuda)
|
||||
)
|
||||
|
||||
def test_regression(self):
|
||||
tries = 32
|
||||
device_cpu = torch.device("cpu")
|
||||
device_cuda = torch.device("cuda:0")
|
||||
batch_sizes = np.random.randint(low=1, high=128, size=tries)
|
||||
|
||||
for batch_size in batch_sizes:
|
||||
self._test_det_3x3(batch_size, device_cpu)
|
||||
self._test_det_3x3(batch_size, device_cuda)
|
Loading…
x
Reference in New Issue
Block a user