181 Commits

Author SHA1 Message Date
Jeremy Reizenstein
33824be3cb version 0.7.9
Reviewed By: shapovalov

Differential Revision: D87984194

fbshipit-source-id: dee8123a2c3f5cc34ada52f4663c9bbb329e03a7
2025-11-27 09:52:08 -08:00
Eugene Park
2d4d345b6f Improve ball_query() runtime for large-scale cases (#2006)
Summary:
### Overview
The current C++ code for `pytorch3d.ops.ball_query()` performs floating point multiplication for every coordinate of every pair of points (up until the maximum number of neighbor points is reached). This PR modifies the code (for both CPU and CUDA versions) to implement idea presented [here](https://stackoverflow.com/a/3939525): a `D`-cube around the `D`-ball is first constructed, and any point pairs falling outside the cube are skipped, without explicitly computing the squared distances. This change is especially useful for when the dimension `D` and the number of points `P2` are large and the radius is much smaller than the overall volume of space occupied by the point clouds; as much as **~2.5x speedup** (CPU case; ~1.8x speedup in CUDA case) is observed when `D = 10` and `radius = 0.01`. In all benchmark cases, points were uniform randomly distributed inside a unit `D`-cube.

The benchmark code used was different from `tests/benchmarks/bm_ball_query.py` (only the forward part is benchmarked, larger input sizes were used) and is stored in `tests/benchmarks/bm_ball_query_large.py`.

### Average time comparisons

<img width="360" height="270" alt="cpu-03-0 01-avg" src="https://github.com/user-attachments/assets/6cc79893-7921-44af-9366-1766c3caf142" />
<img width="360" height="270" alt="cuda-03-0 01-avg" src="https://github.com/user-attachments/assets/5151647d-0273-40a3-aac6-8b9399ede18a" />
<img width="360" height="270" alt="cpu-03-0 10-avg" src="https://github.com/user-attachments/assets/a87bc150-a5eb-47cd-a4ba-83c2ec81edaf" />
<img width="360" height="270" alt="cuda-03-0 10-avg" src="https://github.com/user-attachments/assets/e3699a9f-dfd3-4dd3-b3c9-619296186d43" />
<img width="360" height="270" alt="cpu-10-0 01-avg" src="https://github.com/user-attachments/assets/5ec8c32d-8e4d-4ced-a94e-1b816b1cb0f8" />
<img width="360" height="270" alt="cuda-10-0 01-avg" src="https://github.com/user-attachments/assets/168a3dfc-777a-4fb3-8023-1ac8c13985b8" />
<img width="360" height="270" alt="cpu-10-0 10-avg" src="https://github.com/user-attachments/assets/43a57fd6-1e01-4c5e-87a9-8ef604ef5fa0" />
<img width="360" height="270" alt="cuda-10-0 10-avg" src="https://github.com/user-attachments/assets/a7c7cc69-f273-493e-95b8-3ba2bb2e32da" />

### Peak time comparisons

<img width="360" height="270" alt="cpu-03-0 01-peak" src="https://github.com/user-attachments/assets/5bbbea3f-ef9b-490d-ab0d-ce551711d74f" />
<img width="360" height="270" alt="cuda-03-0 01-peak" src="https://github.com/user-attachments/assets/30b5ab9b-45cb-4057-b69f-bda6e76bd1dc" />
<img width="360" height="270" alt="cpu-03-0 10-peak" src="https://github.com/user-attachments/assets/db69c333-e5ac-4305-8a86-a26a8a9fe80d" />
<img width="360" height="270" alt="cuda-03-0 10-peak" src="https://github.com/user-attachments/assets/82549656-1f12-409e-8160-dd4c4c9d14f7" />
<img width="360" height="270" alt="cpu-10-0 01-peak" src="https://github.com/user-attachments/assets/d0be8ef1-535e-47bc-b773-b87fad625bf0" />
<img width="360" height="270" alt="cuda-10-0 01-peak" src="https://github.com/user-attachments/assets/e308e66e-ae30-400f-8ad2-015517f6e1af" />
<img width="360" height="270" alt="cpu-10-0 10-peak" src="https://github.com/user-attachments/assets/c9b5bf59-9cc2-465c-ad5d-d4e23bdd138a" />
<img width="360" height="270" alt="cuda-10-0 10-peak" src="https://github.com/user-attachments/assets/311354d4-b488-400c-a1dc-c85a21917aa9" />

### Full benchmark logs

[benchmark-before-change.txt](https://github.com/user-attachments/files/22978300/benchmark-before-change.txt)
[benchmark-after-change.txt](https://github.com/user-attachments/files/22978299/benchmark-after-change.txt)

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/2006

Reviewed By: shapovalov

Differential Revision: D85356394

Pulled By: bottler

fbshipit-source-id: 9b3ce5fc87bb73d4323cc5b4190fc38ae42f41b2
2025-10-30 05:01:32 -07:00
Nikita Lutsenko
45df20e9e2 clang-format | Format fbsource with clang-format 21.
Reviewed By: ChristianK275

Differential Revision: D85317706

fbshipit-source-id: b399c5c4b75252999442b7d7d2778e7a241b0025
2025-10-26 23:40:59 -07:00
Jeremy Reizenstein
fc6a6b8951 separate multigpu tests
Reviewed By: MichaelRamamonjisoa

Differential Revision: D83477594

fbshipit-source-id: 5ea67543e288e9a06ee5141f436e879aa5cfb7f3
2025-10-09 08:17:20 -07:00
Kihyuk Sohn
7711bf34a8 fix device error
Summary: When using `sample_farthest_points` with `lengths`, it throws an error because of the device mismatch between `lengths` and `torch.rand(lengths.size())` on GPU.

Reviewed By: bottler

Differential Revision: D82378997

fbshipit-source-id: 8e929256177d543d1dd1249e8488f70e03e4101f
2025-09-15 06:41:00 -07:00
Jeremy Reizenstein
d098beb7a7 allow python 3.12
Summary: Remove use of distutils

Reviewed By: MichaelRamamonjisoa

Differential Revision: D81594552

fbshipit-source-id: 4e979d5e03ea873bd09bc2b674b7e6480b9c6d65
2025-09-04 08:31:32 -07:00
Jeremy Reizenstein
dd068703d1 test fixes
Summary: Some random seed changes. Skip multigpu tests when there's only one gpu. This is a better fix for what AI is doing in D80600882.

Reviewed By: MichaelRamamonjisoa

Differential Revision: D80625966

fbshipit-source-id: ac3952e7144125fd3a05ad6e4e6e5976ae10a8ef
2025-08-27 06:55:50 -07:00
Antoine Dumoulin
50f8efa1cb Use sparse_coo_tensor in laplacian_matrices.py (#1991)
Summary:
update obsolete torch.sparse.FloatTensor to torch.sparse_coo_tensor

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1991

Reviewed By: MichaelRamamonjisoa

Differential Revision: D80084359

Pulled By: bottler

fbshipit-source-id: dc6c7a90211113d1ce5338a92c8c0030bfe12e65
2025-08-13 07:55:57 -07:00
Olga Gerasimova
5043d15361 avoid CPU/GPU sync in sample_farthest_points
Summary:
Optimizing sample_farthest_poinst by reducing CPU/GPU sync:
1. replacing iterative randint for starting indexes for 1 function call, if length is constant
2. Avoid sync in fetching maxumum of sample points, if we sample the same amount
3. Initializing 1 tensor for samples and indixes

compare
https://fburl.com/mlhub/7wk0xi98
Before
{F1980383703}
after
{F1980383707}

Histogram match pretty closely
{F1980464338}

Reviewed By: bottler

Differential Revision: D78731869

fbshipit-source-id: 060528ae7a1e0fbbd005d129c151eaf9405841de
2025-07-23 10:23:40 -07:00
Stone Tao
e3d3a67a89 Clamp matrices in matrix_to_euler_angles function (#1989)
Summary:
Closes https://github.com/facebookresearch/pytorch3d/issues/1988

Credit goes to tylerlum for raising this issue and suggesting this fix in https://github.com/haosulab/ManiSkill/pull/1090

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1989

Reviewed By: MichaelRamamonjisoa

Differential Revision: D78021983

Pulled By: bottler

fbshipit-source-id: d723f1924a399f4d7fd072e96ea740ae73cf280f
2025-07-10 06:08:19 -07:00
Jeremy Reizenstein
e55ea90609 disable import tests
Summary: these tests don't work, aren't needed right now

Reviewed By: MichaelRamamonjisoa

Differential Revision: D78084742

fbshipit-source-id: 9cff2b30427dec314e34e81179816af4073bbe23
2025-07-10 05:20:22 -07:00
Melvin He
3aee2a6005 Fixes bus error hard crashes on Apple Silicon MPS devices
Summary:
Fixes hard crashes (bus errors) when using MPS device (Apple Silicon) by implementing CPU checks throughout files in csrc subdirectories to check if on same mesh on a CPU device.

Note that this is the fourth and ultimate part of a larger change through multiple files & directories.

Reviewed By: bottler

Differential Revision: D77698176

fbshipit-source-id: 5bc9e3c5cea61afd486aed7396f390d92775ec6d
2025-07-03 12:34:37 -07:00
Melvin He
c5ea8fa49e Adds CHECK_CPU macros checks for tensors not on CPU
Summary:
Adds CHECK_CPU macros that checks if a tensor is on the CPU device throughout csrc directories and subdir up to `pulsar`.

Note that this is the third part of a larger change, and to keep diffs better organized, subsequent diffs will update the remaining directories.

Reviewed By: bottler

Differential Revision: D77696998

fbshipit-source-id: 470ca65b23d9965483b5bdd30c712da8e1131787
2025-07-03 08:29:36 -07:00
Melvin He
3ff6c5ab85 Error instead of crash for tensors on exotic devices
Summary:
Adds CHECK_CPU macros that checks if a tensor is on the CPU device throughout csrc directories up to `marching_cubes`. Directories updated include those in `gather_scatter`, `interp_face_attrs`, `iou_box3d`, `knn`, and `marching_cubes`.

Note that this is the second part of a larger change, and to keep diffs better organized, subsequent diffs will update the remaining directories.

Reviewed By: bottler

Differential Revision: D77558550

fbshipit-source-id: 762a0fe88548dc8d0901b198a11c40d0c36e173f
2025-07-01 09:14:38 -07:00
Srivathsan Govindarajan
267bd8ef87 Revert _sqrt_positive_part change
Reviewed By: bottler

Differential Revision: D77549647

fbshipit-source-id: a0ef0bc015c643ad7416c781886e2e23b5105bdd
2025-06-30 14:13:27 -07:00
Melvin He
177eec6378 Error instead of crash for tensors on exotic devices (#1986)
Summary:
Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1986

Adds device checks to prevent crashes on unsupported devices in PyTorch3D. Updates the `pytorch3d_cutils.h` file to include new macro CHECK_CPU that checks if a tensor is on the CPU device. This macro is then used in the directories from `ball_query` to `face_area_normals` to ensure that tensors are not on unsupported devices like MPS.

Note that this is the first part of a larger change, and to keep diffs better organized, subsequent diffs will update the remaining directories.

Reviewed By: bottler

Differential Revision: D77473296

fbshipit-source-id: 13dc84620dee667bddebad1dade2d2cb5a59c737
2025-06-30 12:27:38 -07:00
Srivathsan Govindarajan
71db7a0ea2 Removing dynamic shape ops and boolean indexing in matrix_to_quaternion
Summary:
The current implementation of `matrix_to_quaternion` and `_sqrt_positive_part` uses boolean indexing, which can slow down performance and cause incompatibility with `torch.compile` unless `torch._dynamo.config.capture_dynamic_output_shape_ops` is set to `True`.

To enhance performance and compatibility, I recommend using  `torch.gather` to select the best-conditioned quaternions and `F.relu` instead of `x>0` (bottler's suggestion)

For a detailed comparison of the implementation differences when using `torch.compile`, please refer to my Bento notebook
N7438339.

Reviewed By: bottler

Differential Revision: D77176230

fbshipit-source-id: 9a6a2e0015b5865056297d5f45badc3c425b93ce
2025-06-25 01:18:46 -07:00
Grace Cheng
6020323d94 Fix Self-Assignment in CUDA Stream Parameter in renderer.forward.device.h
Summary: Resolved self-assignment warnings in the `renderer.forward.device.h` file by removing redundant assignments of the `stream` variable to itself in `cub::DeviceSelect::Flagged` function calls. This change eliminates compiler errors and ensures cleaner, more efficient code execution.

Reviewed By: bottler

Differential Revision: D76554140

fbshipit-source-id: 28eae0186246f51a8ac8002644f184349aa49560
2025-06-13 11:00:16 -07:00
Emmanuel Ferdman
182e845c19 Resolve logger warnings (#1981)
Summary:
# PR Summary
This small PR resolves the annoying deprecation warnings of the `logger` library:
```python
DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead
```

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1981

Reviewed By: MichaelRamamonjisoa

Differential Revision: D75287169

Pulled By: bottler

fbshipit-source-id: 9ff9f5dd648aca8d8bb5d33577909da711d18647
2025-06-10 02:27:54 -07:00
generatedunixname89002005287564
f315ac131b Fix CQS signal facebook-unused-include-check in fbcode/vision/fair/pytorch3d/pytorch3d/csrc
Reviewed By: dtolnay

Differential Revision: D75938951

fbshipit-source-id: 8e4f9ce82ec988a30e4c8d54881b78560ceab0e0
2025-06-04 13:09:58 -07:00
Nick Riasanovsky
fc08621879 Fix distutils failure in Triton Beta testing
Summary: Fixes the distutils issues similar to D73934713

Reviewed By: bottler

Differential Revision: D75631611

fbshipit-source-id: 09c354d8cc51ff2c46f4688d7f674370e3f48f1e
2025-05-29 18:18:49 -07:00
generatedunixname89002005287564
3f327a516b Fix CQS signal facebook-unused-include-check in fbcode/vision/fair/pytorch3d/pytorch3d/csrc/pulsar
Reviewed By: dtolnay

Differential Revision: D75209078

fbshipit-source-id: 6b67d3354091d18b8171a6f4b38465ffcc9e17c5
2025-05-26 19:14:57 -07:00
Ting Xu
366eff21d9 Fix PyTorch3D build failure on windows
Summary: Replace #defines by typedefs by following the instructions at https://github.com/facebookresearch/pytorch3d/issues/1970?fbclid=IwY2xjawKZqMJleHRuA2FlbQIxMQBicmlkETFyWFczV2hMVmdOczJWellIAR7jxI6zGQiC5ag-FUXjSK12ljn7rmbMKc3HsLX-BC1TMpOUTJy-bsZxmfKzmw_aem_MIG_nc3eg7LL1o2fSAbl0A#issuecomment-2894339456

Reviewed By: bottler

Differential Revision: D75083182

fbshipit-source-id: 7131fe555bb0da615b341e77ddd8761ebce9d7eb
2025-05-21 07:46:49 -07:00
Jeff Daily
0a59450f0e remove IntWrapper (#1964)
Summary:
I could not access https://github.com/NVlabs/cub/issues/172 to understand whether IntWrapper was still necessary but the comment is from 5 years ago and causes problems for the ROCm build.

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1964

Reviewed By: MichaelRamamonjisoa

Differential Revision: D71937895

Pulled By: bottler

fbshipit-source-id: 5e0351e1bd8599b670436cd3464796eca33156f6
2025-03-28 08:16:54 -07:00
Richard Barnes
3987612062 Fix CUDA kernel index data type in vision/fair/pytorch3d/pytorch3d/csrc/compositing/alpha_composite.cu +10
Summary:
CUDA kernel variables matching the type `(thread|block|grid).(Idx|Dim).(x|y|z)` [have the data type `uint`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/#built-in-variables).

Many programmers mistakenly use implicit casts to turn these data types into `int`. In fact, the [CUDA Programming Guide](https://docs.nvidia.com/cuda/cuda-c-programming-guide/) it self is inconsistent and incorrect in its use of data types in programming examples.

The result of these implicit casts is that our kernels may give unexpected results when exposed to large datasets, i.e., those exceeding >~2B items.

While we now have linters in place to prevent simple mistakes (D71236150), our codebase has many problematic instances. This diff fixes some of them.

Reviewed By: dtolnay

Differential Revision: D71355356

fbshipit-source-id: cea44891416d9efd2f466d6c45df4e36008fa036
2025-03-19 13:21:43 -07:00
Alexandros Benetatos
06a76ef8dd Correct "fast" matrix_to_axis_angle near pi (#1953)
Summary:
A continuation of https://github.com/facebookresearch/pytorch3d/issues/1948 -- this commit fixes a small numerical issue with `matrix_to_axis_angle(..., fast=True)` near `pi`.
bottler feel free to check this out, it's a single-line change.

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1953

Reviewed By: MichaelRamamonjisoa

Differential Revision: D70088251

Pulled By: bottler

fbshipit-source-id: 54cc7f946283db700cec2cd5575cf918456b7f32
2025-03-11 12:25:59 -07:00
Richard Barnes
21205730d9 Fix unused-variable issues, mostly relating to AMD/HIP
Reviewed By: meyering

Differential Revision: D70845538

fbshipit-source-id: 8e52b5e1f1d96b86404fc3b8cbc6fb952e2cb1a6
2025-03-08 13:03:17 -08:00
Richard Barnes
7e09505538 Enable -Wunused-value in vision/PACKAGE +1
Summary:
This diff enables compilation warning flags for the directory in question. Further details are in [this workplace post](https://fb.workplace.com/permalink.php?story_fbid=pfbid02XaWNiCVk69r1ghfvDVpujB8Hr9Y61uDvNakxiZFa2jwiPHscVdEQwCBHrmWZSyMRl&id=100051201402394).

This is a low-risk diff. There are **no run-time effects** and the diff has already been observed to compile locally. **If the code compiles, it work; test errors are spurious.**

Differential Revision: D70282347

fbshipit-source-id: e2fa55c002d7124b13450c812165d244b8a53f4e
2025-03-04 17:49:30 -08:00
Nicholas Ormrod
20bd8b33f6 facebook-unused-include-check in fbcode/vision
Summary:
Remove headers flagged by facebook-unused-include-check over fbcode.vision.

+ format and autodeps

This is a codemod. It was automatically generated and will be landed once it is approved and tests are passing in sandcastle.
You have been added as a reviewer by Sentinel or Butterfly.

Autodiff project: uiv
Autodiff partition: fbcode.vision
Autodiff bookmark: ad.uiv.fbcode.vision

Reviewed By: dtolnay

Differential Revision: D70403619

fbshipit-source-id: d109c15774eeb3d809875f75fa2a26ed20d7f9a6
2025-02-28 18:08:12 -08:00
alex-bene
7a3c0cbc9d Increase performance for conversions including axis angles (#1948)
Summary:
This is an extension of https://github.com/facebookresearch/pytorch3d/issues/1544 with various speed, stability, and readability improvements. (I could not find a way to make a commit to the existing PR). This PR is still based on the [Rodrigues' rotation formula](https://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions#Rotation_matrix_%E2%86%94_Euler_axis/angle).

The motivation is the same; this change speeds up the conversions up to 10x, depending on the device, batch size, etc.

### Notes
- As the angles get very close to `π`, the existing implementation and the proposed one start to differ. However, (my understanding is that) this is not a problem as the axis can not be stably inferred from the rotation matrix in this case in general.
- bottler , I tried to follow similar conventions as existing functions to deal with weird angles, let me know if something needs to be changed to merge this.

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1948

Reviewed By: MichaelRamamonjisoa

Differential Revision: D69193009

Pulled By: bottler

fbshipit-source-id: e5ed34b45b625114ec4419bb89e22a6aefad4eeb
2025-02-07 07:37:42 -08:00
Roman Shapovalov
215590b497 In FrameDataBuilder, set all path even if we don’t load blobs
Summary:
This is a somewhat not BC change: some None paths will be replaced by metadata paths, even when they were not used for data loading.

Moreover, removing the legacy fix to the paths in the old CO3D release.

Reviewed By: bottler

Differential Revision: D69048238

fbshipit-source-id: 2a8b26d7b9f5e2adf39c65888b5863a5a9de1996
2025-02-06 09:41:44 -08:00
Antoine Toisoul
43cd681d4f Updates to Implicitron dataset, metrics and tools
Summary: Update Pytorch3D to be able to run assetgen (see later diffs in the stack)

Reviewed By: shapovalov

Differential Revision: D65942513

fbshipit-source-id: 1d01141c9f7e106608fa591be6e0d3262cb5944f
2025-01-27 09:43:42 -08:00
Roman Shapovalov
42a4a7d432 Generalising SqlIndexDataset to support subtypes of SqlSequenceAnnotation
Summary: We did not often extend sequence-level metadata but now for applications like text-to-3D/video, we need to store captions and similar.

Reviewed By: bottler

Differential Revision: D68269926

fbshipit-source-id: f8af308adce51863d719a335d85cd2558943bd4c
2025-01-20 03:39:06 -08:00
generatedunixname89002005307016
699bc671ca Add missing Pyre mode headers] [batch:3/1531] [shard:41/N]
Differential Revision: D68316763

fbshipit-source-id: fb3e1e1a17786f6f681f1b11b48b4efd7a8ac311
2025-01-17 12:41:56 -08:00
Roman Shapovalov
49cf5a0f37 Loading fg probability from the alpha channel of image_rgb
Summary:
It is often easier to store the mask together with RGB, especially for renders. The logic in this diff:
* if load_mask and mask_path provided, take the mask from mask_path,
* otherwise, check if the image has the alpha channel and take it as a mask.

Reviewed By: antoinetlc

Differential Revision: D68160212

fbshipit-source-id: d9b6779f90027a4987ba96800983f441edff9c74
2025-01-15 11:53:30 -08:00
Roman Shapovalov
89b851e64c Refactor a utility function for bbox conversion
Summary: This function makes it easier to extend FrameData class with new channels; brushing it up a bit.

Reviewed By: bottler

Differential Revision: D67816470

fbshipit-source-id: 6575415c864d0f539e283889760cd2331bf226a7
2025-01-06 04:17:57 -08:00
Roman Shapovalov
5247f6ad74 Fixing type hints in FrameData
Summary: As subj

Reviewed By: bottler

Differential Revision: D67791200

fbshipit-source-id: c2db01c94718102618f4c8bc5c5130c65ee1d81f
2025-01-06 04:17:57 -08:00
Roman Shapovalov
e41aff47db Adding default values to FrameData for internal usage
Summary: Ensuring all fields in FrameData have defaults.

Reviewed By: bottler

Differential Revision: D67762780

fbshipit-source-id: b680d29a1a11689850905978df544cdb4eb7ddcd
2025-01-06 04:17:57 -08:00
Roman Shapovalov
64a5bfadc8 Adding SQL Dataset related files to the build script
Summary: Now that we have SQLAlchemy 2.0, we can fully use them.

Reviewed By: bottler

Differential Revision: D66920096

fbshipit-source-id: 25c0ea1c4f7361e66348035519627dc961b9e6e6
2024-12-23 16:05:26 -08:00
Thomas Polasek
055ab3a2e3 Convert directory fbcode/vision to use the Ruff Formatter
Summary:
Converts the directory specified to use the Ruff formatter in pyfmt

ruff_dog

If this diff causes merge conflicts when rebasing, please run
`hg status -n -0 --change . -I '**/*.{py,pyi}' | xargs -0 arc pyfmt`
on your diff, and amend any changes before rebasing onto latest.
That should help reduce or eliminate any merge conflicts.

allow-large-files

Reviewed By: bottler

Differential Revision: D66472063

fbshipit-source-id: 35841cb397e4f8e066e2159550d2f56b403b1bef
2024-11-26 02:38:20 -08:00
Edward Yang
f6c2ca6bfc Prepare for "Fix type-safety of torch.nn.Module instances": wave 2
Summary: See D52890934

Reviewed By: malfet, r-barnes

Differential Revision: D66245100

fbshipit-source-id: 019058106ac7eaacf29c1c55912922ea55894d23
2024-11-21 11:08:51 -08:00
Jeremy Reizenstein
e20cbe9b0e test fixes and lints
Summary:
- followup recent pyre change D63415925
- make tests remove temporary files
- weights_only=True in torch.load
- lint fixes

3 test fixes from VRehnberg in https://github.com/facebookresearch/pytorch3d/issues/1914
- imageio channels fix
- frozen decorator in test_config
- load_blobs positional

Reviewed By: MichaelRamamonjisoa

Differential Revision: D66162167

fbshipit-source-id: 7737e174691b62f1708443a4fae07343cec5bfeb
2024-11-20 09:15:51 -08:00
Jeremy Reizenstein
c17e6f947a run CI tests on main
Reviewed By: MichaelRamamonjisoa

Differential Revision: D66162168

fbshipit-source-id: 90268c1925fa9439b876df143035c9d3c3a74632
2024-11-20 05:06:52 -08:00
Yann Noutary
91c9f34137 Add safeguard in case num_tris diverges
Summary:
This PR fixes adds a safeguard preventing num_tris to overflow in `MAX_TRIS`-length arrays. The update rule of `num_tris` is bounded :

 - max(num_tris(t)) = 2*num_tris(t-1)
 - num_tris(0) = 12
 - t <= 6

So :
 - max(num_tris) = 2^6*12
 - max(num_tris) = 768

Reviewed By: bottler

Differential Revision: D66162573

fbshipit-source-id: e269a79c75c6cc33306986b1f1256cffbe96c730
2024-11-20 01:24:28 -08:00
Jeremy Reizenstein
81d82980bc Fix ogl test hang
Summary: See https://github.com/facebookresearch/pytorch3d/issues/1908

Reviewed By: MichaelRamamonjisoa

Differential Revision: D65280253

fbshipit-source-id: ec05902c5f2f7eb9ddd92bda0045cc3564b8c091
2024-11-06 11:40:42 -08:00
Jeremy Reizenstein
8fe6934885 fix subdivide_meshes with empty mesh #1788
Summary:
Simplify code

fixes https://github.com/facebookresearch/pytorch3d/issues/1788

Reviewed By: MichaelRamamonjisoa

Differential Revision: D61847675

fbshipit-source-id: 48400875d1d885bb3615bc9f4b3c7c3d822b67e7
2024-11-06 11:40:26 -08:00
bottler
c434957b2a Run tests in github action (#1896)
Summary: Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1896

Reviewed By: MichaelRamamonjisoa

Differential Revision: D65272512

Pulled By: bottler

fbshipit-source-id: 3bcfab43acd2d6be5444ff25178381510ddac015
2024-11-06 11:15:34 -08:00
Jeremy Reizenstein
dd2a11b5fc Fix OFF for new numpy errors
Summary: Error messages have changed around numpy version 2, making existing code fail.

Reviewed By: MichaelRamamonjisoa

Differential Revision: D65280674

fbshipit-source-id: b3ae613ea8f0f4ae20fb6e5e816314b8c10e6c65
2024-11-06 11:13:59 -08:00
Richard Barnes
9563ef79ca c10::optional -> std::optional in some files
Reviewed By: jermenkoo

Differential Revision: D65425234

fbshipit-source-id: 1e7707d6b6aab640cc1fdd3bd71a3b50f77a0909
2024-11-04 12:03:51 -08:00
generatedunixname89002005287564
008c7ab58c Pre-silence Pyre Errors for upcoming upgrade] [batch:67/603] [shard:3/N]
Reviewed By: MaggieMoss

Differential Revision: D65290095

fbshipit-source-id: ced87d096aa8939700de5599ce6984cd7ae93912
2024-10-31 16:26:25 -07:00
Jeremy Reizenstein
9eaed4c495 Fix K>1 in multimap UV sampling
Summary:
Fixes https://github.com/facebookresearch/pytorch3d/issues/1897
"Wrong dimension on gather".

Reviewed By: cijose

Differential Revision: D65280675

fbshipit-source-id: 1d587036887972bb2a2ea56d40df19cbf1aeb6cc
2024-10-31 16:05:10 -07:00
Richard Barnes
e13848265d at::optional -> std::optional (#1170)
Summary: Pull Request resolved: https://github.com/pytorch/ao/pull/1170

Reviewed By: gineshidalgo99

Differential Revision: D64938040

fbshipit-source-id: 57f98b90676ad0164a6975ea50e4414fd85ae6c4
2024-10-25 06:37:57 -07:00
generatedunixname89002005307016
58566963d6 Add type error suppressions for upcoming upgrade
Reviewed By: MaggieMoss

Differential Revision: D64502797

fbshipit-source-id: cee9a54dfa8a005d5912b895d0bd094f352c5c6f
2024-10-16 19:22:01 -07:00
Suresh Babu Kolla
e17ed5cd50 Hipify Pulsar for PyTorch3D
Summary:
- Hipified Pytorch Pulsar
   - Created separate target for Pulsar tests and enabled RE testing
   - Pytorch3D full test suite requires additional work like fixing EGL
     dependencies on AMD

Reviewed By: danzimm

Differential Revision: D61339912

fbshipit-source-id: 0d10bc966e4de4a959f3834a386bad24e449dc1f
2024-10-09 14:38:42 -07:00
Richard Barnes
8ed0c7a002 c10::optional -> std::optional
Summary: `c10::optional` is an alias for `std::optional`. Let's remove the alias and use the real thing.

Reviewed By: meyering

Differential Revision: D63402341

fbshipit-source-id: 241383e7ca4b2f3f1f9cac3af083056123dfd02b
2024-10-03 14:38:37 -07:00
Richard Barnes
2da913c7e6 c10::optional -> std::optional
Summary: `c10::optional` is an alias for `std::optional`. Let's remove the alias and use the real thing.

Reviewed By: palmje

Differential Revision: D63409387

fbshipit-source-id: fb6db59a14db9e897e2e6b6ad378f33bf2af86e8
2024-10-02 11:09:29 -07:00
generatedunixname89002005307016
fca83e6369 Convert .pyre_configuration.local to fast by default architecture] [batch:23/263] [shard:3/N] [A]
Reviewed By: connernilsen

Differential Revision: D63415925

fbshipit-source-id: c3e28405c70f9edcf8c21457ac4faf7315b07322
2024-09-25 17:34:03 -07:00
Jeremy Reizenstein
75ebeeaea0 update version to 0.7.8
Summary: as title

Reviewed By: das-intensity

Differential Revision: D62588556

fbshipit-source-id: 55bae19dd1df796e83179cd29d805fcd871b6d23
2024-09-13 02:31:49 -07:00
Jeremy Reizenstein
ab793177c6 remove pytorch2.0 builds
Summary: these are failing in ci

Reviewed By: das-intensity

Differential Revision: D62594666

fbshipit-source-id: 5e3a7441be2978803dc2d3e361365e0fffa7ad3b
2024-09-13 02:07:25 -07:00
Jeremy Reizenstein
9acdd67b83 fix obj material indexing bug #1368
Summary:
Make the negative index actually not an error

fixes https://github.com/facebookresearch/pytorch3d/issues/1368

Reviewed By: das-intensity

Differential Revision: D62177991

fbshipit-source-id: e5ed433bde1f54251c4d4b6db073c029cbe87343
2024-09-13 02:00:49 -07:00
Nicholas Dahm
3f428d9981 pytorch 2.4.0 + 2.4.1
Summary:
Apparently pytorch 2.4 is now supported as per [this closed issue](https://github.com/facebookresearch/pytorch3d/issues/1863).

Added the `2.4.0` & `2.4.1` versions to `regenerate.py` then ran that as per the `README_fb.md` which generated `config.yml` changes.

Reviewed By: bottler

Differential Revision: D62517831

fbshipit-source-id: 002e276dfe2fa078136ff2f6c747d937abbadd1a
2024-09-11 15:09:43 -07:00
Josh Fromm
05cbea115a Hipify Pytorch3D (#1851)
Summary:
X-link: https://github.com/pytorch/pytorch/pull/133343

X-link: https://github.com/fairinternal/pytorch3d/pull/45

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1851

Enables pytorch3d to build on AMD. An important part of enabling this was not compiling the Pulsar backend when the target is AMD. There are simply too many kernel incompatibilites to make it work (I tried haha). Fortunately, it doesnt seem like most modern applications of pytorch3d rely on Pulsar. We should be able to unlock most of pytorch3d's goodness on AMD without it.

Reviewed By: bottler, houseroad

Differential Revision: D61171993

fbshipit-source-id: fd4aee378a3568b22676c5bf2b727c135ff710af
2024-08-15 16:18:22 -07:00
generatedunixname89002005307016
38afdcfc68 upgrade pyre version in fbcode/vision - batch 2
Reviewed By: bottler

Differential Revision: D60992234

fbshipit-source-id: 899db6ed590ef966ff651c11027819e59b8401a3
2024-08-09 02:07:45 -07:00
Christine Sun
1e0b1d9c72 Remove Python versions from Install.md
Summary: To avoid the installation instructions for PyTorch3D becoming out-of-date, instead of specifying certain Python versions, update to just `Python`. Reader will understand it has to be a Python version compatible with GitHub.

Reviewed By: bottler

Differential Revision: D60919848

fbshipit-source-id: 5e974970a0db3d3d32fae44e5dd30cbc1ce237a9
2024-08-07 13:46:31 -07:00
Rebecca Chen (Python)
44702fdb4b Add "max" point reduction for chamfer distance
Summary:
* Adds a "max" option for the point_reduction input to the
  chamfer_distance function.
* When combining the x and y directions, maxes the losses instead
  of summing them when point_reduction="max".
* Moves batch reduction to happen after the directions are
  combined.
* Adds test_chamfer_point_reduction_max and
  test_single_directional_chamfer_point_reduction_max tests.

Fixes  https://github.com/facebookresearch/pytorch3d/issues/1838

Reviewed By: bottler

Differential Revision: D60614661

fbshipit-source-id: 7879816acfda03e945bada951b931d2c522756eb
2024-08-02 10:46:07 -07:00
Jeremy Reizenstein
7edaee71a9 allow matrix_to_quaternion onnx export
Summary: Attempt to allow torch.onnx.dynamo_export(matrix_to_quaternion) to work.

Differential Revision: D59812279

fbshipit-source-id: 4497e5b543bec9d5c2bdccfb779d154750a075ad
2024-07-16 11:30:20 -07:00
Roman Shapovalov
d0d0e02007 Fix: setting FrameData.crop_bbox_xywh for backwards compatibility
Summary: This diff is fixing a backwards compatibility issue in PyTorch3D's dataset API. The code ensures that the `crop_bbox_xywh` attribute is set when box_crop flag is on. This is an implementation detail that people should not really use, however some people depend on this behaviour.

Reviewed By: bottler

Differential Revision: D59777449

fbshipit-source-id: b875e9eb909038b8629ccdade87661bb2c39d529
2024-07-16 02:21:13 -07:00
Jeremy Reizenstein
4df110b0a9 remove fvcore dependency
Summary: This is not actually needed and is causing a conda-forge confusion to do with python_abi - which needs users to have `-c conda-forge` when they install pytorch3d.

Reviewed By: patricklabatut

Differential Revision: D59587930

fbshipit-source-id: 961ae13a62e1b2b2ce6d8781db38bd97eca69e65
2024-07-11 04:35:38 -07:00
Huy Do
51fd114d8b Forward fix internal pyre failure from D58983461
Summary:
X-link: https://github.com/pytorch/pytorch/pull/129525

Somehow, using underscore alias of some builtin types breaks pyre

Reviewed By: malfet, clee2000

Differential Revision: D59029768

fbshipit-source-id: cfa2171b66475727b9545355e57a8297c1dc0bc6
2024-06-27 07:35:18 -07:00
Jeremy Reizenstein
89653419d0 version 0.7.7
Summary: New version

Reviewed By: MichaelRamamonjisoa

Differential Revision: D58668979

fbshipit-source-id: 195eaf83e4da51a106ef72e38dbb98c51c51724c
2024-06-25 06:59:24 -07:00
Jeremy Reizenstein
7980854d44 require pytorch 2.0+
Summary: Problems with timeouts on old builds.

Reviewed By: MichaelRamamonjisoa

Differential Revision: D58819435

fbshipit-source-id: e1976534a102ad3841f3b297c772e916aeea12cb
2024-06-21 08:15:17 -07:00
Jeremy Reizenstein
51d7c06ddd MKL version fix in CI (#1820)
Summary:
Fix for "undefined symbol: iJIT_NotifyEvent" build issue,

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1820

Reviewed By: MichaelRamamonjisoa

Differential Revision: D58685326

fbshipit-source-id: 48b54367c00851cc6fbb111ca98d69a2ace8361b
2024-06-21 08:15:17 -07:00
Sergii Dymchenko
00c36ec01c Update deprecated PyTorch functions in fbcode/vision
Reviewed By: bottler

Differential Revision: D58762015

fbshipit-source-id: a0d05fe63a88d33e3f7783b5a7b2a476dd3a7449
2024-06-20 14:06:28 -07:00
vedrenne
b0462d8079 Allow indexing for classes inheriting Transform3d (#1801)
Summary:
Currently, it is not possible to access a sub-transform using an indexer for all 3d transforms inheriting the `Transforms3d` class.
For instance:

```python
from pytorch3d import transforms

N = 10
r = transforms.random_rotations(N)
T = transforms.Transform3d().rotate(R=r)
R = transforms.Rotate(r)

x = T[0]  # ok
x = R[0]  # TypeError: __init__() got an unexpected keyword argument 'matrix'
```

This is because all these classes (namely `Rotate`, `Translate`, `Scale`, `RotateAxisAngle`) inherit the `__getitem__()` method from `Transform3d` which has the [following code on line 201](https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/transform3d.py#L201):

```python
return self.__class__(matrix=self.get_matrix()[index])
```

The four classes inheriting `Transform3d` are not initialized through a matrix argument, hence they error.
I propose to modify the `__getitem__()` method of the `Transform3d` class to fix this behavior. The least invasive way to do it I can think of consists of creating an empty instance of the current class, then setting the `_matrix` attribute manually. Thus, instead of
```python
return self.__class__(matrix=self.get_matrix()[index])
```
I propose to do:
```python
instance = self.__class__.__new__(self.__class__)
instance._matrix = self.get_matrix()[index]
return instance
```

As far as I can tell, this modification occurs no modification whatsoever for the user, except for the ability to index all 3d transforms.

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1801

Reviewed By: MichaelRamamonjisoa

Differential Revision: D58410389

Pulled By: bottler

fbshipit-source-id: f371e4c63d2ae4c927a7ad48c2de8862761078de
2024-06-17 07:48:18 -07:00
Jeremy Reizenstein
b66d17a324 Undo c10=>std optional rename
Summary: Undoes the pytorch3d changes in D57294278 because they break builds for for PyTorch<2.1 .

Reviewed By: MichaelRamamonjisoa

Differential Revision: D57379779

fbshipit-source-id: 47a12511abcec4c3f4e2f62eff5ba99deb2fab4c
2024-06-17 07:09:30 -07:00
Kyle Vedder
717493cb79 Fixed last dimension size check so that it doesn't trivially pass. (#1815)
Summary:
Currently, it checks that the `2`th dimension of `p2` is the same size as the `2`th dimension of `p2` instead of `p1`.

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1815

Reviewed By: MichaelRamamonjisoa

Differential Revision: D58586966

Pulled By: bottler

fbshipit-source-id: d4f723fa264f90fe368c10825c1acdfdc4c406dc
2024-06-17 06:00:13 -07:00
Jeremy Reizenstein
302da69461 builds for PyTorch 2.2.1 2.2.2 2.3.0 2.3.1
Summary: Build for new pytorch versions

Reviewed By: MichaelRamamonjisoa

Differential Revision: D58668956

fbshipit-source-id: 7fdfb377b370448d6147daded6a21b8db87586fb
2024-06-17 05:57:59 -07:00
Roman Shapovalov
4ae25bfce7 Moving ray bundle to float dtype
Summary: We can now move ray bundle to float dtype (e.g. from fp16 like types).

Reviewed By: bottler

Differential Revision: D57493109

fbshipit-source-id: 4e18a427e968b646fe5feafbff653811cd007981
2024-05-30 10:06:38 -07:00
Richard Barnes
bd52f4a408 c10::optional -> std::optional in tensorboard/adhoc/Adhoc.h +9
Summary: `c10::optional` was switched to be `std::optional` after PyTorch moved to C++17. Let's eliminate `c10::optional`, if we can.

Reviewed By: albanD

Differential Revision: D57294278

fbshipit-source-id: f6f26133c43f8d92a4588f59df7d689e7909a0cd
2024-05-13 16:40:34 -07:00
generatedunixname89002005307016
17117106e4 upgrade pyre version in fbcode/vision - batch 2
Differential Revision: D57183103

fbshipit-source-id: 7e2f42ddc6a1fa02abc27a451987d67a00264cbb
2024-05-10 01:18:43 -07:00
Richard Barnes
aec76bb4c8 Remove unused-but-set variables in vision/fair/pytorch3d/pytorch3d/csrc/pulsar/include/renderer.render.device.h +1
Summary:
This diff removes a variable that was set, but which was not used.

LLVM-15 has a warning `-Wunused-but-set-variable` which we treat as an error because it's so often diagnostic of a code issue. Unused but set variables often indicate a programming mistake, but can also just be unnecessary cruft that harms readability and performance.

Removing this variable will not change how your code works, but the unused variable may indicate your code isn't working the way you thought it was. I've gone through each of these by hand, but mistakes may have slipped through. If you feel the diff needs changes before landing, **please commandeer** and make appropriate changes: there are hundreds of these and responding to them individually is challenging.

For questions/comments, contact r-barnes.

 - If you approve of this diff, please use the "Accept & Ship" button :-)

Reviewed By: bottler

Differential Revision: D56886956

fbshipit-source-id: 0c515ed98b812b1c106a59e19ec90751ce32e8c0
2024-05-02 13:58:05 -07:00
Andres Suarez
47d5dc8824 Apply clang-format 18
Summary: Previously this code conformed from clang-format 12.

Reviewed By: igorsugak

Differential Revision: D56065247

fbshipit-source-id: f5a985dd8f8b84f2f9e1818b3719b43c5a1b05b3
2024-04-14 11:28:32 -07:00
generatedunixname89002005307016
fe0b1bae49 upgrade pyre version in fbcode/vision - batch 2
Differential Revision: D55650177

fbshipit-source-id: d5faa4d805bb40fe3dea70b0601e7a1382b09f3a
2024-04-02 18:11:50 -07:00
Ruishen Lyu
ccf22911d4 Optimize list_to_packed to avoid for loop (#1737)
Summary:
For larger N and Mi value (e.g. N=154, Mi=238) I notice list_to_packed() has become a bottleneck for my application. By removing the for loop and running on GPU, i see a 10-20 x speedup.

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1737

Reviewed By: MichaelRamamonjisoa

Differential Revision: D54187993

Pulled By: bottler

fbshipit-source-id: 16399a24cb63b48c30460c7d960abef603b115d0
2024-04-02 07:50:25 -07:00
Ashim Dahal
128be02fc0 feat: adjusted sample_nums (#1768)
Summary:
adjusted sample_nums to match the number of columns in the image grid. It originally produced image grid with 5 axes but only 3 images and after this fix, the block would work as intended.

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1768

Reviewed By: MichaelRamamonjisoa

Differential Revision: D55632872

Pulled By: bottler

fbshipit-source-id: 44d633a8068076889e49d49b8a7910dba0db37a7
2024-04-02 06:02:48 -07:00
Roeia Kishk
31e3488a51 Changed tutorials' pip searching
Summary:
### Generalise tutorials' pip searching:
## Required Information:
This diff contains changes to several PyTorch3D tutorials.

**Purpose of this diff:**
Replace the current installation code with a more streamlined approach that tries to install the wheel first and falls back to installing from source if the wheel is not found.

**Why this diff is required:**
This diff makes it easier to cope with new PyTorch releases and reduce the need for manual intervention, as the current process involves checking the version of PyTorch in Colab and building a new wheel if it doesn't match the expected version, which generates additional work each time there is a a new PyTorch version in Colab.

**Changes:**
Before:
```
    if torch.__version__.startswith("2.1.") and sys.platform.startswith("linux"):
        # We try to install PyTorch3D via a released wheel.
        pyt_version_str=torch.__version__.split("+")[0].replace(".", "")
        version_str="".join([
            f"py3{sys.version_info.minor}_cu",
            torch.version.cuda.replace(".",""),
            f"_pyt{pyt_version_str}"
        ])
        !pip install fvcore iopath
        !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html
    else:
        # We try to install PyTorch3D from source.
        !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'
```
After:
```
    pyt_version_str=torch.__version__.split("+")[0].replace(".", "")
    version_str="".join([
        f"py3{sys.version_info.minor}_cu",
        torch.version.cuda.replace(".",""),
        f"_pyt{pyt_version_str}"
    ])
    !pip install fvcore iopath
    if sys.platform.startswith("linux"):
      # We try to install PyTorch3D via a released wheel.
      !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html
      pip_list = !pip freeze
      need_pytorch3d = not any(i.startswith("pytorch3d==") for  i in pip_list)

    if need_pytorch3d:
        # We try to install PyTorch3D from source.
        !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'
```

Reviewed By: bottler

Differential Revision: D55431832

fbshipit-source-id: a8de9162470698320241ae8401427dcb1ce17c37
2024-03-28 11:24:43 -07:00
generatedunixname89002005307016
b215776f2d upgrade pyre version in fbcode/vision - batch 2
Differential Revision: D55395614

fbshipit-source-id: 71677892b5d6f219f6df25b4efb51fb0f6b1441b
2024-03-26 22:02:22 -07:00
Cijo Jose
38cf0dc1c5 TexturesUV multiple maps
Summary: Implements the  the TexturesUV with multiple map ids.

Reviewed By: bottler

Differential Revision: D53944063

fbshipit-source-id: 06c25eb6d69f72db0484f16566dd2ca32a560b82
2024-03-12 06:59:31 -07:00
Jaap Suter
7566530669 CUDA marching_cubes fix
Summary:
Fix an inclusive vs exclusive scan mix-up that was accidentally introduced when removing the Thrust dependency (`Thrust::exclusive_scan`) and reimplementing it using `at::cumsum` (which does an inclusive scan).

This fixes two Github reported issues:

 * https://github.com/facebookresearch/pytorch3d/issues/1731
 * https://github.com/facebookresearch/pytorch3d/issues/1751

Reviewed By: bottler

Differential Revision: D54605545

fbshipit-source-id: da9e92f3f8a9a35f7b7191428d0b9a9ca03e0d4d
2024-03-07 15:38:24 -08:00
Conner Nilsen
a27755db41 Pyre Configurationless migration for] [batch:85/112] [shard:6/N]
Reviewed By: inseokhwang

Differential Revision: D54438157

fbshipit-source-id: a6acfe146ed29fff82123b5e458906d4b4cee6a2
2024-03-04 18:30:37 -08:00
Amethyst Reese
3da7703c5a apply Black 2024 style in fbcode (4/16)
Summary:
Formats the covered files with pyfmt.

paintitblack

Reviewed By: aleivag

Differential Revision: D54447727

fbshipit-source-id: 8844b1caa08de94d04ac4df3c768dbf8c865fd2f
2024-03-02 17:31:19 -08:00
Jeremy Reizenstein
f34104cf6e version 0.7.6
Summary: New version

Reviewed By: cijose

Differential Revision: D53852987

fbshipit-source-id: 962ab9f61153883df9da0601356bd6b108dc5df7
2024-02-19 03:28:54 -08:00
Jeremy Reizenstein
f247c86dc0 Update tutorials for 0.7.6
Summary:
version number changed with
`sed -i "s/2.1\./2.2./" *b`

Reviewed By: cijose

Differential Revision: D53852986

fbshipit-source-id: 1662c8e6d671321887a3263bc3880d5c33d1f866
2024-02-19 03:28:54 -08:00
Cijo Jose
ae9d8787ce Support color in cubify
Summary: The diff support colors in cubify for align = "center"

Reviewed By: bottler

Differential Revision: D53777011

fbshipit-source-id: ccb2bd1e3d89be3d1ac943eff08f40e50b0540d9
2024-02-16 08:19:12 -08:00
Jeremy Reizenstein
8772fe0de8 Make OpenGL optional in tests
Summary: Add an option to run tests without the OpenGL Renderer.

Reviewed By: patricklabatut

Differential Revision: D53573400

fbshipit-source-id: 54a14e7b2f156d24e0c561fdb279f4a9af01b793
2024-02-13 07:43:42 -08:00
Ada Martin
c292c71c1a c++ marching cubes fix
Summary:
Fixes https://github.com/facebookresearch/pytorch3d/issues/1641. The bug was caused by the mistaken downcasting of an int64_t into int, causing issues only on inputs large enough to have hashes that escaped the bounds of an int32.

Also added a test case for this issue.

Reviewed By: bottler

Differential Revision: D53505370

fbshipit-source-id: 0fdd0efc6d259cc3b0263e7ff3a4ab2c648ec521
2024-02-08 11:13:15 -08:00
Jeremy Reizenstein
d0d9cae9cd builds for PyTorch 2.1.1 2.1.2 2.2.0
Summary: Build for new pytorch versions

Reviewed By: shapovalov

Differential Revision: D53266104

fbshipit-source-id: f7aaacaf39cab3839b24f45361c36f087d0ea7c9
2024-02-07 11:56:52 -08:00
generatedunixname89002005287564
1f92c4e9d2 vision/fair
Reviewed By: zsol

Differential Revision: D53258682

fbshipit-source-id: 3f006b5f31a2b1ffdc6323d3a3b08ac46c3162ce
2024-01-31 07:43:49 -08:00
generatedunixname89002005307016
9b981f2c7e suppress errors in vision/fair/pytorch3d
Differential Revision: D53152021

fbshipit-source-id: 78be99b00abe4d992db844ff5877a89d42d468af
2024-01-26 19:10:37 -08:00
generatedunixname89002005307016
85eccbbf77 suppress errors in vision/fair/pytorch3d
Differential Revision: D53111480

fbshipit-source-id: 0f506bf29cf908e40b058ae72f51e828cd597825
2024-01-25 21:13:30 -08:00
generatedunixname89002005307016
b80ab0caf0 upgrade pyre version in fbcode/vision - batch 1
Differential Revision: D53059851

fbshipit-source-id: f5d0951186c858f90ddf550323a163e4b6d42b68
2024-01-24 23:56:06 -08:00
Dimitris Prountzos
1e817914b3 Fix compiler warning in knn.ku
Summary: This change updates the type of p2_idx from size_t to int64_t to address compiler warnings related to signed/unsigned comparison.

Reviewed By: bottler

Differential Revision: D52879393

fbshipit-source-id: de5484d78a907fccdaae3ce036b5e4a1a0a4de70
2024-01-18 12:27:16 -08:00
Ido Zachevsky
799c1cd21b Allow get_rgbd_point_cloud to take any #channels
Summary: Fixed `get_rgbd_point_cloud` to take any number of image input channels.

Reviewed By: bottler

Differential Revision: D52796276

fbshipit-source-id: 3ddc0d1e337a6cc53fc86c40a6ddb136f036f9bc
2024-01-16 03:38:26 -08:00
Abdelrahman Selim
292acc71a3 Update so3 operations for numerical stability
Summary: Replace implementations of `so3_exp_map` and `so3_log_map` in so3.py with existing more-stable implementations.

Reviewed By: bottler

Differential Revision: D52513319

fbshipit-source-id: fbfc039643fef284d8baa11bab61651964077afe
2024-01-04 02:26:56 -08:00
Jeremy Reizenstein
3621a36494 mac build fix
Summary: Fix for https://github.com/facebookresearch/pytorch3d/issues/1708

Reviewed By: patricklabatut

Differential Revision: D52480756

fbshipit-source-id: 530c0f9413970fba042eec354e28318c96e35f42
2024-01-03 07:46:54 -08:00
Abdelrahman Selim
3087ab7f62 Standardize matrix_to_quaternion output
Summary:
An OSS user has pointed out in https://github.com/facebookresearch/pytorch3d/issues/1703 that the output of matrix_to_quaternion (in that file) can be non standardized.

This diff solves the issue by adding a line of standardize at the end of the function

Reviewed By: bottler

Differential Revision: D52368721

fbshipit-source-id: c8d0426307fcdb7fd165e032572382d5ae360cde
2023-12-21 13:43:29 -08:00
Tony Tan
e46ab49a34 Submeshing TexturesAtlas for PyTorch3D 3D Rendering
Summary: Implement submeshing for TexturesAtlas and add associated test

Reviewed By: bottler

Differential Revision: D52334053

fbshipit-source-id: d54080e9af1f0c01551702736e858e3bd439ac58
2023-12-21 11:08:01 -08:00
Hassan Lotfi
8a27590c5f Submeshing TexturesUV
Summary: Implement `submeshes` for TexturesUV. Fix what Meshes.submeshes passes to the texture's submeshes function to make this possible.

Reviewed By: bottler

Differential Revision: D52192060

fbshipit-source-id: 526734962e3376aaf75654200164cdcebfff6997
2023-12-19 06:48:06 -08:00
Eric Young
06cdc313a7 PyTorch3D - Avoid flip in TexturesAtlas
Summary: Performance improvement: Use torch.lerp to map uv coordinates to the range needed for grid_sample (i.e. map [0, 1] to [-1, 1] and invert the y-axis)

Reviewed By: bottler

Differential Revision: D51961728

fbshipit-source-id: db19a5e3f482e9af7b96b20f88a1e5d0076dac43
2023-12-11 12:49:17 -08:00
Roman Shapovalov
94da8841af Align_corners switch in Volumes
Summary:
Porting this commit by davnov134 .
93a3a62800 (diff-a8e107ebe039de52ca112ac6ddfba6ebccd53b4f53030b986e13f019fe57a378)

Capability to interpret world/local coordinates with various align_corners semantics.

Reviewed By: bottler

Differential Revision: D51855420

fbshipit-source-id: 834cd220c25d7f0143d8a55ba880da5977099dd6
2023-12-07 03:07:41 -08:00
generatedunixname89002005307016
fbc6725f03 upgrade pyre version in fbcode/vision - batch 2
Differential Revision: D51902460

fbshipit-source-id: 3ffc5d7d2da5c5d4e971ee8275bd999c709e0b12
2023-12-06 20:53:53 -08:00
Jeremy Reizenstein
6b8766080d Use cuda's make_float3 in pulsar
Summary: Fixes github.com/facebookresearch/pytorch3d/issues/1680

Reviewed By: MichaelRamamonjisoa

Differential Revision: D51587889

fbshipit-source-id: e68ae32d7041fb9ea3e981cf2bde47f947a41ca2
2023-12-05 03:15:02 -08:00
sewon.jeon
c373a84400 Use updated naming to remove warning (#1687)
Summary:
diag_suppress is  deprecated from cuda

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1687

Reviewed By: MichaelRamamonjisoa

Differential Revision: D51495875

Pulled By: bottler

fbshipit-source-id: 6543a15e666238365719117bfcf5f7dac532aec1
2023-12-05 03:15:02 -08:00
sewon.jeon
7606854ff7 Fix windows build (#1689)
Summary:
Change the data type usage in the code to ensure cross-platform compatibility
long -> int64_t

<img width="628" alt="image" src="https://github.com/facebookresearch/pytorch3d/assets/6214316/40041f7f-3c09-4571-b9ff-676c625802e9">

Tested under
Win 11 and Ubuntu 22.04
with
CUDA 12.1.1 torch 2.1.1

Related issues & PR

https://github.com/facebookresearch/pytorch3d/pull/9

https://github.com/facebookresearch/pytorch3d/issues/1679

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1689

Reviewed By: MichaelRamamonjisoa

Differential Revision: D51521562

Pulled By: bottler

fbshipit-source-id: d8ea81e223c642e0e9fb283f5d7efc9d6ac00d93
2023-12-05 03:14:06 -08:00
Jeremy Reizenstein
83bacda8fb lint
Summary: Fix recent flake complaints

Reviewed By: MichaelRamamonjisoa

Differential Revision: D51811912

fbshipit-source-id: 65183f5bc7058da910e4d5a63b2250ce8637f1cc
2023-12-04 13:43:34 -08:00
generatedunixname89002005307016
f74fc450e8 suppress errors in vision/fair/pytorch3d
Differential Revision: D51645956

fbshipit-source-id: 1ae7279efa0a27bb9bc5255527bafebb84fdafd0
2023-11-28 19:10:06 -08:00
Dan Johnson
3b4f8a4980 Adding reference and context to PointsRenderer
Summary: User confusion (https://github.com/facebookresearch/pytorch3d/issues/1579) about how zbuf is used for alpha compositing. Added small description and reference to paper to help give some context.

Reviewed By: bottler

Differential Revision: D51374933

fbshipit-source-id: 8c489a5b5d0a81f0d936c1348b9ade6787c39c9a
2023-11-16 08:58:08 -08:00
Aleksandrs Ecins
79b46734cb Fix lint in test_render_points
Summary: Fixes lint in test_render_points in the PyTorch3D library.

Differential Revision: D51289841

fbshipit-source-id: 1eae621eb8e87b0fe5979f35acd878944f574a6a
2023-11-14 11:07:28 -08:00
YangHai
55638f3bae Support reading uv and uv map for ply format if texture_uv exists in ply file (#1100)
Summary:
When the ply format looks as follows:
  ```
comment TextureFile ***.png
element vertex 892
property double x
property double y
property double z
property double nx
property double ny
property double nz
property double texture_u
property double texture_v
```
`MeshPlyFormat` class will read uv from the ply file and read the uv map as commented as TextureFile.

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1100

Reviewed By: MichaelRamamonjisoa

Differential Revision: D50885176

Pulled By: bottler

fbshipit-source-id: be75b1ec9a17a1ed87dbcf846a9072ea967aec37
2023-11-14 07:44:14 -08:00
Jeremy Reizenstein
f4f2209271 Fix for mask_points=False
Summary: Remove unused argument `mask_points` from `get_rgbd_point_cloud` and fix `get_implicitron_sequence_pointcloud`, which assumed it was used.

Reviewed By: MichaelRamamonjisoa

Differential Revision: D50885848

fbshipit-source-id: c0b834764ad5ef560107bd8eab04952d000489b8
2023-11-14 07:42:18 -08:00
Jeremy Reizenstein
f613682551 marching_cubes type fix
Summary: fixes https://github.com/facebookresearch/pytorch3d/issues/1679

Reviewed By: MichaelRamamonjisoa

Differential Revision: D50949933

fbshipit-source-id: 5c467de8bf84dd2a3d61748b3846678582d24ea3
2023-11-14 07:38:54 -08:00
Jeremy Reizenstein
2f11ddc5ee version 0.7.5
Summary: update

Reviewed By: MichaelRamamonjisoa

Differential Revision: D50806966

fbshipit-source-id: 95fd341c9e5e4e07b689eb71b3a729baff3b8192
2023-10-31 09:27:49 -07:00
Jeremy Reizenstein
650cc09d22 update notebooks for 0.7.5
Summary:
```
sed -i 's/startswith((\"1.13.\", \"2.0.\"))/startswith\(\"2.1.\"\)/' *b
```

Reviewed By: shapovalov

Differential Revision: D50806967

fbshipit-source-id: df19462564edb1f840753efeae96b516c7a9f764
2023-10-31 09:27:49 -07:00
Jeremy Reizenstein
8c15afe71d fix warning from cross
Summary: Don't call tensor.cross() without dim, to avoid new warning.

Reviewed By: MichaelRamamonjisoa

Differential Revision: D49879590

fbshipit-source-id: e9ba83923b6dc3bcface6782b8b26729ab5b0a4c
2023-10-30 11:50:23 -07:00
Jeremy Reizenstein
6b437e21a6 CI fixes (#1676)
Summary:
Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1676

Remove CUDA 10.2 build, remove sm35 from cuda12.

Reviewed By: MichaelRamamonjisoa

Differential Revision: D50790929

fbshipit-source-id: 2b8cd34493b633a97b4066e0fd61aff077f7ce0c
2023-10-30 09:50:04 -07:00
Jeremy Reizenstein
03f17ca1ea missing cudaGetLastError
Summary: Investigating a reported problem.

Reviewed By: MichaelRamamonjisoa

Differential Revision: D50791296

fbshipit-source-id: 8dc162b87d02debf05d16c2b4816fcd57234d7e0
2023-10-30 09:35:08 -07:00
Aniket Patil
a8c70161a1 Fixed typo in cameras.py (#1656)
Summary:
coodinates -> coordinates

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1656

Reviewed By: MichaelRamamonjisoa

Differential Revision: D50325515

Pulled By: bottler

fbshipit-source-id: 406d2e286ead4fa5e9080092b4918a748495ee23
2023-10-17 06:07:02 -07:00
Jeremy Reizenstein
28f914bf3b pytorch 2.1, drop mac builds
Summary: Build updates for PyTorch 2.1

Reviewed By: MichaelRamamonjisoa

Differential Revision: D50345762

fbshipit-source-id: 89bf4edf1c21566aa86a3abca9b4df7c4d1d17a2
2023-10-17 06:04:06 -07:00
generatedunixname89002005307016
eaf0709d6a suppress errors in vision/fair/pytorch3d
Differential Revision: D49531589

fbshipit-source-id: 61c28ae33d2e5f75fd1695f35dc99931a3aaf7d3
2023-09-22 03:33:05 -07:00
Tristan Rice
b7f4ba097c VolumeSampler: expose padding_mode for inside out rendering (#1638)
Summary:
This exposes a setting on VolumeSampler so you can change the padding_mode. This is very useful when using cameras inside a volume that doesn't cover the entire world. By setting the value to `border` you can get much better behavior than `zeros` which causes edge effects for things like the sky. Border emulates infinitely tall buildings instead.

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1638

Test Plan:
Tested with torchdrive

Example before:
![image](https://github.com/facebookresearch/pytorch3d/assets/909104/e99ffb7c-c4ba-40f8-b15c-ad5d1b53f0df)

Example after:
![image](https://github.com/facebookresearch/pytorch3d/assets/909104/f8d9821b-93d5-44b5-b9d4-c1670711ddce)

Reviewed By: MichaelRamamonjisoa

Differential Revision: D49384383

Pulled By: bottler

fbshipit-source-id: 202b526e07320a18944c39a148beec94c0f5d68c
2023-09-20 08:00:02 -07:00
Jeremy Reizenstein
6f2212da46 use less thrust, maybe help Windows
Summary: I think we include more thrust than needed, and maybe removing it will help things like  https://github.com/facebookresearch/pytorch3d/issues/1610 with DebugSyncStream errors on Windows.

Reviewed By: shapovalov

Differential Revision: D48949888

fbshipit-source-id: add889c0acf730a039dc9ffd6bbcc24ded20ef27
2023-09-05 04:40:24 -07:00
Richard Barnes
a3d99cab6b Del (object) from 200 inc vision/fair/mae_st/util/meters.py
Summary: Python3 makes the use of `(object)` in class inheritance unnecessary. Let's modernize our code by eliminating this.

Reviewed By: itamaro

Differential Revision: D48673863

fbshipit-source-id: 032d6028371f0350252e6b731c74f0f5933c83cd
2023-08-26 13:55:56 -07:00
Haritha Jayasinghe
d84f274a08 add None option for chamfer distance point reduction (#1605)
Summary:
The `chamfer_distance` function currently allows `"sum"` or `"mean"` reduction, but does not support returning unreduced (per-point) loss terms. Unreduced losses could be useful if the user wishes to inspect individual losses, or perform additional modifications to loss terms before reduction. One example would be implementing a robust kernel over the loss.

This PR adds a `None` option to the `point_reduction` parameter, similar to `batch_reduction`. In case of bi-directional chamfer loss, both the forward and backward distances are returned (a tuple of Tensors of shape `[D, N]` is returned). If normals are provided, similar logic applies to normals as well.

This PR addresses issue https://github.com/facebookresearch/pytorch3d/issues/622.

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1605

Reviewed By: jcjohnson

Differential Revision: D48313857

Pulled By: bottler

fbshipit-source-id: 35c824827a143649b04166c4817449e1341b7fd9
2023-08-15 10:36:06 -07:00
generatedunixname89002005307016
099fc069fb suppress errors in vision/fair/pytorch3d
Differential Revision: D47643182

fbshipit-source-id: 598de1526e0c717f2f7038c3f4873ac119c65bba
2023-07-20 12:37:46 -07:00
Jeremy Reizenstein
57f6e79280 attempt to fix readthedocs
Summary:
Something's wrong with recommonmark/CommonMark/six, let's see if this fixes it.

https://readthedocs.org/projects/pytorch3d/builds/21292632/

```
  File "/home/docs/checkouts/readthedocs.org/user_builds/pytorch3d/envs/latest/lib/python3.11/site-packages/sphinx/config.py", line 368, in eval_config_file
    execfile_(filename, namespace)
  File "/home/docs/checkouts/readthedocs.org/user_builds/pytorch3d/envs/latest/lib/python3.11/site-packages/sphinx/util/pycompat.py", line 150, in execfile_
    exec_(code, _globals)
  File "/home/docs/checkouts/readthedocs.org/user_builds/pytorch3d/checkouts/latest/docs/conf.py", line 25, in <module>
    from recommonmark.parser import CommonMarkParser
  File "/home/docs/checkouts/readthedocs.org/user_builds/pytorch3d/envs/latest/lib/python3.11/site-packages/recommonmark/parser.py", line 6, in <module>
    from CommonMark import DocParser, HTMLRenderer
  File "/home/docs/checkouts/readthedocs.org/user_builds/pytorch3d/envs/latest/lib/python3.11/site-packages/CommonMark/__init__.py", line 3, in <module>
    from CommonMark.CommonMark import HTMLRenderer
  File "/home/docs/checkouts/readthedocs.org/user_builds/pytorch3d/envs/latest/lib/python3.11/site-packages/CommonMark/CommonMark.py", line 18, in <module>
    HTMLunescape = html.parser.HTMLParser().unescape
                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
AttributeError: 'HTMLParser' object has no attribute 'unescape'
```

Reviewed By: shapovalov

Differential Revision: D47471545

fbshipit-source-id: 48e121e20da535b3cc46b6bd2393d28869067b8b
2023-07-14 09:49:09 -07:00
Jeremy Reizenstein
2883a07bfe update wheel scripts
Summary: New versions of cuda etc. I haven't committed recent changes to this for a while

Reviewed By: shapovalov

Differential Revision: D47396136

fbshipit-source-id: d6c27f5056fa8f4a74a628fa1d831159000acf55
2023-07-14 09:09:46 -07:00
Jeremy Reizenstein
6462aa60ea switch to readthedocs.yaml
Summary: This is needed from september 2023. As a side effect, implicitron docs should build better because typing.get_args exists etc.

Reviewed By: shapovalov

Differential Revision: D47363855

fbshipit-source-id: a954c5b81b1e5a4435fca146a11aea0d2ca96f45
2023-07-13 06:56:19 -07:00
Roman Shapovalov
d851bc3173 Read depth maps from OpenXR files
Summary:
Blender uses OpenEXR to dump depth maps, so we have to support it.
OpenCV requires to explicitly accepth the vulnerabilities by setting the env var before exporting.
We can set it but I think it should be user’s responsibility.
OpenCV error reporting is adequate, so I don’t handle the error on our side.

Reviewed By: bottler

Differential Revision: D47403884

fbshipit-source-id: 2fcadd1df9d0efa0aea563bcfb2e3180b3c4d1d7
2023-07-13 04:50:03 -07:00
Roman Shapovalov
8164ac4081 Fix: tensor vs array type correctness
Summary:
For fg-masking depth, we assumed np.array but passed a Tensor; for defining the default depth_mask, vice versa.

Note that we change the intended behaviour for the latter, assuming that 0s are areas with empty depth. When loading depth masks, we replace NaNs with zeros, so it is sensible. It is not a BC change as that branch would crash if executed. Since there was no reports, I assume no one cared.

Reviewed By: bottler

Differential Revision: D47403588

fbshipit-source-id: 1094104176d7d767a5657b5bbc9f5a0cc9da0ede
2023-07-13 04:50:03 -07:00
Emilien Garreau
9446d91fae Avoid to keep in memory lengths and bins for ImplicitronRayBundle
Summary:
Convert ImplicitronRayBundle to a "classic" class instead of a dataclass. This change is introduced as a way to preserve the ImplicitronRayBundle interface while allowing two outcomes:
- init lengths arguments is now a Optional[torch.Tensor] instead of torch.Tensor
- lengths is now a property which returns a `torch.Tensor`. The lengths property will either recompute lengths from bins or return the stored _lengths. `_lenghts` is None if bins is set. It saves us a bit of memory.

Reviewed By: shapovalov

Differential Revision: D46686094

fbshipit-source-id: 3c75c0947216476ebff542b6f552d311024a679b
2023-07-06 02:41:15 -07:00
Emilien Garreau
3d011a9198 Adapt RayPointRefiner and RayMarcher to support bins.
Summary:
## Context

Bins are used in mipnerf to allow to manipulate easily intervals. For example, by doing the following, `bins[..., :-1]` you will obtain all the left coordinates of your intervals, while doing `bins[..., 1:]` is equals to the right coordinates of your intervals.

We introduce here the support of bins like in MipNerf implementation.

## RayPointRefiner

Small changes have been made to modify RayPointRefiner.
- If bins is None

```
mids = torch.lerp(ray_bundle.lengths[..., 1:], ray_bundle.lengths[…, :-1], 0.5)
z_samples = sample_pdf(
		mids, # [..., npt]
		weights[..., 1:-1], # [..., npt - 1]
               ….
            )
```

- If bins is not None
In the MipNerf implementation the sampling is done on all the bins. It allows us to use the full weights tensor without slashing it.

```
z_samples = sample_pdf(
		ray_bundle.bins, # [..., npt + 1]
		weights, # [..., npt]
               ...
            )
```

## RayMarcher

Add a ray_deltas optional argument. If None, keep the same deltas computation from ray_lengths.

Reviewed By: shapovalov

Differential Revision: D46389092

fbshipit-source-id: d4f1963310065bd31c1c7fac1adfe11cbeaba606
2023-07-06 02:41:15 -07:00
Emilien Garreau
5910d81b7b Add blurpool following MIPNerf paper.
Summary:
Add blurpool has defined in [MIP-NeRF](https://arxiv.org/abs/2103.13415).
It has been added has an option for RayPointRefiner.

Reviewed By: shapovalov

Differential Revision: D46356189

fbshipit-source-id: ad841bad86d2b591a68e1cb885d4f781cf26c111
2023-07-06 02:20:53 -07:00
Emilien Garreau
ccf860f1db Add integrated position encoding based on MIPNerf implementation.
Summary: Add a new implicit module Integral Position Encoding based on [MIP-NeRF](https://arxiv.org/abs/2103.13415).

Reviewed By: shapovalov

Differential Revision: D46352730

fbshipit-source-id: c6a56134c975d80052b3a11f5e92fd7d95cbff1e
2023-07-06 02:20:53 -07:00
Emilien Garreau
29b8ebd802 Add utils to approximate the conical frustums as multivariate gaussians.
Summary:
Introduce methods to approximate the radii of conical frustums along rays as described in [MipNerf](https://arxiv.org/abs/2103.13415):

- Two new attributes are added to ImplicitronRayBundle: bins and radii. Bins is of size n_pts_per_ray + 1. It allows us to manipulate easily and n_pts_per_ray intervals. For example we need the intervals coordinates in the radii computation for \(t_{\mu}, t_{\delta}\). Radii are used to store the radii of the conical frustums.

- Add 3 new methods to compute the radii:
   - approximate_conical_frustum_as_gaussians: It computes the mean along the ray direction, the variance of the
      conical frustum  with respect to t and variance of the conical frustum with respect to its radius. This
      implementation follows the stable computation defined in the paper.
   - compute_3d_diagonal_covariance_gaussian: Will leverage the two previously computed variances to find the
     diagonal covariance of the Gaussian.
   - conical_frustum_to_gaussian: Mix everything together to compute the means and the diagonal covariances along
     the ray of the Gaussians.

- In AbstractMaskRaySampler, introduces the attribute `cast_ray_bundle_as_cone`. If False it won't change the previous behaviour of the RaySampler. However if True, the samplers will sample `n_pts_per_ray +1` instead of `n_pts_per_ray`. This points are then used to set the bins attribute of ImplicitronRayBundle. The support of HeterogeneousRayBundle has not been added since the current code does not allow it. A safeguard has been added to avoid a silent bug in the future.

Reviewed By: shapovalov

Differential Revision: D45269190

fbshipit-source-id: bf22fad12d71d55392f054e3f680013aa0d59b78
2023-07-06 01:55:41 -07:00
Emilien Garreau
4e7715ce66 Remove unused pyre-ignore or pyre-fixme
Reviewed By: bottler

Differential Revision: D47223471

fbshipit-source-id: 8bdabf2a69dd7aec7202141122a9c69220ba7ef1
2023-07-05 02:58:47 -07:00
Jeremy Reizenstein
f68371d398 lints
Summary: simple

Reviewed By: shapovalov

Differential Revision: D46438865

fbshipit-source-id: 0f41cb3ddd7e7aca4513267d33299531f7e8d373
2023-06-16 06:48:04 -07:00
Jeremy Reizenstein
dc2c7e489f docs build remove mock after D45600232
Summary: We now use unittest.mock

Reviewed By: shapovalov

Differential Revision: D45868799

fbshipit-source-id: cd1042dc2c49c82c7b9e024f761c496049a31beb
2023-06-16 04:50:30 -07:00
Jeremy Reizenstein
42e7de418c fix test_build internal
Summary: Make test work in isolation, and when run internally make it not try the sqlalchemy files.

Reviewed By: shapovalov

Differential Revision: D46352513

fbshipit-source-id: 7417a25d7a5347d937631c9f56ae4e3242dd622e
2023-06-16 04:49:02 -07:00
Richard Higgins
88429853b9 1-line tutorial notebook plotting change to fix blank figure problem (#1549)
Summary:
Hi,

Not sure this is the best fix. But while running this notebook, I only ever saw a blank canvas when trying to visualize the dolphin. It might be that I have a broken dependency, like plotly. I also don't know what the visualization is "supposed" to look like.

But incase other people have this issue, this one line change solved the whole problem for me. Now I have a happy, rotatable dolphin.

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1549

Reviewed By: shapovalov

Differential Revision: D46350930

Pulled By: bottler

fbshipit-source-id: e19aa71eb05a93e2955262a2c90d1f0d09576228
2023-06-16 04:35:15 -07:00
Jeremy Reizenstein
009a3d3b3c projects/nerf subsampling fix for newish pytorch #1441
Summary: Fix for https://github.com/facebookresearch/pytorch3d/issues/1441 where we were indexing with a tensor on the wrong device.

Reviewed By: shapovalov

Differential Revision: D46276449

fbshipit-source-id: 7750ed45ffecefa5d291fd1eadfe515310c2cf0d
2023-06-16 04:33:24 -07:00
Roman Shapovalov
cd5db076d5 Adding SQL dataset classes to ImplicitronDataSource imports
Summary: Making it easier for the clients to use these datasets.

Reviewed By: bottler

Differential Revision: D46727179

fbshipit-source-id: cf619aee4c4c0222a74b30ea590cf37f08f014cc
2023-06-14 10:51:47 -07:00
Roman Shapovalov
3d886c32d5 Fix: subset filter in DatasetBase implementation
Summary: In D42739669, I forgot to update the API of existing implementations of DatasetBase to take `subset_filter`. Looks like only one was missing.

Reviewed By: bottler

Differential Revision: D46724488

fbshipit-source-id: 13ab7a457f853278cf06955aad0cc2bab5fbcce6
2023-06-14 08:48:14 -07:00
Roman Shapovalov
5592d25f68 Fix: changed deprecated matplotlib parameter
Summary:
The parameter was renamed in MPL 3.5.0 in 2021, and the deprecated version is no longer supported.

https://matplotlib.org/stable/api/prev_api_changes/api_changes_3.5.0.html#the-first-parameter-of-axes-grid-and-axis-grid-has-been-renamed-to-visible

Reviewed By: bottler

Differential Revision: D46724242

fbshipit-source-id: 04e2ab6d63369d939ea4f0ce7d64693e0b95ee91
2023-06-14 08:48:14 -07:00
Roman Shapovalov
09a99f2e6d Support limiting num sequences per category.
Summary:
Adds stratified sampling of sequences within categories applied after category / sequence filters but before the num sequence limit.
It respects the insertion order into the sequence_annots table, i.e. takes top N sequences within each category.

Reviewed By: bottler

Differential Revision: D46724002

fbshipit-source-id: 597cb2a795c3f3bc07f838fc51b4e95a4f981ad3
2023-06-14 07:12:02 -07:00
Norman Mueller
5ffeb4d580 Single directional chamfer distance and non-absolute cosine similarity
Summary: Single directional chamfer distance and option to use non-absolute cosine similarity

Reviewed By: bottler

Differential Revision: D46593980

fbshipit-source-id: b2e591706a0cdde1c2d361614cecebb84a581433
2023-06-13 09:09:15 -07:00
generatedunixname89002005307016
573a42cd5f suppress errors in vision/fair/pytorch3d
Differential Revision: D46685078

fbshipit-source-id: daf2e75f24b68d2eab74cddca8ab9446e96951e7
2023-06-13 07:14:48 -07:00
Jeremy Reizenstein
928efdd640 fix camera plot for new matplotlib
Summary: fixes https://github.com/facebookresearch/pytorch3d/issues/1554 , needed for Matplotlib 3.6+

Reviewed By: patricklabatut

Differential Revision: D46438822

fbshipit-source-id: f3c06ad5d8e881a635edd14f96d498dca73c169f
2023-06-07 05:10:10 -07:00
Emilien Garreau
35badc0892 Fix inversion between fine and coarse implicit_functions
Summary: Fine implicit function was called before the coarse implicit function.

Reviewed By: shapovalov

Differential Revision: D46224224

fbshipit-source-id: 6b1cc00cc823d3ea7a5b42774c9ec3b73a69edb5
2023-05-26 08:33:54 -07:00
generatedunixname89002005307016
e0c3ca97ff upgrade pyre version in fbcode/vision - batch 2
Differential Revision: D46119066

fbshipit-source-id: b766118b9dcc07075d328fba73f272419dc9fc38
2023-05-23 20:34:54 -07:00
Roman Shapovalov
d2119c285f Serialising dynamic arrays in SQL; read-only SQLite connection in SQL Dataset
Summary:
1. We may need to store arrays of unknown shape in the database. It implements and tests serialisation.

2. Previously, when an inexisting metadata file was passed to SqlIndexDataset, it would try to open it and create an empty file, then crash. We now open the file in a read-only mode, so the error message is more intuitive. Note that the implementation is SQLite specific.

Reviewed By: bottler

Differential Revision: D46047857

fbshipit-source-id: 3064ae4f8122b4fc24ad3d6ab696572ebe8d0c26
2023-05-22 02:24:49 -07:00
Jeremy Reizenstein
ff80183fdb resources fix
Summary: I don't know why RE tests sometimes fail here, but maybe it's a race condition. If that's right, this should fix it.

Reviewed By: shapovalov

Differential Revision: D46020054

fbshipit-source-id: 20b746b09ad9bd77c2601ac681047ccc6cc27ed9
2023-05-19 06:41:33 -07:00
Roman Shapovalov
b0462598ac Refactor: FrameDataBuilder is more extensible.
Summary:
This is mostly a refactoring diff to reduce friction in extending the frame data.

Slight functional changes: dataset getitem now accepts (seq_name, frame_number_as_singleton_tensor) as a non-advertised feature. Otherwise this code crashes:
```
item = dataset[0]
dataset[item.sequence_name, item.frame_number]
```

Reviewed By: bottler

Differential Revision: D45780175

fbshipit-source-id: 75b8e8d3dabed954a804310abdbd8ab44a8dea29
2023-05-17 10:38:34 -07:00
Virendra Kumar Pathak
d08fe6d45a Softly deprecate the get_str=False flag.
Summary: We don't want to use print directly in stats.print() method. Instead this method will return the output string to the caller.

Reviewed By: shapovalov

Differential Revision: D45356240

fbshipit-source-id: 2cabe3cdfb9206bf09aa7b3cdd2263148a5ba145
2023-05-14 01:24:31 -07:00
Jeremy Reizenstein
297020a4b1 version 0.7.4
Summary: version number

Reviewed By: shapovalov

Differential Revision: D45704549

fbshipit-source-id: d63867f305b07c30ed9ea104f1494d23710fdbb7
2023-05-10 04:42:58 -07:00
Jeremy Reizenstein
062e6c54ae builds for PyTorch 2.0.1; drop 1.9
Summary: Drop support for PyTorch 1.9.0 and 1.9.1.

Reviewed By: shapovalov

Differential Revision: D45704329

fbshipit-source-id: c0fe3ecf6a1eb9bcd4163785c0cb4bf4f5060f50
2023-05-10 02:38:47 -07:00
Roman Shapovalov
c80180c96e Fix: FrameDataBuilder working with PathManager
Summary: In refactoring, we lost path manager here, which broke manifold storage. Fixing this.

Reviewed By: bottler

Differential Revision: D45574940

fbshipit-source-id: 579349eaa654215a09e057be57b56b46769c986a
2023-05-09 04:56:39 -07:00
Jason Fried
23cd19fbc7 typing.NamedTuple.field_types removed in favor of __annotations__
Summary:
typing.NamedTuple was simplified in 3.10
These two fields were the same in 3.8,  so this should be a no-op

#buildmore

Reviewed By: bottler

Differential Revision: D45373526

fbshipit-source-id: 2b26156f5f65b7be335133e9e705730f7254260d
2023-05-08 13:53:16 -07:00
dhb
092400f1e7 allow saving vertex normal in save_obj (#1511)
Summary:
Although we can load per-vertex normals in `load_obj`, saving per-vertex normals is not supported in `save_obj`.

This patch fixes this by allowing passing per-vertex normal data in `save_obj`:
``` python
def save_obj(
    f: PathOrStr,
    verts,
    faces,
    decimal_places: Optional[int] = None,
    path_manager: Optional[PathManager] = None,
    *,
    verts_normals: Optional[torch.Tensor] = None,
    faces_normals: Optional[torch.Tensor] = None,
    verts_uvs: Optional[torch.Tensor] = None,
    faces_uvs: Optional[torch.Tensor] = None,
    texture_map: Optional[torch.Tensor] = None,
) -> None:
    """
    Save a mesh to an .obj file.

    Args:
        f: File (str or path) to which the mesh should be written.
        verts: FloatTensor of shape (V, 3) giving vertex coordinates.
        faces: LongTensor of shape (F, 3) giving faces.
        decimal_places: Number of decimal places for saving.
        path_manager: Optional PathManager for interpreting f if
            it is a str.
        verts_normals: FloatTensor of shape (V, 3) giving the normal per vertex.
        faces_normals: LongTensor of shape (F, 3) giving the index into verts_normals
            for each vertex in the face.
        verts_uvs: FloatTensor of shape (V, 2) giving the uv coordinate per vertex.
        faces_uvs: LongTensor of shape (F, 3) giving the index into verts_uvs for
            each vertex in the face.
        texture_map: FloatTensor of shape (H, W, 3) representing the texture map
            for the mesh which will be saved as an image. The values are expected
            to be in the range [0, 1],
    """
```

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1511

Reviewed By: shapovalov

Differential Revision: D45086045

Pulled By: bottler

fbshipit-source-id: 666efb0d2c302df6cf9f2f6601d83a07856bf32f
2023-05-07 06:32:02 -07:00
generatedunixname89002005287564
ec87284c4b Replace third-party mock with unittest.mock] vision/fair
Reviewed By: bottler

Differential Revision: D45600232

fbshipit-source-id: f41b95c6fca86d241666b54755a128cd33f6dd32
2023-05-05 09:36:30 -07:00
Xiao Xuan
f5a117c74b fix: correct typo in cameras.md (#1501)
Summary:
If my understanding is right, prp_screen[1] should be 32 rather than 48.

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1501

Reviewed By: shapovalov

Differential Revision: D45044406

Pulled By: bottler

fbshipit-source-id: 7dd93312db4986f4701e642ba82d94333466b921
2023-05-05 08:13:39 -07:00
Jeremy Reizenstein
b921efae3e CUB usage fix for sample_farthest_points
Summary: Fix for https://github.com/facebookresearch/pytorch3d/issues/1529

Reviewed By: shapovalov

Differential Revision: D45569211

fbshipit-source-id: 8c485f26cd409cafac53d4d982a03cde81a1d853
2023-05-05 05:59:14 -07:00
Roman Shapovalov
c8d6cd427e Fix test_data_source in OSS.
Summary: Import generic path; avoiding incorrect path patching.

Reviewed By: bottler

Differential Revision: D45573976

fbshipit-source-id: e6ff4d759deb936e3b636defa1e0851fb0127b46
2023-05-05 02:05:50 -07:00
Jeremy Reizenstein
ef5f620263 nondeterminism warnings
Summary: do like xformers.

Reviewed By: shapovalov

Differential Revision: D44541873

fbshipit-source-id: 2c23160591cd9026fcd4972998d1bc90adba1356
2023-05-04 12:50:41 -07:00
Roman Shapovalov
3e3644e534 More tests for SQL Dataset
Summary:
I forgot to include these tests to D45086611 when transferring code from pixar_replay repo.

They test the new ORM types used in SQL dataset and are SQL Alchemy 2.0 specific.

An important test for extending types is a proof of concept for generality of SQL Dataset. The idea is to extend FrameAnnotation and FrameData in parallel.

Reviewed By: bottler

Differential Revision: D45529284

fbshipit-source-id: 2a634e518f580c312602107c85fc320db43abcf5
2023-05-04 03:32:27 -07:00
Ilia Vitsnudel
178a7774d4 Adding save mesh into glb file in TexturesVertex format
Summary:
Added a suit of functions and code additions to experimental_gltf_io.py file to enable saving Meshes in TexturesVertex format into .glb file.
Also added a test to tets_io_gltf.py to check the functionality with the test described in Test Plane.

Reviewed By: bottler

Differential Revision: D44969144

fbshipit-source-id: 9ce815a1584b510442fa36cc4dbc8d41cc3786d5
2023-05-01 00:41:47 -07:00
Emilien Garreau
823ab75d27 Simplify _xy_grid computation in raysampling
Summary: Remove the need of tuple and reversed in the raysampling xy_grid computation

Reviewed By: bottler

Differential Revision: D45269342

fbshipit-source-id: d0e4c0923b9a2cca674b35e8d64862043a0eab3b
2023-04-27 03:07:37 -07:00
Roman Shapovalov
32e1992924 SQL Index Dataset
Summary:
Moving SQL dataset to PyTorch3D. It has been extensively tested in pixar_replay.

It requires SQLAlchemy 2.0, which is not supported in fbcode. So I exclude the sources and tests that depend on it from buck TARGETS.

Reviewed By: bottler

Differential Revision: D45086611

fbshipit-source-id: 0285f03e5824c0478c70ad13731525bb5ec7deef
2023-04-25 09:56:15 -07:00
Roman Shapovalov
7aeedd17a4 When bounding boxes are cached in metadata, don’t crash on load_masks=False
Summary:
We currently support caching bounding boxes in MaskAnnotation. If present, they are not re-computed from the mask. However, the masks need to be loaded for the bbox to be set.

This diff fixes that. Even if load_masks / load_blobs are unset, the bounding box can be picked up from the metadata.

Reviewed By: bottler

Differential Revision: D45144918

fbshipit-source-id: 8a2e2c115e96070b6fcdc29cbe57e1cee606ddcd
2023-04-20 07:28:45 -07:00
Roman Shapovalov
0e3138eca8 Optional ground-truth depth maps in visualiser
Summary: The code does not crash if depth map/mask are not given.

Reviewed By: bottler

Differential Revision: D45082985

fbshipit-source-id: 3610d8beb4ac897fbbe52f56a6dd012a6365b89b
2023-04-18 07:00:17 -07:00
Richard Barnes
1af6bf4768 Replace hasattr with getattr in vision/fair/pytorch3d/pytorch3d/renderer/cameras.py
Summary:
The pattern
```
X.Y if hasattr(X, "Y") else Z
```
can be replaced with
```
getattr(X, "Y", Z)
```

The [getattr](https://www.w3schools.com/python/ref_func_getattr.asp) function gives more succinct code than the [hasattr](https://www.w3schools.com/python/ref_func_hasattr.asp) function. Please use it when appropriate.

**This diff is very low risk. Green tests indicate that you can safely Accept & Ship.**

Reviewed By: bottler

Differential Revision: D44886893

fbshipit-source-id: 86ba23e837217e1ebd64bf8e27d286257894839e
2023-04-14 04:24:54 -07:00
generatedunixname89002005307016
355d6332cb upgrade pyre version in fbcode/vision - batch 2
Differential Revision: D44881859

fbshipit-source-id: 4ed410724a14d580f811c1288f51a71ce8fb0c9a
2023-04-11 17:15:12 -07:00
422 changed files with 9956 additions and 2663 deletions

View File

@@ -64,7 +64,7 @@ jobs:
CUDA_VERSION: "11.3"
resource_class: gpu.nvidia.small.multi
machine:
image: ubuntu-2004:202101-01
image: linux-cuda-11:default
steps:
- checkout
- <<: *setupcuda
@@ -116,7 +116,7 @@ jobs:
# so we aren't running the tests.
- run:
name: build
no_output_timeout: 20m
no_output_timeout: 40m
command: MAX_JOBS=15 TEST_FLAG=--no-test python3 packaging/build_conda.py
- store_artifacts:
path: /opt/conda/conda-bld/linux-64
@@ -128,7 +128,7 @@ jobs:
binary_linux_conda_cuda:
<<: *binary_common
machine:
image: ubuntu-1604-cuda-10.2:202012-01
image: linux-cuda-11:default
resource_class: gpu.nvidia.small.multi
steps:
- checkout
@@ -145,7 +145,7 @@ jobs:
docker pull $TESTRUN_DOCKER_IMAGE
- run:
name: Build and run tests
no_output_timeout: 20m
no_output_timeout: 40m
command: |
set -e
@@ -156,24 +156,6 @@ jobs:
docker run --gpus all --ipc=host -v $(pwd):/remote -w /remote ${VARS_TO_PASS} ${TESTRUN_DOCKER_IMAGE} python3 ./packaging/build_conda.py
binary_macos_wheel:
<<: *binary_common
macos:
xcode: "13.4.1"
steps:
- checkout
- run:
# Cannot easily deduplicate this as source'ing activate
# will set environment variables which we need to propagate
# to build_wheel.sh
command: |
curl -o conda.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
sh conda.sh -b
source $HOME/miniconda3/bin/activate
packaging/build_wheel.sh
- store_artifacts:
path: dist
workflows:
version: 2
build_and_test:
@@ -182,23 +164,8 @@ workflows:
# context: DOCKERHUB_TOKEN
{{workflows()}}
- binary_linux_conda_cuda:
name: testrun_conda_cuda_py38_cu102_pyt190
name: testrun_conda_cuda_py310_cu117_pyt201
context: DOCKERHUB_TOKEN
python_version: "3.8"
pytorch_version: '1.9.0'
cu_version: "cu102"
- binary_macos_wheel:
cu_version: cpu
name: macos_wheel_py3.8_cpu
python_version: '3.8'
pytorch_version: '1.13.0'
- binary_macos_wheel:
cu_version: cpu
name: macos_wheel_py3.9_cpu
python_version: '3.9'
pytorch_version: '1.13.0'
- binary_macos_wheel:
cu_version: cpu
name: macos_wheel_py3.10_cpu
python_version: '3.10'
pytorch_version: '1.13.0'
python_version: "3.10"
pytorch_version: '2.0.1'
cu_version: "cu117"

File diff suppressed because it is too large Load Diff

View File

@@ -18,25 +18,19 @@ from packaging import version
# The CUDA versions which have pytorch conda packages available for linux for each
# version of pytorch.
# Pytorch 1.4 also supports cuda 10.0 but we no longer build for cuda 10.0 at all.
CONDA_CUDA_VERSIONS = {
"1.9.0": ["cu102", "cu111"],
"1.9.1": ["cu102", "cu111"],
"1.10.0": ["cu102", "cu111", "cu113"],
"1.10.1": ["cu102", "cu111", "cu113"],
"1.10.2": ["cu102", "cu111", "cu113"],
"1.11.0": ["cu102", "cu111", "cu113", "cu115"],
"1.12.0": ["cu102", "cu113", "cu116"],
"1.12.1": ["cu102", "cu113", "cu116"],
"1.13.0": ["cu116", "cu117"],
"1.13.1": ["cu116", "cu117"],
"2.0.0": ["cu117", "cu118"],
"2.1.0": ["cu118", "cu121"],
"2.1.1": ["cu118", "cu121"],
"2.1.2": ["cu118", "cu121"],
"2.2.0": ["cu118", "cu121"],
"2.2.2": ["cu118", "cu121"],
"2.3.1": ["cu118", "cu121"],
"2.4.0": ["cu118", "cu121"],
"2.4.1": ["cu118", "cu121"],
}
def conda_docker_image_for_cuda(cuda_version):
if cuda_version in ("cu101", "cu102", "cu111"):
return None
if len(cuda_version) != 5:
raise ValueError("Unknown cuda version")
return "pytorch/conda-builder:cuda" + cuda_version[2:]
@@ -51,12 +45,24 @@ def pytorch_versions_for_python(python_version):
for i in CONDA_CUDA_VERSIONS
if version.Version(i) >= version.Version("1.11.0")
]
if python_version == "3.11":
return [
i
for i in CONDA_CUDA_VERSIONS
if version.Version(i) >= version.Version("2.1.0")
]
if python_version == "3.12":
return [
i
for i in CONDA_CUDA_VERSIONS
if version.Version(i) >= version.Version("2.2.0")
]
def workflows(prefix="", filter_branch=None, upload=False, indentation=6):
w = []
for btype in ["conda"]:
for python_version in ["3.8", "3.9", "3.10"]:
for python_version in ["3.8", "3.9", "3.10", "3.11", "3.12"]:
for pytorch_version in pytorch_versions_for_python(python_version):
for cu_version in CONDA_CUDA_VERSIONS[pytorch_version]:
w += workflow_pair(
@@ -82,7 +88,6 @@ def workflow_pair(
upload=False,
filter_branch,
):
w = []
py = python_version.replace(".", "")
pyt = pytorch_version.replace(".", "")
@@ -121,7 +126,6 @@ def generate_base_workflow(
btype,
filter_branch=None,
):
d = {
"name": base_workflow_name,
"python_version": python_version,

View File

@@ -1,5 +1,8 @@
[flake8]
ignore = E203, E266, E501, W503, E221
# B028 No explicit stacklevel argument found.
# B907 'foo' is manually surrounded by quotes, consider using the `!r` conversion flag.
# B905 `zip()` without an explicit `strict=` parameter.
ignore = E203, E266, E501, W503, E221, B028, B905, B907
max-line-length = 88
max-complexity = 18
select = B,C,E,F,W,T4,B9

23
.github/workflows/build.yml vendored Normal file
View File

@@ -0,0 +1,23 @@
name: facebookresearch/pytorch3d/build_and_test
on:
pull_request:
branches:
- main
push:
branches:
- main
jobs:
binary_linux_conda_cuda:
runs-on: 4-core-ubuntu-gpu-t4
env:
PYTHON_VERSION: "3.12"
BUILD_VERSION: "${{ github.run_number }}"
PYTORCH_VERSION: "2.4.1"
CU_VERSION: "cu121"
JUST_TESTRUN: 1
steps:
- uses: actions/checkout@v4
- name: Build and run tests
run: |-
conda create --name env --yes --quiet conda-build
conda run --no-capture-output --name env python3 ./packaging/build_conda.py --use-conda-cuda

View File

@@ -8,11 +8,10 @@
The core library is written in PyTorch. Several components have underlying implementation in CUDA for improved performance. A subset of these components have CPU implementations in C++/PyTorch. It is advised to use PyTorch3D with GPU support in order to use all the features.
- Linux or macOS or Windows
- Python 3.8, 3.9 or 3.10
- PyTorch 1.9.0, 1.9.1, 1.10.0, 1.10.1, 1.10.2, 1.11.0, 1.12.0, 1.12.1, 1.13.0 or 2.0.0.
- Python
- PyTorch 2.1.0, 2.1.1, 2.1.2, 2.2.0, 2.2.1, 2.2.2, 2.3.0, 2.3.1, 2.4.0 or 2.4.1.
- torchvision that matches the PyTorch installation. You can install them together as explained at pytorch.org to make sure of this.
- gcc & g++ ≥ 4.9
- [fvcore](https://github.com/facebookresearch/fvcore)
- [ioPath](https://github.com/facebookresearch/iopath)
- If CUDA is to be used, use a version which is supported by the corresponding pytorch version and at least version 9.2.
- If CUDA older than 11.7 is to be used and you are building from source, the CUB library must be available. We recommend version 1.10.0.
@@ -22,7 +21,7 @@ The runtime dependencies can be installed by running:
conda create -n pytorch3d python=3.9
conda activate pytorch3d
conda install pytorch=1.13.0 torchvision pytorch-cuda=11.6 -c pytorch -c nvidia
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
conda install -c iopath iopath
```
For the CUB build time dependency, which you only need if you have CUDA older than 11.7, if you are using conda, you can continue with
@@ -49,6 +48,7 @@ For developing on top of PyTorch3D or contributing, you will need to run the lin
- tdqm
- jupyter
- imageio
- fvcore
- plotly
- opencv-python
@@ -59,6 +59,7 @@ conda install jupyter
pip install scikit-image matplotlib imageio plotly opencv-python
# Tests/Linting
conda install -c fvcore -c conda-forge fvcore
pip install black usort flake8 flake8-bugbear flake8-comprehensions
```
@@ -77,13 +78,8 @@ Or, to install a nightly (non-official, alpha) build:
# Anaconda Cloud
conda install pytorch3d -c pytorch3d-nightly
```
### 2. Install from PyPI, on Mac only.
This works with pytorch 1.13.0 only. The build is CPU only.
```
pip install pytorch3d
```
### 3. Install wheels for Linux
### 2. Install wheels for Linux
We have prebuilt wheels with CUDA for Linux for PyTorch 1.11.0, for each of the supported CUDA versions,
for Python 3.8 and 3.9. This is for ease of use on Google Colab.
These are installed in a special way.
@@ -102,7 +98,7 @@ version_str="".join([
torch.version.cuda.replace(".",""),
f"_pyt{pyt_version_str}"
])
!pip install fvcore iopath
!pip install iopath
!pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html
```

View File

@@ -146,6 +146,12 @@ If you are using the pulsar backend for sphere-rendering (the `PulsarPointRender
Please see below for a timeline of the codebase updates in reverse chronological order. We are sharing updates on the releases as well as research projects which are built with PyTorch3D. The changelogs for the releases are available under [`Releases`](https://github.com/facebookresearch/pytorch3d/releases), and the builds can be installed using `conda` as per the instructions in [INSTALL.md](INSTALL.md).
**[Oct 31st 2023]:** PyTorch3D [v0.7.5](https://github.com/facebookresearch/pytorch3d/releases/tag/v0.7.5) released.
**[May 10th 2023]:** PyTorch3D [v0.7.4](https://github.com/facebookresearch/pytorch3d/releases/tag/v0.7.4) released.
**[Apr 5th 2023]:** PyTorch3D [v0.7.3](https://github.com/facebookresearch/pytorch3d/releases/tag/v0.7.3) released.
**[Dec 19th 2022]:** PyTorch3D [v0.7.2](https://github.com/facebookresearch/pytorch3d/releases/tag/v0.7.2) released.
**[Oct 23rd 2022]:** PyTorch3D [v0.7.1](https://github.com/facebookresearch/pytorch3d/releases/tag/v0.7.1) released.

View File

@@ -10,7 +10,7 @@
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
DIR=$(dirname "${DIR}")
if [[ -f "${DIR}/TARGETS" ]]
if [[ -f "${DIR}/BUCK" ]]
then
pyfmt "${DIR}"
else
@@ -36,5 +36,5 @@ then
echo "Running pyre..."
echo "To restart/kill pyre server, run 'pyre restart' or 'pyre kill' in fbcode/"
( cd ~/fbsource/fbcode; pyre -l vision/fair/pytorch3d/ )
( cd ~/fbsource/fbcode; arc pyre check //vision/fair/pytorch3d/... )
fi

View File

@@ -23,7 +23,7 @@ conda init bash
source ~/.bashrc
conda create -y -n myenv python=3.8 matplotlib ipython ipywidgets nbconvert
conda activate myenv
conda install -y -c fvcore -c iopath -c conda-forge fvcore iopath
conda install -y -c iopath iopath
conda install -y -c pytorch pytorch=1.6.0 cudatoolkit=10.1 torchvision
conda install -y -c pytorch3d-nightly pytorch3d
pip install plotly scikit-image

27
docs/.readthedocs.yaml Normal file
View File

@@ -0,0 +1,27 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# Read the Docs configuration file
# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details
# Required
version: 2
# Set the version of Python and other tools you might need
build:
os: ubuntu-22.04
tools:
python: "3.11"
# Build documentation in the docs/ directory with Sphinx
sphinx:
configuration: docs/conf.py
# We recommend specifying your dependencies to enable reproducible builds:
# https://docs.readthedocs.io/en/stable/guides/reproducible-builds.html
python:
install:
- requirements: docs/requirements.txt

View File

@@ -3,7 +3,7 @@
### Install dependencies
```
pip install -U recommonmark mock sphinx sphinx_rtd_theme sphinx_markdown_tables
pip install -U recommonmark sphinx sphinx_rtd_theme sphinx_markdown_tables
```
### Add symlink to the root README.md

View File

@@ -20,7 +20,8 @@
import os
import sys
import mock
import unittest.mock as mock
from recommonmark.parser import CommonMarkParser
from recommonmark.states import DummyStateMachine
from sphinx.builders.html import StandaloneHTMLBuilder

View File

@@ -10,6 +10,7 @@ This example demonstrates the most trivial, direct interface of the pulsar
sphere renderer. It renders and saves an image with 10 random spheres.
Output: basic.png.
"""
import logging
import math
from os import path

View File

@@ -11,6 +11,7 @@ interface for sphere renderering. It renders and saves an image with
10 random spheres.
Output: basic-pt3d.png.
"""
import logging
from os import path

View File

@@ -14,6 +14,7 @@ distorted. Gradient-based optimization is used to converge towards the
original camera parameters.
Output: cam.gif.
"""
import logging
import math
from os import path

View File

@@ -14,6 +14,7 @@ distorted. Gradient-based optimization is used to converge towards the
original camera parameters.
Output: cam-pt3d.gif
"""
import logging
from os import path

View File

@@ -18,6 +18,7 @@ This example is not available yet through the 'unified' interface,
because opacity support has not landed in PyTorch3D for general data
structures yet.
"""
import logging
import math
from os import path

View File

@@ -13,6 +13,7 @@ The scene is initialized with random spheres. Gradient-based
optimization is used to converge towards a faithful
scene representation.
"""
import logging
import math

View File

@@ -13,6 +13,7 @@ The scene is initialized with random spheres. Gradient-based
optimization is used to converge towards a faithful
scene representation.
"""
import logging
import math

View File

@@ -85,7 +85,7 @@ cameras_ndc = PerspectiveCameras(focal_length=fcl_ndc, principal_point=prp_ndc)
# Screen space camera
image_size = ((128, 256),) # (h, w)
fcl_screen = (76.8,) # fcl_ndc * min(image_size) / 2
prp_screen = ((115.2, 48), ) # w / 2 - px_ndc * min(image_size) / 2, h / 2 - py_ndc * min(image_size) / 2
prp_screen = ((115.2, 32), ) # w / 2 - px_ndc * min(image_size) / 2, h / 2 - py_ndc * min(image_size) / 2
cameras_screen = PerspectiveCameras(focal_length=fcl_screen, principal_point=prp_screen, in_ndc=False, image_size=image_size)
```

View File

@@ -1,12 +1,10 @@
docutils>=0.14
Sphinx>=1.7
recommonmark==0.4.0
recommonmark
sphinx_rtd_theme
sphinx_markdown_tables
mock
numpy
iopath
fvcore
https://download.pytorch.org/whl/cpu/torchvision-0.8.2%2Bcpu-cp37-cp37m-linux_x86_64.whl
https://download.pytorch.org/whl/cpu/torch-1.7.1%2Bcpu-cp37-cp37m-linux_x86_64.whl
https://download.pytorch.org/whl/cpu/torchvision-0.15.2%2Bcpu-cp311-cp311-linux_x86_64.whl
https://download.pytorch.org/whl/cpu/torch-2.0.1%2Bcpu-cp311-cp311-linux_x86_64.whl
omegaconf

View File

@@ -83,25 +83,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith((\"1.13.\", \"2.0.\")) and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@@ -70,25 +70,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith((\"1.13.\", \"2.0.\")) and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@@ -45,25 +45,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith((\"1.13.\", \"2.0.\")) and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{
@@ -405,7 +411,7 @@
"outputs": [],
"source": [
"random_model_images = shapenet_dataset.render(\n",
" sample_nums=[3],\n",
" sample_nums=[5],\n",
" device=device,\n",
" cameras=cameras,\n",
" raster_settings=raster_settings,\n",

View File

@@ -84,25 +84,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith((\"1.13.\", \"2.0.\")) and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{
@@ -262,7 +268,7 @@
" points = sample_points_from_meshes(mesh, 5000)\n",
" x, y, z = points.clone().detach().cpu().squeeze().unbind(1) \n",
" fig = plt.figure(figsize=(5, 5))\n",
" ax = Axes3D(fig)\n",
" ax = fig.add_subplot(111, projection='3d')\n",
" ax.scatter3D(x, z, -y)\n",
" ax.set_xlabel('x')\n",
" ax.set_ylabel('z')\n",

View File

@@ -50,25 +50,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith((\"1.13.\", \"2.0.\")) and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@@ -62,25 +62,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith((\"1.13.\", \"2.0.\")) and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@@ -41,25 +41,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith((\"1.13.\", \"2.0.\")) and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@@ -72,25 +72,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith((\"1.13.\", \"2.0.\")) and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@@ -66,25 +66,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith((\"1.13.\", \"2.0.\")) and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@@ -44,25 +44,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith((\"1.13.\", \"2.0.\")) and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@@ -51,25 +51,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith((\"1.13.\", \"2.0.\")) and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@@ -67,25 +67,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith((\"1.13.\", \"2.0.\")) and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@@ -33,7 +33,7 @@ def plot_camera_scene(cameras, cameras_gt, status: str):
a string passed inside the `status` argument.
"""
fig = plt.figure()
ax = fig.gca(projection="3d")
ax = fig.add_subplot(projection="3d")
ax.clear()
ax.set_title(status)
handle_cam = plot_cameras(ax, cameras, color="#FF7D1E")

View File

@@ -4,10 +4,11 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import os.path
import runpy
import subprocess
from typing import List
from typing import List, Tuple
# required env vars:
# CU_VERSION: E.g. cu112
@@ -23,7 +24,7 @@ pytorch_major_minor = tuple(int(i) for i in PYTORCH_VERSION.split(".")[:2])
source_root_dir = os.environ["PWD"]
def version_constraint(version):
def version_constraint(version) -> str:
"""
Given version "11.3" returns " >=11.3,<11.4"
"""
@@ -32,7 +33,7 @@ def version_constraint(version):
return f" >={version},<{upper}"
def get_cuda_major_minor():
def get_cuda_major_minor() -> Tuple[str, str]:
if CU_VERSION == "cpu":
raise ValueError("fn only for cuda builds")
if len(CU_VERSION) != 5 or CU_VERSION[:2] != "cu":
@@ -42,15 +43,13 @@ def get_cuda_major_minor():
return major, minor
def setup_cuda():
def setup_cuda(use_conda_cuda: bool) -> List[str]:
if CU_VERSION == "cpu":
return
return []
major, minor = get_cuda_major_minor()
os.environ["CUDA_HOME"] = f"/usr/local/cuda-{major}.{minor}/"
os.environ["FORCE_CUDA"] = "1"
basic_nvcc_flags = (
"-gencode=arch=compute_35,code=sm_35 "
"-gencode=arch=compute_50,code=sm_50 "
"-gencode=arch=compute_60,code=sm_60 "
"-gencode=arch=compute_70,code=sm_70 "
@@ -58,23 +57,44 @@ def setup_cuda():
"-gencode=arch=compute_50,code=compute_50"
)
if CU_VERSION == "cu102":
nvcc_flags = basic_nvcc_flags
elif CU_VERSION == "cu110":
nvcc_flags = "-gencode=arch=compute_80,code=sm_80 " + basic_nvcc_flags
nvcc_flags = "-gencode=arch=compute_35,code=sm_35 " + basic_nvcc_flags
elif CU_VERSION < ("cu118"):
nvcc_flags = (
"-gencode=arch=compute_35,code=sm_35 "
+ "-gencode=arch=compute_80,code=sm_80 "
+ "-gencode=arch=compute_86,code=sm_86 "
+ basic_nvcc_flags
)
else:
nvcc_flags = (
"-gencode=arch=compute_80,code=sm_80 "
+ "-gencode=arch=compute_86,code=sm_86 "
+ "-gencode=arch=compute_90,code=sm_90 "
+ basic_nvcc_flags
)
if os.environ.get("JUST_TESTRUN", "0") != "1":
os.environ["NVCC_FLAGS"] = nvcc_flags
if use_conda_cuda:
os.environ["CONDA_CUDA_TOOLKIT_BUILD_CONSTRAINT1"] = "- cuda-toolkit"
os.environ["CONDA_CUDA_TOOLKIT_BUILD_CONSTRAINT2"] = (
f"- cuda-version={major}.{minor}"
)
return ["-c", f"nvidia/label/cuda-{major}.{minor}.0"]
else:
os.environ["CUDA_HOME"] = f"/usr/local/cuda-{major}.{minor}/"
return []
def setup_conda_pytorch_constraint() -> List[str]:
pytorch_constraint = f"- pytorch=={PYTORCH_VERSION}"
os.environ["CONDA_PYTORCH_CONSTRAINT"] = pytorch_constraint
if pytorch_major_minor < (2, 2):
os.environ["CONDA_PYTORCH_MKL_CONSTRAINT"] = "- mkl!=2024.1.0"
os.environ["SETUPTOOLS_CONSTRAINT"] = "- setuptools<70"
else:
os.environ["CONDA_PYTORCH_MKL_CONSTRAINT"] = ""
os.environ["SETUPTOOLS_CONSTRAINT"] = "- setuptools"
os.environ["CONDA_PYTORCH_BUILD_CONSTRAINT"] = pytorch_constraint
os.environ["PYTORCH_VERSION_NODOT"] = PYTORCH_VERSION.replace(".", "")
@@ -84,7 +104,7 @@ def setup_conda_pytorch_constraint() -> List[str]:
return ["-c", "pytorch", "-c", "nvidia"]
def setup_conda_cudatoolkit_constraint():
def setup_conda_cudatoolkit_constraint() -> None:
if CU_VERSION == "cpu":
os.environ["CONDA_CPUONLY_FEATURE"] = "- cpuonly"
os.environ["CONDA_CUDATOOLKIT_CONSTRAINT"] = ""
@@ -105,14 +125,14 @@ def setup_conda_cudatoolkit_constraint():
os.environ["CONDA_CUDATOOLKIT_CONSTRAINT"] = toolkit
def do_build(start_args: List[str]):
def do_build(start_args: List[str]) -> None:
args = start_args.copy()
test_flag = os.environ.get("TEST_FLAG")
if test_flag is not None:
args.append(test_flag)
args.extend(["-c", "bottler", "-c", "fvcore", "-c", "iopath", "-c", "conda-forge"])
args.extend(["-c", "bottler", "-c", "iopath", "-c", "conda-forge"])
args.append("--no-anaconda-upload")
args.extend(["--python", os.environ["PYTHON_VERSION"]])
args.append("packaging/pytorch3d")
@@ -121,8 +141,16 @@ def do_build(start_args: List[str]):
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Build the conda package.")
parser.add_argument(
"--use-conda-cuda",
action="store_true",
help="get cuda from conda ignoring local cuda",
)
our_args = parser.parse_args()
args = ["conda", "build"]
setup_cuda()
args += setup_cuda(use_conda_cuda=our_args.use_conda_cuda)
init_path = source_root_dir + "/pytorch3d/__init__.py"
build_version = runpy.run_path(init_path)["__version__"]

View File

@@ -26,6 +26,6 @@ version_str="".join([
torch.version.cuda.replace(".",""),
f"_pyt{pyt_version_str}"
])
!pip install fvcore iopath
!pip install iopath
!pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html
```

View File

@@ -5,7 +5,13 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
sudo docker run --rm -v "$PWD/../../:/inside" pytorch/conda-cuda bash inside/packaging/linux_wheels/inside.sh
sudo docker run --rm -v "$PWD/../../:/inside" -e SELECTED_CUDA=cu113 pytorch/conda-builder:cuda113 bash inside/packaging/linux_wheels/inside.sh
sudo docker run --rm -v "$PWD/../../:/inside" -e SELECTED_CUDA=cu115 pytorch/conda-builder:cuda115 bash inside/packaging/linux_wheels/inside.sh
sudo docker run --rm -v "$PWD/../../:/inside" -e SELECTED_CUDA=cu116 pytorch/conda-builder:cuda116 bash inside/packaging/linux_wheels/inside.sh
# Some directory to persist downloaded conda packages
conda_cache=/raid/$USER/building_conda_cache
mkdir -p "$conda_cache"
sudo docker run --rm -v "$conda_cache:/conda_cache" -v "$PWD/../../:/inside" -e SELECTED_CUDA=cu113 pytorch/conda-builder:cuda113 bash inside/packaging/linux_wheels/inside.sh
sudo docker run --rm -v "$conda_cache:/conda_cache" -v "$PWD/../../:/inside" -e SELECTED_CUDA=cu115 pytorch/conda-builder:cuda115 bash inside/packaging/linux_wheels/inside.sh
sudo docker run --rm -v "$conda_cache:/conda_cache" -v "$PWD/../../:/inside" -e SELECTED_CUDA=cu116 pytorch/conda-builder:cuda116 bash inside/packaging/linux_wheels/inside.sh
sudo docker run --rm -v "$conda_cache:/conda_cache" -v "$PWD/../../:/inside" -e SELECTED_CUDA=cu117 pytorch/conda-builder:cuda117 bash inside/packaging/linux_wheels/inside.sh
sudo docker run --rm -v "$conda_cache:/conda_cache" -v "$PWD/../../:/inside" -e SELECTED_CUDA=cu118 pytorch/conda-builder:cuda118 bash inside/packaging/linux_wheels/inside.sh

View File

@@ -16,23 +16,32 @@ VERSION=$(python -c "exec(open('pytorch3d/__init__.py').read()); print(__version
export BUILD_VERSION=$VERSION
export FORCE_CUDA=1
export MAX_JOBS=8
export CONDA_PKGS_DIRS=/conda_cache
wget --no-verbose https://github.com/NVIDIA/cub/archive/1.10.0.tar.gz
tar xzf 1.10.0.tar.gz
CUB_HOME=$(realpath ./cub-1.10.0)
export CUB_HOME
echo "CUB_HOME is now $CUB_HOME"
if false
then
# We used to have to do this for old versions of CUDA
wget --no-verbose https://github.com/NVIDIA/cub/archive/1.10.0.tar.gz
tar xzf 1.10.0.tar.gz
CUB_HOME=$(realpath ./cub-1.10.0)
export CUB_HOME
echo "CUB_HOME is now $CUB_HOME"
fi
# As a rule, we want to build for any combination of dependencies which is supported by
# PyTorch3D and not older than the current Google Colab set up.
PYTHON_VERSIONS="3.7 3.8 3.9 3.10"
PYTHON_VERSIONS="3.8 3.9 3.10"
# the keys are pytorch versions
declare -A CONDA_CUDA_VERSIONS=(
["1.10.1"]="cu111 cu113"
["1.10.2"]="cu111 cu113"
["1.10.0"]="cu111 cu113"
["1.11.0"]="cu111 cu113 cu115"
# ["1.11.0"]="cu113"
# ["1.12.0"]="cu113"
# ["1.12.1"]="cu113"
# ["1.13.0"]="cu116"
# ["1.13.1"]="cu116 cu117"
# ["2.0.0"]="cu117 cu118"
["2.0.1"]="cu117 cu118"
)
@@ -41,39 +50,43 @@ for python_version in $PYTHON_VERSIONS
do
for pytorch_version in "${!CONDA_CUDA_VERSIONS[@]}"
do
if [[ "3.7 3.8" != *$python_version* ]] && [[ "1.7.0" == *$pytorch_version* ]]
then
#python 3.9 and later not supported by pytorch 1.7.0 and before
continue
fi
if [[ "3.7 3.8 3.9" != *$python_version* ]] && [[ "1.7.0 1.7.1 1.8.0 1.8.1 1.9.0 1.9.1 1.10.0 1.10.1 1.10.2" == *$pytorch_version* ]]
then
#python 3.10 and later not supported by pytorch 1.10.2 and before
continue
fi
extra_channel="-c conda-forge"
extra_channel="-c nvidia"
cudatools="pytorch-cuda"
if [[ "1.11.0" == "$pytorch_version" ]]
then
extra_channel=""
cudatools="cudatoolkit"
fi
if [[ "1.12.0" == "$pytorch_version" ]] || [[ "1.12.1" == "$pytorch_version" ]]
then
extra_channel="-c conda-forge"
cudatools="cudatoolkit"
fi
for cu_version in ${CONDA_CUDA_VERSIONS[$pytorch_version]}
do
if [[ "cu113 cu115 cu116" == *$cu_version* ]]
# ^^^ CUDA versions listed here have to be built
# in their own containers.
then
if [[ $SELECTED_CUDA != "$cu_version" ]]
then
continue
fi
elif [[ $SELECTED_CUDA != "" ]]
then
continue
fi
case "$cu_version" in
cu118)
export CUDA_HOME=/usr/local/cuda-11.8/
export CUDA_TAG=11.8
export NVCC_FLAGS="-gencode=arch=compute_35,code=sm_35 -gencode=arch=compute_50,code=sm_50 -gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_80,code=sm_80 -gencode=arch=compute_86,code=sm_86 -gencode=arch=compute_50,code=compute_50"
;;
cu117)
export CUDA_HOME=/usr/local/cuda-11.7/
export CUDA_TAG=11.7
export NVCC_FLAGS="-gencode=arch=compute_35,code=sm_35 -gencode=arch=compute_50,code=sm_50 -gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_80,code=sm_80 -gencode=arch=compute_86,code=sm_86 -gencode=arch=compute_50,code=compute_50"
;;
cu116)
export CUDA_HOME=/usr/local/cuda-11.6/
export CUDA_TAG=11.6
@@ -130,8 +143,8 @@ do
conda create -y -n "$tag" "python=$python_version"
conda activate "$tag"
# shellcheck disable=SC2086
conda install -y -c pytorch $extra_channel "pytorch=$pytorch_version" "cudatoolkit=$CUDA_TAG" torchvision
pip install fvcore iopath
conda install -y -c pytorch $extra_channel "pytorch=$pytorch_version" "$cudatools=$CUDA_TAG"
pip install iopath
echo "python version" "$python_version" "pytorch version" "$pytorch_version" "cuda version" "$cu_version" "tag" "$tag"
rm -rf dist

View File

@@ -8,12 +8,16 @@ source:
requirements:
build:
- {{ compiler('c') }} # [win]
{{ environ.get('CONDA_CUDA_TOOLKIT_BUILD_CONSTRAINT1', '') }}
{{ environ.get('CONDA_CUDA_TOOLKIT_BUILD_CONSTRAINT2', '') }}
{{ environ.get('CONDA_CUB_CONSTRAINT') }}
host:
- python
- setuptools
- mkl =2023 # [x86_64]
{{ environ.get('SETUPTOOLS_CONSTRAINT') }}
{{ environ.get('CONDA_PYTORCH_BUILD_CONSTRAINT') }}
{{ environ.get('CONDA_PYTORCH_MKL_CONSTRAINT') }}
{{ environ.get('CONDA_CUDATOOLKIT_CONSTRAINT') }}
{{ environ.get('CONDA_CPUONLY_FEATURE') }}
@@ -21,7 +25,7 @@ requirements:
- python
- numpy >=1.11
- torchvision >=0.5
- fvcore
- mkl =2023 # [x86_64]
- iopath
{{ environ.get('CONDA_PYTORCH_CONSTRAINT') }}
{{ environ.get('CONDA_CUDATOOLKIT_CONSTRAINT') }}
@@ -47,8 +51,11 @@ test:
- imageio
- hydra-core
- accelerate
- matplotlib
- tabulate
- pandas
- sqlalchemy
commands:
#pytest .
python -m unittest discover -v -s tests -t .

View File

@@ -3,3 +3,5 @@
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe

View File

@@ -5,7 +5,9 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
""""
# pyre-unsafe
""" "
This file is the entry point for launching experiments with Implicitron.
Launch Training
@@ -42,6 +44,7 @@ The outputs of the experiment are saved and logged in multiple ways:
config file.
"""
import logging
import os
import warnings
@@ -97,7 +100,7 @@ except ModuleNotFoundError:
no_accelerate = os.environ.get("PYTORCH3D_NO_ACCELERATE") is not None
class Experiment(Configurable): # pyre-ignore: 13
class Experiment(Configurable):
"""
This class is at the top level of Implicitron's config hierarchy. Its
members are high-level components necessary for training an implicit rende-
@@ -118,12 +121,16 @@ class Experiment(Configurable): # pyre-ignore: 13
will be saved here.
"""
# pyre-fixme[13]: Attribute `data_source` is never initialized.
data_source: DataSourceBase
data_source_class_type: str = "ImplicitronDataSource"
# pyre-fixme[13]: Attribute `model_factory` is never initialized.
model_factory: ModelFactoryBase
model_factory_class_type: str = "ImplicitronModelFactory"
# pyre-fixme[13]: Attribute `optimizer_factory` is never initialized.
optimizer_factory: OptimizerFactoryBase
optimizer_factory_class_type: str = "ImplicitronOptimizerFactory"
# pyre-fixme[13]: Attribute `training_loop` is never initialized.
training_loop: TrainingLoopBase
training_loop_class_type: str = "ImplicitronTrainingLoop"

View File

@@ -3,3 +3,5 @@
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import logging
import os
from typing import Optional
@@ -24,7 +26,6 @@ logger = logging.getLogger(__name__)
class ModelFactoryBase(ReplaceableBase):
resume: bool = True # resume from the last checkpoint
def __call__(self, **kwargs) -> ImplicitronModelBase:
@@ -43,7 +44,7 @@ class ModelFactoryBase(ReplaceableBase):
@registry.register
class ImplicitronModelFactory(ModelFactoryBase): # pyre-ignore [13]
class ImplicitronModelFactory(ModelFactoryBase):
"""
A factory class that initializes an implicit rendering model.
@@ -59,6 +60,7 @@ class ImplicitronModelFactory(ModelFactoryBase): # pyre-ignore [13]
"""
# pyre-fixme[13]: Attribute `model` is never initialized.
model: ImplicitronModelBase
model_class_type: str = "GenericModel"
resume: bool = True
@@ -113,7 +115,9 @@ class ImplicitronModelFactory(ModelFactoryBase): # pyre-ignore [13]
"cuda:%d" % 0: "cuda:%d" % accelerator.local_process_index
}
model_state_dict = torch.load(
model_io.get_model_path(model_path), map_location=map_location
model_io.get_model_path(model_path),
map_location=map_location,
weights_only=True,
)
try:

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import inspect
import logging
import os
@@ -121,7 +123,7 @@ class ImplicitronOptimizerFactory(OptimizerFactoryBase):
"""
# Get the parameters to optimize
if hasattr(model, "_get_param_groups"): # use the model function
# pyre-ignore[29]
# pyre-fixme[29]: `Union[Tensor, Module]` is not a function.
p_groups = model._get_param_groups(self.lr, wd=self.weight_decay)
else:
p_groups = [
@@ -240,7 +242,7 @@ class ImplicitronOptimizerFactory(OptimizerFactoryBase):
map_location = {
"cuda:%d" % 0: "cuda:%d" % accelerator.local_process_index
}
optimizer_state = torch.load(opt_path, map_location)
optimizer_state = torch.load(opt_path, map_location, weights_only=True)
else:
raise FileNotFoundError(f"Optimizer state {opt_path} does not exist.")
return optimizer_state

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import logging
import os
import time
@@ -21,7 +23,6 @@ from pytorch3d.implicitron.tools.config import (
run_auto_creation,
)
from pytorch3d.implicitron.tools.stats import Stats
from pytorch3d.renderer.cameras import CamerasBase
from torch.utils.data import DataLoader, Dataset
from .utils import seed_all_random_engines
@@ -29,13 +30,13 @@ from .utils import seed_all_random_engines
logger = logging.getLogger(__name__)
# pyre-fixme[13]: Attribute `evaluator` is never initialized.
class TrainingLoopBase(ReplaceableBase):
"""
Members:
evaluator: An EvaluatorBase instance, used to evaluate training results.
"""
# pyre-fixme[13]: Attribute `evaluator` is never initialized.
evaluator: Optional[EvaluatorBase]
evaluator_class_type: Optional[str] = "ImplicitronEvaluator"
@@ -111,6 +112,8 @@ class ImplicitronTrainingLoop(TrainingLoopBase):
def __post_init__(self):
run_auto_creation(self)
# pyre-fixme[14]: `run` overrides method defined in `TrainingLoopBase`
# inconsistently.
def run(
self,
*,
@@ -158,7 +161,6 @@ class ImplicitronTrainingLoop(TrainingLoopBase):
for epoch in range(start_epoch, self.max_epochs):
# automatic new_epoch and plotting of stats at every epoch start
with stats:
# Make sure to re-seed random generators to ensure reproducibility
# even after restart.
seed_all_random_engines(seed + epoch)
@@ -256,7 +258,6 @@ class ImplicitronTrainingLoop(TrainingLoopBase):
list(log_vars),
plot_file=os.path.join(exp_dir, "train_stats.pdf"),
visdom_env=visdom_env_charts,
verbose=False,
visdom_server=self.visdom_server,
visdom_port=self.visdom_port,
)
@@ -382,7 +383,8 @@ class ImplicitronTrainingLoop(TrainingLoopBase):
# print textual status update
if it % self.metric_print_interval == 0 or last_iter:
stats.print(stat_set=trainmode, max_it=n_batches)
std_out = stats.get_status_string(stat_set=trainmode, max_it=n_batches)
logger.info(std_out)
# visualize results
if (
@@ -392,7 +394,7 @@ class ImplicitronTrainingLoop(TrainingLoopBase):
):
prefix = f"e{stats.epoch}_it{stats.it[trainmode]}"
if hasattr(model, "visualize"):
# pyre-ignore [29]
# pyre-fixme[29]: `Union[Tensor, Module]` is not a function.
model.visualize(
viz,
visdom_env_imgs,

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import random

View File

@@ -3,3 +3,5 @@
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe

View File

@@ -129,6 +129,19 @@ data_source_ImplicitronDataSource_args:
dataset_length_train: 0
dataset_length_val: 0
dataset_length_test: 0
data_loader_map_provider_TrainEvalDataLoaderMapProvider_args:
batch_size: 1
num_workers: 0
dataset_length_train: 0
dataset_length_val: 0
dataset_length_test: 0
train_conditioning_type: SAME
val_conditioning_type: SAME
test_conditioning_type: KNOWN
images_per_seq_options: []
sample_consecutive_frames: false
consecutive_frames_max_gap: 0
consecutive_frames_max_gap_seconds: 0.1
model_factory_ImplicitronModelFactory_args:
resume: true
model_class_type: GenericModel
@@ -203,6 +216,7 @@ model_factory_ImplicitronModelFactory_args:
n_rays_total_training: null
stratified_point_sampling_training: true
stratified_point_sampling_evaluation: false
cast_ray_bundle_as_cone: false
scene_extent: 8.0
scene_center:
- 0.0
@@ -215,6 +229,7 @@ model_factory_ImplicitronModelFactory_args:
n_rays_total_training: null
stratified_point_sampling_training: true
stratified_point_sampling_evaluation: false
cast_ray_bundle_as_cone: false
min_depth: 0.1
max_depth: 8.0
renderer_LSTMRenderer_args:
@@ -234,6 +249,8 @@ model_factory_ImplicitronModelFactory_args:
append_coarse_samples_to_fine: true
density_noise_std_train: 0.0
return_weights: false
blurpool_weights: false
sample_pdf_eps: 1.0e-05
raymarcher_CumsumRaymarcher_args:
surface_thickness: 1
bg_color:
@@ -346,6 +363,7 @@ model_factory_ImplicitronModelFactory_args:
n_hidden_neurons_dir: 128
input_xyz: true
xyz_ray_dir_in_camera_coords: false
use_integrated_positional_encoding: false
transformer_dim_down_factor: 2.0
n_hidden_neurons_xyz: 80
n_layers_xyz: 2
@@ -357,6 +375,7 @@ model_factory_ImplicitronModelFactory_args:
n_hidden_neurons_dir: 128
input_xyz: true
xyz_ray_dir_in_camera_coords: false
use_integrated_positional_encoding: false
transformer_dim_down_factor: 1.0
n_hidden_neurons_xyz: 256
n_layers_xyz: 8
@@ -629,6 +648,7 @@ model_factory_ImplicitronModelFactory_args:
n_rays_total_training: null
stratified_point_sampling_training: true
stratified_point_sampling_evaluation: false
cast_ray_bundle_as_cone: false
scene_extent: 8.0
scene_center:
- 0.0
@@ -641,6 +661,7 @@ model_factory_ImplicitronModelFactory_args:
n_rays_total_training: null
stratified_point_sampling_training: true
stratified_point_sampling_evaluation: false
cast_ray_bundle_as_cone: false
min_depth: 0.1
max_depth: 8.0
renderer_LSTMRenderer_args:
@@ -660,6 +681,8 @@ model_factory_ImplicitronModelFactory_args:
append_coarse_samples_to_fine: true
density_noise_std_train: 0.0
return_weights: false
blurpool_weights: false
sample_pdf_eps: 1.0e-05
raymarcher_CumsumRaymarcher_args:
surface_thickness: 1
bg_color:
@@ -724,6 +747,7 @@ model_factory_ImplicitronModelFactory_args:
n_hidden_neurons_dir: 128
input_xyz: true
xyz_ray_dir_in_camera_coords: false
use_integrated_positional_encoding: false
transformer_dim_down_factor: 2.0
n_hidden_neurons_xyz: 80
n_layers_xyz: 2
@@ -735,6 +759,7 @@ model_factory_ImplicitronModelFactory_args:
n_hidden_neurons_dir: 128
input_xyz: true
xyz_ray_dir_in_camera_coords: false
use_integrated_positional_encoding: false
transformer_dim_down_factor: 1.0
n_hidden_neurons_xyz: 256
n_layers_xyz: 8
@@ -962,6 +987,7 @@ model_factory_ImplicitronModelFactory_args:
n_hidden_neurons_dir: 128
input_xyz: true
xyz_ray_dir_in_camera_coords: false
use_integrated_positional_encoding: false
transformer_dim_down_factor: 2.0
n_hidden_neurons_xyz: 80
n_layers_xyz: 2
@@ -973,6 +999,7 @@ model_factory_ImplicitronModelFactory_args:
n_hidden_neurons_dir: 128
input_xyz: true
xyz_ray_dir_in_camera_coords: false
use_integrated_positional_encoding: false
transformer_dim_down_factor: 1.0
n_hidden_neurons_xyz: 256
n_layers_xyz: 8

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import os
import tempfile
import unittest
@@ -51,12 +53,8 @@ class TestExperiment(unittest.TestCase):
cfg.data_source_ImplicitronDataSource_args.dataset_map_provider_class_type = (
"JsonIndexDatasetMapProvider"
)
dataset_args = (
cfg.data_source_ImplicitronDataSource_args.dataset_map_provider_JsonIndexDatasetMapProvider_args
)
dataloader_args = (
cfg.data_source_ImplicitronDataSource_args.data_loader_map_provider_SequenceDataLoaderMapProvider_args
)
dataset_args = cfg.data_source_ImplicitronDataSource_args.dataset_map_provider_JsonIndexDatasetMapProvider_args
dataloader_args = cfg.data_source_ImplicitronDataSource_args.data_loader_map_provider_SequenceDataLoaderMapProvider_args
dataset_args.category = "skateboard"
dataset_args.test_restrict_sequence_id = 0
dataset_args.dataset_root = "manifold://co3d/tree/extracted"
@@ -92,12 +90,8 @@ class TestExperiment(unittest.TestCase):
cfg.data_source_ImplicitronDataSource_args.dataset_map_provider_class_type = (
"JsonIndexDatasetMapProvider"
)
dataset_args = (
cfg.data_source_ImplicitronDataSource_args.dataset_map_provider_JsonIndexDatasetMapProvider_args
)
dataloader_args = (
cfg.data_source_ImplicitronDataSource_args.data_loader_map_provider_SequenceDataLoaderMapProvider_args
)
dataset_args = cfg.data_source_ImplicitronDataSource_args.dataset_map_provider_JsonIndexDatasetMapProvider_args
dataloader_args = cfg.data_source_ImplicitronDataSource_args.data_loader_map_provider_SequenceDataLoaderMapProvider_args
dataset_args.category = "skateboard"
dataset_args.test_restrict_sequence_id = 0
dataset_args.dataset_root = "manifold://co3d/tree/extracted"
@@ -109,9 +103,7 @@ class TestExperiment(unittest.TestCase):
cfg.training_loop_ImplicitronTrainingLoop_args.max_epochs = 2
cfg.training_loop_ImplicitronTrainingLoop_args.store_checkpoints = False
cfg.optimizer_factory_ImplicitronOptimizerFactory_args.lr_policy = "Exponential"
cfg.optimizer_factory_ImplicitronOptimizerFactory_args.exponential_lr_step_size = (
2
)
cfg.optimizer_factory_ImplicitronOptimizerFactory_args.exponential_lr_step_size = 2
if DEBUG:
experiment.dump_cfg(cfg)
@@ -132,6 +124,13 @@ class TestExperiment(unittest.TestCase):
# Check that the default config values, defined by Experiment and its
# members, is what we expect it to be.
cfg = OmegaConf.structured(experiment.Experiment)
# the following removes the possible effect of env variables
ds_arg = cfg.data_source_ImplicitronDataSource_args
ds_arg.dataset_map_provider_JsonIndexDatasetMapProvider_args.dataset_root = ""
ds_arg.dataset_map_provider_JsonIndexDatasetMapProviderV2_args.dataset_root = ""
if "dataset_map_provider_SqlIndexDatasetMapProvider_args" in ds_arg:
del ds_arg.dataset_map_provider_SqlIndexDatasetMapProvider_args
cfg.training_loop_ImplicitronTrainingLoop_args.visdom_port = 8097
yaml = OmegaConf.to_yaml(cfg, sort_keys=False)
if DEBUG:
(DATA_DIR / "experiment.yaml").write_text(yaml)

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import logging
import os
import unittest
@@ -79,8 +81,9 @@ class TestOptimizerFactory(unittest.TestCase):
def test_param_overrides_self_param_group_assignment(self):
pa, pb, pc = [torch.nn.Parameter(data=torch.tensor(i * 1.0)) for i in range(3)]
na, nb = Node(params=[pa]), Node(
params=[pb], param_groups={"self": "pb_self", "p1": "pb_param"}
na, nb = (
Node(params=[pa]),
Node(params=[pb], param_groups={"self": "pb_self", "p1": "pb_param"}),
)
root = Node(children=[na, nb], params=[pc], param_groups={"m1": "pb_member"})
param_groups = self._get_param_groups(root)

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import os
import unittest

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import contextlib
import logging
import os

View File

@@ -5,6 +5,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
"""
Script to visualize a previously trained model. Example call:

View File

@@ -84,9 +84,9 @@ def get_nerf_datasets(
if autodownload and any(not os.path.isfile(p) for p in (cameras_path, image_path)):
# Automatically download the data files if missing.
download_data((dataset_name,), data_root=data_root)
download_data([dataset_name], data_root=data_root)
train_data = torch.load(cameras_path)
train_data = torch.load(cameras_path, weights_only=True)
n_cameras = train_data["cameras"]["R"].shape[0]
_image_max_image_pixels = Image.MAX_IMAGE_PIXELS

View File

@@ -343,12 +343,14 @@ class RadianceFieldRenderer(torch.nn.Module):
# For a full render pass concatenate the output chunks,
# and reshape to image size.
out = {
k: torch.cat(
[ch_o[k] for ch_o in chunk_outputs],
dim=1,
).view(-1, *self._image_size, 3)
if chunk_outputs[0][k] is not None
else None
k: (
torch.cat(
[ch_o[k] for ch_o in chunk_outputs],
dim=1,
).view(-1, *self._image_size, 3)
if chunk_outputs[0][k] is not None
else None
)
for k in ("rgb_fine", "rgb_coarse", "rgb_gt")
}
else:

View File

@@ -330,9 +330,9 @@ class NeRFRaysampler(torch.nn.Module):
if self.training:
# During training we randomly subsample rays.
sel_rays = torch.randperm(n_pixels, device=device)[
: self._mc_raysampler._n_rays_per_image
]
sel_rays = torch.randperm(
n_pixels, device=full_ray_bundle.lengths.device
)[: self._mc_raysampler._n_rays_per_image]
else:
# In case we test, we take only the requested chunk.
if chunksize is None:

View File

@@ -194,7 +194,6 @@ class Stats:
it = self.it[stat_set]
for stat in self.log_vars:
if stat not in self.stats[stat_set]:
self.stats[stat_set][stat] = AverageMeter()

View File

@@ -24,7 +24,6 @@ CONFIG_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), "configs"
@hydra.main(config_path=CONFIG_DIR, config_name="lego")
def main(cfg: DictConfig):
# Device on which to run.
if torch.cuda.is_available():
device = "cuda"
@@ -63,7 +62,7 @@ def main(cfg: DictConfig):
raise ValueError(f"Model checkpoint {checkpoint_path} does not exist!")
print(f"Loading checkpoint {checkpoint_path}.")
loaded_data = torch.load(checkpoint_path)
loaded_data = torch.load(checkpoint_path, weights_only=True)
# Do not load the cached xy grid.
# - this allows setting an arbitrary evaluation image size.
state_dict = {

View File

@@ -42,7 +42,6 @@ class TestRaysampler(unittest.TestCase):
cameras, rays = [], []
for _ in range(batch_size):
R = random_rotations(1)
T = torch.randn(1, 3)
focal_length = torch.rand(1, 2) + 0.5

View File

@@ -25,7 +25,6 @@ CONFIG_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), "configs"
@hydra.main(config_path=CONFIG_DIR, config_name="lego")
def main(cfg: DictConfig):
# Set the relevant seeds for reproducibility.
np.random.seed(cfg.seed)
torch.manual_seed(cfg.seed)
@@ -77,7 +76,7 @@ def main(cfg: DictConfig):
# Resume training if requested.
if cfg.resume and os.path.isfile(checkpoint_path):
print(f"Resuming from checkpoint {checkpoint_path}.")
loaded_data = torch.load(checkpoint_path)
loaded_data = torch.load(checkpoint_path, weights_only=True)
model.load_state_dict(loaded_data["model"])
stats = pickle.loads(loaded_data["stats"])
print(f" => resuming from epoch {stats.epoch}.")
@@ -219,7 +218,6 @@ def main(cfg: DictConfig):
# Validation
if epoch % cfg.validation_epoch_interval == 0 and epoch > 0:
# Sample a validation camera/image.
val_batch = next(val_dataloader.__iter__())
val_image, val_camera, camera_idx = val_batch[0].values()

View File

@@ -4,4 +4,6 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
__version__ = "0.7.3"
# pyre-unsafe
__version__ = "0.7.9"

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
from .datatypes import Device, get_device, make_device

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
from typing import Sequence, Tuple, Union
import torch
@@ -15,7 +17,7 @@ Some functions which depend on PyTorch or Python versions.
def meshgrid_ij(
*A: Union[torch.Tensor, Sequence[torch.Tensor]]
*A: Union[torch.Tensor, Sequence[torch.Tensor]],
) -> Tuple[torch.Tensor, ...]: # pragma: no cover
"""
Like torch.meshgrid was before PyTorch 1.10.0, i.e. with indexing set to ij

View File

@@ -4,7 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import sys
# pyre-unsafe
from typing import Optional, Union
import torch

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import math
from typing import Tuple

View File

@@ -4,5 +4,7 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
from .symeig3x3 import symeig3x3
from .utils import _safe_det_3x3

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import math
from typing import Optional, Tuple

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import torch

View File

@@ -32,7 +32,9 @@ __global__ void BallQueryKernel(
at::PackedTensorAccessor64<int64_t, 3, at::RestrictPtrTraits> idxs,
at::PackedTensorAccessor64<scalar_t, 3, at::RestrictPtrTraits> dists,
const int64_t K,
const float radius2) {
const float radius,
const float radius2,
const bool skip_points_outside_cube) {
const int64_t N = p1.size(0);
const int64_t chunks_per_cloud = (1 + (p1.size(1) - 1) / blockDim.x);
const int64_t chunks_to_do = N * chunks_per_cloud;
@@ -51,7 +53,19 @@ __global__ void BallQueryKernel(
// Iterate over points in p2 until desired count is reached or
// all points have been considered
for (int64_t j = 0, count = 0; j < lengths2[n] && count < K; ++j) {
// Calculate the distance between the points
if (skip_points_outside_cube) {
bool is_within_radius = true;
// Filter when any one coordinate is already outside the radius
for (int d = 0; is_within_radius && d < D; ++d) {
scalar_t abs_diff = fabs(p1[n][i][d] - p2[n][j][d]);
is_within_radius = (abs_diff <= radius);
}
if (!is_within_radius) {
continue;
}
}
// Else, calculate the distance between the points and compare
scalar_t dist2 = 0.0;
for (int d = 0; d < D; ++d) {
scalar_t diff = p1[n][i][d] - p2[n][j][d];
@@ -77,7 +91,8 @@ std::tuple<at::Tensor, at::Tensor> BallQueryCuda(
const at::Tensor& lengths1, // (N,)
const at::Tensor& lengths2, // (N,)
int K,
float radius) {
float radius,
bool skip_points_outside_cube) {
// Check inputs are on the same device
at::TensorArg p1_t{p1, "p1", 1}, p2_t{p2, "p2", 2},
lengths1_t{lengths1, "lengths1", 3}, lengths2_t{lengths2, "lengths2", 4};
@@ -120,7 +135,9 @@ std::tuple<at::Tensor, at::Tensor> BallQueryCuda(
idxs.packed_accessor64<int64_t, 3, at::RestrictPtrTraits>(),
dists.packed_accessor64<float, 3, at::RestrictPtrTraits>(),
K_64,
radius2);
radius,
radius2,
skip_points_outside_cube);
}));
AT_CUDA_CHECK(cudaGetLastError());

View File

@@ -25,6 +25,9 @@
// within the radius
// radius: the radius around each point within which the neighbors need to be
// located
// skip_points_outside_cube: If true, reduce multiplications of float values
// by not explicitly calculating distances to points that fall outside the
// D-cube with side length (2*radius) centered at each point in p1.
//
// Returns:
// p1_neighbor_idx: LongTensor of shape (N, P1, K), where
@@ -46,7 +49,8 @@ std::tuple<at::Tensor, at::Tensor> BallQueryCpu(
const at::Tensor& lengths1,
const at::Tensor& lengths2,
const int K,
const float radius);
const float radius,
const bool skip_points_outside_cube);
// CUDA implementation
std::tuple<at::Tensor, at::Tensor> BallQueryCuda(
@@ -55,7 +59,8 @@ std::tuple<at::Tensor, at::Tensor> BallQueryCuda(
const at::Tensor& lengths1,
const at::Tensor& lengths2,
const int K,
const float radius);
const float radius,
const bool skip_points_outside_cube);
// Implementation which is exposed
// Note: the backward pass reuses the KNearestNeighborBackward kernel
@@ -65,7 +70,8 @@ inline std::tuple<at::Tensor, at::Tensor> BallQuery(
const at::Tensor& lengths1,
const at::Tensor& lengths2,
int K,
float radius) {
float radius,
bool skip_points_outside_cube) {
if (p1.is_cuda() || p2.is_cuda()) {
#ifdef WITH_CUDA
CHECK_CUDA(p1);
@@ -76,16 +82,20 @@ inline std::tuple<at::Tensor, at::Tensor> BallQuery(
lengths1.contiguous(),
lengths2.contiguous(),
K,
radius);
radius,
skip_points_outside_cube);
#else
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(p1);
CHECK_CPU(p2);
return BallQueryCpu(
p1.contiguous(),
p2.contiguous(),
lengths1.contiguous(),
lengths2.contiguous(),
K,
radius);
radius,
skip_points_outside_cube);
}

View File

@@ -6,8 +6,8 @@
* LICENSE file in the root directory of this source tree.
*/
#include <math.h>
#include <torch/extension.h>
#include <queue>
#include <tuple>
std::tuple<at::Tensor, at::Tensor> BallQueryCpu(
@@ -16,7 +16,8 @@ std::tuple<at::Tensor, at::Tensor> BallQueryCpu(
const at::Tensor& lengths1,
const at::Tensor& lengths2,
int K,
float radius) {
float radius,
bool skip_points_outside_cube) {
const int N = p1.size(0);
const int P1 = p1.size(1);
const int D = p1.size(2);
@@ -38,6 +39,16 @@ std::tuple<at::Tensor, at::Tensor> BallQueryCpu(
const int64_t length2 = lengths2_a[n];
for (int64_t i = 0; i < length1; ++i) {
for (int64_t j = 0, count = 0; j < length2 && count < K; ++j) {
if (skip_points_outside_cube) {
bool is_within_radius = true;
for (int d = 0; is_within_radius && d < D; ++d) {
float abs_diff = fabs(p1_a[n][i][d] - p2_a[n][j][d]);
is_within_radius = (abs_diff <= radius);
}
if (!is_within_radius) {
continue;
}
}
float dist2 = 0;
for (int d = 0; d < D; ++d) {
float diff = p1_a[n][i][d] - p2_a[n][j][d];

View File

@@ -98,6 +98,11 @@ at::Tensor SigmoidAlphaBlendBackward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(distances);
CHECK_CPU(pix_to_face);
CHECK_CPU(alphas);
CHECK_CPU(grad_alphas);
return SigmoidAlphaBlendBackwardCpu(
grad_alphas, alphas, distances, pix_to_face, sigma);
}

View File

@@ -28,17 +28,16 @@ __global__ void alphaCompositeCudaForwardKernel(
const at::PackedTensorAccessor64<float, 4, at::RestrictPtrTraits> alphas,
const at::PackedTensorAccessor64<int64_t, 4, at::RestrictPtrTraits> points_idx) {
// clang-format on
const int64_t batch_size = result.size(0);
const int64_t C = features.size(0);
const int64_t H = points_idx.size(2);
const int64_t W = points_idx.size(3);
// Get the batch and index
const int batch = blockIdx.x;
const auto batch = blockIdx.x;
const int num_pixels = C * H * W;
const int num_threads = gridDim.y * blockDim.x;
const int tid = blockIdx.y * blockDim.x + threadIdx.x;
const auto num_threads = gridDim.y * blockDim.x;
const auto tid = blockIdx.y * blockDim.x + threadIdx.x;
// Iterate over each feature in each pixel
for (int pid = tid; pid < num_pixels; pid += num_threads) {
@@ -79,17 +78,16 @@ __global__ void alphaCompositeCudaBackwardKernel(
const at::PackedTensorAccessor64<float, 4, at::RestrictPtrTraits> alphas,
const at::PackedTensorAccessor64<int64_t, 4, at::RestrictPtrTraits> points_idx) {
// clang-format on
const int64_t batch_size = points_idx.size(0);
const int64_t C = features.size(0);
const int64_t H = points_idx.size(2);
const int64_t W = points_idx.size(3);
// Get the batch and index
const int batch = blockIdx.x;
const auto batch = blockIdx.x;
const int num_pixels = C * H * W;
const int num_threads = gridDim.y * blockDim.x;
const int tid = blockIdx.y * blockDim.x + threadIdx.x;
const auto num_threads = gridDim.y * blockDim.x;
const auto tid = blockIdx.y * blockDim.x + threadIdx.x;
// Parallelize over each feature in each pixel in images of size H * W,
// for each image in the batch of size batch_size

View File

@@ -74,6 +74,9 @@ torch::Tensor alphaCompositeForward(
AT_ERROR("Not compiled with GPU support");
#endif
} else {
CHECK_CPU(features);
CHECK_CPU(alphas);
CHECK_CPU(points_idx);
return alphaCompositeCpuForward(features, alphas, points_idx);
}
}
@@ -101,6 +104,11 @@ std::tuple<torch::Tensor, torch::Tensor> alphaCompositeBackward(
AT_ERROR("Not compiled with GPU support");
#endif
} else {
CHECK_CPU(grad_outputs);
CHECK_CPU(features);
CHECK_CPU(alphas);
CHECK_CPU(points_idx);
return alphaCompositeCpuBackward(
grad_outputs, features, alphas, points_idx);
}

View File

@@ -28,17 +28,16 @@ __global__ void weightedSumNormCudaForwardKernel(
const at::PackedTensorAccessor64<float, 4, at::RestrictPtrTraits> alphas,
const at::PackedTensorAccessor64<int64_t, 4, at::RestrictPtrTraits> points_idx) {
// clang-format on
const int64_t batch_size = result.size(0);
const int64_t C = features.size(0);
const int64_t H = points_idx.size(2);
const int64_t W = points_idx.size(3);
// Get the batch and index
const int batch = blockIdx.x;
const auto batch = blockIdx.x;
const int num_pixels = C * H * W;
const int num_threads = gridDim.y * blockDim.x;
const int tid = blockIdx.y * blockDim.x + threadIdx.x;
const auto num_threads = gridDim.y * blockDim.x;
const auto tid = blockIdx.y * blockDim.x + threadIdx.x;
// Parallelize over each feature in each pixel in images of size H * W,
// for each image in the batch of size batch_size
@@ -92,17 +91,16 @@ __global__ void weightedSumNormCudaBackwardKernel(
const at::PackedTensorAccessor64<float, 4, at::RestrictPtrTraits> alphas,
const at::PackedTensorAccessor64<int64_t, 4, at::RestrictPtrTraits> points_idx) {
// clang-format on
const int64_t batch_size = points_idx.size(0);
const int64_t C = features.size(0);
const int64_t H = points_idx.size(2);
const int64_t W = points_idx.size(3);
// Get the batch and index
const int batch = blockIdx.x;
const auto batch = blockIdx.x;
const int num_pixels = C * W * H;
const int num_threads = gridDim.y * blockDim.x;
const int tid = blockIdx.y * blockDim.x + threadIdx.x;
const auto num_threads = gridDim.y * blockDim.x;
const auto tid = blockIdx.y * blockDim.x + threadIdx.x;
// Parallelize over each feature in each pixel in images of size H * W,
// for each image in the batch of size batch_size

View File

@@ -73,6 +73,10 @@ torch::Tensor weightedSumNormForward(
AT_ERROR("Not compiled with GPU support");
#endif
} else {
CHECK_CPU(features);
CHECK_CPU(alphas);
CHECK_CPU(points_idx);
return weightedSumNormCpuForward(features, alphas, points_idx);
}
}
@@ -100,6 +104,11 @@ std::tuple<torch::Tensor, torch::Tensor> weightedSumNormBackward(
AT_ERROR("Not compiled with GPU support");
#endif
} else {
CHECK_CPU(grad_outputs);
CHECK_CPU(features);
CHECK_CPU(alphas);
CHECK_CPU(points_idx);
return weightedSumNormCpuBackward(
grad_outputs, features, alphas, points_idx);
}

View File

@@ -26,17 +26,16 @@ __global__ void weightedSumCudaForwardKernel(
const at::PackedTensorAccessor64<float, 4, at::RestrictPtrTraits> alphas,
const at::PackedTensorAccessor64<int64_t, 4, at::RestrictPtrTraits> points_idx) {
// clang-format on
const int64_t batch_size = result.size(0);
const int64_t C = features.size(0);
const int64_t H = points_idx.size(2);
const int64_t W = points_idx.size(3);
// Get the batch and index
const int batch = blockIdx.x;
const auto batch = blockIdx.x;
const int num_pixels = C * H * W;
const int num_threads = gridDim.y * blockDim.x;
const int tid = blockIdx.y * blockDim.x + threadIdx.x;
const auto num_threads = gridDim.y * blockDim.x;
const auto tid = blockIdx.y * blockDim.x + threadIdx.x;
// Parallelize over each feature in each pixel in images of size H * W,
// for each image in the batch of size batch_size
@@ -74,17 +73,16 @@ __global__ void weightedSumCudaBackwardKernel(
const at::PackedTensorAccessor64<float, 4, at::RestrictPtrTraits> alphas,
const at::PackedTensorAccessor64<int64_t, 4, at::RestrictPtrTraits> points_idx) {
// clang-format on
const int64_t batch_size = points_idx.size(0);
const int64_t C = features.size(0);
const int64_t H = points_idx.size(2);
const int64_t W = points_idx.size(3);
// Get the batch and index
const int batch = blockIdx.x;
const auto batch = blockIdx.x;
const int num_pixels = C * H * W;
const int num_threads = gridDim.y * blockDim.x;
const int tid = blockIdx.y * blockDim.x + threadIdx.x;
const auto num_threads = gridDim.y * blockDim.x;
const auto tid = blockIdx.y * blockDim.x + threadIdx.x;
// Iterate over each pixel to compute the contribution to the
// gradient for the features and weights

View File

@@ -72,6 +72,9 @@ torch::Tensor weightedSumForward(
AT_ERROR("Not compiled with GPU support");
#endif
} else {
CHECK_CPU(features);
CHECK_CPU(alphas);
CHECK_CPU(points_idx);
return weightedSumCpuForward(features, alphas, points_idx);
}
}
@@ -98,6 +101,11 @@ std::tuple<torch::Tensor, torch::Tensor> weightedSumBackward(
AT_ERROR("Not compiled with GPU support");
#endif
} else {
CHECK_CPU(grad_outputs);
CHECK_CPU(features);
CHECK_CPU(alphas);
CHECK_CPU(points_idx);
return weightedSumCpuBackward(grad_outputs, features, alphas, points_idx);
}
}

View File

@@ -8,7 +8,6 @@
// clang-format off
#include "./pulsar/global.h" // Include before <torch/extension.h>.
#include <torch/extension.h>
// clang-format on
#include "./pulsar/pytorch/renderer.h"
#include "./pulsar/pytorch/tensor_util.h"
@@ -99,21 +98,23 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("marching_cubes", &MarchingCubes);
// Pulsar.
// Pulsar not enabled on AMD.
#ifdef PULSAR_LOGGING_ENABLED
c10::ShowLogInfoToStderr();
#endif
py::class_<
pulsar::pytorch::Renderer,
std::shared_ptr<pulsar::pytorch::Renderer>>(m, "PulsarRenderer")
.def(py::init<
const uint&,
const uint&,
const uint&,
const bool&,
const bool&,
const float&,
const uint&,
const uint&>())
.def(
py::init<
const uint&,
const uint&,
const uint&,
const bool&,
const bool&,
const float&,
const uint&,
const uint&>())
.def(
"__eq__",
[](const pulsar::pytorch::Renderer& a,
@@ -148,10 +149,10 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
py::arg("gamma"),
py::arg("max_depth"),
py::arg("min_depth") /* = 0.f*/,
py::arg(
"bg_col") /* = at::nullopt not exposed properly in pytorch 1.1. */
py::arg("bg_col") /* = std::nullopt not exposed properly in
pytorch 1.1. */
,
py::arg("opacity") /* = at::nullopt ... */,
py::arg("opacity") /* = std::nullopt ... */,
py::arg("percent_allowed_difference") = 0.01f,
py::arg("max_n_hits") = MAX_UINT,
py::arg("mode") = 0)

View File

@@ -266,6 +266,8 @@ at::Tensor FaceAreasNormalsBackwardCuda(
grad_normals_t{grad_normals, "grad_normals", 4};
at::CheckedFrom c = "FaceAreasNormalsBackwardCuda";
at::checkAllSameGPU(c, {verts_t, faces_t, grad_areas_t, grad_normals_t});
// This is nondeterministic because atomicAdd
at::globalContext().alertNotDeterministic("FaceAreasNormalsBackwardCuda");
// Set the device for the kernel launch based on the device of verts
at::cuda::CUDAGuard device_guard(verts.device());

View File

@@ -60,6 +60,8 @@ std::tuple<at::Tensor, at::Tensor> FaceAreasNormalsForward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(verts);
CHECK_CPU(faces);
return FaceAreasNormalsForwardCpu(verts, faces);
}
@@ -80,5 +82,9 @@ at::Tensor FaceAreasNormalsBackward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(grad_areas);
CHECK_CPU(grad_normals);
CHECK_CPU(verts);
CHECK_CPU(faces);
return FaceAreasNormalsBackwardCpu(grad_areas, grad_normals, verts, faces);
}

View File

@@ -20,14 +20,14 @@ __global__ void GatherScatterCudaKernel(
const size_t V,
const size_t D,
const size_t E) {
const int tid = threadIdx.x;
const auto tid = threadIdx.x;
// Reverse the vertex order if backward.
const int v0_idx = backward ? 1 : 0;
const int v1_idx = backward ? 0 : 1;
// Edges are split evenly across the blocks.
for (int e = blockIdx.x; e < E; e += gridDim.x) {
for (auto e = blockIdx.x; e < E; e += gridDim.x) {
// Get indices of vertices which form the edge.
const int64_t v0 = edges[2 * e + v0_idx];
const int64_t v1 = edges[2 * e + v1_idx];
@@ -35,7 +35,7 @@ __global__ void GatherScatterCudaKernel(
// Split vertex features evenly across threads.
// This implementation will be quite wasteful when D<128 since there will be
// a lot of threads doing nothing.
for (int d = tid; d < D; d += blockDim.x) {
for (auto d = tid; d < D; d += blockDim.x) {
const float val = input[v1 * D + d];
float* address = output + v0 * D + d;
atomicAdd(address, val);

View File

@@ -53,5 +53,7 @@ at::Tensor GatherScatter(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(input);
CHECK_CPU(edges);
return GatherScatterCpu(input, edges, directed, backward);
}

View File

@@ -20,8 +20,8 @@ __global__ void InterpFaceAttrsForwardKernel(
const size_t P,
const size_t F,
const size_t D) {
const int tid = threadIdx.x + blockIdx.x * blockDim.x;
const int num_threads = blockDim.x * gridDim.x;
const auto tid = threadIdx.x + blockIdx.x * blockDim.x;
const auto num_threads = blockDim.x * gridDim.x;
for (int pd = tid; pd < P * D; pd += num_threads) {
const int p = pd / D;
const int d = pd % D;
@@ -93,8 +93,8 @@ __global__ void InterpFaceAttrsBackwardKernel(
const size_t P,
const size_t F,
const size_t D) {
const int tid = threadIdx.x + blockIdx.x * blockDim.x;
const int num_threads = blockDim.x * gridDim.x;
const auto tid = threadIdx.x + blockIdx.x * blockDim.x;
const auto num_threads = blockDim.x * gridDim.x;
for (int pd = tid; pd < P * D; pd += num_threads) {
const int p = pd / D;
const int d = pd % D;
@@ -130,6 +130,9 @@ std::tuple<at::Tensor, at::Tensor> InterpFaceAttrsBackwardCuda(
at::checkAllSameType(
c, {barycentric_coords_t, face_attrs_t, grad_pix_attrs_t});
// This is nondeterministic because atomicAdd
at::globalContext().alertNotDeterministic("InterpFaceAttrsBackwardCuda");
// Set the device for the kernel launch based on the input
at::cuda::CUDAGuard device_guard(pix_to_face.device());
cudaStream_t stream = at::cuda::getCurrentCUDAStream();

View File

@@ -57,6 +57,8 @@ at::Tensor InterpFaceAttrsForward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(face_attrs);
CHECK_CPU(barycentric_coords);
return InterpFaceAttrsForwardCpu(pix_to_face, barycentric_coords, face_attrs);
}
@@ -106,6 +108,9 @@ std::tuple<at::Tensor, at::Tensor> InterpFaceAttrsBackward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(face_attrs);
CHECK_CPU(barycentric_coords);
CHECK_CPU(grad_pix_attrs);
return InterpFaceAttrsBackwardCpu(
pix_to_face, barycentric_coords, face_attrs, grad_pix_attrs);
}

View File

@@ -12,8 +12,6 @@
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <thrust/device_vector.h>
#include <thrust/tuple.h>
#include "iou_box3d/iou_utils.cuh"
// Parallelize over N*M computations which can each be done

View File

@@ -44,5 +44,7 @@ inline std::tuple<at::Tensor, at::Tensor> IoUBox3D(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(boxes1);
CHECK_CPU(boxes2);
return IoUBox3DCpu(boxes1.contiguous(), boxes2.contiguous());
}

View File

@@ -7,10 +7,7 @@
*/
#include <torch/extension.h>
#include <torch/torch.h>
#include <list>
#include <numeric>
#include <queue>
#include <tuple>
#include "iou_box3d/iou_utils.h"

View File

@@ -8,7 +8,6 @@
#include <float.h>
#include <math.h>
#include <thrust/device_vector.h>
#include <cstdio>
#include "utils/float_math.cuh"
@@ -462,10 +461,8 @@ __device__ inline std::tuple<float3, float3> ArgMaxVerts(
__device__ inline bool IsCoplanarTriTri(
const FaceVerts& tri1,
const FaceVerts& tri2) {
const float3 tri1_ctr = FaceCenter({tri1.v0, tri1.v1, tri1.v2});
const float3 tri1_n = FaceNormal({tri1.v0, tri1.v1, tri1.v2});
const float3 tri2_ctr = FaceCenter({tri2.v0, tri2.v1, tri2.v2});
const float3 tri2_n = FaceNormal({tri2.v0, tri2.v1, tri2.v2});
// Check if parallel
@@ -501,7 +498,6 @@ __device__ inline bool IsCoplanarTriPlane(
const FaceVerts& tri,
const FaceVerts& plane,
const float3& normal) {
const float3 tri_ctr = FaceCenter({tri.v0, tri.v1, tri.v2});
const float3 nt = FaceNormal({tri.v0, tri.v1, tri.v2});
// check if parallel
@@ -729,7 +725,7 @@ __device__ inline int BoxIntersections(
}
}
// Update the face_verts_out tris
num_tris = offset;
num_tris = min(MAX_TRIS, offset);
for (int j = 0; j < num_tris; ++j) {
face_verts_out[j] = tri_verts_updated[j];
}

View File

@@ -338,7 +338,7 @@ std::tuple<at::Tensor, at::Tensor> KNearestNeighborIdxCuda(
TORCH_CHECK((norm == 1) || (norm == 2), "Norm must be 1 or 2.");
TORCH_CHECK(p2.size(2) == D, "Point sets must have the same last dimension");
TORCH_CHECK(p1.size(2) == D, "Point sets must have the same last dimension");
auto long_dtype = lengths1.options().dtype(at::kLong);
auto idxs = at::zeros({N, P1, K}, long_dtype);
auto dists = at::zeros({N, P1, K}, p1.options());
@@ -495,7 +495,7 @@ __global__ void KNearestNeighborBackwardKernel(
if ((p1_idx < num1) && (k < num2)) {
const float grad_dist = grad_dists[n * P1 * K + p1_idx * K + k];
// index of point in p2 corresponding to the k-th nearest neighbor
const size_t p2_idx = idxs[n * P1 * K + p1_idx * K + k];
const int64_t p2_idx = idxs[n * P1 * K + p1_idx * K + k];
// If the index is the pad value of -1 then ignore it
if (p2_idx == -1) {
continue;
@@ -534,6 +534,9 @@ std::tuple<at::Tensor, at::Tensor> KNearestNeighborBackwardCuda(
c, {p1_t, p2_t, lengths1_t, lengths2_t, idxs_t, grad_dists_t});
at::checkAllSameType(c, {p1_t, p2_t, grad_dists_t});
// This is nondeterministic because atomicAdd
at::globalContext().alertNotDeterministic("KNearestNeighborBackwardCuda");
// Set the device for the kernel launch based on the device of the input
at::cuda::CUDAGuard device_guard(p1.device());
cudaStream_t stream = at::cuda::getCurrentCUDAStream();

View File

@@ -74,6 +74,8 @@ std::tuple<at::Tensor, at::Tensor> KNearestNeighborIdx(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(p1);
CHECK_CPU(p2);
return KNearestNeighborIdxCpu(p1, p2, lengths1, lengths2, norm, K);
}
@@ -140,6 +142,8 @@ std::tuple<at::Tensor, at::Tensor> KNearestNeighborBackward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(p1);
CHECK_CPU(p2);
return KNearestNeighborBackwardCpu(
p1, p2, lengths1, lengths2, idxs, norm, grad_dists);
}

View File

@@ -9,8 +9,6 @@
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <thrust/device_vector.h>
#include <thrust/scan.h>
#include <cstdio>
#include "marching_cubes/tables.h"
@@ -40,20 +38,6 @@ through" each cube in the grid.
// EPS: Used to indicate if two float values are close
__constant__ const float EPSILON = 1e-5;
// Thrust wrapper for exclusive scan
//
// Args:
// output: pointer to on-device output array
// input: pointer to on-device input array, where scan is performed
// numElements: number of elements for the input array
//
void ThrustScanWrapper(int* output, int* input, int numElements) {
thrust::exclusive_scan(
thrust::device_ptr<int>(input),
thrust::device_ptr<int>(input + numElements),
thrust::device_ptr<int>(output));
}
// Linearly interpolate the position where an isosurface cuts an edge
// between two vertices, based on their scalar values
//
@@ -239,7 +223,7 @@ __global__ void CompactVoxelsKernel(
compactedVoxelArray,
const at::PackedTensorAccessor32<int, 1, at::RestrictPtrTraits>
voxelOccupied,
const at::PackedTensorAccessor32<int, 1, at::RestrictPtrTraits>
const at::PackedTensorAccessor32<int64_t, 1, at::RestrictPtrTraits>
voxelOccupiedScan,
uint numVoxels) {
uint id = blockIdx.x * blockDim.x + threadIdx.x;
@@ -271,7 +255,8 @@ __global__ void GenerateFacesKernel(
at::PackedTensorAccessor<int64_t, 1, at::RestrictPtrTraits> ids,
at::PackedTensorAccessor32<int, 1, at::RestrictPtrTraits>
compactedVoxelArray,
at::PackedTensorAccessor32<int, 1, at::RestrictPtrTraits> numVertsScanned,
at::PackedTensorAccessor32<int64_t, 1, at::RestrictPtrTraits>
numVertsScanned,
const uint activeVoxels,
const at::PackedTensorAccessor32<float, 3, at::RestrictPtrTraits> vol,
const at::PackedTensorAccessor32<int, 2, at::RestrictPtrTraits> faceTable,
@@ -397,6 +382,44 @@ __global__ void GenerateFacesKernel(
} // end for grid-strided kernel
}
// ATen/Torch does not have an exclusive-scan operator. Additionally, in the
// code below we need to get the "total number of items to work on" after
// a scan, which with an inclusive-scan would simply be the value of the last
// element in the tensor.
//
// This utility function hits two birds with one stone, by running
// an inclusive-scan into a right-shifted view of a tensor that's
// allocated to be one element bigger than the input tensor.
//
// Note; return tensor is `int64_t` per element, even if the input
// tensor is only 32-bit. Also, the return tensor is one element bigger
// than the input one.
//
// Secondary optional argument is an output argument that gets the
// value of the last element of the return tensor (because you almost
// always need this CPU-side right after this function anyway).
static at::Tensor ExclusiveScanAndTotal(
const at::Tensor& inTensor,
int64_t* optTotal = nullptr) {
const auto inSize = inTensor.sizes()[0];
auto retTensor = at::zeros({inSize + 1}, at::kLong).to(inTensor.device());
using at::indexing::None;
using at::indexing::Slice;
auto rightShiftedView = retTensor.index({Slice(1, None)});
// Do an (inclusive-scan) cumulative sum in to the view that's
// shifted one element to the right...
at::cumsum_out(rightShiftedView, inTensor, 0, at::kLong);
if (optTotal) {
*optTotal = retTensor[inSize].cpu().item<int64_t>();
}
// ...so that the not-shifted tensor holds the exclusive-scan
return retTensor;
}
// Entrance for marching cubes cuda extension. Marching Cubes is an algorithm to
// create triangle meshes from an implicit function (one of the form f(x, y, z)
// = 0). It works by iteratively checking a grid of cubes superimposed over a
@@ -455,6 +478,9 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> MarchingCubesCuda(
grid.x = 65535;
}
using at::indexing::None;
using at::indexing::Slice;
auto d_voxelVerts =
at::zeros({numVoxels}, at::TensorOptions().dtype(at::kInt))
.to(vol.device());
@@ -477,18 +503,9 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> MarchingCubesCuda(
// count for voxels in the grid and compute the number of active voxels.
// If the number of active voxels is 0, return zero tensor for verts and
// faces.
int64_t activeVoxels = 0;
auto d_voxelOccupiedScan =
at::zeros({numVoxels}, at::TensorOptions().dtype(at::kInt))
.to(vol.device());
ThrustScanWrapper(
d_voxelOccupiedScan.data_ptr<int>(),
d_voxelOccupied.data_ptr<int>(),
numVoxels);
// number of active voxels
int lastElement = d_voxelVerts[numVoxels - 1].cpu().item<int>();
int lastScan = d_voxelOccupiedScan[numVoxels - 1].cpu().item<int>();
int activeVoxels = lastElement + lastScan;
ExclusiveScanAndTotal(d_voxelOccupied, &activeVoxels);
const int device_id = vol.device().index();
auto opt = at::TensorOptions().dtype(at::kInt).device(at::kCUDA, device_id);
@@ -503,28 +520,21 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> MarchingCubesCuda(
return std::make_tuple(verts, faces, ids);
}
// Execute "CompactVoxelsKernel" kernel to compress voxels for accleration.
// Execute "CompactVoxelsKernel" kernel to compress voxels for acceleration.
// This allows us to run triangle generation on only the occupied voxels.
auto d_compVoxelArray = at::zeros({activeVoxels}, opt);
CompactVoxelsKernel<<<grid, threads, 0, stream>>>(
d_compVoxelArray.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
d_voxelOccupied.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
d_voxelOccupiedScan.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
d_voxelOccupiedScan
.packed_accessor32<int64_t, 1, at::RestrictPtrTraits>(),
numVoxels);
AT_CUDA_CHECK(cudaGetLastError());
cudaDeviceSynchronize();
// Scan d_voxelVerts array to generate offsets of vertices for each voxel
auto d_voxelVertsScan = at::zeros({numVoxels}, opt);
ThrustScanWrapper(
d_voxelVertsScan.data_ptr<int>(),
d_voxelVerts.data_ptr<int>(),
numVoxels);
// total number of vertices
lastElement = d_voxelVerts[numVoxels - 1].cpu().item<int>();
lastScan = d_voxelVertsScan[numVoxels - 1].cpu().item<int>();
int totalVerts = lastElement + lastScan;
int64_t totalVerts = 0;
auto d_voxelVertsScan = ExclusiveScanAndTotal(d_voxelVerts, &totalVerts);
// Execute "GenerateFacesKernel" kernel
// This runs only on the occupied voxels.
@@ -544,7 +554,7 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> MarchingCubesCuda(
faces.packed_accessor<int64_t, 2, at::RestrictPtrTraits>(),
ids.packed_accessor<int64_t, 1, at::RestrictPtrTraits>(),
d_compVoxelArray.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
d_voxelVertsScan.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
d_voxelVertsScan.packed_accessor32<int64_t, 1, at::RestrictPtrTraits>(),
activeVoxels,
vol.packed_accessor32<float, 3, at::RestrictPtrTraits>(),
faceTable.packed_accessor32<int, 2, at::RestrictPtrTraits>(),

View File

@@ -58,5 +58,6 @@ inline std::tuple<at::Tensor, at::Tensor, at::Tensor> MarchingCubes(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(vol);
return MarchingCubesCpu(vol.contiguous(), isolevel);
}

View File

@@ -71,8 +71,8 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> MarchingCubesCpu(
if ((j + 1) % 3 == 0 && ps[0] != ps[1] && ps[1] != ps[2] &&
ps[2] != ps[0]) {
for (int k = 0; k < 3; k++) {
int v = tri[k];
edge_id_to_v[tri.at(k)] = ps.at(k);
int64_t v = tri.at(k);
edge_id_to_v[v] = ps.at(k);
if (!uniq_edge_id.count(v)) {
uniq_edge_id[v] = verts.size();
verts.push_back(edge_id_to_v[v]);

View File

@@ -88,6 +88,8 @@ at::Tensor PackedToPadded(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(inputs_packed);
CHECK_CPU(first_idxs);
return PackedToPaddedCpu(inputs_packed, first_idxs, max_size);
}
@@ -105,5 +107,7 @@ at::Tensor PaddedToPacked(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(inputs_padded);
CHECK_CPU(first_idxs);
return PaddedToPackedCpu(inputs_padded, first_idxs, num_inputs);
}

View File

@@ -174,8 +174,8 @@ std::tuple<at::Tensor, at::Tensor> HullHullDistanceForwardCpu(
at::Tensor idxs = at::zeros({A_N,}, as_first_idx.options());
// clang-format on
auto as_a = as.accessor < float, H1 == 1 ? 2 : 3 > ();
auto bs_a = bs.accessor < float, H2 == 1 ? 2 : 3 > ();
auto as_a = as.accessor<float, H1 == 1 ? 2 : 3>();
auto bs_a = bs.accessor<float, H2 == 1 ? 2 : 3>();
auto as_first_idx_a = as_first_idx.accessor<int64_t, 1>();
auto bs_first_idx_a = bs_first_idx.accessor<int64_t, 1>();
auto dists_a = dists.accessor<float, 1>();
@@ -230,10 +230,10 @@ std::tuple<at::Tensor, at::Tensor> HullHullDistanceBackwardCpu(
at::Tensor grad_as = at::zeros_like(as);
at::Tensor grad_bs = at::zeros_like(bs);
auto as_a = as.accessor < float, H1 == 1 ? 2 : 3 > ();
auto bs_a = bs.accessor < float, H2 == 1 ? 2 : 3 > ();
auto grad_as_a = grad_as.accessor < float, H1 == 1 ? 2 : 3 > ();
auto grad_bs_a = grad_bs.accessor < float, H2 == 1 ? 2 : 3 > ();
auto as_a = as.accessor<float, H1 == 1 ? 2 : 3>();
auto bs_a = bs.accessor<float, H2 == 1 ? 2 : 3>();
auto grad_as_a = grad_as.accessor<float, H1 == 1 ? 2 : 3>();
auto grad_bs_a = grad_bs.accessor<float, H2 == 1 ? 2 : 3>();
auto idx_bs_a = idx_bs.accessor<int64_t, 1>();
auto grad_dists_a = grad_dists.accessor<float, 1>();

View File

@@ -110,7 +110,7 @@ __global__ void DistanceForwardKernel(
__syncthreads();
// Perform reduction in shared memory.
for (int s = blockDim.x / 2; s > 32; s >>= 1) {
for (auto s = blockDim.x / 2; s > 32; s >>= 1) {
if (tid < s) {
if (min_dists[tid] > min_dists[tid + s]) {
min_dists[tid] = min_dists[tid + s];
@@ -305,6 +305,8 @@ std::tuple<at::Tensor, at::Tensor> DistanceBackwardCuda(
at::CheckedFrom c = "DistanceBackwardCuda";
at::checkAllSameGPU(c, {objects_t, targets_t, idx_objects_t, grad_dists_t});
at::checkAllSameType(c, {objects_t, targets_t, grad_dists_t});
// This is nondeterministic because atomicAdd
at::globalContext().alertNotDeterministic("DistanceBackwardCuda");
// Set the device for the kernel launch based on the device of the input
at::cuda::CUDAGuard device_guard(objects.device());
@@ -500,8 +502,8 @@ __global__ void PointFaceArrayForwardKernel(
const float3* tris_f3 = (float3*)tris;
// Parallelize over P * S computations
const int num_threads = gridDim.x * blockDim.x;
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
const auto num_threads = gridDim.x * blockDim.x;
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (int t_i = tid; t_i < P * T; t_i += num_threads) {
const int t = t_i / P; // segment index.
@@ -574,8 +576,8 @@ __global__ void PointFaceArrayBackwardKernel(
const float3* tris_f3 = (float3*)tris;
// Parallelize over P * S computations
const int num_threads = gridDim.x * blockDim.x;
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
const auto num_threads = gridDim.x * blockDim.x;
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (int t_i = tid; t_i < P * T; t_i += num_threads) {
const int t = t_i / P; // triangle index.
@@ -624,6 +626,9 @@ std::tuple<at::Tensor, at::Tensor> PointFaceArrayDistanceBackwardCuda(
at::CheckedFrom c = "PointFaceArrayDistanceBackwardCuda";
at::checkAllSameGPU(c, {points_t, tris_t, grad_dists_t});
at::checkAllSameType(c, {points_t, tris_t, grad_dists_t});
// This is nondeterministic because atomicAdd
at::globalContext().alertNotDeterministic(
"PointFaceArrayDistanceBackwardCuda");
// Set the device for the kernel launch based on the device of the input
at::cuda::CUDAGuard device_guard(points.device());
@@ -678,8 +683,8 @@ __global__ void PointEdgeArrayForwardKernel(
float3* segms_f3 = (float3*)segms;
// Parallelize over P * S computations
const int num_threads = gridDim.x * blockDim.x;
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
const auto num_threads = gridDim.x * blockDim.x;
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (int t_i = tid; t_i < P * S; t_i += num_threads) {
const int s = t_i / P; // segment index.
@@ -747,8 +752,8 @@ __global__ void PointEdgeArrayBackwardKernel(
float3* segms_f3 = (float3*)segms;
// Parallelize over P * S computations
const int num_threads = gridDim.x * blockDim.x;
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
const auto num_threads = gridDim.x * blockDim.x;
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (int t_i = tid; t_i < P * S; t_i += num_threads) {
const int s = t_i / P; // segment index.
@@ -787,6 +792,9 @@ std::tuple<at::Tensor, at::Tensor> PointEdgeArrayDistanceBackwardCuda(
at::CheckedFrom c = "PointEdgeArrayDistanceBackwardCuda";
at::checkAllSameGPU(c, {points_t, segms_t, grad_dists_t});
at::checkAllSameType(c, {points_t, segms_t, grad_dists_t});
// This is nondeterministic because atomicAdd
at::globalContext().alertNotDeterministic(
"PointEdgeArrayDistanceBackwardCuda");
// Set the device for the kernel launch based on the device of the input
at::cuda::CUDAGuard device_guard(points.device());

View File

@@ -88,6 +88,10 @@ std::tuple<torch::Tensor, torch::Tensor> PointFaceDistanceForward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(points);
CHECK_CPU(points_first_idx);
CHECK_CPU(tris);
CHECK_CPU(tris_first_idx);
return PointFaceDistanceForwardCpu(
points, points_first_idx, tris, tris_first_idx, min_triangle_area);
}
@@ -143,6 +147,10 @@ std::tuple<torch::Tensor, torch::Tensor> PointFaceDistanceBackward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(points);
CHECK_CPU(tris);
CHECK_CPU(idx_points);
CHECK_CPU(grad_dists);
return PointFaceDistanceBackwardCpu(
points, tris, idx_points, grad_dists, min_triangle_area);
}
@@ -221,6 +229,10 @@ std::tuple<torch::Tensor, torch::Tensor> FacePointDistanceForward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(points);
CHECK_CPU(points_first_idx);
CHECK_CPU(tris);
CHECK_CPU(tris_first_idx);
return FacePointDistanceForwardCpu(
points, points_first_idx, tris, tris_first_idx, min_triangle_area);
}
@@ -277,6 +289,10 @@ std::tuple<torch::Tensor, torch::Tensor> FacePointDistanceBackward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(points);
CHECK_CPU(tris);
CHECK_CPU(idx_tris);
CHECK_CPU(grad_dists);
return FacePointDistanceBackwardCpu(
points, tris, idx_tris, grad_dists, min_triangle_area);
}
@@ -346,6 +362,10 @@ std::tuple<torch::Tensor, torch::Tensor> PointEdgeDistanceForward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(points);
CHECK_CPU(points_first_idx);
CHECK_CPU(segms);
CHECK_CPU(segms_first_idx);
return PointEdgeDistanceForwardCpu(
points, points_first_idx, segms, segms_first_idx, max_points);
}
@@ -396,6 +416,10 @@ std::tuple<torch::Tensor, torch::Tensor> PointEdgeDistanceBackward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(points);
CHECK_CPU(segms);
CHECK_CPU(idx_points);
CHECK_CPU(grad_dists);
return PointEdgeDistanceBackwardCpu(points, segms, idx_points, grad_dists);
}
@@ -464,6 +488,10 @@ std::tuple<torch::Tensor, torch::Tensor> EdgePointDistanceForward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(points);
CHECK_CPU(points_first_idx);
CHECK_CPU(segms);
CHECK_CPU(segms_first_idx);
return EdgePointDistanceForwardCpu(
points, points_first_idx, segms, segms_first_idx, max_segms);
}
@@ -514,6 +542,10 @@ std::tuple<torch::Tensor, torch::Tensor> EdgePointDistanceBackward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(points);
CHECK_CPU(segms);
CHECK_CPU(idx_segms);
CHECK_CPU(grad_dists);
return EdgePointDistanceBackwardCpu(points, segms, idx_segms, grad_dists);
}
@@ -567,6 +599,8 @@ torch::Tensor PointFaceArrayDistanceForward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(points);
CHECK_CPU(tris);
return PointFaceArrayDistanceForwardCpu(points, tris, min_triangle_area);
}
@@ -613,6 +647,9 @@ std::tuple<torch::Tensor, torch::Tensor> PointFaceArrayDistanceBackward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(points);
CHECK_CPU(tris);
CHECK_CPU(grad_dists);
return PointFaceArrayDistanceBackwardCpu(
points, tris, grad_dists, min_triangle_area);
}
@@ -661,6 +698,8 @@ torch::Tensor PointEdgeArrayDistanceForward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(points);
CHECK_CPU(segms);
return PointEdgeArrayDistanceForwardCpu(points, segms);
}
@@ -703,5 +742,8 @@ std::tuple<torch::Tensor, torch::Tensor> PointEdgeArrayDistanceBackward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(points);
CHECK_CPU(segms);
CHECK_CPU(grad_dists);
return PointEdgeArrayDistanceBackwardCpu(points, segms, grad_dists);
}

View File

@@ -141,6 +141,9 @@ void PointsToVolumesForwardCuda(
grid_sizes_t,
mask_t});
// This is nondeterministic because atomicAdd
at::globalContext().alertNotDeterministic("PointsToVolumesForwardCuda");
// Set the device for the kernel launch based on the device of the input
at::cuda::CUDAGuard device_guard(points_3d.device());
cudaStream_t stream = at::cuda::getCurrentCUDAStream();

View File

@@ -104,6 +104,12 @@ inline void PointsToVolumesForward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(points_3d);
CHECK_CPU(points_features);
CHECK_CPU(volume_densities);
CHECK_CPU(volume_features);
CHECK_CPU(grid_sizes);
CHECK_CPU(mask);
PointsToVolumesForwardCpu(
points_3d,
points_features,
@@ -183,6 +189,14 @@ inline void PointsToVolumesBackward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(points_3d);
CHECK_CPU(points_features);
CHECK_CPU(grid_sizes);
CHECK_CPU(mask);
CHECK_CPU(grad_volume_densities);
CHECK_CPU(grad_volume_features);
CHECK_CPU(grad_points_3d);
CHECK_CPU(grad_points_features);
PointsToVolumesBackwardCpu(
points_3d,
points_features,

Some files were not shown because too many files have changed in this diff Show More