mirror of
				https://github.com/facebookresearch/pytorch3d.git
				synced 2025-11-04 09:52:11 +08:00 
			
		
		
		
	Fix unused-variable issues, mostly relating to AMD/HIP
Reviewed By: meyering Differential Revision: D70845538 fbshipit-source-id: 8e52b5e1f1d96b86404fc3b8cbc6fb952e2cb1a6
This commit is contained in:
		
							parent
							
								
									7e09505538
								
							
						
					
					
						commit
						21205730d9
					
				@ -28,7 +28,6 @@ __global__ void alphaCompositeCudaForwardKernel(
 | 
			
		||||
    const at::PackedTensorAccessor64<float, 4, at::RestrictPtrTraits> alphas,
 | 
			
		||||
    const at::PackedTensorAccessor64<int64_t, 4, at::RestrictPtrTraits> points_idx) {
 | 
			
		||||
  // clang-format on
 | 
			
		||||
  const int64_t batch_size = result.size(0);
 | 
			
		||||
  const int64_t C = features.size(0);
 | 
			
		||||
  const int64_t H = points_idx.size(2);
 | 
			
		||||
  const int64_t W = points_idx.size(3);
 | 
			
		||||
@ -79,7 +78,6 @@ __global__ void alphaCompositeCudaBackwardKernel(
 | 
			
		||||
    const at::PackedTensorAccessor64<float, 4, at::RestrictPtrTraits> alphas,
 | 
			
		||||
    const at::PackedTensorAccessor64<int64_t, 4, at::RestrictPtrTraits> points_idx) {
 | 
			
		||||
  // clang-format on
 | 
			
		||||
  const int64_t batch_size = points_idx.size(0);
 | 
			
		||||
  const int64_t C = features.size(0);
 | 
			
		||||
  const int64_t H = points_idx.size(2);
 | 
			
		||||
  const int64_t W = points_idx.size(3);
 | 
			
		||||
 | 
			
		||||
@ -28,7 +28,6 @@ __global__ void weightedSumNormCudaForwardKernel(
 | 
			
		||||
    const at::PackedTensorAccessor64<float, 4, at::RestrictPtrTraits> alphas,
 | 
			
		||||
    const at::PackedTensorAccessor64<int64_t, 4, at::RestrictPtrTraits> points_idx) {
 | 
			
		||||
  // clang-format on
 | 
			
		||||
  const int64_t batch_size = result.size(0);
 | 
			
		||||
  const int64_t C = features.size(0);
 | 
			
		||||
  const int64_t H = points_idx.size(2);
 | 
			
		||||
  const int64_t W = points_idx.size(3);
 | 
			
		||||
@ -92,7 +91,6 @@ __global__ void weightedSumNormCudaBackwardKernel(
 | 
			
		||||
    const at::PackedTensorAccessor64<float, 4, at::RestrictPtrTraits> alphas,
 | 
			
		||||
    const at::PackedTensorAccessor64<int64_t, 4, at::RestrictPtrTraits> points_idx) {
 | 
			
		||||
  // clang-format on
 | 
			
		||||
  const int64_t batch_size = points_idx.size(0);
 | 
			
		||||
  const int64_t C = features.size(0);
 | 
			
		||||
  const int64_t H = points_idx.size(2);
 | 
			
		||||
  const int64_t W = points_idx.size(3);
 | 
			
		||||
 | 
			
		||||
@ -26,7 +26,6 @@ __global__ void weightedSumCudaForwardKernel(
 | 
			
		||||
    const at::PackedTensorAccessor64<float, 4, at::RestrictPtrTraits> alphas,
 | 
			
		||||
    const at::PackedTensorAccessor64<int64_t, 4, at::RestrictPtrTraits> points_idx) {
 | 
			
		||||
  // clang-format on
 | 
			
		||||
  const int64_t batch_size = result.size(0);
 | 
			
		||||
  const int64_t C = features.size(0);
 | 
			
		||||
  const int64_t H = points_idx.size(2);
 | 
			
		||||
  const int64_t W = points_idx.size(3);
 | 
			
		||||
@ -74,7 +73,6 @@ __global__ void weightedSumCudaBackwardKernel(
 | 
			
		||||
    const at::PackedTensorAccessor64<float, 4, at::RestrictPtrTraits> alphas,
 | 
			
		||||
    const at::PackedTensorAccessor64<int64_t, 4, at::RestrictPtrTraits> points_idx) {
 | 
			
		||||
  // clang-format on
 | 
			
		||||
  const int64_t batch_size = points_idx.size(0);
 | 
			
		||||
  const int64_t C = features.size(0);
 | 
			
		||||
  const int64_t H = points_idx.size(2);
 | 
			
		||||
  const int64_t W = points_idx.size(3);
 | 
			
		||||
 | 
			
		||||
@ -461,10 +461,8 @@ __device__ inline std::tuple<float3, float3> ArgMaxVerts(
 | 
			
		||||
__device__ inline bool IsCoplanarTriTri(
 | 
			
		||||
    const FaceVerts& tri1,
 | 
			
		||||
    const FaceVerts& tri2) {
 | 
			
		||||
  const float3 tri1_ctr = FaceCenter({tri1.v0, tri1.v1, tri1.v2});
 | 
			
		||||
  const float3 tri1_n = FaceNormal({tri1.v0, tri1.v1, tri1.v2});
 | 
			
		||||
 | 
			
		||||
  const float3 tri2_ctr = FaceCenter({tri2.v0, tri2.v1, tri2.v2});
 | 
			
		||||
  const float3 tri2_n = FaceNormal({tri2.v0, tri2.v1, tri2.v2});
 | 
			
		||||
 | 
			
		||||
  // Check if parallel
 | 
			
		||||
@ -500,7 +498,6 @@ __device__ inline bool IsCoplanarTriPlane(
 | 
			
		||||
    const FaceVerts& tri,
 | 
			
		||||
    const FaceVerts& plane,
 | 
			
		||||
    const float3& normal) {
 | 
			
		||||
  const float3 tri_ctr = FaceCenter({tri.v0, tri.v1, tri.v2});
 | 
			
		||||
  const float3 nt = FaceNormal({tri.v0, tri.v1, tri.v2});
 | 
			
		||||
 | 
			
		||||
  // check if parallel
 | 
			
		||||
 | 
			
		||||
@ -35,8 +35,6 @@ __global__ void FarthestPointSamplingKernel(
 | 
			
		||||
  __shared__ int64_t selected_store;
 | 
			
		||||
 | 
			
		||||
  // Get constants
 | 
			
		||||
  const int64_t N = points.size(0);
 | 
			
		||||
  const int64_t P = points.size(1);
 | 
			
		||||
  const int64_t D = points.size(2);
 | 
			
		||||
 | 
			
		||||
  // Get batch index and thread index
 | 
			
		||||
 | 
			
		||||
@ -376,8 +376,6 @@ PointLineDistanceBackward(
 | 
			
		||||
  float tt = t_top / t_bot;
 | 
			
		||||
  tt = __saturatef(tt);
 | 
			
		||||
  const float2 p_proj = (1.0f - tt) * v0 + tt * v1;
 | 
			
		||||
  const float2 d = p - p_proj;
 | 
			
		||||
  const float dist = sqrt(dot(d, d));
 | 
			
		||||
 | 
			
		||||
  const float2 grad_p = -1.0f * grad_dist * 2.0f * (p_proj - p);
 | 
			
		||||
  const float2 grad_v0 = grad_dist * (1.0f - tt) * 2.0f * (p_proj - p);
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user