mirror of
				https://github.com/facebookresearch/pytorch3d.git
				synced 2025-11-04 18:02:14 +08:00 
			
		
		
		
	upgrade pyre version in fbcode/vision - batch 2
				
					
				
			Reviewed By: bottler Differential Revision: D60992234 fbshipit-source-id: 899db6ed590ef966ff651c11027819e59b8401a3
This commit is contained in:
		
							parent
							
								
									1e0b1d9c72
								
							
						
					
					
						commit
						38afdcfc68
					
				@ -99,7 +99,7 @@ except ModuleNotFoundError:
 | 
			
		||||
no_accelerate = os.environ.get("PYTORCH3D_NO_ACCELERATE") is not None
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Experiment(Configurable):  # pyre-ignore: 13
 | 
			
		||||
class Experiment(Configurable):
 | 
			
		||||
    """
 | 
			
		||||
    This class is at the top level of Implicitron's config hierarchy. Its
 | 
			
		||||
    members are high-level components necessary for training an implicit rende-
 | 
			
		||||
@ -120,12 +120,16 @@ class Experiment(Configurable):  # pyre-ignore: 13
 | 
			
		||||
            will be saved here.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    # pyre-fixme[13]: Attribute `data_source` is never initialized.
 | 
			
		||||
    data_source: DataSourceBase
 | 
			
		||||
    data_source_class_type: str = "ImplicitronDataSource"
 | 
			
		||||
    # pyre-fixme[13]: Attribute `model_factory` is never initialized.
 | 
			
		||||
    model_factory: ModelFactoryBase
 | 
			
		||||
    model_factory_class_type: str = "ImplicitronModelFactory"
 | 
			
		||||
    # pyre-fixme[13]: Attribute `optimizer_factory` is never initialized.
 | 
			
		||||
    optimizer_factory: OptimizerFactoryBase
 | 
			
		||||
    optimizer_factory_class_type: str = "ImplicitronOptimizerFactory"
 | 
			
		||||
    # pyre-fixme[13]: Attribute `training_loop` is never initialized.
 | 
			
		||||
    training_loop: TrainingLoopBase
 | 
			
		||||
    training_loop_class_type: str = "ImplicitronTrainingLoop"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -45,7 +45,7 @@ class ModelFactoryBase(ReplaceableBase):
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@registry.register
 | 
			
		||||
class ImplicitronModelFactory(ModelFactoryBase):  # pyre-ignore [13]
 | 
			
		||||
class ImplicitronModelFactory(ModelFactoryBase):
 | 
			
		||||
    """
 | 
			
		||||
    A factory class that initializes an implicit rendering model.
 | 
			
		||||
 | 
			
		||||
@ -61,6 +61,7 @@ class ImplicitronModelFactory(ModelFactoryBase):  # pyre-ignore [13]
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    # pyre-fixme[13]: Attribute `model` is never initialized.
 | 
			
		||||
    model: ImplicitronModelBase
 | 
			
		||||
    model_class_type: str = "GenericModel"
 | 
			
		||||
    resume: bool = True
 | 
			
		||||
 | 
			
		||||
@ -30,13 +30,13 @@ from .utils import seed_all_random_engines
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# pyre-fixme[13]: Attribute `evaluator` is never initialized.
 | 
			
		||||
class TrainingLoopBase(ReplaceableBase):
 | 
			
		||||
    """
 | 
			
		||||
    Members:
 | 
			
		||||
        evaluator: An EvaluatorBase instance, used to evaluate training results.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    # pyre-fixme[13]: Attribute `evaluator` is never initialized.
 | 
			
		||||
    evaluator: Optional[EvaluatorBase]
 | 
			
		||||
    evaluator_class_type: Optional[str] = "ImplicitronEvaluator"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -41,7 +41,7 @@ class DataSourceBase(ReplaceableBase):
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@registry.register
 | 
			
		||||
class ImplicitronDataSource(DataSourceBase):  # pyre-ignore[13]
 | 
			
		||||
class ImplicitronDataSource(DataSourceBase):
 | 
			
		||||
    """
 | 
			
		||||
    Represents the data used in Implicitron. This is the only implementation
 | 
			
		||||
    of DataSourceBase provided.
 | 
			
		||||
@ -52,8 +52,11 @@ class ImplicitronDataSource(DataSourceBase):  # pyre-ignore[13]
 | 
			
		||||
        data_loader_map_provider_class_type: identifies type for data_loader_map_provider.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    # pyre-fixme[13]: Attribute `dataset_map_provider` is never initialized.
 | 
			
		||||
    dataset_map_provider: DatasetMapProviderBase
 | 
			
		||||
    # pyre-fixme[13]: Attribute `dataset_map_provider_class_type` is never initialized.
 | 
			
		||||
    dataset_map_provider_class_type: str
 | 
			
		||||
    # pyre-fixme[13]: Attribute `data_loader_map_provider` is never initialized.
 | 
			
		||||
    data_loader_map_provider: DataLoaderMapProviderBase
 | 
			
		||||
    data_loader_map_provider_class_type: str = "SequenceDataLoaderMapProvider"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -66,7 +66,7 @@ _NEED_CONTROL: Tuple[str, ...] = (
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@registry.register
 | 
			
		||||
class JsonIndexDatasetMapProvider(DatasetMapProviderBase):  # pyre-ignore [13]
 | 
			
		||||
class JsonIndexDatasetMapProvider(DatasetMapProviderBase):
 | 
			
		||||
    """
 | 
			
		||||
    Generates the training / validation and testing dataset objects for
 | 
			
		||||
    a dataset laid out on disk like Co3D, with annotations in json files.
 | 
			
		||||
@ -95,6 +95,7 @@ class JsonIndexDatasetMapProvider(DatasetMapProviderBase):  # pyre-ignore [13]
 | 
			
		||||
        path_manager_factory_class_type: The class type of `path_manager_factory`.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    # pyre-fixme[13]: Attribute `category` is never initialized.
 | 
			
		||||
    category: str
 | 
			
		||||
    task_str: str = "singlesequence"
 | 
			
		||||
    dataset_root: str = _CO3D_DATASET_ROOT
 | 
			
		||||
@ -104,8 +105,10 @@ class JsonIndexDatasetMapProvider(DatasetMapProviderBase):  # pyre-ignore [13]
 | 
			
		||||
    test_restrict_sequence_id: int = -1
 | 
			
		||||
    assert_single_seq: bool = False
 | 
			
		||||
    only_test_set: bool = False
 | 
			
		||||
    # pyre-fixme[13]: Attribute `dataset` is never initialized.
 | 
			
		||||
    dataset: JsonIndexDataset
 | 
			
		||||
    dataset_class_type: str = "JsonIndexDataset"
 | 
			
		||||
    # pyre-fixme[13]: Attribute `path_manager_factory` is never initialized.
 | 
			
		||||
    path_manager_factory: PathManagerFactory
 | 
			
		||||
    path_manager_factory_class_type: str = "PathManagerFactory"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -56,7 +56,7 @@ logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@registry.register
 | 
			
		||||
class JsonIndexDatasetMapProviderV2(DatasetMapProviderBase):  # pyre-ignore [13]
 | 
			
		||||
class JsonIndexDatasetMapProviderV2(DatasetMapProviderBase):
 | 
			
		||||
    """
 | 
			
		||||
    Generates the training, validation, and testing dataset objects for
 | 
			
		||||
    a dataset laid out on disk like CO3Dv2, with annotations in gzipped json files.
 | 
			
		||||
@ -171,7 +171,9 @@ class JsonIndexDatasetMapProviderV2(DatasetMapProviderBase):  # pyre-ignore [13]
 | 
			
		||||
        path_manager_factory_class_type: The class type of `path_manager_factory`.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    # pyre-fixme[13]: Attribute `category` is never initialized.
 | 
			
		||||
    category: str
 | 
			
		||||
    # pyre-fixme[13]: Attribute `subset_name` is never initialized.
 | 
			
		||||
    subset_name: str
 | 
			
		||||
    dataset_root: str = _CO3DV2_DATASET_ROOT
 | 
			
		||||
 | 
			
		||||
@ -183,8 +185,10 @@ class JsonIndexDatasetMapProviderV2(DatasetMapProviderBase):  # pyre-ignore [13]
 | 
			
		||||
    n_known_frames_for_test: int = 0
 | 
			
		||||
 | 
			
		||||
    dataset_class_type: str = "JsonIndexDataset"
 | 
			
		||||
    # pyre-fixme[13]: Attribute `dataset` is never initialized.
 | 
			
		||||
    dataset: JsonIndexDataset
 | 
			
		||||
 | 
			
		||||
    # pyre-fixme[13]: Attribute `path_manager_factory` is never initialized.
 | 
			
		||||
    path_manager_factory: PathManagerFactory
 | 
			
		||||
    path_manager_factory_class_type: str = "PathManagerFactory"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -32,7 +32,7 @@ from .utils import DATASET_TYPE_KNOWN
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@registry.register
 | 
			
		||||
class RenderedMeshDatasetMapProvider(DatasetMapProviderBase):  # pyre-ignore [13]
 | 
			
		||||
class RenderedMeshDatasetMapProvider(DatasetMapProviderBase):
 | 
			
		||||
    """
 | 
			
		||||
    A simple single-scene dataset based on PyTorch3D renders of a mesh.
 | 
			
		||||
    Provides `num_views` renders of the mesh as train, with no val
 | 
			
		||||
@ -76,6 +76,7 @@ class RenderedMeshDatasetMapProvider(DatasetMapProviderBase):  # pyre-ignore [13
 | 
			
		||||
    resolution: int = 128
 | 
			
		||||
    use_point_light: bool = True
 | 
			
		||||
    gpu_idx: Optional[int] = 0
 | 
			
		||||
    # pyre-fixme[13]: Attribute `path_manager_factory` is never initialized.
 | 
			
		||||
    path_manager_factory: PathManagerFactory
 | 
			
		||||
    path_manager_factory_class_type: str = "PathManagerFactory"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -83,7 +83,6 @@ class SingleSceneDataset(DatasetBase, Configurable):
 | 
			
		||||
        return self.eval_batches
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# pyre-fixme[13]: Uninitialized attribute
 | 
			
		||||
class SingleSceneDatasetMapProviderBase(DatasetMapProviderBase):
 | 
			
		||||
    """
 | 
			
		||||
    Base for provider of data for one scene from LLFF or blender datasets.
 | 
			
		||||
@ -100,8 +99,11 @@ class SingleSceneDatasetMapProviderBase(DatasetMapProviderBase):
 | 
			
		||||
            testing frame.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    # pyre-fixme[13]: Attribute `base_dir` is never initialized.
 | 
			
		||||
    base_dir: str
 | 
			
		||||
    # pyre-fixme[13]: Attribute `object_name` is never initialized.
 | 
			
		||||
    object_name: str
 | 
			
		||||
    # pyre-fixme[13]: Attribute `path_manager_factory` is never initialized.
 | 
			
		||||
    path_manager_factory: PathManagerFactory
 | 
			
		||||
    path_manager_factory_class_type: str = "PathManagerFactory"
 | 
			
		||||
    n_known_frames_for_test: Optional[int] = None
 | 
			
		||||
 | 
			
		||||
@ -348,6 +348,7 @@ def adjust_camera_to_image_scale_(
 | 
			
		||||
    camera: PerspectiveCameras,
 | 
			
		||||
    original_size_wh: torch.Tensor,
 | 
			
		||||
    new_size_wh: torch.LongTensor,
 | 
			
		||||
    # pyre-fixme[7]: Expected `PerspectiveCameras` but got implicit return value of `None`.
 | 
			
		||||
) -> PerspectiveCameras:
 | 
			
		||||
    focal_length_px, principal_point_px = _convert_ndc_to_pixels(
 | 
			
		||||
        camera.focal_length[0],
 | 
			
		||||
@ -367,7 +368,7 @@ def adjust_camera_to_image_scale_(
 | 
			
		||||
        image_size_wh_output,
 | 
			
		||||
    )
 | 
			
		||||
    camera.focal_length = focal_length_scaled[None]
 | 
			
		||||
    camera.principal_point = principal_point_scaled[None]  # pyre-ignore
 | 
			
		||||
    camera.principal_point = principal_point_scaled[None]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# NOTE this cache is per-worker; they are implemented as processes.
 | 
			
		||||
 | 
			
		||||
@ -65,7 +65,7 @@ logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@registry.register
 | 
			
		||||
class GenericModel(ImplicitronModelBase):  # pyre-ignore: 13
 | 
			
		||||
class GenericModel(ImplicitronModelBase):
 | 
			
		||||
    """
 | 
			
		||||
    GenericModel is a wrapper for the neural implicit
 | 
			
		||||
    rendering and reconstruction pipeline which consists
 | 
			
		||||
@ -226,34 +226,42 @@ class GenericModel(ImplicitronModelBase):  # pyre-ignore: 13
 | 
			
		||||
 | 
			
		||||
    # ---- global encoder settings
 | 
			
		||||
    global_encoder_class_type: Optional[str] = None
 | 
			
		||||
    # pyre-fixme[13]: Attribute `global_encoder` is never initialized.
 | 
			
		||||
    global_encoder: Optional[GlobalEncoderBase]
 | 
			
		||||
 | 
			
		||||
    # ---- raysampler
 | 
			
		||||
    raysampler_class_type: str = "AdaptiveRaySampler"
 | 
			
		||||
    # pyre-fixme[13]: Attribute `raysampler` is never initialized.
 | 
			
		||||
    raysampler: RaySamplerBase
 | 
			
		||||
 | 
			
		||||
    # ---- renderer configs
 | 
			
		||||
    renderer_class_type: str = "MultiPassEmissionAbsorptionRenderer"
 | 
			
		||||
    # pyre-fixme[13]: Attribute `renderer` is never initialized.
 | 
			
		||||
    renderer: BaseRenderer
 | 
			
		||||
 | 
			
		||||
    # ---- image feature extractor settings
 | 
			
		||||
    # (This is only created if view_pooler is enabled)
 | 
			
		||||
    # pyre-fixme[13]: Attribute `image_feature_extractor` is never initialized.
 | 
			
		||||
    image_feature_extractor: Optional[FeatureExtractorBase]
 | 
			
		||||
    image_feature_extractor_class_type: Optional[str] = None
 | 
			
		||||
    # ---- view pooler settings
 | 
			
		||||
    view_pooler_enabled: bool = False
 | 
			
		||||
    # pyre-fixme[13]: Attribute `view_pooler` is never initialized.
 | 
			
		||||
    view_pooler: Optional[ViewPooler]
 | 
			
		||||
 | 
			
		||||
    # ---- implicit function settings
 | 
			
		||||
    implicit_function_class_type: str = "NeuralRadianceFieldImplicitFunction"
 | 
			
		||||
    # This is just a model, never constructed.
 | 
			
		||||
    # The actual implicit functions live in self._implicit_functions
 | 
			
		||||
    # pyre-fixme[13]: Attribute `implicit_function` is never initialized.
 | 
			
		||||
    implicit_function: ImplicitFunctionBase
 | 
			
		||||
 | 
			
		||||
    # ----- metrics
 | 
			
		||||
    # pyre-fixme[13]: Attribute `view_metrics` is never initialized.
 | 
			
		||||
    view_metrics: ViewMetricsBase
 | 
			
		||||
    view_metrics_class_type: str = "ViewMetrics"
 | 
			
		||||
 | 
			
		||||
    # pyre-fixme[13]: Attribute `regularization_metrics` is never initialized.
 | 
			
		||||
    regularization_metrics: RegularizationMetricsBase
 | 
			
		||||
    regularization_metrics_class_type: str = "RegularizationMetrics"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -59,12 +59,13 @@ class GlobalEncoderBase(ReplaceableBase):
 | 
			
		||||
 | 
			
		||||
# TODO: probabilistic embeddings?
 | 
			
		||||
@registry.register
 | 
			
		||||
class SequenceAutodecoder(GlobalEncoderBase, torch.nn.Module):  # pyre-ignore: 13
 | 
			
		||||
class SequenceAutodecoder(GlobalEncoderBase, torch.nn.Module):
 | 
			
		||||
    """
 | 
			
		||||
    A global encoder implementation which provides an autodecoder encoding
 | 
			
		||||
    of the frame's sequence identifier.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    # pyre-fixme[13]: Attribute `autodecoder` is never initialized.
 | 
			
		||||
    autodecoder: Autodecoder
 | 
			
		||||
 | 
			
		||||
    def __post_init__(self):
 | 
			
		||||
 | 
			
		||||
@ -244,7 +244,6 @@ class MLPWithInputSkips(Configurable, torch.nn.Module):
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@registry.register
 | 
			
		||||
# pyre-fixme[13]: Attribute `network` is never initialized.
 | 
			
		||||
class MLPDecoder(DecoderFunctionBase):
 | 
			
		||||
    """
 | 
			
		||||
    Decoding function which uses `MLPWithIputSkips` to convert the embedding to output.
 | 
			
		||||
@ -272,6 +271,7 @@ class MLPDecoder(DecoderFunctionBase):
 | 
			
		||||
 | 
			
		||||
    input_dim: int = 3
 | 
			
		||||
    param_groups: Dict[str, str] = field(default_factory=lambda: {})
 | 
			
		||||
    # pyre-fixme[13]: Attribute `network` is never initialized.
 | 
			
		||||
    network: MLPWithInputSkips
 | 
			
		||||
 | 
			
		||||
    def __post_init__(self):
 | 
			
		||||
 | 
			
		||||
@ -318,10 +318,11 @@ class SRNRaymarchHyperNet(Configurable, torch.nn.Module):
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@registry.register
 | 
			
		||||
# pyre-fixme[13]: Uninitialized attribute
 | 
			
		||||
class SRNImplicitFunction(ImplicitFunctionBase, torch.nn.Module):
 | 
			
		||||
    latent_dim: int = 0
 | 
			
		||||
    # pyre-fixme[13]: Attribute `raymarch_function` is never initialized.
 | 
			
		||||
    raymarch_function: SRNRaymarchFunction
 | 
			
		||||
    # pyre-fixme[13]: Attribute `pixel_generator` is never initialized.
 | 
			
		||||
    pixel_generator: SRNPixelGenerator
 | 
			
		||||
 | 
			
		||||
    def __post_init__(self):
 | 
			
		||||
@ -366,7 +367,6 @@ class SRNImplicitFunction(ImplicitFunctionBase, torch.nn.Module):
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@registry.register
 | 
			
		||||
# pyre-fixme[13]: Uninitialized attribute
 | 
			
		||||
class SRNHyperNetImplicitFunction(ImplicitFunctionBase, torch.nn.Module):
 | 
			
		||||
    """
 | 
			
		||||
    This implicit function uses a hypernetwork to generate the
 | 
			
		||||
@ -377,7 +377,9 @@ class SRNHyperNetImplicitFunction(ImplicitFunctionBase, torch.nn.Module):
 | 
			
		||||
 | 
			
		||||
    latent_dim_hypernet: int = 0
 | 
			
		||||
    latent_dim: int = 0
 | 
			
		||||
    # pyre-fixme[13]: Attribute `hypernet` is never initialized.
 | 
			
		||||
    hypernet: SRNRaymarchHyperNet
 | 
			
		||||
    # pyre-fixme[13]: Attribute `pixel_generator` is never initialized.
 | 
			
		||||
    pixel_generator: SRNPixelGenerator
 | 
			
		||||
 | 
			
		||||
    def __post_init__(self):
 | 
			
		||||
 | 
			
		||||
@ -805,7 +805,6 @@ class VMFactorizedVoxelGrid(VoxelGridBase):
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# pyre-fixme[13]: Attribute `voxel_grid` is never initialized.
 | 
			
		||||
class VoxelGridModule(Configurable, torch.nn.Module):
 | 
			
		||||
    """
 | 
			
		||||
    A wrapper torch.nn.Module for the VoxelGrid classes, which
 | 
			
		||||
@ -845,6 +844,7 @@ class VoxelGridModule(Configurable, torch.nn.Module):
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    voxel_grid_class_type: str = "FullResolutionVoxelGrid"
 | 
			
		||||
    # pyre-fixme[13]: Attribute `voxel_grid` is never initialized.
 | 
			
		||||
    voxel_grid: VoxelGridBase
 | 
			
		||||
 | 
			
		||||
    extents: Tuple[float, float, float] = (2.0, 2.0, 2.0)
 | 
			
		||||
 | 
			
		||||
@ -39,7 +39,6 @@ enable_get_default_args(HarmonicEmbedding)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@registry.register
 | 
			
		||||
# pyre-ignore[13]
 | 
			
		||||
class VoxelGridImplicitFunction(ImplicitFunctionBase, torch.nn.Module):
 | 
			
		||||
    """
 | 
			
		||||
    This implicit function consists of two streams, one for the density calculation and one
 | 
			
		||||
@ -145,9 +144,11 @@ class VoxelGridImplicitFunction(ImplicitFunctionBase, torch.nn.Module):
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    # ---- voxel grid for density
 | 
			
		||||
    # pyre-fixme[13]: Attribute `voxel_grid_density` is never initialized.
 | 
			
		||||
    voxel_grid_density: VoxelGridModule
 | 
			
		||||
 | 
			
		||||
    # ---- voxel grid for color
 | 
			
		||||
    # pyre-fixme[13]: Attribute `voxel_grid_color` is never initialized.
 | 
			
		||||
    voxel_grid_color: VoxelGridModule
 | 
			
		||||
 | 
			
		||||
    # ---- harmonic embeddings density
 | 
			
		||||
@ -163,10 +164,12 @@ class VoxelGridImplicitFunction(ImplicitFunctionBase, torch.nn.Module):
 | 
			
		||||
 | 
			
		||||
    # ---- decoder function for density
 | 
			
		||||
    decoder_density_class_type: str = "MLPDecoder"
 | 
			
		||||
    # pyre-fixme[13]: Attribute `decoder_density` is never initialized.
 | 
			
		||||
    decoder_density: DecoderFunctionBase
 | 
			
		||||
 | 
			
		||||
    # ---- decoder function for color
 | 
			
		||||
    decoder_color_class_type: str = "MLPDecoder"
 | 
			
		||||
    # pyre-fixme[13]: Attribute `decoder_color` is never initialized.
 | 
			
		||||
    decoder_color: DecoderFunctionBase
 | 
			
		||||
 | 
			
		||||
    # ---- cuda streams
 | 
			
		||||
 | 
			
		||||
@ -69,7 +69,7 @@ IMPLICIT_FUNCTION_ARGS_TO_REMOVE: List[str] = [
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@registry.register
 | 
			
		||||
class OverfitModel(ImplicitronModelBase):  # pyre-ignore: 13
 | 
			
		||||
class OverfitModel(ImplicitronModelBase):
 | 
			
		||||
    """
 | 
			
		||||
    OverfitModel is a wrapper for the neural implicit
 | 
			
		||||
    rendering and reconstruction pipeline which consists
 | 
			
		||||
@ -198,27 +198,34 @@ class OverfitModel(ImplicitronModelBase):  # pyre-ignore: 13
 | 
			
		||||
 | 
			
		||||
    # ---- global encoder settings
 | 
			
		||||
    global_encoder_class_type: Optional[str] = None
 | 
			
		||||
    # pyre-fixme[13]: Attribute `global_encoder` is never initialized.
 | 
			
		||||
    global_encoder: Optional[GlobalEncoderBase]
 | 
			
		||||
 | 
			
		||||
    # ---- raysampler
 | 
			
		||||
    raysampler_class_type: str = "AdaptiveRaySampler"
 | 
			
		||||
    # pyre-fixme[13]: Attribute `raysampler` is never initialized.
 | 
			
		||||
    raysampler: RaySamplerBase
 | 
			
		||||
 | 
			
		||||
    # ---- renderer configs
 | 
			
		||||
    renderer_class_type: str = "MultiPassEmissionAbsorptionRenderer"
 | 
			
		||||
    # pyre-fixme[13]: Attribute `renderer` is never initialized.
 | 
			
		||||
    renderer: BaseRenderer
 | 
			
		||||
 | 
			
		||||
    # ---- implicit function settings
 | 
			
		||||
    share_implicit_function_across_passes: bool = False
 | 
			
		||||
    implicit_function_class_type: str = "NeuralRadianceFieldImplicitFunction"
 | 
			
		||||
    # pyre-fixme[13]: Attribute `implicit_function` is never initialized.
 | 
			
		||||
    implicit_function: ImplicitFunctionBase
 | 
			
		||||
    coarse_implicit_function_class_type: Optional[str] = None
 | 
			
		||||
    # pyre-fixme[13]: Attribute `coarse_implicit_function` is never initialized.
 | 
			
		||||
    coarse_implicit_function: Optional[ImplicitFunctionBase]
 | 
			
		||||
 | 
			
		||||
    # ----- metrics
 | 
			
		||||
    # pyre-fixme[13]: Attribute `view_metrics` is never initialized.
 | 
			
		||||
    view_metrics: ViewMetricsBase
 | 
			
		||||
    view_metrics_class_type: str = "ViewMetrics"
 | 
			
		||||
 | 
			
		||||
    # pyre-fixme[13]: Attribute `regularization_metrics` is never initialized.
 | 
			
		||||
    regularization_metrics: RegularizationMetricsBase
 | 
			
		||||
    regularization_metrics_class_type: str = "RegularizationMetrics"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -18,9 +18,7 @@ from .raymarcher import RaymarcherBase
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@registry.register
 | 
			
		||||
class MultiPassEmissionAbsorptionRenderer(  # pyre-ignore: 13
 | 
			
		||||
    BaseRenderer, torch.nn.Module
 | 
			
		||||
):
 | 
			
		||||
class MultiPassEmissionAbsorptionRenderer(BaseRenderer, torch.nn.Module):
 | 
			
		||||
    """
 | 
			
		||||
    Implements the multi-pass rendering function, in particular,
 | 
			
		||||
    with emission-absorption ray marching used in NeRF [1]. First, it evaluates
 | 
			
		||||
@ -86,6 +84,7 @@ class MultiPassEmissionAbsorptionRenderer(  # pyre-ignore: 13
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    raymarcher_class_type: str = "EmissionAbsorptionRaymarcher"
 | 
			
		||||
    # pyre-fixme[13]: Attribute `raymarcher` is never initialized.
 | 
			
		||||
    raymarcher: RaymarcherBase
 | 
			
		||||
 | 
			
		||||
    n_pts_per_ray_fine_training: int = 64
 | 
			
		||||
 | 
			
		||||
@ -16,8 +16,6 @@ from pytorch3d.renderer.implicit.sample_pdf import sample_pdf
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@expand_args_fields
 | 
			
		||||
# pyre-fixme[13]: Attribute `n_pts_per_ray` is never initialized.
 | 
			
		||||
# pyre-fixme[13]: Attribute `random_sampling` is never initialized.
 | 
			
		||||
class RayPointRefiner(Configurable, torch.nn.Module):
 | 
			
		||||
    """
 | 
			
		||||
    Implements the importance sampling of points along rays.
 | 
			
		||||
@ -45,7 +43,9 @@ class RayPointRefiner(Configurable, torch.nn.Module):
 | 
			
		||||
            for Anti-Aliasing Neural Radiance Fields." ICCV 2021.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    # pyre-fixme[13]: Attribute `n_pts_per_ray` is never initialized.
 | 
			
		||||
    n_pts_per_ray: int
 | 
			
		||||
    # pyre-fixme[13]: Attribute `random_sampling` is never initialized.
 | 
			
		||||
    random_sampling: bool
 | 
			
		||||
    add_input_samples: bool = True
 | 
			
		||||
    blurpool_weights: bool = False
 | 
			
		||||
 | 
			
		||||
@ -24,9 +24,10 @@ from .rgb_net import RayNormalColoringNetwork
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@registry.register
 | 
			
		||||
class SignedDistanceFunctionRenderer(BaseRenderer, torch.nn.Module):  # pyre-ignore[13]
 | 
			
		||||
class SignedDistanceFunctionRenderer(BaseRenderer, torch.nn.Module):
 | 
			
		||||
    render_features_dimensions: int = 3
 | 
			
		||||
    object_bounding_sphere: float = 1.0
 | 
			
		||||
    # pyre-fixme[13]: Attribute `ray_tracer` is never initialized.
 | 
			
		||||
    ray_tracer: RayTracing
 | 
			
		||||
    ray_normal_coloring_network_args: DictConfig = get_default_args_field(
 | 
			
		||||
        RayNormalColoringNetwork
 | 
			
		||||
 | 
			
		||||
@ -16,7 +16,6 @@ from .feature_aggregator import FeatureAggregatorBase
 | 
			
		||||
from .view_sampler import ViewSampler
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# pyre-ignore: 13
 | 
			
		||||
class ViewPooler(Configurable, torch.nn.Module):
 | 
			
		||||
    """
 | 
			
		||||
    Implements sampling of image-based features at the 2d projections of a set
 | 
			
		||||
@ -35,8 +34,10 @@ class ViewPooler(Configurable, torch.nn.Module):
 | 
			
		||||
            from a set of source images. FeatureAggregator executes step (4) above.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    # pyre-fixme[13]: Attribute `view_sampler` is never initialized.
 | 
			
		||||
    view_sampler: ViewSampler
 | 
			
		||||
    feature_aggregator_class_type: str = "AngleWeightedReductionFeatureAggregator"
 | 
			
		||||
    # pyre-fixme[13]: Attribute `feature_aggregator` is never initialized.
 | 
			
		||||
    feature_aggregator: FeatureAggregatorBase
 | 
			
		||||
 | 
			
		||||
    def __post_init__(self):
 | 
			
		||||
 | 
			
		||||
@ -156,7 +156,6 @@ def render_point_cloud_pytorch3d(
 | 
			
		||||
    cumprod = torch.cat((torch.ones_like(cumprod[..., :1]), cumprod[..., :-1]), dim=-1)
 | 
			
		||||
    depths = (weights * cumprod * fragments.zbuf).sum(dim=-1)
 | 
			
		||||
    # add the rendering mask
 | 
			
		||||
    # pyre-fixme[6]: For 1st param expected `Tensor` but got `float`.
 | 
			
		||||
    render_mask = -torch.prod(1.0 - weights, dim=-1) + 1.0
 | 
			
		||||
 | 
			
		||||
    # cat depths and render mask
 | 
			
		||||
 | 
			
		||||
@ -409,6 +409,7 @@ def _parse_mtl(
 | 
			
		||||
    texture_files = {}
 | 
			
		||||
    material_name = ""
 | 
			
		||||
 | 
			
		||||
    # pyre-fixme[9]: f has type `str`; used as `IO[typing.Any]`.
 | 
			
		||||
    with _open_file(f, path_manager, "r") as f:
 | 
			
		||||
        for line in f:
 | 
			
		||||
            tokens = line.strip().split()
 | 
			
		||||
 | 
			
		||||
@ -756,10 +756,13 @@ def save_obj(
 | 
			
		||||
    output_path = Path(f)
 | 
			
		||||
 | 
			
		||||
    # Save the .obj file
 | 
			
		||||
    # pyre-fixme[9]: f has type `Union[Path, str]`; used as `IO[typing.Any]`.
 | 
			
		||||
    with _open_file(f, path_manager, "w") as f:
 | 
			
		||||
        if save_texture:
 | 
			
		||||
            # Add the header required for the texture info to be loaded correctly
 | 
			
		||||
            obj_header = "\nmtllib {0}.mtl\nusemtl mesh\n\n".format(output_path.stem)
 | 
			
		||||
            # pyre-fixme[16]: Item `Path` of `Union[Path, str]` has no attribute
 | 
			
		||||
            #  `write`.
 | 
			
		||||
            f.write(obj_header)
 | 
			
		||||
        _save(
 | 
			
		||||
            f,
 | 
			
		||||
 | 
			
		||||
@ -617,6 +617,7 @@ def _splat_points_to_volumes(
 | 
			
		||||
                w = wX * wY * wZ
 | 
			
		||||
 | 
			
		||||
                # valid - binary indicators of votes that fall into the volume
 | 
			
		||||
                # pyre-fixme[16]: `int` has no attribute `long`.
 | 
			
		||||
                valid = (
 | 
			
		||||
                    (0 <= X_)
 | 
			
		||||
                    * (X_ < grid_sizes_xyz[:, None, 0:1])
 | 
			
		||||
@ -635,14 +636,19 @@ def _splat_points_to_volumes(
 | 
			
		||||
                idx_valid = idx * valid + rand_idx * (1 - valid)
 | 
			
		||||
                w_valid = w * valid.type_as(w)
 | 
			
		||||
                if mask is not None:
 | 
			
		||||
                    # pyre-fixme[6]: For 1st argument expected `Tensor` but got `int`.
 | 
			
		||||
                    w_valid = w_valid * mask.type_as(w)[:, :, None]
 | 
			
		||||
 | 
			
		||||
                # scatter add casts the votes into the weight accumulator
 | 
			
		||||
                # and the feature accumulator
 | 
			
		||||
                # pyre-fixme[6]: For 3rd argument expected `Tensor` but got
 | 
			
		||||
                #  `Union[int, Tensor]`.
 | 
			
		||||
                volume_densities.scatter_add_(1, idx_valid, w_valid)
 | 
			
		||||
 | 
			
		||||
                # reshape idx_valid -> (minibatch, feature_dim, n_points)
 | 
			
		||||
                idx_valid = idx_valid.view(ba, 1, n_points).expand_as(points_features)
 | 
			
		||||
                # pyre-fixme[16]: Item `int` of `Union[int, Tensor]` has no
 | 
			
		||||
                #  attribute `view`.
 | 
			
		||||
                w_valid = w_valid.view(ba, 1, n_points)
 | 
			
		||||
 | 
			
		||||
                # volume_features of shape (minibatch, feature_dim, n_voxels)
 | 
			
		||||
@ -724,6 +730,7 @@ def _round_points_to_volumes(
 | 
			
		||||
    # valid - binary indicators of votes that fall into the volume
 | 
			
		||||
    # pyre-fixme[9]: grid_sizes has type `LongTensor`; used as `Tensor`.
 | 
			
		||||
    grid_sizes = grid_sizes.type_as(XYZ)
 | 
			
		||||
    # pyre-fixme[16]: `int` has no attribute `long`.
 | 
			
		||||
    valid = (
 | 
			
		||||
        (0 <= X)
 | 
			
		||||
        * (X < grid_sizes_xyz[:, None, 0:1])
 | 
			
		||||
 | 
			
		||||
@ -497,6 +497,7 @@ def clip_faces(
 | 
			
		||||
    faces_case3 = face_verts_unclipped[case3_unclipped_idx]
 | 
			
		||||
 | 
			
		||||
    # index (0, 1, or 2) of the vertex in front of the clipping plane
 | 
			
		||||
    # pyre-fixme[61]: `faces_clipped_verts` is undefined, or not always defined.
 | 
			
		||||
    p1_face_ind = torch.where(~faces_clipped_verts[case3_unclipped_idx])[1]
 | 
			
		||||
 | 
			
		||||
    # Solve for the points p4, p5 that intersect the clipping plane
 | 
			
		||||
@ -540,6 +541,7 @@ def clip_faces(
 | 
			
		||||
    faces_case4 = face_verts_unclipped[case4_unclipped_idx]
 | 
			
		||||
 | 
			
		||||
    # index (0, 1, or 2) of the vertex behind the clipping plane
 | 
			
		||||
    # pyre-fixme[61]: `faces_clipped_verts` is undefined, or not always defined.
 | 
			
		||||
    p1_face_ind = torch.where(faces_clipped_verts[case4_unclipped_idx])[1]
 | 
			
		||||
 | 
			
		||||
    # Solve for the points p4, p5 that intersect the clipping plane
 | 
			
		||||
 | 
			
		||||
@ -369,6 +369,7 @@ def plot_scene(
 | 
			
		||||
        # update camera viewpoint if provided
 | 
			
		||||
        if viewpoints_eye_at_up_world is not None:
 | 
			
		||||
            # Use camera params for batch index or the first camera if only one provided.
 | 
			
		||||
            # pyre-fixme[61]: `n_viewpoint_cameras` is undefined, or not always defined.
 | 
			
		||||
            viewpoint_idx = min(n_viewpoint_cameras - 1, subplot_idx)
 | 
			
		||||
 | 
			
		||||
            eye, at, up = (i[viewpoint_idx] for i in viewpoints_eye_at_up_world)
 | 
			
		||||
@ -627,7 +628,7 @@ def _add_struct_from_batch(
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _add_mesh_trace(
 | 
			
		||||
    fig: go.Figure,  # pyre-ignore[11]
 | 
			
		||||
    fig: go.Figure,
 | 
			
		||||
    meshes: Meshes,
 | 
			
		||||
    trace_name: str,
 | 
			
		||||
    subplot_idx: int,
 | 
			
		||||
@ -673,6 +674,7 @@ def _add_mesh_trace(
 | 
			
		||||
    verts[~verts_used] = verts_center
 | 
			
		||||
 | 
			
		||||
    row, col = subplot_idx // ncols + 1, subplot_idx % ncols + 1
 | 
			
		||||
    # pyre-fixme[16]: `Figure` has no attribute `add_trace`.
 | 
			
		||||
    fig.add_trace(
 | 
			
		||||
        go.Mesh3d(
 | 
			
		||||
            x=verts[:, 0],
 | 
			
		||||
@ -739,6 +741,7 @@ def _add_pointcloud_trace(
 | 
			
		||||
 | 
			
		||||
    row = subplot_idx // ncols + 1
 | 
			
		||||
    col = subplot_idx % ncols + 1
 | 
			
		||||
    # pyre-fixme[16]: `Figure` has no attribute `add_trace`.
 | 
			
		||||
    fig.add_trace(
 | 
			
		||||
        go.Scatter3d(
 | 
			
		||||
            x=verts[:, 0],
 | 
			
		||||
@ -800,6 +803,7 @@ def _add_camera_trace(
 | 
			
		||||
    x, y, z = all_cam_wires.detach().cpu().numpy().T.astype(float)
 | 
			
		||||
 | 
			
		||||
    row, col = subplot_idx // ncols + 1, subplot_idx % ncols + 1
 | 
			
		||||
    # pyre-fixme[16]: `Figure` has no attribute `add_trace`.
 | 
			
		||||
    fig.add_trace(
 | 
			
		||||
        go.Scatter3d(x=x, y=y, z=z, marker={"size": 1}, name=trace_name),
 | 
			
		||||
        row=row,
 | 
			
		||||
@ -894,6 +898,7 @@ def _add_ray_bundle_trace(
 | 
			
		||||
        ray_lines = torch.cat((ray_lines, nan_tensor, ray_line))
 | 
			
		||||
    x, y, z = ray_lines.detach().cpu().numpy().T.astype(float)
 | 
			
		||||
    row, col = subplot_idx // ncols + 1, subplot_idx % ncols + 1
 | 
			
		||||
    # pyre-fixme[16]: `Figure` has no attribute `add_trace`.
 | 
			
		||||
    fig.add_trace(
 | 
			
		||||
        go.Scatter3d(
 | 
			
		||||
            x=x,
 | 
			
		||||
@ -988,7 +993,7 @@ def _gen_fig_with_subplots(
 | 
			
		||||
def _update_axes_bounds(
 | 
			
		||||
    verts_center: torch.Tensor,
 | 
			
		||||
    max_expand: float,
 | 
			
		||||
    current_layout: go.Scene,  # pyre-ignore[11]
 | 
			
		||||
    current_layout: go.Scene,
 | 
			
		||||
) -> None:  # pragma: no cover
 | 
			
		||||
    """
 | 
			
		||||
    Takes in the vertices' center point and max spread, and the current plotly figure
 | 
			
		||||
@ -1005,6 +1010,7 @@ def _update_axes_bounds(
 | 
			
		||||
 | 
			
		||||
    # Ensure that within a subplot, the bounds capture all traces
 | 
			
		||||
    old_xrange, old_yrange, old_zrange = (
 | 
			
		||||
        # pyre-fixme[16]: `Scene` has no attribute `__getitem__`.
 | 
			
		||||
        current_layout["xaxis"]["range"],
 | 
			
		||||
        current_layout["yaxis"]["range"],
 | 
			
		||||
        current_layout["zaxis"]["range"],
 | 
			
		||||
@ -1023,6 +1029,7 @@ def _update_axes_bounds(
 | 
			
		||||
    xaxis = {"range": x_range}
 | 
			
		||||
    yaxis = {"range": y_range}
 | 
			
		||||
    zaxis = {"range": z_range}
 | 
			
		||||
    # pyre-fixme[16]: `Scene` has no attribute `update`.
 | 
			
		||||
    current_layout.update({"xaxis": xaxis, "yaxis": yaxis, "zaxis": zaxis})
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user