mirror of
				https://github.com/facebookresearch/pytorch3d.git
				synced 2025-11-04 18:02:14 +08:00 
			
		
		
		
	Adapt RayPointRefiner and RayMarcher to support bins.
Summary:
## Context
Bins are used in mipnerf to allow to manipulate easily intervals. For example, by doing the following, `bins[..., :-1]` you will obtain all the left coordinates of your intervals, while doing `bins[..., 1:]` is equals to the right coordinates of your intervals.
We introduce here the support of bins like in MipNerf implementation.
## RayPointRefiner
Small changes have been made to modify RayPointRefiner.
- If bins is None
```
mids = torch.lerp(ray_bundle.lengths[..., 1:], ray_bundle.lengths[…, :-1], 0.5)
z_samples = sample_pdf(
		mids, # [..., npt]
		weights[..., 1:-1], # [..., npt - 1]
               ….
            )
```
- If bins is not None
In the MipNerf implementation the sampling is done on all the bins. It allows us to use the full weights tensor without slashing it.
```
z_samples = sample_pdf(
		ray_bundle.bins, # [..., npt + 1]
		weights, # [..., npt]
               ...
            )
```
## RayMarcher
Add a ray_deltas optional argument. If None, keep the same deltas computation from ray_lengths.
Reviewed By: shapovalov
Differential Revision: D46389092
fbshipit-source-id: d4f1963310065bd31c1c7fac1adfe11cbeaba606
			
			
This commit is contained in:
		
							parent
							
								
									5910d81b7b
								
							
						
					
					
						commit
						3d011a9198
					
				@ -157,9 +157,13 @@ class MultiPassEmissionAbsorptionRenderer(  # pyre-ignore: 13
 | 
			
		||||
            else 0.0
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        ray_deltas = (
 | 
			
		||||
            None if ray_bundle.bins is None else torch.diff(ray_bundle.bins, dim=-1)
 | 
			
		||||
        )
 | 
			
		||||
        output = self.raymarcher(
 | 
			
		||||
            *implicit_functions[0](ray_bundle=ray_bundle),
 | 
			
		||||
            ray_lengths=ray_bundle.lengths,
 | 
			
		||||
            ray_deltas=ray_deltas,
 | 
			
		||||
            density_noise_std=density_noise_std,
 | 
			
		||||
        )
 | 
			
		||||
        output.prev_stage = prev_stage
 | 
			
		||||
 | 
			
		||||
@ -78,19 +78,28 @@ class RayPointRefiner(Configurable, torch.nn.Module):
 | 
			
		||||
 | 
			
		||||
        """
 | 
			
		||||
 | 
			
		||||
        z_vals = input_ray_bundle.lengths
 | 
			
		||||
        with torch.no_grad():
 | 
			
		||||
            if self.blurpool_weights:
 | 
			
		||||
                ray_weights = apply_blurpool_on_weights(ray_weights)
 | 
			
		||||
 | 
			
		||||
            z_vals_mid = torch.lerp(z_vals[..., 1:], z_vals[..., :-1], 0.5)
 | 
			
		||||
            n_pts_per_ray = self.n_pts_per_ray
 | 
			
		||||
            ray_weights = ray_weights.view(-1, ray_weights.shape[-1])
 | 
			
		||||
            if input_ray_bundle.bins is None:
 | 
			
		||||
                z_vals: torch.Tensor = input_ray_bundle.lengths
 | 
			
		||||
                ray_weights = ray_weights[..., 1:-1]
 | 
			
		||||
                bins = torch.lerp(z_vals[..., 1:], z_vals[..., :-1], 0.5)
 | 
			
		||||
            else:
 | 
			
		||||
                z_vals = input_ray_bundle.bins
 | 
			
		||||
                n_pts_per_ray += 1
 | 
			
		||||
                bins = z_vals
 | 
			
		||||
            z_samples = sample_pdf(
 | 
			
		||||
                z_vals_mid.view(-1, z_vals_mid.shape[-1]),
 | 
			
		||||
                ray_weights.view(-1, ray_weights.shape[-1])[..., 1:-1],
 | 
			
		||||
                self.n_pts_per_ray,
 | 
			
		||||
                bins.view(-1, bins.shape[-1]),
 | 
			
		||||
                ray_weights,
 | 
			
		||||
                n_pts_per_ray,
 | 
			
		||||
                det=not self.random_sampling,
 | 
			
		||||
                eps=self.sample_pdf_eps,
 | 
			
		||||
            ).view(*z_vals.shape[:-1], self.n_pts_per_ray)
 | 
			
		||||
            ).view(*z_vals.shape[:-1], n_pts_per_ray)
 | 
			
		||||
 | 
			
		||||
        if self.add_input_samples:
 | 
			
		||||
            z_vals = torch.cat((z_vals, z_samples), dim=-1)
 | 
			
		||||
        else:
 | 
			
		||||
@ -98,9 +107,13 @@ class RayPointRefiner(Configurable, torch.nn.Module):
 | 
			
		||||
        # Resort by depth.
 | 
			
		||||
        z_vals, _ = torch.sort(z_vals, dim=-1)
 | 
			
		||||
 | 
			
		||||
        new_bundle = ImplicitronRayBundle(**vars(input_ray_bundle))
 | 
			
		||||
        new_bundle.lengths = z_vals
 | 
			
		||||
        return new_bundle
 | 
			
		||||
        kwargs_ray = dict(vars(input_ray_bundle))
 | 
			
		||||
        if input_ray_bundle.bins is None:
 | 
			
		||||
            kwargs_ray["lengths"] = z_vals
 | 
			
		||||
            return ImplicitronRayBundle(**kwargs_ray)
 | 
			
		||||
        kwargs_ray["bins"] = z_vals
 | 
			
		||||
        del kwargs_ray["lengths"]
 | 
			
		||||
        return ImplicitronRayBundle.from_bins(**kwargs_ray)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def apply_blurpool_on_weights(weights) -> torch.Tensor:
 | 
			
		||||
 | 
			
		||||
@ -4,7 +4,7 @@
 | 
			
		||||
# This source code is licensed under the BSD-style license found in the
 | 
			
		||||
# LICENSE file in the root directory of this source tree.
 | 
			
		||||
 | 
			
		||||
from typing import Any, Callable, Dict, Tuple
 | 
			
		||||
from typing import Any, Callable, Dict, Optional, Tuple
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from pytorch3d.implicitron.models.renderer.base import RendererOutput
 | 
			
		||||
@ -119,6 +119,7 @@ class AccumulativeRaymarcherBase(RaymarcherBase, torch.nn.Module):
 | 
			
		||||
        rays_features: torch.Tensor,
 | 
			
		||||
        aux: Dict[str, Any],
 | 
			
		||||
        ray_lengths: torch.Tensor,
 | 
			
		||||
        ray_deltas: Optional[torch.Tensor] = None,
 | 
			
		||||
        density_noise_std: float = 0.0,
 | 
			
		||||
        **kwargs,
 | 
			
		||||
    ) -> RendererOutput:
 | 
			
		||||
@ -131,6 +132,9 @@ class AccumulativeRaymarcherBase(RaymarcherBase, torch.nn.Module):
 | 
			
		||||
            aux: a dictionary with extra information.
 | 
			
		||||
            ray_lengths: Per-ray depth values represented with a tensor
 | 
			
		||||
                of shape `(..., n_points_per_ray, feature_dim)`.
 | 
			
		||||
            ray_deltas: Optional differences between consecutive elements along the ray bundle
 | 
			
		||||
                represented with a tensor of shape `(..., n_points_per_ray)`. If None,
 | 
			
		||||
                these differences are computed from ray_lengths.
 | 
			
		||||
            density_noise_std: the magnitude of the noise added to densities.
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
@ -152,14 +156,17 @@ class AccumulativeRaymarcherBase(RaymarcherBase, torch.nn.Module):
 | 
			
		||||
            density_1d=True,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        ray_lengths_diffs = ray_lengths[..., 1:] - ray_lengths[..., :-1]
 | 
			
		||||
        if self.replicate_last_interval:
 | 
			
		||||
            last_interval = ray_lengths_diffs[..., -1:]
 | 
			
		||||
        if ray_deltas is None:
 | 
			
		||||
            ray_lengths_diffs = torch.diff(ray_lengths, dim=-1)
 | 
			
		||||
            if self.replicate_last_interval:
 | 
			
		||||
                last_interval = ray_lengths_diffs[..., -1:]
 | 
			
		||||
            else:
 | 
			
		||||
                last_interval = torch.full_like(
 | 
			
		||||
                    ray_lengths[..., :1], self.background_opacity
 | 
			
		||||
                )
 | 
			
		||||
            deltas = torch.cat((ray_lengths_diffs, last_interval), dim=-1)
 | 
			
		||||
        else:
 | 
			
		||||
            last_interval = torch.full_like(
 | 
			
		||||
                ray_lengths[..., :1], self.background_opacity
 | 
			
		||||
            )
 | 
			
		||||
        deltas = torch.cat((ray_lengths_diffs, last_interval), dim=-1)
 | 
			
		||||
            deltas = ray_deltas
 | 
			
		||||
 | 
			
		||||
        rays_densities = rays_densities[..., 0]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -24,7 +24,7 @@ class HarmonicEmbedding(torch.nn.Module):
 | 
			
		||||
        and the integrated position encoding in
 | 
			
		||||
        `MIP-NeRF <https://arxiv.org/abs/2103.13415>`_.
 | 
			
		||||
 | 
			
		||||
        During, the inference you can provide the extra argument `diag_cov`.
 | 
			
		||||
        During the inference you can provide the extra argument `diag_cov`.
 | 
			
		||||
 | 
			
		||||
        If `diag_cov is None`, it converts
 | 
			
		||||
        rays parametrized with a `ray_bundle` to 3D points by
 | 
			
		||||
 | 
			
		||||
@ -70,6 +70,71 @@ class TestRayPointRefiner(TestCaseMixin, unittest.TestCase):
 | 
			
		||||
                (lengths_random[..., 1:] - lengths_random[..., :-1] > 0).all()
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
    def test_simple_use_bins(self):
 | 
			
		||||
        """
 | 
			
		||||
        Same spirit than test_simple but use bins in the ImplicitronRayBunle.
 | 
			
		||||
        It has been duplicated to avoid cognitive overload while reading the
 | 
			
		||||
        test (lot of if else).
 | 
			
		||||
        """
 | 
			
		||||
        length = 15
 | 
			
		||||
        n_pts_per_ray = 10
 | 
			
		||||
 | 
			
		||||
        for add_input_samples, use_blurpool in product([False, True], [False, True]):
 | 
			
		||||
            ray_point_refiner = RayPointRefiner(
 | 
			
		||||
                n_pts_per_ray=n_pts_per_ray,
 | 
			
		||||
                random_sampling=False,
 | 
			
		||||
                add_input_samples=add_input_samples,
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
            bundle = ImplicitronRayBundle(
 | 
			
		||||
                lengths=None,
 | 
			
		||||
                bins=torch.arange(length + 1, dtype=torch.float32).expand(
 | 
			
		||||
                    3, 25, length + 1
 | 
			
		||||
                ),
 | 
			
		||||
                origins=None,
 | 
			
		||||
                directions=None,
 | 
			
		||||
                xys=None,
 | 
			
		||||
                camera_ids=None,
 | 
			
		||||
                camera_counts=None,
 | 
			
		||||
            )
 | 
			
		||||
            weights = torch.ones(3, 25, length)
 | 
			
		||||
            refined = ray_point_refiner(bundle, weights, blurpool_weights=use_blurpool)
 | 
			
		||||
 | 
			
		||||
            self.assertIsNone(refined.directions)
 | 
			
		||||
            self.assertIsNone(refined.origins)
 | 
			
		||||
            self.assertIsNone(refined.xys)
 | 
			
		||||
            expected_bins = torch.linspace(0, length, n_pts_per_ray + 1)
 | 
			
		||||
            expected_bins = expected_bins.expand(3, 25, n_pts_per_ray + 1)
 | 
			
		||||
            if add_input_samples:
 | 
			
		||||
                expected_bins = torch.cat((bundle.bins, expected_bins), dim=-1).sort()[
 | 
			
		||||
                    0
 | 
			
		||||
                ]
 | 
			
		||||
            full_expected = torch.lerp(
 | 
			
		||||
                expected_bins[..., :-1], expected_bins[..., 1:], 0.5
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
            self.assertClose(refined.lengths, full_expected)
 | 
			
		||||
 | 
			
		||||
            ray_point_refiner_random = RayPointRefiner(
 | 
			
		||||
                n_pts_per_ray=n_pts_per_ray,
 | 
			
		||||
                random_sampling=True,
 | 
			
		||||
                add_input_samples=add_input_samples,
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
            refined_random = ray_point_refiner_random(
 | 
			
		||||
                bundle, weights, blurpool_weights=use_blurpool
 | 
			
		||||
            )
 | 
			
		||||
            lengths_random = refined_random.lengths
 | 
			
		||||
            self.assertEqual(lengths_random.shape, full_expected.shape)
 | 
			
		||||
            if not add_input_samples:
 | 
			
		||||
                self.assertGreater(lengths_random.min().item(), 0)
 | 
			
		||||
                self.assertLess(lengths_random.max().item(), length)
 | 
			
		||||
 | 
			
		||||
            # Check sorted
 | 
			
		||||
            self.assertTrue(
 | 
			
		||||
                (lengths_random[..., 1:] - lengths_random[..., :-1] > 0).all()
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
    def test_apply_blurpool_on_weights(self):
 | 
			
		||||
        weights = torch.tensor(
 | 
			
		||||
            [
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user