mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-07-31 10:52:50 +08:00
Support color in cubify
Summary: The diff support colors in cubify for align = "center" Reviewed By: bottler Differential Revision: D53777011 fbshipit-source-id: ccb2bd1e3d89be3d1ac943eff08f40e50b0540d9
This commit is contained in:
parent
8772fe0de8
commit
ae9d8787ce
@ -5,9 +5,13 @@
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from pytorch3d.common.compat import meshgrid_ij
|
||||
|
||||
from pytorch3d.structures import Meshes
|
||||
|
||||
|
||||
@ -50,7 +54,14 @@ def ravel_index(idx, dims) -> torch.Tensor:
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def cubify(voxels, thresh, device=None, align: str = "topleft") -> Meshes:
|
||||
def cubify(
|
||||
voxels: torch.Tensor,
|
||||
thresh: float,
|
||||
*,
|
||||
feats: Optional[torch.Tensor] = None,
|
||||
device=None,
|
||||
align: str = "topleft"
|
||||
) -> Meshes:
|
||||
r"""
|
||||
Converts a voxel to a mesh by replacing each occupied voxel with a cube
|
||||
consisting of 12 faces and 8 vertices. Shared vertices are merged, and
|
||||
@ -59,6 +70,9 @@ def cubify(voxels, thresh, device=None, align: str = "topleft") -> Meshes:
|
||||
voxels: A FloatTensor of shape (N, D, H, W) containing occupancy probabilities.
|
||||
thresh: A scalar threshold. If a voxel occupancy is larger than
|
||||
thresh, the voxel is considered occupied.
|
||||
feats: A FloatTensor of shape (N, K, D, H, W) containing the color information
|
||||
of each voxel. K is the number of channels. This is supported only when
|
||||
align == "center"
|
||||
device: The device of the output meshes
|
||||
align: Defines the alignment of the mesh vertices and the grid locations.
|
||||
Has to be one of {"topleft", "corner", "center"}. See below for explanation.
|
||||
@ -177,6 +191,7 @@ def cubify(voxels, thresh, device=None, align: str = "topleft") -> Meshes:
|
||||
# boolean to linear index
|
||||
# NF x 2
|
||||
linind = torch.nonzero(faces_idx, as_tuple=False)
|
||||
|
||||
# NF x 4
|
||||
nyxz = unravel_index(linind[:, 0], (N, H, W, D))
|
||||
|
||||
@ -238,6 +253,21 @@ def cubify(voxels, thresh, device=None, align: str = "topleft") -> Meshes:
|
||||
grid_verts.index_select(0, (idleverts[n] == 0).nonzero(as_tuple=False)[:, 0])
|
||||
for n in range(N)
|
||||
]
|
||||
faces_list = [nface - idlenum[n][nface] for n, nface in enumerate(faces_list)]
|
||||
|
||||
return Meshes(verts=verts_list, faces=faces_list)
|
||||
textures_list = None
|
||||
if feats is not None and align == "center":
|
||||
# We return a TexturesAtlas containing one color for each face
|
||||
# N x K x D x H x W -> N x H x W x D x K
|
||||
feats = feats.permute(0, 3, 4, 2, 1)
|
||||
|
||||
# (NHWD) x K
|
||||
feats = feats.reshape(-1, feats.size(4))
|
||||
feats = torch.index_select(feats, 0, linind[:, 0])
|
||||
feats = feats.reshape(-1, 1, 1, feats.size(1))
|
||||
feats_list = list(torch.split(feats, split_size.tolist(), 0))
|
||||
from pytorch3d.renderer.mesh.textures import TexturesAtlas
|
||||
|
||||
textures_list = TexturesAtlas(feats_list)
|
||||
|
||||
faces_list = [nface - idlenum[n][nface] for n, nface in enumerate(faces_list)]
|
||||
return Meshes(verts=verts_list, faces=faces_list, textures=textures_list)
|
||||
|
@ -8,6 +8,7 @@ import unittest
|
||||
|
||||
import torch
|
||||
from pytorch3d.ops import cubify
|
||||
from pytorch3d.renderer.mesh.textures import TexturesAtlas
|
||||
|
||||
from .common_testing import TestCaseMixin
|
||||
|
||||
@ -313,3 +314,42 @@ class TestCubify(TestCaseMixin, unittest.TestCase):
|
||||
torch.cuda.synchronize()
|
||||
|
||||
return convert
|
||||
|
||||
def test_cubify_with_feats(self):
|
||||
N, V = 3, 2
|
||||
device = torch.device("cuda:0")
|
||||
voxels = torch.zeros((N, V, V, V), dtype=torch.float32, device=device)
|
||||
feats = torch.zeros((N, 3, V, V, V), dtype=torch.float32, device=device)
|
||||
# fill the feats with red color
|
||||
feats[:, 0, :, :, :] = 255
|
||||
|
||||
# 1st example: (top left corner, znear) is on
|
||||
voxels[0, 0, 0, 0] = 1.0
|
||||
# the color is set to green
|
||||
feats[0, :, 0, 0, 0] = torch.Tensor([0, 255, 0])
|
||||
# 2nd example: all are on
|
||||
voxels[1] = 1.0
|
||||
|
||||
# 3rd example
|
||||
voxels[2, :, :, 1] = 1.0
|
||||
voxels[2, 1, 1, 0] = 1.0
|
||||
# the color is set to yellow and blue respectively
|
||||
feats[2, 1, :, :, 1] = 255
|
||||
feats[2, :, 1, 1, 0] = torch.Tensor([0, 0, 255])
|
||||
meshes = cubify(voxels, 0.5, feats=feats, align="center")
|
||||
textures = meshes.textures
|
||||
self.assertTrue(textures is not None)
|
||||
self.assertTrue(isinstance(textures, TexturesAtlas))
|
||||
faces_textures = textures.faces_verts_textures_packed()
|
||||
red = faces_textures.new_tensor([255.0, 0.0, 0.0])
|
||||
green = faces_textures.new_tensor([0.0, 255.0, 0.0])
|
||||
blue = faces_textures.new_tensor([0.0, 0.0, 255.0])
|
||||
yellow = faces_textures.new_tensor([255.0, 255.0, 0.0])
|
||||
|
||||
self.assertEqual(faces_textures.shape, (100, 3, 3))
|
||||
faces_textures_ = faces_textures.flatten(end_dim=1)
|
||||
self.assertClose(faces_textures_[:36], green.expand(36, -1))
|
||||
self.assertClose(faces_textures_[36:180], red.expand(144, -1))
|
||||
self.assertClose(faces_textures_[180:228], yellow.expand(48, -1))
|
||||
self.assertClose(faces_textures_[228:258], blue.expand(30, -1))
|
||||
self.assertClose(faces_textures_[258:300], yellow.expand(42, -1))
|
||||
|
Loading…
x
Reference in New Issue
Block a user