550 Commits

Author SHA1 Message Date
codingma
2e2f92701f [model] add qwen3-vl-30b (#9227) 2025-10-04 14:12:37 +08:00
Yaowei Zheng
7d60b840ef [v1] support switch v1 backend (#9226) 2025-10-02 15:59:19 +08:00
Yaowei Zheng
1d96c62df2 [v1] add v1 folders (#9225) 2025-10-02 15:25:57 +08:00
Yaowei Zheng
a0d44c650a [misc] add data files (#9224) 2025-10-02 14:02:07 +08:00
Yaowei Zheng
bcc2c1fd8f [misc] move wechat out (#9223) 2025-10-02 02:06:09 +08:00
Yaowei Zheng
7dd910f067 [misc] lint (#9221) 2025-10-01 22:58:58 +08:00
krli
d10d65e4ce [docker] update Dockerfile to set no_proxy and fix pydantic version (#8651) 2025-10-01 14:33:47 +08:00
Ben Feuer
1c44b60e3e [feat] fp8 training (#8960)
Co-authored-by: Benjamin Feuer <penfever@gmail.com>
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
2025-10-01 14:32:53 +08:00
Yaowei Zheng
e2b1594d31 [data] fix reasoning template (#9219) 2025-09-30 18:11:45 +08:00
h7878778h
09dedf144f [npu] Redirect SDPA to torch_npu.npu_fusion_attention (opt-in, ZeRO-3 safe, no impact off NPU) (#8972) 2025-09-30 18:11:31 +08:00
魅影
a04d777d7f [cli] support lazy import (#9217)
Co-authored-by: frozenleaves <frozen@Mac.local>
2025-09-30 18:02:26 +08:00
Yaowei Zheng
6ffebe5ff7 [data] fix qwen omni plugin (#9204)
Co-authored-by: kingsley <kingsleydodonow@gmail.com>
2025-09-28 01:02:29 +08:00
xvxuopop
0761a4448f [model] add qwen3-vl/qwen3-omni (#9196)
Co-authored-by: kingsley <kingsleydodonow@gmail.com>
2025-09-27 01:21:47 +08:00
wangshaofei
abc3b1e1c4 [docs] update ling-v2 to the readme (#9188) 2025-09-24 15:23:21 +08:00
Hertz
344c760cc1 [model] supported ERNIE4.5 Text Models (#9165)
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
2025-09-22 11:48:26 +08:00
Yaowei Zheng
80fe3a172d [model] add dots ocr (#9176) 2025-09-21 23:34:19 +08:00
Yaowei Zheng
800934b507 [assets] update readme (#9143) 2025-09-16 17:04:19 +08:00
Yaowei Zheng
e2ba32598d [assets] update readme (#9137) 2025-09-15 23:45:57 +08:00
Yaowei Zheng
812720909e [model] add qwen3 next (#9130) 2025-09-14 03:16:25 +08:00
Yaowei Zheng
260b5625c3 [assets] update wechat (#9129) 2025-09-14 03:05:08 +08:00
Yaowei Zheng
52488ac974 [deps] upgrade transformers to 4.56.1 (#9128) 2025-09-14 02:26:39 +08:00
Kingsley
610a3f1094 [data] Fix qwen_2vl with valuehead (#9078) 2025-09-14 02:22:20 +08:00
wangshaofei
a22dab97fd [data] bailing template v2 & openai data converter (#9112) 2025-09-14 02:20:34 +08:00
Yaowei Zheng
db223e3975 [misc] update readme (#9071) 2025-09-03 17:22:54 +08:00
Kingsley
7e710c6d3e [misc] update InternVL constants (#9046) 2025-08-29 13:30:28 +08:00
Kingsley
185f0556d4 [model] support Internvl3_5 (#9028) 2025-08-28 17:12:00 +08:00
Kingsley
1c675522fd [data] Fix glm4v mmplugin when not expand (#9029) 2025-08-27 11:45:24 +08:00
tc-mb
6c777375b7 [model] Support MiniCPM-V 4.5 (#9022) 2025-08-26 19:27:28 +08:00
Kingsley
9c433f6b41 [model] fix kimivl (#9018) 2025-08-25 16:32:23 +08:00
Yaowei Zheng
ec41ef08aa [misc] fix constants (#9008) 2025-08-23 23:04:30 +08:00
Kingsley
0ab0be9df2 [model] support Seed-OSS (#8992)
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
2025-08-23 22:38:24 +08:00
Zeju Qiu
c14a5fefee [assets] fix readme error with OFT (#9000)
Co-authored-by: Zeju <zqiu@g003.internal.cluster.is.localnet>
2025-08-23 21:32:19 +08:00
Haian Huang(深度眸)
1664657d80 [model] Support Intern-S1-mini (#8976) 2025-08-20 23:52:51 +08:00
Kingsley
022a326ca4 [misc] update glm4v ligerkernel (#8978) 2025-08-20 23:39:56 +08:00
Yaowei Zheng
c1e1f24f5f [misc] fix gemma template (#8970) 2025-08-20 03:18:18 +08:00
Yaowei Zheng
2c31279316 [assets] update wechat (#8962) 2025-08-19 02:55:09 +08:00
Zeju Qiu
003a2acb1a [feature] adding orthogononal finetuning (OFT) to llama factory (#8623)
Co-authored-by: Zeju <zqiu@g003.internal.cluster.is.localnet>
Co-authored-by: Zeju <zqiu@login2.is.localnet>
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
2025-08-18 18:22:47 +08:00
XLXW
1ada15981a [feature] add support for dft loss (#8917) 2025-08-15 23:29:57 +08:00
Kingsley
936f4fd78e [feature] Support MPO (#8930) 2025-08-15 15:09:59 +08:00
Kingsley
41648020db [data] Fix MiniCPMO default system prompt (#8906) 2025-08-13 23:05:20 +08:00
Yaowei Zheng
b8272a874b [assets] update wechat & readme (#8899) 2025-08-12 22:45:55 +08:00
Yaowei Zheng
e695fdfa70 [model] add qwen3 nothink (#8869) 2025-08-11 23:17:32 +08:00
Kingsley
893edb26d0 [model] support GLM4.5V (#8876) 2025-08-11 21:45:14 +08:00
Yaowei Zheng
dc61e78e77 [hparams] fix data args (#8863) 2025-08-08 15:35:50 +08:00
golangboy
ef507ae8e0 [file] Resolve file lock issue when deleting safetensors on Windows (#8839) 2025-08-08 14:59:54 +08:00
Kingsley
c244b1edb9 [model] add qwen3-4b-i/t (#8851) 2025-08-07 19:39:26 +08:00
kahlun
8a5d6c8a74 [data-loader] Allow dataset_dir to accept a dict for in-memory dataset_info (#8845) 2025-08-07 16:26:59 +08:00
Yaowei Zheng
b523543994 [data] fix template (#8827) 2025-08-06 06:58:09 +08:00
Yaowei Zheng
4dfad24902 [model] add gpt oss (#8826) 2025-08-06 05:56:46 +08:00
davidlightmysterion
c709c0378d [train] fix adjusting logits size after adding special tokens (#8823) 2025-08-05 20:35:07 +08:00
Yaowei Zheng
b5071f4b2c [assets] update readme & supporters (#8818) 2025-08-05 11:00:53 +08:00
Dennis Huang
4a9ca24122 [model] Support MiniCPM-V 4.0 (#8813) 2025-08-04 12:57:21 +08:00
Yaowei Zheng
cb03eb422d [model] Qwen3-30B-A3B-Thinking-2507 (#8788) 2025-07-30 23:05:12 +08:00
Yaowei Zheng
a416ab48d8 [deps] upgrade vllm to 0.10.0 (#8787) 2025-07-30 22:26:38 +08:00
Yaowei Zheng
d64651a637 [assets] update readme (#8784) 2025-07-30 17:57:17 +08:00
Yaowei Zheng
7c223c432b [model] add qwen3 2507 model (#8783) 2025-07-30 17:19:19 +08:00
Kingsley
52882d01c3 [model] support keye-vl-8b (#8776) 2025-07-29 21:24:08 +08:00
Kingsley
4e0bf35eb4 [model] update glm4.5 (#8770) 2025-07-29 19:57:29 +08:00
Yaowei Zheng
8efa506c16 [model] add qwen3 2507 models (#8750) 2025-07-25 20:21:47 +08:00
Kingsley
d6767f355a [model] add glm4moe (#8689) 2025-07-25 19:53:45 +08:00
Yaowei Zheng
c6e2871944 [assets] update readme (#8739) 2025-07-24 23:13:24 +08:00
Steven sun
9d6565d1a8 [model] support granite4 (#8680) 2025-07-21 14:15:36 +08:00
Kingsley
1639e4b587 [data] fix gemma3n mmplugin (#8627) 2025-07-14 13:32:57 +08:00
Kingsley
9c9b307d33 [model] add Devstral-Small-2507 (#8614) 2025-07-11 18:59:53 +08:00
Yaowei Zheng
cf13964c4c [webui] fix elems (#8587) 2025-07-08 21:16:42 +08:00
Kingsley
542fa97a72 [data] support glm4.1v video training (#8571) 2025-07-08 16:29:44 +08:00
Yaowei Zheng
7f8e5f52f9 [webui] fix abort finish (#8569) 2025-07-07 23:07:46 +08:00
Yaowei Zheng
12ed792db9 [webui] support other hub (#8567) 2025-07-07 22:18:48 +08:00
Yaowei Zheng
4b0ec83928 [deps] bump transformers to 4.49.0 (#8564) 2025-07-07 20:31:50 +08:00
Redwood-Digital
1b1ec9bfb6 [docs] add nvidia-container-toolkit to Linux Docker setup instructions (#8557) 2025-07-06 19:37:08 +08:00
Vivek Iyer
e0dfdb7dbb Revert "[model] add lora dropout to unsloth" - requested feature already exists (#8554)
Co-authored-by: viyer <vivek_iyer2@apple.com>
2025-07-05 11:25:31 +08:00
wjunLu
17ab40793b [ci] Add workflow for building NPU image (#8546)
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
2025-07-04 20:56:59 +08:00
Vivek Iyer
0686206020 [model] add lora dropout to unsloth (#8548)
Co-authored-by: viyer <vivek_iyer2@apple.com>
2025-07-04 14:56:36 +08:00
Ze-Yi LIN
16f13d304b [tracking] fix swanlab hparams (#8532)
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
2025-07-02 22:08:44 +08:00
Yaowei Zheng
57524751e0 [assets] update issue template (#8530) 2025-07-02 19:29:58 +08:00
Yaowei Zheng
906b31fd47 [assets] update readme (#8529) 2025-07-02 17:42:27 +08:00
Kingsley
bede213da7 [assets] update readme (#8519) 2025-07-02 15:38:38 +08:00
Kingsley
e9f70daabe [model] add gemma3n (#8509) 2025-07-01 22:37:24 +08:00
Yaowei Zheng
cbb65567a9 [assets] update wechat (#8517) 2025-07-01 21:23:48 +08:00
Injae Ryou
a5a93597b1 [parser] update config loading to use OmegaConf #7793 (#8505) 2025-07-01 21:05:13 +08:00
Kingsley
d17a672251 [model] add GLM-4.1V (#8462) 2025-06-30 01:09:41 +08:00
Liu Jiajun
4f0da0aec9 [data] fix gemma2 eos token (#8480)
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
2025-06-27 18:19:15 +08:00
Yaowei Zheng
2c26ce6ac4 Merge commit from fork 2025-06-26 13:55:42 +08:00
Yaowei Zheng
abc6ce6168 [assets] update readme (#8461) 2025-06-25 22:15:03 +08:00
Yaowei Zheng
4407231a3b [webui] upgrade webui and fix api (#8460) 2025-06-25 21:59:58 +08:00
Yaowei Zheng
f276b9a963 [model] do not force load processor (#8457) 2025-06-25 19:43:00 +08:00
Yaowei Zheng
48897e5b16 [data] fix audio reader (#8448) 2025-06-24 20:53:20 +08:00
Yaowei Zheng
9cd81aa424 [misc] fix ci (#8441) 2025-06-24 16:37:32 +08:00
Kingsley
ecbccb4c5d [model] Add mistral-small 3.2 & kimi-dev (#8433) 2025-06-24 14:59:47 +08:00
Yaowei Zheng
9af7915f7b [model] add kimi vl 2506 (#8432) 2025-06-23 17:56:48 +08:00
Vivek Iyer
7b252b2368 [model] unsloth resume from checkpoint bug (#8423)
Co-authored-by: viyer <vivek_iyer2@apple.com>
2025-06-23 16:43:54 +08:00
Dhia Eddine Rhaiem
88a92be808 [model] add support for Falcon H1 (#8403) 2025-06-18 16:51:23 +08:00
Yaowei Zheng
c6c764388c [assets] update readme (#8396) 2025-06-17 16:15:20 +08:00
Yaowei Zheng
3e392473d1 [misc] set dev version (#8389) 2025-06-17 01:39:25 +08:00
Yaowei Zheng
ad345ec054 [ci] add docker version (#8390) 2025-06-17 01:37:47 +08:00
Yaowei Zheng
ca75f1edf3 [model] fix vlm utils (#8388) 2025-06-17 01:08:49 +08:00
Yaowei Zheng
3a3bae1cfe [data] fix qwen2vl pos ids (#8387) 2025-06-17 00:48:54 +08:00
Yaowei Zheng
31874e4f62 [version] release v0.9.3 (#8386) 2025-06-16 19:21:32 +08:00
Yaowei Zheng
9a2d1dec62 [assets] update wechat (#8385) 2025-06-16 18:23:22 +08:00
Aman Gupta
8e4ac78607 [trainer] Add LD-DPO objective (#8362) 2025-06-12 16:10:38 +08:00
Yaowei Zheng
44f1b9b5ad [misc] tiny fixes (#8348) 2025-06-10 15:30:58 +08:00
阿丹(adan)
b41697c9b6 [model] support MiniCPM4 (#8314) 2025-06-10 14:38:39 +08:00
Kingsley
31bca4d172 [model] support Mistral3.1 small 2503 (#8335) 2025-06-09 10:37:42 +08:00
Chenhao Zhang
fa4360dca7 [assets] Add awesome works used LLaMA-Factory (#8333) 2025-06-09 10:21:17 +08:00
Yaowei Zheng
9acab4949d [model] fix model generate (#8327) 2025-06-07 08:47:50 +08:00
Vivek Iyer
32b4574094 [model] pushing FFT with unsloth (#8325)
Co-authored-by: viyer <vivek_iyer2@apple.com>
2025-06-07 08:20:58 +08:00
Yaowei Zheng
03a93ec513 [data] fix empty template (#8312) 2025-06-06 13:50:50 +08:00
Yaowei Zheng
bcb6b94658 [setup] fix uv (#8311) 2025-06-06 11:54:15 +08:00
Yaowei Zheng
c0710be6d7 [assets] update readme (#8303) 2025-06-05 23:23:15 +08:00
Kingsley
212a8006dc [tests] add visual model save test (#8248)
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
2025-06-05 20:38:01 +08:00
Yaowei Zheng
ed70f8d5a2 [assets] fix npu docker (#8298) 2025-06-05 19:09:20 +08:00
Butui Hu
1a33d65a56 [launcher] Add elastic and fault-tolerant training support (#8286)
Signed-off-by: Butui Hu <hot123tea123@gmail.com>
2025-06-05 16:40:03 +08:00
Kingsley
69c9e379d5 [script] add Script description for qwen_omni_merge (#8293) 2025-06-05 13:22:01 +08:00
Yaowei Zheng
e9fe9cee29 [assets] update docker files (#8291) 2025-06-04 23:30:46 +08:00
Yaowei Zheng
cb7ab69783 [assets] update readme (#8288) 2025-06-04 17:46:12 +08:00
Yaowei Zheng
c1ed76e109 [assets] add icon (#8276) 2025-06-03 20:36:21 +08:00
Kingsley
c224d17cb2 [data] support nested images input for videos (#8264) 2025-06-03 20:26:29 +08:00
Ze-Yi LIN
c4e51d40e0 [tracking] swanlab add llamafactory tag (#8258) 2025-06-03 18:42:29 +08:00
Kingsley
554e89ff02 [model] add MIMO_VL (#8249) 2025-06-01 03:54:54 +08:00
Yaowei Zheng
fee2122f09 [deps] upgrade transformers to 4.52.4 (#8245) 2025-05-31 16:51:40 +08:00
Akshat Sehgal
c7e63bead7 [model] add smollm2 support (#8220) 2025-05-31 16:29:01 +08:00
hoshi-hiyouga
3e1a7fcb9c [assets] update readme (#8235) 2025-05-30 16:52:12 +08:00
Kingsley
2aaede8ef4 [scripts] specify model class for qwen_omni merge (#8227) 2025-05-30 14:20:12 +08:00
hoshi-hiyouga
42bebc341d [model] add deepseek 0528 models (#8215) 2025-05-29 21:37:07 +08:00
hoshi-hiyouga
83a9ff5853 [assets] fix docker images (#8203) 2025-05-28 22:26:05 +08:00
yzoaim
519bab86e6 [workflow] auto push docker images (#8181)
Co-authored-by: hoshi-hiyouga <hiyouga@buaa.edu.cn>
2025-05-28 20:21:15 +08:00
hoshi-hiyouga
dbc9f5a5d9 [assets] update Dockerfile (#8201) 2025-05-28 20:20:59 +08:00
hoshi-hiyouga
9b152d9cb5 [webui] fix skip args (#8195) 2025-05-28 18:11:07 +08:00
Youngwoo Kim
6c3cd400b5 [data] Reading files from cloud is broken (#8182) (#8183) 2025-05-28 15:50:44 +08:00
hoshi-hiyouga
4d3ffa2ec4 [assets] fix docker image (#8180) 2025-05-27 19:01:31 +08:00
hoshi-hiyouga
2bf8e993ab [data] fix shared file system (#8179) 2025-05-27 18:36:03 +08:00
hoshi-hiyouga
d4a413eb37 [webui] add extra args to export (#8178) 2025-05-27 18:25:31 +08:00
hoshi-hiyouga
00974a3169 [assets] update docker files (#8176) 2025-05-27 18:15:23 +08:00
hoshi-hiyouga
46ccf84aaa [webui] add infer extra args (#8167) 2025-05-27 12:04:00 +08:00
hoshi-hiyouga
07343ca83d [webui] fix input args (#8162) 2025-05-27 02:05:54 +08:00
hoshi-hiyouga
3c7dc66a92 [model] add smollm2 and medgemma (#8161) 2025-05-26 23:19:58 +08:00
hoshi-hiyouga
ba032828e2 [deps] upgrade transformers (#8159) 2025-05-26 22:03:58 +08:00
Akshat Sehgal
501e7d8a8f feat: add smollm support (#8050) 2025-05-26 19:47:54 +08:00
wangzhan
12292e4283 [api] support repetition_penalty and align presence_penalty with OpenAI Client (#7958) 2025-05-26 18:45:11 +08:00
Kingsley
f08b748199 [data] fix internvl plugin when using PIL images (#8129) 2025-05-22 01:32:59 +08:00
hoshi-hiyouga
d2a3036a23 [misc] update data readme (#8128) 2025-05-21 22:41:18 +08:00
hoshi-hiyouga
9ae17cd173 [deps] update to transformers 4.52 (#8125) 2025-05-21 05:16:18 +08:00
hoshi-hiyouga
56926d76f9 [data] llama3 multi tool support (#8124) 2025-05-21 02:01:12 +08:00
hoshi-hiyouga
c2f6f2fa77 [assets] update readme (#8110) 2025-05-20 02:44:18 +08:00
hoshi-hiyouga
9b5baa97f0 [data] qwen3 fixes (#8109) 2025-05-20 02:00:30 +08:00
hoshi-hiyouga
45030ff803 [model] switch to gptqmodel (#8108) 2025-05-19 22:25:40 +08:00
piamo
bc7f00f2c7 [model] update rope kwargs for yarn (#8101) 2025-05-19 20:07:54 +08:00
hoshi-hiyouga
beae231af6 [doc] add no build isolation (#8103) 2025-05-19 19:25:13 +08:00
Ma, Xiaochen
a0b4b91577 [trainer] fix KeyError at end of pretrain (#8099) 2025-05-19 18:01:26 +08:00
Biao Wang
90492f3582 [misc] fix cli (#8095)
Co-authored-by: wangbiao11 <wangbiao11@baidu.com>
2025-05-19 17:59:39 +08:00
Saiya
ab41f7956c [infer] support lora adapter for SGLang backend (#8067) 2025-05-16 23:33:47 +08:00
Kingsley
52b23f9e56 [data] add forward compatibility for video_utils in Transformers 4.52.0 (#8077) 2025-05-16 17:41:04 +08:00
Eric Tang
a9aa392ba4 [data] support loading folder from remote (#8078) 2025-05-16 15:35:38 +08:00
Shawn Tao
0b773234e5 [infer] Modify vllm_infer.py to batch preprocess to avoid too much files opened error (#8051)
Co-authored-by: Kingsley <82590017+Kuangdd01@users.noreply.github.com>
2025-05-15 10:54:35 +08:00
hoshi-hiyouga
712c57f3b4 [assets] update windows installation (#8042) 2025-05-13 17:01:56 +08:00
hoshi-hiyouga
dc080399c6 [model] add seed coder and qwen3 quant models (#8039) 2025-05-13 15:59:55 +08:00
hoshi-hiyouga
68fc068cab [data] fix kimi vl template (#8015) 2025-05-11 20:45:19 +08:00
Kingsley
9620825892 [scripts] add video params for vllm infer (#7992) 2025-05-09 21:16:52 +08:00
yunhao-tech
26cbb03a5f [data] Avoid repetitive tool description warp (#8000)
Co-authored-by: chenyunhao <chenyunhao@wps.cn>
Co-authored-by: hoshi-hiyouga <hiyouga@buaa.edu.cn>
2025-05-09 21:16:37 +08:00
tpoisonooo
5f4b793e04 [docs] add GraphGen (#7974) 2025-05-07 12:23:11 +02:00
hoshi-hiyouga
994ab6424a [misc] update liger kernel patch (#7966) 2025-05-06 20:32:16 +02:00
hoshi-hiyouga
aa9ed4db59 [example] update examples (#7964) 2025-05-06 17:24:25 +02:00
Kingsley
ef86a53063 [model] add mimo7b (#7946) 2025-05-06 17:10:30 +02:00
hoshi-hiyouga
bf0286e1e3 [misc] fix qwen2 omni (#7962) 2025-05-06 15:39:13 +02:00
hoshi-hiyouga
ce7032e1b3 [model] add qwen2 omni 3b (#7945) 2025-05-03 16:36:51 +08:00
Eric Chen
5763017cea [assets] Warp Support README Update (#7887) 2025-05-02 00:08:48 +08:00
hoshi-hiyouga
13b05e74f1 [hparam] add enable think argument (#7928) 2025-04-30 17:21:30 +08:00
hoshi-hiyouga
c566e39b7d [data] fix base plugin (#7924) 2025-04-30 16:28:05 +08:00
hoshi-hiyouga
052ca871bd [data] optimize qwen3 loss computation (#7923) 2025-04-30 16:18:00 +08:00
hoshi-hiyouga
73198a6645 [misc] fix uv (#7913) 2025-04-30 07:45:03 +08:00
hoshi-hiyouga
d4ee44bdef [data] add eval_on_each_dataset arg (#7912) 2025-04-30 06:56:43 +08:00
hoshi-hiyouga
6d2cde43e7 [data] replace eos token for base models (#7911) 2025-04-30 06:52:28 +08:00
hoshi-hiyouga
11295cdea0 [data] improve mm plugin (#7910) 2025-04-30 06:34:28 +08:00
hoshi-hiyouga
98f23c6584 [model] add qwen3 (#7885) 2025-04-29 09:34:05 +08:00
Kingsley
db9559456c [data] fix qwen2.5 omni template (#7883) 2025-04-29 00:58:23 +08:00
hoshi-hiyouga
3ae5da2a04 [model] fix dsv3 leaf node (#7879) 2025-04-28 18:11:09 +08:00
hoshi-hiyouga
d173cb50f5 [data] fix qwen2 omni plugin (#7875) 2025-04-28 14:22:41 +08:00
zhaop-l
df27d7e48a [trainer] make projector trainable in freeze training (#7872)
Co-authored-by: hoshi-hiyouga <hiyouga@buaa.edu.cn>
2025-04-28 13:19:37 +08:00
hoshi-hiyouga
bb5b83352b [data] fix minicpmo vllm infer (#7870) 2025-04-28 01:59:53 +08:00
Kingsley
1157f4e246 fix attn patch for kimivl (#7867) 2025-04-27 23:12:28 +08:00
Eric Tang
ef03832cd4 [ray] add storage filesystem to ray config (#7854) 2025-04-27 22:12:40 +08:00
hoshi-hiyouga
2233b739fa [model] fix vit gradient checkpointing (#7830) 2025-04-23 22:48:48 +08:00
hoshi-hiyouga
091d2539e8 Merge commit from fork 2025-04-23 16:38:27 +08:00
hoshi-hiyouga
c1a7f2ebb2 [model] fix moe zero3 (#7826) 2025-04-23 15:30:49 +08:00
Kingsley
fa0eb91f1f [data] fix internvl plugin (#7817) 2025-04-23 00:58:22 +08:00
hoshi-hiyouga
49f9ed0232 [assets] update model readme (#7804) 2025-04-22 16:43:56 +08:00
Kingsley
2a564c25d1 [model] add arch check for InternVL (#7803) 2025-04-22 16:38:05 +08:00
Kingsley
7500e761d3 [misc] update internvl constants (#7801) 2025-04-22 15:53:08 +08:00
hoshi-hiyouga
fddcd43c88 [trainer] support early stop (#7797) 2025-04-22 01:59:33 +08:00
hoshi-hiyouga
0e4ce039ee [data] improve mmplugin (#7795) 2025-04-22 01:25:33 +08:00
hoshi-hiyouga
b07628dea5 [example] add bash usage (#7794) 2025-04-22 00:25:51 +08:00
Juanxi Tian
12ada72ed4 [trainer] Add Muon Optimizer (#7749)
Co-authored-by: hoshi-hiyouga <hiyouga@buaa.edu.cn>
2025-04-21 23:38:37 +08:00
hoshi-hiyouga
416853dd25 [parser] support omegaconf (#7793) 2025-04-21 23:30:30 +08:00
Changrui Chen
bd7bc31c79 [data] Fix wrong position ids with packed attention masks (#7754)
Co-authored-by: hoshi-hiyouga <hiyouga@buaa.edu.cn>
2025-04-21 23:19:36 +08:00
flashJd
0ac641326b [misc] fix new tokens adding (#7253)
Co-authored-by: hoshi-hiyouga <hiyouga@buaa.edu.cn>
2025-04-21 23:19:02 +08:00
ddddng
c5ba9106ec [model] fix gemma3 export (#7786)
Co-authored-by: hoshi-hiyouga <hiyouga@buaa.edu.cn>
2025-04-21 23:07:11 +08:00
Sachin Beldona
3b2d3794a5 [misc] fix bug in constant (#7765)
Co-authored-by: Sachin Beldona <sbeldona@cs.cmu.edu>
2025-04-21 23:06:31 +08:00
hoshi-hiyouga
b605c20768 [assets] update wechat (#7792) 2025-04-21 21:29:42 +08:00
hoshi-hiyouga
39169986ef [trainer] fix pt loss (#7748)
* fix pt loss

* robust

* fix

* test
2025-04-17 03:15:35 +08:00
hoshi-hiyouga
86ebb219d6 [breaking] bump transformers to 4.45.0 & improve ci (#7746)
* update ci

* fix

* fix

* fix

* fix

* fix
2025-04-17 02:36:48 +08:00
hoshi-hiyouga
d222f63cb7 [infer] set env for vllm ascend (#7745) 2025-04-17 01:08:55 +08:00
Kingsley
2e518f255f [model] support intern-VL 2.5-3 series (#7258)
* add internvl and rebase

* fix for internvl2&3

* remove lines

* fix video_inputs & lint

* nit

* add constants

* remove lines

* fix

* fix error

* pass ci

* pass ci

* skip internvl & nit
2025-04-17 00:31:30 +08:00
ENg-122
8f88a4e6a4 [misc] improve entrypoint (#7345)
* 纯粹优化下入口代码,因为看到if else太多了

* Update cli.py

---------

Co-authored-by: hoshi-hiyouga <hiyouga@buaa.edu.cn>
2025-04-16 21:48:23 +08:00
leo-pony
b9263ff5ac [infer] support vllm-ascend (#7739) 2025-04-16 20:06:47 +08:00
hoshi-hiyouga
ee2ab093a7 [api] fix chat messages (#7732) 2025-04-15 16:39:08 +08:00
hoshi-hiyouga
3df021d4d7 [deps] upgrade vllm (#7728) 2025-04-15 14:57:40 +08:00
Joe Schoonover
e252abf051 [docker] patch docker-rocm (#7725)
* Update Dockerfile

* Fix typo

* Fix syntax for /bin/sh conditional

* Add build args to docker-compose

* Change shell to /bin/bash

This is required for "==" syntax in conditional string comparison
2025-04-15 13:36:39 +08:00
hoshi-hiyouga
1134baeedd [assets] update model readme (#7724) 2025-04-15 00:41:09 +08:00
Kingsley
2101399c94 [model] Support Kimi_VL thinking/instruct (#7719)
* add kimi_vl

* patch config

* check version

* Update mm_plugin.py

* Update mm_plugin.py

---------

Co-authored-by: hoshi-hiyouga <hiyouga@buaa.edu.cn>
2025-04-15 00:21:58 +08:00
hoshi-hiyouga
3f91a95250 [misc] fix env vars (#7715) 2025-04-14 16:04:04 +08:00
hoshi-hiyouga
7c61b35106 [misc] upgrade cli (#7714) 2025-04-14 15:41:22 +08:00
hoshi-hiyouga
f518bfba5b [deps] upgrade transformers (#7704) 2025-04-13 18:11:34 +08:00
Yuxuan Zhang
8162f94db5 [model] add GLM-4-0414 (#7695)
* Update README_zh.md

* update
2025-04-13 17:10:45 +08:00
hoshi-hiyouga
1f0c52b73c [deps] fix uv conflicts (#7686)
* fix #7678

* Update setup.py

* Update tests.yml

* Update publish.yml

* Update Makefile
2025-04-11 18:02:24 +08:00
Eric Tang
a8caf09c7f [data] support for specifying a dataset in cloud storage (#7567)
* add support for loading datasets from s3/gcs

* add comments to readme

* run linter and address comments

* add option to pass in kwargs to ray init (i.e. runtime env)

* address comment

* revert mixed up changes
2025-04-10 11:31:35 +08:00
Eric Tang
bb8d79bae2 [ray] allow for specifying ray.init kwargs (i.e. runtime_env) (#7647)
* ray init kwargs

* Update trainer_utils.py

* fix ray args

---------

Co-authored-by: hoshi-hiyouga <hiyouga@buaa.edu.cn>
2025-04-10 11:31:05 +08:00
Dain Kim
1c436c9f25 [bugfix] enable_gemma_liger_kernel (#7660)
- The `enable_liger_kernel` function for the Gemma model series was not executed due to the existing `if` statement in the code.
- Changed the line to an `elif` statement so that the `apply_liger_kernel` function is executed properly.

resolved: #7628
2025-04-10 11:27:30 +08:00
jilongW
1b0934bccb [misc] fix cuda warn on intel GPU (#7655) 2025-04-09 21:37:54 +08:00
hoshi-hiyouga
4eec541857 [data] add coig-p dataset (#7657) 2025-04-09 21:18:25 +08:00
hoshi-hiyouga
89a4f9ec7f [assets] update readme (#7654) 2025-04-09 18:27:38 +08:00
hoshi-hiyouga
1abd71b551 [assets] update readme (#7644) 2025-04-09 01:06:06 +08:00
Kingsley
349c56c51c [data] Fix bugs of use_audio_in_video in Qwen2.5 Omni (#7638)
* cache _mm_inputs

* nit

* support for use_audio_in_video

* remove cache

* fix data

* Update mllm_video_audio_demo.json
2025-04-08 18:40:10 +08:00
Shawn Tao
acb09fa3a3 [trainer] fix key error (#7635) 2025-04-08 18:39:50 +08:00
Adarsh Shirawalmath
f75b91077b [sglang] support transformers 4.51.0 (#7639) 2025-04-08 18:39:23 +08:00
hoshi-hiyouga
c3c0efbaa0 [misc] fix packing and eval plot (#7623) 2025-04-07 18:20:57 +08:00
hoshi-hiyouga
5115dc8c7f [assets] update readme (#7612) 2025-04-06 13:58:49 +08:00
hoshi-hiyouga
831e7f1cfd [model] add llama4 (#7611) 2025-04-06 13:42:31 +08:00
Kingsley
d4cfa9507e [data] fix qwen2.5 omni plugin (#7578)
* specific entry

* Update mm_plugin.py

* fix fps cal

---------

Co-authored-by: hoshi-hiyouga <hiyouga@buaa.edu.cn>
2025-04-02 23:58:39 +08:00
Kingsley
d32c6c014d [data] fix qwen2.5 omni plugin (#7573)
* align key with qwen2vl

* nit && change scripts
2025-04-02 21:28:52 +08:00
gechengze
7b9deb9410 [trainer] fix batch processing in PPO trainer (#7576) 2025-04-02 21:17:48 +08:00
hoshi-hiyouga
5e22597ff1 [infer] vllm video/audio inference (#7566) 2025-04-02 02:27:04 +08:00
hoshi-hiyouga
2bfcad2394 [model] fix kv cache (#7564) 2025-04-01 23:07:46 +08:00
Yu Shi Jie
a13b1bb49a [model] fix use_cache patching for gemma3 multimodal (#7500) 2025-04-01 16:06:48 +08:00
Ritesh Goru
d10467d178 [data] specify position_ids in PackedSupervisedDatasetProcessor for neat_packing (#7318)
* use position_ids for neat_packing with fa2

* revert fa2 changes
2025-04-01 16:03:13 +08:00
taoharry
aac70663fd [webui] fix launch with proxy (#7332) 2025-04-01 15:52:56 +08:00
Billy Cao
00409ff28a [data] shard the dataset to allow multiprocessing when streaming is enabled (#7530)
* Shard the dataset when streaming to allow multiprocessing

* Allow user to not set dataset_shards to ensure backward compatibility
2025-04-01 15:36:23 +08:00
Hao
d70b3b4bc5 [trainer] new kto mismatch pair creation strategy (#7509) 2025-04-01 15:21:53 +08:00
hoshi-hiyouga
e76eba051d [data] fix qwen2.5 omni collator (#7553) 2025-04-01 00:15:12 +08:00
Kingsley
7eed496336 [model] add Qwen2.5-Omni model (#7537)
* preserve image_sizes

* preserve image_sizes

* init plugin

* support audio-text2text lora

* nit

* support image/video-text2text, audio-text2text

* remove args

* remove lines

* add docs && nit

* remove some comments

* fix && add merge part script

* add license
2025-03-31 20:39:35 +08:00
hoshi-hiyouga
0f8296626a [deps] pin pydantic to 2.10.6 (#7546) 2025-03-31 14:42:28 +08:00
Kingsley
8da1d2fa71 [data] fix pixtral plugin (#7505)
* preserve `image_sizes`

* add comments
2025-03-27 17:06:40 +08:00
Xu-pixel
b578a7d5b6 [3rdparty] support swanlab lark notification (#7481) 2025-03-27 01:52:01 +08:00
Kdump
24afceddb7 [trainer] fix wsd scheduler (#7304)
* [trainer] Warmup_stable_decay supports setting the number of stable and decay steps according to the warmup_ratio ratio

* Update trainer_utils.py

---------

Co-authored-by: hoshi-hiyouga <hiyouga@buaa.edu.cn>
2025-03-26 15:25:02 +08:00
hoshi-hiyouga
0583d06676 [model] add qwen2vl 32b & upgrade peft (#7469)
* add qwen2vl 32b

* fix ci

* upgrade peft to 0.15

* fix ci

* fix ci
2025-03-25 12:15:58 +08:00
GuoCoder
ec6a261568 [model] fix lora on quant models (#7456)
Co-authored-by: root <root@ai>
2025-03-25 11:59:46 +08:00
Xiaosu Zhu
6b3b97c738 [misc] update liger-kernel's monkey patch (#7453)
* Update liger_kernel.py

* Update setup.py
2025-03-25 11:58:52 +08:00
AbdelKarim ELJANDOUBI
6d3748f727 [misc] enable liger kernel for gemma3 text and paligemma (#7466)
* add gemma3 text

* add paligemma (1,2 and 2 mix)
2025-03-25 09:27:43 +08:00
Kenny Lam
7c890170e3 [misc] enable liger kernel for gemma3 (#7462) 2025-03-24 19:09:59 +08:00
hoshi-hiyouga
ca42c0c406 [assets] fix gemma3 readme (#7449) 2025-03-24 10:31:25 +08:00
hoshi-hiyouga
7203365b80 [trainer] fix vlm loss for transformers 4.49 (#7448) 2025-03-24 10:24:05 +08:00
rumichi
3612946dd9 [docker] upgrade to torch 2.6 (#7442) 2025-03-23 21:18:08 +08:00
hoshi-hiyouga
3aa4f32e9c [misc] fix ci (#7441)
* fix ci

* improve ci
2025-03-23 21:09:35 +08:00
hoshi-hiyouga
304796b803 [misc] fix license (#7440) 2025-03-23 19:31:56 +08:00
SnowFox4004
7cfd6e4bb0 [scripts] support compute score on vllm's predictions (#7419)
* enable manual bleu&rouge eval by adding `scripts/eval_bleu_rouge.py`

* added libraries check

* update: 使用datasets库的多进程加速处理

* update:
- 使用 fire.Fire
- 修改代码格式

* Update eval_bleu_rouge.py: correctly uses fire

Deleted the code of using sys.argv

* Update eval_bleu_rouge.py

---------

Co-authored-by: SnowFox4004 <manba@out>
Co-authored-by: hoshi-hiyouga <hiyouga@buaa.edu.cn>
2025-03-23 19:21:01 +08:00
hoshi-hiyouga
05b19d6952 [deps] upgrade transformers to 4.50.0 (#7437)
* upgrade transformers

* fix hf cache

* fix dpo trainer
2025-03-23 17:44:27 +08:00
hoshi-hiyouga
919415dba9 [deps] upgrade vllm to 0.8 (#7436) 2025-03-23 14:32:22 +08:00
Guo, Quan
a959c2a509 [misc] fix sglang deps (#7432)
* feat: Add transformer version requirement for sglang

* feat: add srt to sglang which is required for running sglang

Other options are srt_hip, srt_xpu, srt_npu, srt_hpu, srt_cpu, for different computation architectures.
2025-03-23 14:07:10 +08:00
Eric Tang
db0a08db6f [3rdparty] fix redundant process group destroy for ray (#7395)
* fix redundant process group destroy for ray

* Update tuner.py

---------

Co-authored-by: hoshi-hiyouga <hiyouga@buaa.edu.cn>
2025-03-21 10:56:47 +08:00
hoshi-hiyouga
a306f0f5a2 [version] fix minicpmo (#7378) 2025-03-20 16:59:31 +08:00
hoshi-hiyouga
63752fccf7 [assets] update wechat (#7361) 2025-03-18 21:31:09 +08:00
hoshi-hiyouga
1f9773395b [misc] set dev version (#7351) 2025-03-18 00:10:53 +08:00
hoshi-hiyouga
128b5b12b3 [data] fix template (#7349) 2025-03-17 23:45:20 +08:00
hoshi-hiyouga
d5915a7dd7 [assets] update videos (#7340)
* Update README.md

* Update README_zh.md
2025-03-17 15:48:02 +08:00
Hertz
ec1154662b [model] support hunyuan 7b (#7317)
* [Model]supported tencent-hunyuan model

* [Model]supported tencent-hunyuan model(fix)

* [Model]supported tencent-hunyuan model(fix)
2025-03-15 20:55:24 +08:00
Qiaolin Yu
a44a53ebec [inference] support sglang backend (#7278)
* Mimic SGLang offline Engine

* Add more tests and args

* Pass all current tests

* Clean Code

* fix sample_params

* clean code

* Fix Stream Chat

* change sglang from engine mode to server mode

* fix

* Fix Review Issues

* Use SGLang Built-In Utilities

* Fix test SGLang

* Some Doc Issue

* fix sglang engine

* add readme

---------

Co-authored-by: Jin Pan <jpan236@wisc.edu>
Co-authored-by: hiyouga <hiyouga@buaa.edu.cn>
2025-03-15 04:37:58 +08:00
hoshi-hiyouga
93e6184cbe [data] gemma3 plugin pan and scan (#7294)
* gemma3 pan and scan

* add test case

* fix test
2025-03-13 23:29:23 +08:00
hoshi-hiyouga
0be0d7796a [assets] update video (#7287) 2025-03-13 18:45:47 +08:00
Ritesh Goru
480369a9f2 [data] efficient 4d_attention_mask creation in neat_packing (#7272) 2025-03-13 03:31:12 +08:00
hoshi-hiyouga
650a9a9057 [misc] update format (#7277) 2025-03-13 02:53:08 +08:00
hoshi-hiyouga
4b9d8da5a4 [model] support gemma3 (#7273) 2025-03-13 01:35:23 +08:00
hoshi-hiyouga
e6159ad730 [misc] upgrade deps (#7257) 2025-03-12 00:33:47 +08:00
hoshi-hiyouga
264538cb26 [misc] upgrade format to py39 (#7256) 2025-03-12 00:08:41 +08:00
hoshi-hiyouga
5995800bce [ci] update workflow (#7255) 2025-03-11 22:57:49 +08:00
hoshi-hiyouga
bf8b483186 [core] release v0.9.2 (#7254) 2025-03-11 22:42:23 +08:00
hoshi-hiyouga
e2299e261b Merge pull request #7242 from hiyouga/hiyouga/release
[release] release v0.9.2

Former-commit-id: 6b25268990bf225d84e29d4067595cf720fa12d8
2025-03-11 15:28:45 +08:00
hoshi-hiyouga
8a44dce326 Merge pull request #7247 from hiyouga/hiyouga/commit
[misc] support print commit info

Former-commit-id: 0f7ec4f8529a5d7ea2153b881335821038307bb7
2025-03-11 15:28:04 +08:00
hoshi-hiyouga
6d9233833b Merge pull request #7244 from hiyouga/hiyouga/token
[data] avoid exit after saving preprocessed data

Former-commit-id: dcbf01b0035062fa14187e5bdbb925080d349501
2025-03-11 15:17:15 +08:00
hiyouga
d019603835 support commit info
Former-commit-id: a7d89a6dc10579deaf9f45825cc18405a27cade6
2025-03-11 15:13:59 +08:00
hiyouga
478e8194d9 remove exit in preprocess
Former-commit-id: f369b6ef41ffd9586ba568b88c5ff32a1af4bace
2025-03-11 15:08:25 +08:00
hiyouga
1890d3dafe release v0.9.2
Former-commit-id: e7ed1782d4a006400de6fc0f864abd01f7fadeea
2025-03-11 14:49:13 +08:00
hoshi-hiyouga
522a3e8493 [infer] fix vllm args (#7235)
Former-commit-id: 999be5b4512890b8cf4f45874a77e35cf35626f5
2025-03-11 01:15:35 +08:00
Ze-Yi LIN
18968405d0 [tracking] add swanlab_logdir param (#7219)
* feat: add swanlab_logdir param

* fix

Former-commit-id: 9215ad488b6ac6cd57fe8fa4acdacceb63f68ca5
2025-03-11 00:53:07 +08:00
hoshi-hiyouga
71a1c1321a [config] update args (#7231)
Former-commit-id: f71a901840811bf560df671ec63a146ff99140c6
2025-03-10 23:04:43 +08:00
hoshi-hiyouga
cf58a6d860 [config] fix export max len (#7230)
Former-commit-id: 211c0b3e8f3340acd2fae1762d9152a09f19ba34
2025-03-10 16:46:08 +08:00
hoshi-hiyouga
9adc0a2c3f [assets] update readme (#7209)
Former-commit-id: d1631b38dad9ba3d41aebbb00e3500eb79b9e8e9
2025-03-07 17:27:49 +08:00
hoshi-hiyouga
16419b2834 [data] fix loader (#7207)
* fix dataloader

* add test case

* fix type

* fix ci

* fix ci

* fix ci

* disable overwrite cache in ci

Former-commit-id: e84af0e140b1aafd1a6d6fe185a8e41c8fc5f831
2025-03-07 17:20:46 +08:00
hoshi-hiyouga
82a2bac866 [misc] fix ds config (#7205)
Former-commit-id: b478fa1d9de1858075769f86f57126fde92db813
2025-03-07 15:21:28 +08:00
ZhangChuanhui
151ef48b40 [data] fix function formatter (#7201)
Co-authored-by: zhangchuanhui <zhangchal@digitalchina.com>
Former-commit-id: 3efb32b986170d2839e526640f85ba230715879a
2025-03-07 15:17:23 +08:00
hoshi-hiyouga
a255c3a476 [misc] fix cli (#7204)
Former-commit-id: 999f57133ca163c7108d2d5ee8194eca9b2109b4
2025-03-07 15:01:18 +08:00
hoshi-hiyouga
f4ec4fa6ad [script] fix vllm version (#7193)
Former-commit-id: ababdde597b2b9bf0ab3f30f036bc8d97de07f03
2025-03-06 17:14:17 +08:00
hoshi-hiyouga
2635794727 [webui] support escape html (#7190)
Former-commit-id: cf9840374f171359c828b0d6f7a2aa9893c8f701
2025-03-06 16:52:21 +08:00
hoshi-hiyouga
d2f845d70d [deps] upgrade vllm (#7183)
Former-commit-id: 37678a3d64668c3b4a4bfefc054e3b9b40427c1a
2025-03-06 15:25:08 +08:00
hoshi-hiyouga
bb8aba5abf [data] fix mm template (#7181)
Former-commit-id: 648616d473c81d393592806307e3e25b159cb278
2025-03-06 15:18:32 +08:00
hoshi-hiyouga
9f16c50155 [model] add QwQ 32b (#7179)
Former-commit-id: 8897e48b8cd55407812453ddd4ff98ac7bdc4e91
2025-03-06 11:58:36 +08:00
Ze-Yi LIN
25bb9f5ad9 [trainer] fix swanlab callback (#7176)
Former-commit-id: 6d9acf4bd30db24499118aee16bd19cb19ba9e3d
2025-03-06 00:33:37 +08:00
hoshi-hiyouga
7b985f55db [trainer] update config (#7174)
Former-commit-id: 9f535d0e3c4ee3cd0f1b65218c2eee5d03f43c6f
2025-03-05 23:32:54 +08:00
sirui.li
fd0357a26d [data] fix qwen2audio plugin (#7166)
* Update pairwise.py

[data]Repair multimodal model dpo training

* Update pairwise.py

[data]repair multimodal model dpo training using deepcopy

* Update pairwise.py

* Update mm_plugin.py

Former-commit-id: 86763dfdb8e9e5668c1ddd7e924e4be76bf78368
2025-03-05 18:03:36 +08:00
hoshi-hiyouga
31f9daa362 [data] use bicubic resampler (#7143)
Former-commit-id: c708f19ab0ab57526134952afddaa90aae8decbf
2025-03-04 00:17:06 +08:00
hoshi-hiyouga
15ea576246 [webui] fix webui (#7142)
Former-commit-id: d07281f8a45ad8a38d390181d01dcadbcf9aa1b9
2025-03-04 00:01:49 +08:00
rabbit
19a6916d80 [data] bailing template (#7117)
* add bailing template

* add bailing template

* add bailing template

---------

Co-authored-by: chengshiwen.csw@antgroup.com <chengshiwen.csw@antgroup.com>
Former-commit-id: 4a36f5e0abb5a63f4b3b81560bb1ad0e6832d379
2025-03-03 15:33:22 +08:00
hoshi-hiyouga
585c475f71 [inference] fix hf_engine (#7120)
Former-commit-id: f8cf5319cb5d6e06a1b0d8b8db2b678627f2271e
2025-03-01 05:22:49 +08:00
hoshi-hiyouga
e62dae37fe [assets] update wechat (#7106)
Former-commit-id: 0ea430060994631e9fdb18fbbca0dd565a04fd66
2025-02-28 12:01:04 +08:00
Ze-Yi LIN
11672f760d [webui] display swanlab exp link (#7089)
* webui add swanlab link

* change callback name

* update

---------

Co-authored-by: hiyouga <hiyouga@buaa.edu.cn>
Former-commit-id: 27a4b93871c63b839c92940766bd7e0177972c9b
2025-02-27 19:40:54 +08:00
leo-pony
b9f84900ee [npu] update cann base image and torch 2.4 (#7061)
* Update base npu container image version:The Python version required for Hugging Face Transformers is >= python3.10

* Fix the bug: arg type of INSTALL_DEEPSPEED shoud been string now.

* Update Ascend CANN, CANN-Kernel and corresponding torch and torch-npu version

* Upgrade torch-npu needs packages' version: torch==2.1.0 and torch-npu==2.4.0.post2

Former-commit-id: d6dafada58412b0c801e576ef4d8d96203f792af
2025-02-25 23:32:01 +08:00
hoshi-hiyouga
5f65558088 [misc] fix project toml (#7067)
Former-commit-id: 28a668ff4e0beebfe5387362f5518c1d9343666f
2025-02-25 23:22:48 +08:00
JieShen
0f54a78144 [script] add seed args (#7058)
* add seed args

* add seed args

* update seed

Former-commit-id: eb9770b2c01a840b6a0ac119210c22bdbb81e18b
2025-02-25 19:44:57 +08:00
Kingsley
2986bef530 [model] add paligemma2-mix series (#7060)
Former-commit-id: 0c0196306d343242ee5e6f22c55562f9a74aa782
2025-02-25 18:51:16 +08:00
hoshi-hiyouga
065f7fb5da [data] fix mllama (#7053)
* fix mllama

* fix test

Former-commit-id: f5af20a63f3d59a6a68d323a7c6f68e551edb3a3
2025-02-24 22:05:38 +08:00
hoshi-hiyouga
c1d5073bd3 [model] add models (#7054)
* add qwen25vl awq models

* add moonlight

Former-commit-id: ae3be2970fea8a35907202a313ab767381c44916
2025-02-24 22:05:13 +08:00
hoshi-hiyouga
ee46011b34 [assets] update readme (#7051)
Former-commit-id: c89a39bfc6a3f0aaa376cd1b221320f466aba617
2025-02-24 20:45:06 +08:00
hoshi-hiyouga
d55f420206 [assets] update wechat (#7019)
Former-commit-id: 3d102fe7e0bfc23db7d75f90ebaf53216c54cc85
2025-02-20 20:32:33 +08:00
Zhangchi Feng
fcf75633a0 [data] fix MiniCPMV plugin (#6998)
* fix template

* fix bug in messages processing

Former-commit-id: f98b828f53968fb9c72bff9e45510ad5586c4fab
2025-02-19 19:36:04 +08:00
hoshi-hiyouga
e77ced045d [webui] update css (#6985)
Former-commit-id: 760a1dfb8193de418d7aa1063c0d111a3a64ae0f
2025-02-18 18:27:57 +08:00
hoshi-hiyouga
331f53381f [data] add r1 distill dataset (#6983)
Former-commit-id: 1da5ee4edaa3896593b9cae488f0ac5917c3243e
2025-02-18 17:25:09 +08:00
hoshi-hiyouga
1d675a287d [version] support transformers 449 (#6982)
* support transformers 449

* fix mm plugin

Former-commit-id: e9118a9df0839d24f6ddff5a0b55ef101a1d3d22
2025-02-18 17:05:40 +08:00
hoshi-hiyouga
be33ef67fb [misc] fix script (#6977)
Former-commit-id: 775efa1d8cbdb1b7d122be2a986d47f85214e0a1
2025-02-18 17:00:46 +08:00
hoshi-hiyouga
f5cd17881e [data] update vlm args (#6976)
Former-commit-id: c28e710636a0286d4b8a1d494529b25168a8f3ab
2025-02-18 02:12:51 +08:00
hoshi-hiyouga
c09b648934 [data] add min resolution option (#6975)
Former-commit-id: 76bd9a98a2fb00f1a1d881e6e1364c02fd36d327
2025-02-18 01:40:46 +08:00
hoshi-hiyouga
f2fd9d1b25 [data] fix predict dataset (#6972)
Former-commit-id: f9a82e527877b1ed47cabb3d34f4d155705f4048
2025-02-17 20:29:40 +08:00
Zhangchi Feng
167342af8a [data] fix minicpmo template (#6946)
Former-commit-id: 09e4438b58d5c1a5fdde37ff781c3d79461c4743
2025-02-15 00:37:41 +08:00
Eric Tang
76f9bd1820 [ray] specify ray storage path (#6920)
Former-commit-id: 4be6b66b1eaa79955e936ce2b747a8837ecd1e49
2025-02-14 21:55:41 +08:00
hoshi-hiyouga
a893505924 [misc] fix lora regex (#6944)
* fix lora regex

* fix

Former-commit-id: 1d0ecbaee1b72f1e03154ddd4fcc8b7876e01f89
2025-02-14 21:38:43 +08:00
hoshi-hiyouga
ed25e051a9 [misc] fix grad ckpt (#6931)
Former-commit-id: deae1fc9a0bea5c8b8be1564cf9c81c9c02a0b3a
2025-02-13 23:27:51 +08:00
hoshi-hiyouga
5e5fc337f9 [model] add liger kernel to qwen2_5 vl (#6930)
* add liger kernel to qwen2_5 vl

* fix patch

* fix patch

Former-commit-id: 828776d155986166498dfc907194f64436571106
2025-02-13 23:05:54 +08:00
Billy Cao
58e9ca8aa0 [trainer] fix gen_kwarg to eval during training (#5451)
* Correctly pass gen_kwarg to eval during model runs

* fix

* fix

---------

Co-authored-by: hiyouga <hiyouga@buaa.edu.cn>
Former-commit-id: 845d16122496311e08263610a6a922f82604de7b
2025-02-13 02:35:06 +08:00
SrWYG
a4c4b8496f [data] evaluate on each dataset (#5522)
* [Update] loader.py , evaluate will run separate evaluations on each dataset.

`If you pass a dictionary with names of datasets as keys and datasets as values, evaluate will run separate evaluations on each dataset. This can be useful to monitor how training affects other datasets or simply to get a more fine-grained evaluation`

seq2seqtrainner support eval_dataset as Dict.

* fix format

* fix

* fix

---------

Co-authored-by: hiyouga <hiyouga@buaa.edu.cn>
Former-commit-id: cf00f78650a442c85678ce805e030d2b96cbecd7
2025-02-13 02:19:03 +08:00
Noah
38c9641777 [data] improve error handling (#6128)
* sync from upstream

* update

* update

* fix

---------

Co-authored-by: hiyouga <hiyouga@buaa.edu.cn>
Former-commit-id: 1569e6096fec07da5583f1a3435b0d23ae09b5ba
2025-02-13 01:39:41 +08:00
hoshi-hiyouga
8b8fdb3a85 [misc] update readme (#6918)
Former-commit-id: f5823479bd51c39db668b68056be749af09894d1
2025-02-13 01:01:41 +08:00
hoshi-hiyouga
290057069e [misc] update readme (#6917)
Former-commit-id: 6bbed1d8c4189fb7bea40230e278c40bb5336fbd
2025-02-13 00:58:10 +08:00
hoshi-hiyouga
46203856fc [breaking change] refactor data pipeline (#6901)
* refactor data

* rename file

Former-commit-id: 7a1a4ce6451cb782573d0bd9dd27a5e443e3a18b
2025-02-13 00:39:20 +08:00
Eric Tang
80b89978d9 [misc] support for launching LLaMA-Factory with uv run (#6907)
* yay

* uv with ray temporary commit

* remove ray specific code for now

* cleanup

Former-commit-id: 1a9cab6de49e300bf9c747eefbb11d693592b477
2025-02-13 00:38:44 +08:00
Eric Tang
5a221d91f9 [example] fix path to ray example (#6906)
Former-commit-id: e9bee3ef045d85051da04e6ad581a23a9e1a9551
2025-02-13 00:29:32 +08:00
hoshi-hiyouga
3a3f4072e5 [misc] fix grad ckpt func (#6916)
Former-commit-id: 35e069a52b3d7cfd9b0107574b09265eb2290f0b
2025-02-13 00:17:18 +08:00
marko1616
0c0cdc26bc [trainer] fix llama3.2 vision kto train (#6904)
Former-commit-id: 1563e89adc8988fc6e4250634a3f1e385979b0e5
2025-02-12 19:09:14 +08:00
hoshi-hiyouga
2581cc844b [data] feat: auto template (#6905)
* support auto template

* add unittest

Former-commit-id: 0c6c9150db6414a5a05527ea486dce6633dff4b3
2025-02-12 00:22:53 +08:00
hoshi-hiyouga
d58fcd094e [misc] update readme (#6903)
Former-commit-id: 830d028939149d54bc91b6bda110dfa5de949483
2025-02-11 22:51:26 +08:00
hoshi-hiyouga
86063e27ea [data] fix ollama template (#6902)
* fix ollama template

* add meta info

* use half precision

Former-commit-id: 1304bbea69d8c8ca57140017515dee7ae2ee6536
2025-02-11 22:43:09 +08:00
hoshi-hiyouga
88eafd865b [misc] support export ollama modelfile (#6899)
* support export ollama modelfile

* update config

* add system and num ctx

Former-commit-id: 8c2af7466f4015f300b51841db11bcd2505ebf20
2025-02-11 19:52:25 +08:00
hoshi-hiyouga
3f7bd98bfa [data] refactor template (#6896)
Former-commit-id: f78d5a3eca947ed965ca2f6c87d60441b1a59867
2025-02-11 17:59:25 +08:00
codingma
b72c4bd118 support ollama modelfile export (#4686)
Former-commit-id: 15cca102a7fc0d08b5d049cf264acc6fa576b104
2025-02-11 17:52:24 +08:00
hoshi-hiyouga
808ff89a2d [data] refactor mm plugin (#6895)
* refactor plugin

* lint

Former-commit-id: 1c8dcc3adca4a2e78f514f8bb70573dd1ca08746
2025-02-11 16:34:49 +08:00
HJ
6d7f1299bd [data] fix qwen_2_5_vl video processing (#6868)
* fix qwen_2_5_vl video processing

* Update mm_plugin.py

* Update mm_plugin.py

---------

Co-authored-by: hoshi-hiyouga <hiyouga@buaa.edu.cn>
Former-commit-id: 35f326dabdc8e84036296d2e3de1c84c67b8def8
2025-02-11 16:14:50 +08:00
hoshi-hiyouga
0420a608ca [assets] update wechat (#6892)
Former-commit-id: 0b268cc903a583ae78cb7e63d2bdc4602d7220fc
2025-02-11 13:56:26 +08:00
Zhangchi Feng
2047eab723 [da'ta] fix minicpmv plugin (#6890)
* fix template name

* tiny fix

* support minicpm-o-2.6

* support inference of minicpmv

* update readme

* support dpo of minicpmv

* update init audio

* update init audio

* [model]fix image process in minicpmo

* fix no mm inputs

Former-commit-id: cdd19ccd8cec460606b4545e886e932c1c5c5fe1
2025-02-11 13:30:44 +08:00
HJ
e11b40c344 [data] fix: sharegpt converter (#6879)
* fix-sharegpt-format

* fix

---------

Co-authored-by: hoshi-hiyouga <hiyouga@buaa.edu.cn>
Former-commit-id: ae8f8151ff750839998b50446f127061f240d41a
2025-02-10 21:59:12 +08:00
hoshi-hiyouga
b869506a57 [data] fix mllama collator (#6874)
Former-commit-id: c694fa3d66651c6ce547fa72c8260c46a406126b
2025-02-09 22:42:25 +08:00
hoshi-hiyouga
72d5b06b08 [test] align test cases (#6865)
* align test cases

* fix function formatter

Former-commit-id: a68f5e22d0391c80a9a826dc83967255be572032
2025-02-09 01:03:49 +08:00
hoshi-hiyouga
94726bdc8d [dataset] add openthought (#6866)
Former-commit-id: 20c748a4f108c0087f0d85377a4aa99126a0beb0
2025-02-09 00:53:01 +08:00
hoshi-hiyouga
4d1791e905 [deps] upgrade vllm (#6857)
Former-commit-id: 4bd50f65a3d62528768561019fda2723d045c7fd
2025-02-08 15:02:28 +08:00
hoshi-hiyouga
528e06ccaa fix qwen2vl plugin (#6855)
Former-commit-id: fd13b7138ab3f4da0a429a327b9d076bcb70b944
2025-02-08 10:59:10 +08:00
hoshi-hiyouga
fec641ec82 [misc] allow extra args (#6831)
Former-commit-id: 0fd3a5295cb4e08a4e57e860e82103364c28fba8
2025-02-06 12:38:08 +08:00
Zhangchi Feng
8f401e37f8 [model] support audio (#6701)
* support qwen2_audio

* improve code

* lint

* fix

* fix

* fix

---------

Co-authored-by: hiyouga <hiyouga@buaa.edu.cn>
Former-commit-id: 5eacb5629e4d7733cd992a63747a1335f2c6a929
2025-02-05 04:59:09 +08:00
Yueqi Song
9feb78e7b4 [data] allow thought in function call (#6797)
* Update template.py

* Update template.py

* use formatter

* fix regex

---------

Co-authored-by: hiyouga <hiyouga@buaa.edu.cn>
Former-commit-id: 3a31af6e920683ec074da93b1719e29f5d4cffd6
2025-02-05 02:26:23 +08:00
hoshi-hiyouga
c2022431aa [misc] update license year & fix llama pro (#6814)
* fix llamapro script

* change year

Former-commit-id: d9ae594178796994d400a5f207d6499712816f89
2025-02-05 01:53:33 +08:00
Yueqi Song
0817c24c04 [data] fix qwen tool template (#6796)
* Update tool_utils.py

* fix unittest

---------

Co-authored-by: hoshi-hiyouga <hiyouga@buaa.edu.cn>
Former-commit-id: 02bb78a792112f5151b3a96ddde2528823855288
2025-02-05 00:02:00 +08:00
Zhangchi Feng
cfb926fb84 [data] fix minicpmv plugin (#6801)
* fix template name

* tiny fix

* support minicpm-o-2.6

* support inference of minicpmv

* update readme

* support dpo of minicpmv

* update init audio

* update init audio

* [model]fix image process in minicpmo

Former-commit-id: 8f704c8b6228ef50f828014f85dce67fda868660
2025-02-04 21:20:15 +08:00
neavo
34746d6151 [readme] update flash attention installation instruction on win platform (#6788)
* Update README_zh.md

* Update README.md

Former-commit-id: e48d1327fb39cc95f8fbfc746494f67a79471893
2025-02-01 12:43:29 +08:00
hoshi-hiyouga
5bb447b118 [misc] update workflows (#6787)
Former-commit-id: 15add6b250149e2aeabdc62d7dca69fc06054e01
2025-02-01 04:54:42 +08:00
hoshi-hiyouga
a28261a866 [model] add mistral small models (#6786)
Former-commit-id: e5e95c39bc4199fa89c67e34f9adaaa987058744
2025-02-01 04:31:38 +08:00
hoshi-hiyouga
800de98dc8 [model] add qwen2.5 vl models (#6779)
Former-commit-id: ed46fb4f6194c30060b908092464dded12e5787c
2025-01-31 03:00:29 +08:00
hoshi-hiyouga
222423bcef [breaking] support transformers 4.48 (#6628)
Former-commit-id: f154ab175c513a4d7bb866bf2cffc34b77b50508
2025-01-31 01:36:33 +08:00
hoshi-hiyouga
e71737351f [webui] improve webui & reasoning mode (#6778)
Former-commit-id: 3f17fc0d7163372e0446f1a38792ff761e99b739
2025-01-31 00:09:21 +08:00
qvlehao
4f298894da [model] add deepseek-R1 & show think process (#6767)
Former-commit-id: 4dccb724af51208a001c96fefbdbf226be09e50c
2025-01-29 12:16:26 +08:00
yinpu
a8fae3869d fix: avoid redundant normalization in DPO's SFT loss calculation (#6722)
Former-commit-id: 971a8ccbdacf130763d40c7ef82a711b2fc1292f
2025-01-21 13:38:02 +08:00
engchina
db9b977e4f [webui] support ja (#6698)
* add support for japanese language

* add support for japanese language

---------

Co-authored-by: engchina <atjapan2015@gmail.com>
Former-commit-id: 88692e403f9b5085dd0c7c2b2c68656c5da50dd4
2025-01-20 19:46:38 +08:00
hoshi-hiyouga
87d685b59f [model] support yarn (#6693)
Former-commit-id: 8c412abc44a4c61b683465e36c6288580d980250
2025-01-18 13:56:09 +08:00
hoshi-hiyouga
e4046bdd1f [assets] update wechat (#6692)
Former-commit-id: 70dba5fab6f4c9225758cafb646113d8e80ac084
2025-01-18 12:35:03 +08:00
hoshi-hiyouga
5baa3add8c [misc] update mm plugin (#6691)
Former-commit-id: 00303338d6927b1fda58b23340a31a8fa009f706
2025-01-17 23:04:26 +08:00
hoshi-hiyouga
332f637592 disable valset by default (#6690)
Former-commit-id: a1a94f364e33d1d73852f74eda4fa581e6b16533
2025-01-17 21:09:30 +08:00
hoshi-hiyouga
31daa6570b [webui] upgrade to gradio 5 (#6688)
Former-commit-id: 9df7721264ddef0008d7648e6ed173adef99bd74
2025-01-17 20:15:42 +08:00
hoshi-hiyouga
33525a34b6 fix qwen2 moe (#6684)
Former-commit-id: ab624419fa0ab23ef7a331a0ec14e393328772b5
2025-01-17 13:46:09 +08:00
Zhangchi Feng
3607caa2ad [data] Fix minicpmv/o dpo training (#6657)
* fix template name

* tiny fix

* support minicpm-o-2.6

* support inference of minicpmv

* update readme

* support dpo of minicpmv

Former-commit-id: 8d9f47b98047f370637d1c96c2f3440dcc738ef3
2025-01-15 17:30:37 +08:00
steveepreston
0fc2e19279 Update val_size english description (#6653)
* Update `val_size` Description in locales.py

* Update `val_size` Description in data_args.py

* Remove extra space in data_args.py

Former-commit-id: f1ba5158091446dce540dd796284037bdd724c38
2025-01-15 16:00:20 +08:00
hoshi-hiyouga
ef994600db update readme (#6648)
Former-commit-id: b47467276ab3174c50329b3c8b76823bc0a2249c
2025-01-15 11:06:19 +08:00
hoshi-hiyouga
7638f1070e [optim] clean apollo (#6645)
* clean apollo code

* update readme

Former-commit-id: 38b8ec4a99189483124b54df9d6bc6b0d318855a
2025-01-15 01:42:50 +08:00
zhuHQ
c2120432db [optim] add support to APOLLO (#6617)
Former-commit-id: 5a252e5a458457adbd19da3b68a3897ad2962824
2025-01-15 00:24:56 +08:00
Zhangchi Feng
66184762e8 update readme of MiniCPM-o (#6642)
* fix template name

* tiny fix

* support minicpm-o-2.6

* support inference of minicpmv

* update readme

Former-commit-id: 68604050ae2c98aeef5e9a6b4d2c11a4eb609bfa
2025-01-14 21:22:35 +08:00
hoshi-hiyouga
41a9e231cb lint (#6641)
Former-commit-id: 79731ae13ecd17eb8646fb53162c81dddfef3b00
2025-01-14 18:40:07 +08:00
Haian Huang(深度眸)
1bb06e06df Support InternLM3 Dense 8B Model (#6640)
* support internlm3

* update

* update

* update

* add hint

Former-commit-id: 24ab7ae0944c5f373e9cac60f0332e704824a057
2025-01-14 18:07:27 +08:00
Xiaosu Zhu
381f7120e6 Fix tokenizer max length (#6632)
Former-commit-id: 1807c7ba033985490aa7c8c39d880da6af983b92
2025-01-14 17:35:54 +08:00
Zhangchi Feng
f7857c83e1 Support Inference of MiniCPM-V-2.6 and MiniCPM-o-2.6 (#6631)
* fix template name

* tiny fix

* support minicpm-o-2.6

* support inference of minicpmv

Former-commit-id: 7f3c64e853a7cdd49d02bf85e237611941ac7fa8
2025-01-14 17:34:58 +08:00
hoshi-hiyouga
d0da6f40b0 [model] fix mllama any image (#6637)
* fix mllama any image

* reorder classes

Former-commit-id: 1242a1c4b4a465c06363fdc59302e80e5c4c96e6
2025-01-14 16:47:58 +08:00
hoshi-hiyouga
28d145a066 pin vllm version to 0.6.5 (#6629)
Former-commit-id: 26097ca0adf25ebb7d9e8eec2d2cef673c6cfe88
2025-01-14 02:44:02 +08:00
Zhangchi Feng
ae32c148d1 Support new features of MiniCPM-V (#6626)
* fix template name

* tiny fix

* support minicpm-o-2.6

Former-commit-id: 53034a61c7654358f46916cbc370910fb2aeff3b
2025-01-14 00:26:19 +08:00
hoshi-hiyouga
2a05941b14 [inference] fix stop token for object detection (#6624)
* fix stop token

* update minicpm data pipeline

* fix npu qlora examples

Former-commit-id: 844919fadaa8a61dfae47020971ea80730b2346f
2025-01-13 21:34:20 +08:00
codingma
11c38b9173 add nf4 qlora support on Ascend NPU (#6601)
* add nf4 qlora support on Ascend NPU

* add transformers version check

* add python>=3.10 requirement description for npu

* tiny fix

---------

Co-authored-by: hoshi-hiyouga <hiyouga@buaa.edu.cn>
Former-commit-id: 7912d1acac5f10dab22145fe729a90c57aad8d85
2025-01-13 19:43:36 +08:00
Zhangchi Feng
73c1c15b62 Fix template name of MiniCPM-V (#6620)
* fix template name

* tiny fix

Former-commit-id: 94dea52cef709a7e6f1cdc0b78e83e0422bd65d3
2025-01-13 16:46:48 +08:00
hoshi-hiyouga
7f58bf984f Merge pull request #6598 from BUAADreamer/minicpmv
[model] Support MiniCPM-V

Former-commit-id: 251e82bec12eaea6cf13608de191c096c63d1214
2025-01-13 15:24:02 +08:00
fzc8578
ec552372ba remove tests
Former-commit-id: 51addcd7ab81548a9952064dd8c95a8542252003
2025-01-13 15:08:35 +08:00
fzc8578
17d32fb5c7 fix tests
Former-commit-id: 582a17a12010943c7ca1cc0e25ebc8d125d10b45
2025-01-13 15:01:39 +08:00
fzc8578
4b61610b12 fix style
Former-commit-id: 76a36d9acecbf36b6959a14caacfed1d32bcee41
2025-01-13 14:19:38 +08:00
fzc8578
07798e4aad fix system prompt and tests
Former-commit-id: 955efca677b299749f3d40d587ee310951537543
2025-01-13 14:18:06 +08:00
fzc8578
6d6acd0213 add some
Former-commit-id: 5ad8ef3ec434f53f6fc494474becb034a3aca0ca
2025-01-11 15:03:20 +08:00
fzc8578
a789e0f263 add cpm_o test
Former-commit-id: 53cade69caed82b470fdb249274f03ee34af3100
2025-01-11 11:55:30 +08:00
fzc8578
f9ee00b6b6 add cpm_o test
Former-commit-id: 81dc0f678a7609c834581d956387bde42652755d
2025-01-11 11:49:03 +08:00
fzc8578
31bfdb08cd fix format
Former-commit-id: 964e18be5a824950164bc7232d35822a8b116d1a
2025-01-11 01:27:40 +08:00
fzc8578
12c83e00fc add some
Former-commit-id: 6233764d18f31365e9ba450408306fad55567ffc
2025-01-11 01:10:24 +08:00
fzc8578
9dc7b6c7ac adapt to new mllm_param
Former-commit-id: 0775b71965863c2618c117726a1046a36d6d85b8
2025-01-11 00:16:34 +08:00
Zhangchi Feng
627548bf7f Merge branch 'main' into minicpmv
Former-commit-id: 8a9c90759feda975faadc5858bd44b7ea116e7fb
2025-01-11 00:01:36 +08:00
hiyouga
dc65ecdf09 refactor mllm param logic
Former-commit-id: b895c190945cf5d991cb4e4dea2ae73cc9c8d246
2025-01-10 15:45:48 +00:00
fzc8578
e577990eb2 add minicpmv2.6
Former-commit-id: 1ab0aea54b54066cad500b7969b86a0e952d396d
2025-01-10 23:45:44 +08:00
fzc8578
1f3b729a4b add some
Former-commit-id: 58f50b8729083e9ea0fdcf07042b06261670ad57
2025-01-10 23:29:06 +08:00
fzc8578
0aa7ac210f add some
Former-commit-id: 3acd151a0f8efdd230c0b0980550795d204a69f7
2025-01-10 21:25:32 +08:00
fzc8578
40382f1387 fix some
Former-commit-id: 1eb7118db3ad6054cfd59d5f16a5d882e40e9057
2025-01-10 20:55:52 +08:00
fzc8578
75b3819e43 fix version
Former-commit-id: 834903fbf7a0fc8ac110f62f4df7c13819dd3c68
2025-01-10 20:31:04 +08:00
fzc8578
e63c2df0b1 fix some
Former-commit-id: cd5a1a8b9c6eb59d6e95f79573f60ad8668f1942
2025-01-10 20:27:06 +08:00
fzc8578
25d4889789 tiny fix
Former-commit-id: f088e580d3bacd0eecd0c3bf17e928eb49832ba1
2025-01-10 20:15:39 +08:00
Zhangchi Feng
8c0a721c4c Merge branch 'main' into minicpmv
Former-commit-id: d8840ae416660e23f1d615ffd404f519360151d9
2025-01-10 20:12:07 +08:00
fzc8578
9e972bc9ec add some
Former-commit-id: fede563aeb716ba5d1e368fd3e1182e4e580d248
2025-01-10 20:01:22 +08:00
hoshi-hiyouga
1675712a4c Merge pull request #6588 from hiyouga/hiyouga/upd_issue_temp
[gh] update issue template

Former-commit-id: 0a2626f996ce61559e93bedf19083aac5c861666
2025-01-10 03:03:48 +08:00
hiyouga
e0c9012f7f update issue template
Former-commit-id: 2bfca993588d8087dfd118f6f02486bbe752b166
2025-01-09 18:58:53 +00:00
hoshi-hiyouga
a25024bd0c Merge pull request #6585 from hiyouga/hiyouga/add_phi4
[model] add phi4 model

Former-commit-id: 0ae6a9b7bf9f1d6d844b97406b4795363bf75e78
2025-01-10 02:39:17 +08:00
hiyouga
867980196e improve template, add phi4 model
Former-commit-id: a785b6796e445a3adba45c5b6947166a2ff99871
2025-01-09 18:27:54 +00:00
hoshi-hiyouga
4e25d037c8 Merge pull request #6564 from stephen-nju/fix_ray
Fix ray

Former-commit-id: d4566839369726023f1b6e8f4b2332bda0c715cc
2025-01-08 18:14:18 +08:00
hoshi-hiyouga
6ba6926221 Merge pull request #6565 from hiyouga/hiyouga/improve_log
[misc] imporve log

Former-commit-id: 538bf7b839c63d6a6758522fa08999d9b78e9db2
2025-01-08 18:08:21 +08:00
zhubin
b6b53b61f7 fix –get ray args when args not a dict
Former-commit-id: 5e5398cd5b117b2378107172d3f91cfb0321e842
2025-01-08 10:06:02 +00:00
hiyouga
647c51a772 imporve log
Former-commit-id: a6abf375975ffea3d51e1b944c9855b5f62ffac8
2025-01-08 09:56:10 +00:00
hoshi-hiyouga
3b843ac9d4 Merge pull request #6542 from erictang000/et/ray-integration
Ray Train integration with LLaMA-Factory

Former-commit-id: 4e34ee0a8e0aa90b535e53608b51c5c0804db34e
2025-01-08 11:46:03 +08:00
hiyouga
0ef1f981da fix llamaboard with ray
Former-commit-id: bd8a432d6a980b1b24a551626304fe3d394b1baf
2025-01-07 09:59:24 +00:00
hiyouga
944a2aec4d refactor ray integration, support save ckpt
Former-commit-id: 2f50b27e608b2092bfceab6c6e84e6631e973ee2
2025-01-07 09:39:10 +00:00
Eric Tang
4f31ad997c run style check
Former-commit-id: 5ec33baf5f95df9fa2afe5523c825d3eda8a076b
2025-01-07 08:55:44 +00:00
Kourosh Hakhamaneshi
8683582300 drafting ray integration
Signed-off-by: Kourosh Hakhamaneshi <kourosh@anyscale.com>

Former-commit-id: 19c12ddae9350f6e25a270fe3372f5b9094cf960
2025-01-07 08:55:44 +00:00
hoshi-hiyouga
5ccc607222 Merge pull request #6547 from hiyouga/hiyouga/fix_pixtral_dpo
[trainer] fix pixtral dpo

Former-commit-id: 920bb2a8922847fa544e2c260c67161e64cf5d50
2025-01-07 14:38:55 +08:00
hiyouga
d8bd46f1bf fix #6546
Former-commit-id: 6fcf2f10faf3b1614896b091591eeef96d717e64
2025-01-07 06:30:44 +00:00
fzc8578
8c2a712247 add some
Former-commit-id: b4790c66c126567bd193de52a564e3ce11c94769
2025-01-06 19:32:39 +08:00
hoshi-hiyouga
53e41bf2c7 Merge pull request #6528 from hiyouga/hiyouga/upd_wechat
[assets] update wechat

Former-commit-id: 3ceedf44896b5ebc406d6398b3f15e74e4710fbe
2025-01-04 16:01:21 +08:00
hiyouga
0eeae9061c update wechat
Former-commit-id: 11a9d96a042e8afd972e0bf2fa3e51f95e4799ec
2025-01-04 07:59:57 +00:00
Zhangchi Feng
08729dbefc Merge branch 'hiyouga:main' into minicpmv
Former-commit-id: 873b2d5888038e2328a12a6eb7c84099ba7ca1f3
2025-01-04 11:20:33 +08:00
fzc8578
2c120aa0df add some
Former-commit-id: 81176fe226da89eace89cb202bad68e73b7c2a02
2025-01-04 11:11:15 +08:00
hoshi-hiyouga
cca6286b6f Merge pull request #6524 from hiyouga/hiyouga/upd_scripts
[misc] update scripts

Former-commit-id: 6ba3ec45fc369c095ab9a1fbd9847dc66cf24ca4
2025-01-03 23:52:26 +08:00
hiyouga
8516054e4d update scripts
Former-commit-id: 05aa52adde8905ca892f1ed5847d6f90b1992848
2025-01-03 10:50:32 +00:00
hoshi-hiyouga
d1a8cd67d2 Merge pull request #6515 from hiyouga/hiyouga/misc
[misc] update model name

Former-commit-id: f92eea4090351dcd3c364e10a9eec0d17d480e12
2025-01-02 20:20:02 +08:00
hiyouga
8a5b4bdfd4 update model name
Former-commit-id: bf627d9f1ac117f040adbfd7630b5283f0db556a
2025-01-02 12:19:21 +00:00
hoshi-hiyouga
3bceef02ee Merge pull request #6514 from hiyouga/hiyouga/add_project
[readme] add project

Former-commit-id: 0bd0c373183731302f1af9f33a1f8ff70ba743e2
2025-01-02 20:16:15 +08:00
hoshi-hiyouga
166a830938 Merge pull request #6513 from hiyouga/hiyouga/add_gpt2
[model] add gpt2 model

Former-commit-id: 859c37f43c8a49eea4f118d0d00ee2a554f6bd4f
2025-01-02 20:15:55 +08:00
hiyouga
18767fe026 add project
Former-commit-id: 3b7e745d271e36b4cfe8826820b23254e1debfe9
2025-01-02 12:15:41 +00:00
hiyouga
18a1a4b9da add gpt2 model
Former-commit-id: 37d5e3639fcf5ae6e58cc435e0fa9dee0d6e4ead
2025-01-02 12:07:38 +00:00
hoshi-hiyouga
6015fe700e Merge pull request #6512 from hiyouga/hiyouga/fix_gen_logic
[trainer] fix generate logic

Former-commit-id: b97759421c535560ade631a7fa0a57b7c0da50f1
2025-01-02 19:36:54 +08:00
hoshi-hiyouga
369dae8dd3 Merge pull request #6462 from shibingli/main
Add ARG HTTP_PROXY in Dockerfile to support HTTP proxy during image building

Former-commit-id: 1e72bb24253bb07da874f3a37ccfa4fddaaf6978
2025-01-02 19:34:17 +08:00
hiyouga
2aaf3697d7 fix #6499
Former-commit-id: dffc607220ff6dac15cf501ac9a3cdbe80c25211
2025-01-02 11:28:54 +00:00
hoshi-hiyouga
5504b5254c Merge pull request #6492 from hiyouga/hiyouga/add_deepseek3
[model] add deepseek3 model

Former-commit-id: 0a6d1244a51f3cc8fe141b32f39bffce4c924a8c
2024-12-30 21:50:13 +08:00
hiyouga
b2e4f11602 add deepseek3 model
Former-commit-id: 611779d412f31e25b1ed38049050eee2da61dde5
2024-12-30 13:39:20 +00:00
hoshi-hiyouga
e3f95abca7 Merge pull request #5507 from piamo/main
Add deepseek-v2.5 template

Former-commit-id: 8a4911d201e219465fe0835a3ceb967f8b80dc0e
2024-12-30 21:08:25 +08:00
hoshi-hiyouga
2f44f70c2c Merge pull request #6483 from hiyouga/hiyouga/fix_paligemma_infer
[model] update vllm & fix paligemma dtype

Former-commit-id: 03ad6d44805a965764aaa51376964972b9b7da3d
2024-12-30 16:34:32 +08:00
hiyouga
f8f05a883b fix #6482
Former-commit-id: 8577f52b4152efe6cc7a8b5f6d37b4f9ba6684e7
2024-12-30 06:03:07 +00:00
hoshi-hiyouga
5f473e2696 Merge pull request #6465 from hiyouga/hiyouga/fix_eval_loss
[trainer] fix eval loss

Former-commit-id: fa8110b2052a74b4bd0dcf391a54207e1e31056d
2024-12-28 01:02:56 +08:00
hiyouga
88b1874c04 fix #6448
Former-commit-id: 04f78e85af5af14b4c195936623e426a6a128af2
2024-12-27 16:54:39 +00:00
shibingli@yeah.net
58bc6943dc Add ARG HTTP_PROXY in Dockerfile to support HTTP proxy during image building.
Former-commit-id: c46af4c45f96f1942dfaf77bdbdbe5d0fe85a387
2024-12-27 18:31:14 +08:00
shibingli@yeah.net
2dedf7b401 Add ARG HTTP_PROXY in Dockerfile to support HTTP proxy during image building.This commit introduces an ARG parameter named HTTP_PROXY in the Dockerfile. This addition allows for the configuration of an HTTP proxy, facilitating image building in environments with network restrictions.
Former-commit-id: d59fe30bca636bc2ca132d50172dba0032cecb6b
2024-12-27 18:17:17 +08:00
hoshi-hiyouga
5769a553d2 Merge pull request #6457 from youkaichao/module-run
[misc] enable module run

Former-commit-id: 813881a5d13dd1d5a526a85d41032196e0d46f04
2024-12-26 23:41:37 +08:00
youkaichao
552816e04b Update cli.py
Former-commit-id: 18e65bbd3ae07af3b9eed7f293c345815776c325
2024-12-26 23:22:09 +08:00
hoshi-hiyouga
b5fa1044b8 Merge pull request #6443 from hiyouga/hiyouga/add_qvq
[modle] add qvq

Former-commit-id: 2010e80b1a939d21efa13d54df5f5d648ea640de
2024-12-25 15:53:19 +08:00
hiyouga
3c55976a0e add qvq #6439
Former-commit-id: 4dbfa142d899dd6e4d1a9d4db125765af5580a4f
2024-12-25 07:52:41 +00:00
hoshi-hiyouga
4611f67fae Merge pull request #6426 from hiyouga/hiyouga/update_readme
[assets] update readme

Former-commit-id: 2309c431090d1f3b573d113bbedeabee2b01fdf2
2024-12-23 22:17:19 +08:00
hiyouga
a5346041bb update readme
Former-commit-id: 1deda4750e0df6c46aeb33cf3f8b35baa537cc1d
2024-12-23 14:08:59 +00:00
hoshi-hiyouga
df42e438c1 Merge pull request #5922 from Tuyohai/main
support granite3 models

Former-commit-id: a9087bc0549f7f16e5b4c39e324043755b1618c8
2024-12-23 16:46:02 +08:00
hoshi-hiyouga
7dbfd7dff6 Merge pull request #6418 from hiyouga/hiyouga/add_report
[trainer] add custom args to experimental logger

Former-commit-id: 5e5a7ba73c1a386f025d75c10b102306bcb98674
2024-12-22 05:47:55 +08:00
hiyouga
a897d46049 support report custom args
Former-commit-id: d41254c40a1c5cacf9377096adb27efa9bdb79ea
2024-12-21 21:42:45 +00:00
hiyouga
adff887659 fix paligemma infer
Former-commit-id: d272455d6118c1d670c70cfe3458d8dab111da6c
2024-12-21 20:24:32 +00:00
hoshi-hiyouga
eba78f2159 Merge pull request #6416 from Zeyi-Lin/main
docs: use swanlab
Former-commit-id: 0759b576a36cde120ccb8cadd96fca4d871be130
2024-12-22 04:08:26 +08:00
ZeYi Lin
ec05c8cdb4 docs: use swanlab
Former-commit-id: 33509ea7bcd5f698a8393379bb3941c3c32f7fd6
2024-12-21 20:59:25 +08:00
hoshi-hiyouga
0a869c4ed4 Merge pull request #6401 from Zeyi-Lin/hiyouga/swanlab
feat: add swanlab for experiment tracking and visualization.
Former-commit-id: e65fe507f7643bf40b0fc462805c7b7f8ef6b738
2024-12-21 14:09:33 +08:00
ZeYi Lin
f792eaf8d4 fix: project blank
Former-commit-id: 3a0939572b0bfc7da0ee1a7244b6b3fbf567aba0
2024-12-20 18:26:02 +08:00
ZeYi Lin
8a41c96761 fix: by hiyouga suggestion
Former-commit-id: 41195f1bc69e4b5da7a265369d368b06754362cf
2024-12-20 16:43:03 +08:00
ZeYi Lin
e5d9d8c55d feat: ui improve
Former-commit-id: 6a1effb1741a13ae5238b0e9b429b4cbe3b6534f
2024-12-20 11:03:02 +08:00
ZeYi Lin
3e44c8fe3a fix: text
Former-commit-id: 52fe8d61eba7b7d8f66df09a03d40f25cc9c5b44
2024-12-19 21:26:02 +08:00
ZeYi Lin
925e421bde fix: bugs
Former-commit-id: a2297f97f7587c77d55fbce9ffa81dc60d0b04a1
2024-12-19 21:08:16 +08:00
hoshi-hiyouga
bbb636bdba Merge pull request #6395 from hiyouga/hiyouga/fix_genkwargs
[generate] fix generate kwargs

Former-commit-id: 1193594f2d06df38ec0aef7f591c74651cf1353c
2024-12-19 20:24:17 +08:00
ZeYi Lin
a30bdbb1c0 docs: config framework
Former-commit-id: 9cad21df82754170900e3ea74476f674754159b3
2024-12-19 20:22:36 +08:00
ZeYi Lin
95b7e10a06 fix: string
Former-commit-id: 73e1da5ab07c96a6faa9738e83c4dd9297f34b14
2024-12-19 20:18:59 +08:00
hiyouga
0385c60177 fix #6391
Former-commit-id: 067ba6e6cb4d8a1d95bba0a108f73008416a2865
2024-12-19 12:16:38 +00:00
ZeYi Lin
44895ebe36 feat: optimize frontend
Former-commit-id: 4a78603c141d9bd78bcaf81261b443cf082bf51f
2024-12-19 19:04:19 +08:00
ZeYi Lin
44dfbf9dbd feat: swanlab params
Former-commit-id: 761b3bdb03e27826fde2ca86d4e37b53c2bbc777
2024-12-19 18:47:27 +08:00
hoshi-hiyouga
0a465fc3ca Merge pull request #6388 from hiyouga/hiyouga/shuffle_control
[trainer] support disable shuffling

Former-commit-id: 3243e74a2ed3b1f7fa818842955f91386b591a9c
2024-12-19 17:00:12 +08:00
hiyouga
01eeae50b5 support disable shuffling
Former-commit-id: 9d8c35fd6b838ede0bd6827c6c6121f2cba2b11b
2024-12-19 08:53:21 +00:00
hiyouga
7eeeffdb8a add swanlab
Former-commit-id: c85a77c8a8824a56a67d56b97b4877fcd6edeb3d
2024-12-19 07:12:31 +00:00
hoshi-hiyouga
eca06531c3 Merge pull request #6384 from hiyouga/hiyouga/fix_webui
[webui] fix webui args

Former-commit-id: 94294c4e356b3ac5546f897d6e3255ee8c2a260f
2024-12-19 14:57:52 +08:00
hiyouga
d90b40b60f fix webui
Former-commit-id: 7152fde4a026e67f15885814c1900f3911d04ee8
2024-12-19 06:48:03 +00:00
hoshi-hiyouga
1898c1e9a6 Merge pull request #6379 from hiyouga/hiyouga/add_paligemma2
[model] add paligemma2

Former-commit-id: abe3ff3fe0b113e949bf6d2bd10e4c125fb8fe75
2024-12-18 17:03:11 +08:00
hiyouga
8d2f8b0dd8 add paligemma2
Former-commit-id: dafbc31684cb2566ef23c79e171cdfd02d6d396b
2024-12-18 08:57:26 +00:00
hoshi-hiyouga
df42281256 Merge pull request #6313 from ge-xing/main
support telechat2 model

Former-commit-id: 282d0619b1047ba48f9bc3ac837d2ed40b7df307
2024-12-18 16:16:17 +08:00
hoshi-hiyouga
896cf476d5 Merge pull request #6369 from hiyouga/hiyouga/template
[template] support qwen2 tool template

Former-commit-id: e1e133635f05f5b83869bc02340d6ea46976f318
2024-12-18 04:23:49 +08:00
hiyouga
37961d5f06 support qwen tool format
Former-commit-id: cbef4cb501fa1b50fa611e7054a856ce2c5ed10e
2024-12-17 20:12:06 +00:00
hiyouga
bb047bc844 change default replace jinja to false
Former-commit-id: bfe6625f6f6aa294933fa9056a4bfedee4fbe5e2
2024-12-17 19:27:10 +00:00
hoshi-hiyouga
448adedf6a Merge pull request #5473 from AlongWY/mistral
Support Mistral format tools

Former-commit-id: 4838427310d49e5942138e4578d2483baa005471
2024-12-18 03:23:24 +08:00
ylfeng
469c7cd462 Support Mistral format tools
Former-commit-id: e42d0e54b7a64a3f017a09e99846d174db7b438f
2024-12-17 19:13:26 +00:00
hoshi-hiyouga
ebf6a07681 Merge pull request #6368 from hiyouga/hiyouga/fix_llama_template
[template] fix llama3 tool template

Former-commit-id: 7c6763c4f3287f758077191361d5b0354741f84a
2024-12-18 01:10:48 +08:00
hiyouga
53f0fff513 fix llama3 tool template
Former-commit-id: 63f28a594a44c011f2e6d418f22ddbfc445db163
2024-12-17 17:05:10 +00:00
hoshi-hiyouga
ab7567693d Merge pull request #6367 from hiyouga/hiyouga/add_model
[model&template] add llama3.3 & support llama3 tool prompt

Former-commit-id: c32012c5e4943a30c3061716ed780d6124b6c90d
2024-12-18 00:13:28 +08:00
hiyouga
1b8aab0723 support llama3 tool prompt
Former-commit-id: dc45d2f56669fd99935a68cda1ec0e8f36229f7f
2024-12-17 15:52:37 +00:00
hoshi-hiyouga
30ebe61914 Merge pull request #5819 from yafshar/remote_code
Add trust_remote_code Parameter and Set Default to False

Former-commit-id: e82099350a2fb6d8ddf9c80ba0b18173057d4dcf
2024-12-17 21:10:24 +08:00
Yaser Afshar
6f1c8dacea Add missing key to init_kwargs
Former-commit-id: 03fc4621dad132164596a58d3e8693787b7e1aca
2024-12-17 12:34:05 +00:00
Yaser Afshar
8881237475 Add trust_remote_code parameter and remove True
- Introduced a new model parameter `trust_remote_code`
- Set the default value of `trust_remote_code` to `False`
  to enhance security


Former-commit-id: 4bf23f406cf5235c16f9f8139850c53354901814
2024-12-17 12:25:12 +00:00
zhaohu xing
584755be4b support telechat2 model
Former-commit-id: 15a069d85c07842cd28d65845af93c3cf70ef1f4
2024-12-17 12:15:33 +00:00
hoshi-hiyouga
3d3324be5c Merge pull request #6364 from hiyouga/hiyouga/control_reenterent_gc
[model] support non-reenterent-gc

Former-commit-id: a8a13cb360980bb4acd493e33ed405e07460fe73
2024-12-17 19:58:36 +08:00
hiyouga
4196d5b4d6 support non-reenterent-gc & fix #6358
Former-commit-id: 20446141e408885eb36d512bfb2dfb62bbc0c20d
2024-12-17 11:41:59 +00:00
hoshi-hiyouga
101c95ce65 Merge pull request #6363 from hiyouga/hiyouga/control_skip_eos
[infer] support control eos

Former-commit-id: 963640cff370be9f2fab649c88a120a645e6992e
2024-12-17 19:35:40 +08:00
hiyouga
19ebc0e7a2 support control eos, fix #6345
Former-commit-id: cb0f8399356bf372f3b7963f2565c3d504be0923
2024-12-17 10:42:05 +00:00
hoshi-hiyouga
1ce15b5d9e Merge pull request #6362 from hiyouga/hiyouga/mllm_packing
[model] generalized packing

Former-commit-id: b85f77a2687f7e0d11f7d2e49de54c544e39e3d5
2024-12-17 18:41:48 +08:00
hiyouga
d670d62a66 generalized packing & fix #6343
Former-commit-id: 3b1e4194616cacd5c24f08b328e31a008bddcf29
2024-12-17 10:26:19 +00:00
hoshi-hiyouga
6522467ddb Merge pull request #6359 from hiyouga/hiyouga/fix_qwen2vl_infer
[model] fix qwen2vl infern

Former-commit-id: 419cba5fae31a3c88305fe424b8aae9d59e3941a
2024-12-17 18:15:23 +08:00
hiyouga
aacd9642f5 fix #6348
Former-commit-id: 83e552320909f4775377889f1512994b7e638a7e
2024-12-17 10:06:46 +00:00
hoshi-hiyouga
4446c92517 Merge pull request #6334 from hiyouga/hiyouga/add_examples
[assets] update wechat and examples

Former-commit-id: 7725e7ac7d21ad844e8424a920e8bece6f38af19
2024-12-15 01:37:01 +08:00
hiyouga
8c65548b10 update assets
Former-commit-id: 7b9bd552b2bf97b72976511094eb51dfde5d1017
2024-12-14 17:36:03 +00:00
hiyouga
fb22651faf fix mrope
Former-commit-id: 55bee1d333549ca19858b3f5c1b7b86926e5fb09
2024-12-12 15:08:17 +00:00
hoshi-hiyouga
cfff136b2a Merge pull request #6253 from hiyouga/hiyouga/qwen2vl_mm_proj
[model] support qwen2vl train proj only

Former-commit-id: 0b0012142ab683da1e0558e6240310bf90f39150
2024-12-05 20:25:33 +08:00
hiyouga
bac2c64f87 support qwen2vl train proj only
Former-commit-id: 0e949ef03455726e907c6f1039e93ebe480c897a
2024-12-05 10:37:42 +00:00
hoshi-hiyouga
be1ec97c8e Merge pull request #6251 from hiyouga/hiyouga/vllm_qwen2vl_infer
[infer] support qwen2vl vllm infer

Former-commit-id: df76f7d6e124131ce7628c31cce01de4f8e6014c
2024-12-05 18:26:19 +08:00
hiyouga
bbd432415d support qwen2vl vllm infer
Former-commit-id: 03ddd2555fb97488cd4daab11e8b672d36150c5a
2024-12-05 10:17:26 +00:00
hoshi-hiyouga
1fef702382 Merge pull request #6246 from hiyouga/hiyouga/update_examples
[examples] update examples

Former-commit-id: ecb688bdb3e940651d64bc1edc85ce4568f3eabe
2024-12-05 16:49:30 +08:00
hiyouga
39865d8a1f update examples
Former-commit-id: bcb010be7732ae137f156932100ee4d02a93725c
2024-12-05 08:48:25 +00:00
hoshi-hiyouga
c7b27bd70b Merge pull request #6242 from hiyouga/hiyouga/fix_script
[script] fix scripts

Former-commit-id: cf254ea0891ea2e6522fdbefcccf409ff7aafd99
2024-12-05 11:54:46 +08:00
hiyouga
86e4fab0d5 fix scripts
Former-commit-id: f94f55d20283298cb7d90d0573992a62df414a8f
2024-12-05 03:47:32 +00:00
hoshi-hiyouga
ff3e40e4a5 Merge pull request #6160 from village-way/pr_dataloader
fix:tokenized_path not None and load_from_disk return Dataset Trigger…
Former-commit-id: 63de20970c8062aeebed5f366f1675beb12e05bf
2024-12-04 22:18:19 +08:00
hoshi-hiyouga
ea830cad0c lint
Former-commit-id: 191ccc585399ad4c6c2c4f280b144b2c0a4869f3
2024-12-04 22:08:27 +08:00
hoshi-hiyouga
225e270fd5 Merge pull request #6238 from hiyouga/hiyouga/vllm_batchinfer
[infer] feat: support batch infer in vllm

Former-commit-id: 886752801ba8a5bf6fc4853ed618817185950c11
2024-12-04 21:59:13 +08:00
hiyouga
c1768cfb14 support batch infer in vllm
Former-commit-id: 3ef5ed3b9a44eed2f7e3ff221dfc343d0a97c0b5
2024-12-04 13:50:00 +00:00
hoshi-hiyouga
53edd62f8b Merge pull request #6190 from JieShenAI/main
add vllm_infer script

Former-commit-id: 09c7ea700c83dcf8d75796a1e28a36197f62cab4
2024-12-04 21:19:23 +08:00
hoshi-hiyouga
41a7e128b6 Merge pull request #6170 from hykilpikonna/main
[+] Show the hostname in webui title

Former-commit-id: 1cb2f9da317a8db8f45e887ab57cdfdc0e8b9412
2024-12-04 18:07:29 +08:00
hoshi-hiyouga
6b8c41c3ac Merge pull request #6233 from hiyouga/hiyouga/vlm_zero3
[data] fix vlm zero3 training

Former-commit-id: b0cbd5e3464a8a1a0f1cf709fb107b23a61f34ff
2024-12-04 17:51:10 +08:00
hiyouga
2f09c34980 fix vlm zero3 training
Former-commit-id: 86fe7fe71b51077310357b7b1895522258f9bc7a
2024-12-04 09:40:39 +00:00
JieShen
76dc69ce36 add async call api
Former-commit-id: 0f728386d88cf8253250c6650555d41578114a0c
2024-12-01 22:18:05 +08:00
JieShen
6c9d05539a add vllm_infer script
Former-commit-id: 4daab843a3aa096b35e5d3832c01fac4271e4604
2024-11-29 14:22:20 +08:00
Azalea
b6bc17f730 [U] Compute hostname differently
Former-commit-id: fbc735972af6facdaba169603a4c77e613b2e8d7
2024-11-28 22:23:41 -05:00
hoshi-hiyouga
c07ba8ccc0 Merge pull request #6175 from hiyouga/hiyouga/add_qwq
[model] add QwQ

Former-commit-id: da8f565c359004d811481b8b85f2a36f30e95e23
2024-11-28 17:01:53 +08:00
hiyouga
ed86f621a0 add qwq
Former-commit-id: acad977356a7f2e729eb6f2cb919a416b18f8add
2024-11-28 08:50:57 +00:00
Azalea
c6a3175bbf [+] Show the hostname
Former-commit-id: 410847656a760fe4c2c310b0d770072392d7aefb
2024-11-28 12:25:02 +08:00
wangdepeng
452291417d fix:tokenized_path not None and load_from_disk return Dataset Trigger stuck
Former-commit-id: cbf9da35728daaf98d92e699e891e334c74af1e5
2024-11-27 16:44:42 +08:00
hoshi-hiyouga
ab9db8b7c7 Merge pull request #6156 from hiyouga/hiyouga/add_o1
[data&model] add marco-o1, skywork-o1 and openo1

Former-commit-id: fa8aa1a3bcb49357799ec30fbb3f143a015e5d58
2024-11-27 14:36:01 +08:00
hiyouga
877e2ea791 fix dataset
Former-commit-id: d4a2d299414984a4043d30034c5c95e2d717a49e
2024-11-27 06:27:44 +00:00
hiyouga
6ea42d5b63 add skywork o1
Former-commit-id: 272a6fe972de926e5841c1570995f4e6fed9f28d
2024-11-27 05:51:59 +00:00
hiyouga
31c117e696 Merge remote-tracking branch 'origin/main' into hiyouga/add_o1
Former-commit-id: 5da8c00b233f96e51cf3bac7f25e3e61659d0cb7
2024-11-27 05:36:41 +00:00
hoshi-hiyouga
04f057334f Merge pull request #6157 from hiyouga/hiyouga/fix_ci
[ci] pin tokenizers version

Former-commit-id: 0357d7530d16699e728bc648abd08ea309e84865
2024-11-27 13:33:04 +08:00
hiyouga
99a54d06ca pin tokenizers version
Former-commit-id: 2b747737f0be2caeb737fe87dad6bf5902b4a588
2024-11-27 05:24:58 +00:00
hiyouga
8332c85f37 add marco-o1 and openo1 dataset
Former-commit-id: 51d49e075470951f109bcdde136203f972450c2e
2024-11-27 04:20:23 +00:00
hoshi-hiyouga
fcf1a3df62 Merge pull request #6152 from hiyouga/hiyouga/add_num_proc_in_data_load
[data] add num_proc in load_dataset

Former-commit-id: d8258ba7e792d5f17ae80d5e8b303e8fa820f162
2024-11-27 00:16:15 +08:00
hoshi-hiyouga
f4f52ae67d Merge pull request #6151 from hiyouga/hiyouga/fix_mllama
[model] fix mllama cross mask

Former-commit-id: 7e64661c1fc53c4d3d9fd915162b762e403b1991
2024-11-27 00:07:54 +08:00
hiyouga
0b08d5882a fix #6149
Former-commit-id: b581b272793314a9602f4dc2fb646a988a6249df
2024-11-26 16:03:02 +00:00
hiyouga
62eeafaba6 fix mllama cross_mask
Former-commit-id: c33967308bebd99489d28bd5a879525cf304c1f9
2024-11-26 15:56:58 +00:00
hoshi-hiyouga
5a52e41399 Merge pull request #6141 from hiyouga/hiyouga-patch-1
[misc] chore: lint

Former-commit-id: ba2b94c68eb08798792be76f95b94b358ce69f44
2024-11-25 23:02:11 +08:00
hoshi-hiyouga
e8083f8f3f lint
Former-commit-id: 57c3cf1f498d5ffafdc8c06e0f8713f8ff77de81
2024-11-25 22:55:56 +08:00
hoshi-hiyouga
338b3a03f0 Merge pull request #6140 from hiyouga/hiyouga/fix_mllama
[data] fix mllama plugin

Former-commit-id: b7e220a7d82db26cbe7ced9ed30332418cc4fa20
2024-11-25 22:32:07 +08:00
hoshi-hiyouga
c8b01b41ac fix #6139
Former-commit-id: a4e9552b9ade6ebb22d782f0412003279ddca23c
2024-11-25 22:22:06 +08:00
hoshi-hiyouga
6d08a418ed Merge pull request #6137 from hiyouga/hiyouga/fix_mllama
[model] fix mllama hidden_size

Former-commit-id: 54f1d3f4064b9d37261883e8399c8e7909178857
2024-11-25 20:17:33 +08:00
hoshi-hiyouga
e3066d1489 fix visual patch
Former-commit-id: ac51fa37cc23518b30a6123e188964dce39be82f
2024-11-25 20:06:06 +08:00
hoshi-hiyouga
487e3f2507 fix #6136
Former-commit-id: b84e5d91a070c473ea820c379bf9b5abbca6df2c
2024-11-25 19:43:42 +08:00
hoshi-hiyouga
b82a53cad8 Merge pull request #6127 from hiyouga/hiyouga/dev_version
[misc] set dev version

Former-commit-id: cb0a51031324c9fdf0c1fedf237692a40c2091d9
2024-11-25 01:42:29 +08:00
hiyouga
5bec82ca9d set dev version
Former-commit-id: a0aea74100a9505664023f6a46fc290e332dfa40
2024-11-25 01:36:49 +08:00
steven
6ef0d13e42 support granite3 models
Former-commit-id: 8cff612e55eb7df116e51c4dd21e7a42543e7a1f
2024-11-04 10:35:03 +08:00
huangpan.foo
ed5c641e8b Add deepseek-v2.5 template
Former-commit-id: e80c1fe798fb2e076c0891a64300f1b6710176b6
2024-09-21 19:33:30 +08:00
318 changed files with 67216 additions and 7868 deletions

View File

@@ -3,12 +3,12 @@
.github
.venv
cache
data
docker
saves
hf_cache
ms_cache
om_cache
shared_data
output
.dockerignore
.gitattributes

View File

@@ -4,15 +4,20 @@ API_HOST=
API_PORT=
API_KEY=
API_MODEL_NAME=
API_VERBOSE=
FASTAPI_ROOT_PATH=
MAX_CONCURRENT=
# general
DISABLE_VERSION_CHECK=
FORCE_CHECK_IMPORTS=
ALLOW_EXTRA_ARGS=
LLAMAFACTORY_VERBOSITY=
USE_MODELSCOPE_HUB=
USE_OPENMIND_HUB=
USE_RAY=
RECORD_VRAM=
OPTIM_TORCH=
NPU_JIT_COMPILE=
# torchrun
FORCE_TORCHRUN=
MASTER_ADDR=
@@ -31,7 +36,7 @@ GRADIO_SERVER_PORT=
GRADIO_ROOT_PATH=
GRADIO_IPV6=
# setup
ENABLE_SHORT_CONSOLE=1
ENABLE_SHORT_CONSOLE=
# reserved (do not use)
LLAMABOARD_ENABLED=
LLAMABOARD_WORKDIR=

61
.github/ISSUE_TEMPLATE/1-bug-report.yml vendored Normal file
View File

@@ -0,0 +1,61 @@
name: "\U0001F41B Bug / help"
description: Create a report to help us improve the LLaMA Factory
labels: ["bug", "pending"]
body:
- type: markdown
attributes:
value: |
Issues included in **[FAQs](https://github.com/hiyouga/LLaMA-Factory/issues/4614)** or those with **insufficient** information may be closed without a response.
已经包含在 **[常见问题](https://github.com/hiyouga/LLaMA-Factory/issues/4614)** 内或提供信息**不完整**的 issues 可能不会被回复。
- type: markdown
attributes:
value: |
Please do not create issues that are not related to framework bugs under this category, use **[Discussions](https://github.com/hiyouga/LLaMA-Factory/discussions/categories/q-a)** instead.
请勿在此分类下创建和框架 bug 无关的 issues训练问题求助请使用 **[讨论区](https://github.com/hiyouga/LLaMA-Factory/discussions/categories/q-a)**。
- type: checkboxes
id: reminder
attributes:
label: Reminder
description: |
Please ensure you have read the above rules carefully and searched the existing issues (including FAQs).
请确保您已经认真阅读了上述规则并且搜索过现有的 issues包括常见问题
options:
- label: I have read the above rules and searched the existing issues.
required: true
- type: textarea
id: system-info
validations:
required: true
attributes:
label: System Info
description: |
Please share your system info with us. You can run the command **llamafactory-cli env** and copy-paste its output below.
请提供您的系统信息。您可以在命令行运行 **llamafactory-cli env** 并将其输出复制到该文本框中。
placeholder: llamafactory version, platform, python version, ...
- type: textarea
id: reproduction
validations:
required: true
attributes:
label: Reproduction
description: |
Please provide entry arguments, error messages and stack traces that reproduces the problem.
请提供入口参数,错误日志以及异常堆栈以便于我们复现问题。
value: |
```text
Put your message here.
```
- type: textarea
id: others
validations:
required: false
attributes:
label: Others

View File

@@ -0,0 +1,41 @@
name: "\U0001F680 Feature request"
description: Submit a request for a new feature
labels: ["enhancement", "pending"]
body:
- type: markdown
attributes:
value: |
Please do not create issues that are not related to new features under this category.
请勿在此分类下创建和新特性无关的 issues。
- type: checkboxes
id: reminder
attributes:
label: Reminder
description: |
Please ensure you have read the above rules carefully and searched the existing issues.
请确保您已经认真阅读了上述规则并且搜索过现有的 issues。
options:
- label: I have read the above rules and searched the existing issues.
required: true
- type: textarea
id: description
validations:
required: true
attributes:
label: Description
description: |
A clear and concise description of the feature proposal.
请详细描述您希望加入的新功能特性。
- type: textarea
id: contribution
validations:
required: false
attributes:
label: Pull Request
description: |
Have you already created the relevant PR and submitted the code?
您是否已经创建了相关 PR 并提交了代码?

View File

@@ -1,66 +0,0 @@
name: "\U0001F41B Bug / Help"
description: Create a report to help us improve the LLaMA Factory
body:
- type: markdown
attributes:
value: |
Issues included in **FAQs** or those with **insufficient** information may be closed without a response.
包含在**常见问题**内或提供信息**不完整**的 issues 可能不会被回复。
- type: checkboxes
id: reminder
attributes:
label: Reminder
description: |
Please ensure you have read the README carefully and searched the existing issues (including FAQs).
请确保您已经认真阅读了 README 并且搜索过现有的 issues包括常见问题
options:
- label: I have read the README and searched the existing issues.
required: true
- type: textarea
id: system-info
validations:
required: true
attributes:
label: System Info
description: |
Please share your system info with us. You can run the command **llamafactory-cli env** and copy-paste its output below.
请提供您的系统信息。您可以在命令行运行 **llamafactory-cli env** 并将其输出复制到该文本框中。
placeholder: llamafactory version, platform, python version, ...
- type: textarea
id: reproduction
validations:
required: true
attributes:
label: Reproduction
description: |
Please provide code snippets, error messages and stack traces that reproduces the problem.
请提供运行参数,错误信息以及异常堆栈以便于我们复现该问题。
Remember to use Markdown tags to correctly format your code.
请合理使用 Markdown 标签来格式化您的文本。
placeholder: |
```bash
llamafactory-cli train ...
```
- type: textarea
id: expected-behavior
validations:
required: false
attributes:
label: Expected behavior
description: |
Please provide a clear and concise description of what you would expect to happen.
请提供您原本的目的,即这段代码的期望行为。
- type: textarea
id: others
validations:
required: false
attributes:
label: Others

8
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View File

@@ -0,0 +1,8 @@
blank_issues_enabled: false
contact_links:
- name: 📚 FAQs | 常见问题
url: https://github.com/hiyouga/LLaMA-Factory/issues/4614
about: Reading in advance is recommended | 建议提前阅读
- name: Discussions | 讨论区
url: https://github.com/hiyouga/LLaMA-Factory/discussions
about: Please ask fine-tuning questions here | 请在这里讨论训练问题

108
.github/workflows/docker.yml vendored Normal file
View File

@@ -0,0 +1,108 @@
name: docker
on:
workflow_dispatch:
push:
branches:
- "main"
paths:
- "**/*.py"
- "requirements.txt"
- "docker/**"
- ".github/workflows/*.yml"
pull_request:
branches:
- "main"
paths:
- "**/*.py"
- "requirements.txt"
- "docker/**"
- ".github/workflows/*.yml"
jobs:
build:
strategy:
fail-fast: false
matrix:
device:
- "cuda"
- "npu"
runs-on: ubuntu-latest
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}-${{ matrix.device }}
cancel-in-progress: ${{ github.ref != 'refs/heads/main' }}
environment:
name: docker
url: https://hub.docker.com/r/hiyouga/llamafactory
steps:
- name: Free up disk space
uses: jlumbroso/free-disk-space@54081f138730dfa15788a46383842cd2f914a1be # v1.3.1
with:
tool-cache: true
docker-images: false
- name: Checkout
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.9"
- name: Get llamafactory version
id: version
run: |
echo "tag=$(python setup.py --version | sed 's/\.dev0//')" >> "$GITHUB_OUTPUT"
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to Docker Hub
if: ${{ github.event_name != 'pull_request' }}
uses: docker/login-action@v3
with:
username: ${{ vars.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Login to Quay
if: ${{ github.event_name != 'pull_request' && matrix.device == 'npu' }}
uses: docker/login-action@v3
with:
registry: quay.io
username: ${{ vars.QUAY_ASCEND_USERNAME }}
password: ${{ secrets.QUAY_ASCEND_TOKEN }}
- name: Build and push Docker image (CUDA)
if: ${{ matrix.device == 'cuda' }}
uses: docker/build-push-action@v6
with:
context: .
file: ./docker/docker-cuda/Dockerfile
build-args: |
EXTRAS=metrics,deepspeed,liger-kernel
push: ${{ github.event_name != 'pull_request' }}
tags: |
docker.io/hiyouga/llamafactory:latest
docker.io/hiyouga/llamafactory:${{ steps.version.outputs.tag }}
cache-from: type=gha
cache-to: type=gha,mode=max
- name: Build and push Docker image (NPU)
if: ${{ matrix.device == 'npu' }}
uses: docker/build-push-action@v6
with:
context: .
platforms: linux/amd64,linux/arm64
file: ./docker/docker-npu/Dockerfile
push: ${{ github.event_name != 'pull_request' }}
tags: |
docker.io/hiyouga/llamafactory:latest-npu-a2
docker.io/hiyouga/llamafactory:${{ steps.version.outputs.tag }}-npu-a2
quay.io/ascend/llamafactory:latest-npu-a2
quay.io/ascend/llamafactory:${{ steps.version.outputs.tag }}-npu-a2
cache-from: type=gha
cache-to: type=gha,mode=max

View File

@@ -18,13 +18,15 @@ jobs:
ISSUE_URL: ${{ github.event.issue.html_url }}
ISSUE_TITLE: ${{ github.event.issue.title }}
run: |
LABEL=pending
NPU_KEYWORDS=(npu huawei ascend 华为 昇腾)
LABEL=""
NPU_KEYWORDS=(npu huawei ascend 华为 昇腾 910)
ISSUE_TITLE_LOWER=$(echo $ISSUE_TITLE | tr '[:upper:]' '[:lower:]')
for KEYWORD in ${NPU_KEYWORDS[@]}; do
if [[ $ISSUE_TITLE_LOWER == *$KEYWORD* ]] && [[ $ISSUE_TITLE_LOWER != *input* ]]; then
LABEL=pending,npu
LABEL="npu"
break
fi
done
gh issue edit $ISSUE_URL --add-label $LABEL
if [ -n "$LABEL" ]; then
gh issue edit $ISSUE_URL --add-label $LABEL
fi

View File

@@ -1,6 +1,7 @@
name: publish
on:
workflow_dispatch:
release:
types:
- published
@@ -25,16 +26,11 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip install build
python-version: "3.9"
- name: Build package
run: |
python -m build
make build
- name: Publish package
uses: pypa/gh-action-pypi-publish@release/v1

View File

@@ -1,18 +1,19 @@
name: tests
on:
workflow_dispatch:
push:
branches:
- "main"
paths:
- "**.py"
- "**/*.py"
- "requirements.txt"
- ".github/workflows/*.yml"
pull_request:
branches:
- "main"
paths:
- "**.py"
- "**/*.py"
- "requirements.txt"
- ".github/workflows/*.yml"
@@ -21,20 +22,33 @@ jobs:
strategy:
fail-fast: false
matrix:
python-version:
- "3.8" # TODO: remove py38 in next transformers release
python:
- "3.9"
- "3.10"
- "3.11"
- "3.12"
os:
- "ubuntu-latest"
- "windows-latest"
- "macos-13"
transformers:
- null
include: # test backward compatibility
- python: "3.9"
os: "ubuntu-latest"
transformers: "4.49.0"
- python: "3.9"
os: "ubuntu-latest"
transformers: "4.51.0"
- python: "3.9"
os: "ubuntu-latest"
transformers: "4.53.0"
runs-on: ${{ matrix.os }}
environment:
name: tests
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}-${{ matrix.os }}-${{ matrix.python }}-${{ matrix.transformers }}
cancel-in-progress: ${{ github.ref != 'refs/heads/main' }}
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
@@ -47,19 +61,47 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
python-version: ${{ matrix.python }}
cache: "pip"
cache-dependency-path: "setup.py"
cache-dependency-path: "**/requirements*.txt"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip install ".[torch,dev]"
- name: Install transformers
if: ${{ matrix.transformers }}
run: |
python -m pip install "transformers==${{ matrix.transformers }}"
- name: Install transformers to avoid mac os ci errors
if: ${{ matrix.os == 'macos-13' }}
run: |
python -m pip install "transformers<=4.51.3"
- name: Cache files
id: hf-hub-cache
uses: actions/cache@v4
with:
path: ${{ runner.temp }}/huggingface
key: huggingface-${{ matrix.os }}-${{ matrix.python }}-${{ matrix.transformers }}-${{ hashFiles('tests/version.txt') }}
- name: Check quality
run: |
make style && make quality
- name: Check license
run: |
make license
- name: Check build
run: |
make build
- name: Test with pytest
run: |
make test
env:
HF_HOME: ${{ runner.temp }}/huggingface
HF_HUB_OFFLINE: "${{ steps.hf-hub-cache.outputs.cache-hit == 'true' && '1' || '0' }}"

8
.gitignore vendored
View File

@@ -162,12 +162,18 @@ cython_debug/
# vscode
.vscode/
# uv
uv.lock
# custom .gitignore
ms_cache/
hf_cache/
ms_cache/
om_cache/
cache/
config/
saves/
output/
wandb/
swanlog/
generated_predictions.jsonl
predictions_score.json

View File

@@ -1,6 +1,6 @@
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v5.0.0
rev: v6.0.0
hooks:
- id: check-ast
- id: check-added-large-files
@@ -15,13 +15,13 @@ repos:
args: ['--branch', 'main']
- repo: https://github.com/asottile/pyupgrade
rev: v3.17.0
rev: v3.20.0
hooks:
- id: pyupgrade
args: [--py38-plus]
args: [--py39-plus]
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.6.9
rev: v0.13.2
hooks:
- id: ruff
args: [--fix]

View File

@@ -1,14 +1,17 @@
.PHONY: build commit quality style test
.PHONY: build commit license quality style test
check_dirs := scripts src tests setup.py
build:
pip install build && python -m build
pip3 install build && python3 -m build
commit:
pre-commit install
pre-commit run --all-files
license:
python3 tests/check_license.py $(check_dirs)
quality:
ruff check $(check_dirs)
ruff format --check $(check_dirs)

546
README.md
View File

@@ -1,40 +1,59 @@
![# LLaMA Factory](assets/logo.png)
[![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Factory?style=social)](https://github.com/hiyouga/LLaMA-Factory/stargazers)
[![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Factory)](LICENSE)
[![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Factory)](https://github.com/hiyouga/LLaMA-Factory/commits/main)
[![GitHub contributors](https://img.shields.io/github/contributors/hiyouga/LLaMA-Factory?color=orange)](https://github.com/hiyouga/LLaMA-Factory/graphs/contributors)
[![GitHub workflow](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml/badge.svg)](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml)
[![PyPI](https://img.shields.io/pypi/v/llamafactory)](https://pypi.org/project/llamafactory/)
[![Citation](https://img.shields.io/badge/citation-93-green)](#projects-using-llama-factory)
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
[![Discord](https://dcbadge.vercel.app/api/server/rKfvV9r9FK?compact=true&style=flat)](https://discord.gg/rKfvV9r9FK)
[![Citation](https://img.shields.io/badge/citation-840-green)](https://scholar.google.com/scholar?cites=12620864006390196564)
[![Docker Pulls](https://img.shields.io/docker/pulls/hiyouga/llamafactory)](https://hub.docker.com/r/hiyouga/llamafactory/tags)
[![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai)
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)
[![Open in DSW](https://gallery.pai-ml.com/assets/open-in-dsw.svg)](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)
[![Spaces](https://img.shields.io/badge/🤗-Open%20in%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
[![Studios](https://img.shields.io/badge/ModelScope-Open%20in%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
[![SageMaker](https://img.shields.io/badge/SageMaker-Open%20in%20AWS-blue)](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/)
[![Discord](assets/thirdparty/discord.svg)](https://discord.gg/rKfvV9r9FK)
[![GitHub Tread](https://trendshift.io/api/badge/repositories/4535)](https://trendshift.io/repositories/4535)
[![Open in Colab](assets/thirdparty/colab.svg)](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)
[![Open in DSW](assets/thirdparty/dsw.svg)](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)
[![Open in Lab4ai](assets/thirdparty/lab4ai.svg)](https://www.lab4ai.cn/course/detail?id=7c13e60f6137474eb40f6fd3983c0f46&utm_source=LLaMA-Factory)
[![Open in Online](assets/thirdparty/online.svg)](https://www.llamafactory.com.cn/?utm_source=LLaMA-Factory)
[![Open in Spaces](https://img.shields.io/badge/🤗-Open%20in%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
[![Open in Studios](https://img.shields.io/badge/ModelScope-Open%20in%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
[![Open in Novita](https://img.shields.io/badge/Novita-Deploy%20Template-blue)](https://novita.ai/templates-library/105981?sharer=88115474-394e-4bda-968e-b88e123d0c47)
👋 Join our [WeChat](assets/wechat.jpg) or [NPU user group](assets/wechat_npu.jpg).
### Used by [Amazon](https://aws.amazon.com/cn/blogs/machine-learning/how-apoidea-group-enhances-visual-information-extraction-from-banking-documents-with-multimodal-models-using-llama-factory-on-amazon-sagemaker-hyperpod/), [NVIDIA](https://developer.nvidia.com/rtx/ai-toolkit), [Aliyun](https://help.aliyun.com/zh/pai/use-cases/fine-tune-a-llama-3-model-with-llama-factory), etc.
<div align="center" markdown="1">
### Supporters ❤️
| <div style="text-align: center;"><a href="https://warp.dev/llama-factory"><img alt="Warp sponsorship" width="400" src="assets/sponsors/warp.jpg"></a><br><a href="https://warp.dev/llama-factory" style="font-size:larger;">Warp, the agentic terminal for developers</a><br><a href="https://warp.dev/llama-factory">Available for MacOS, Linux, & Windows</a> | <a href="https://serpapi.com"><img alt="SerpAPI sponsorship" width="250" src="assets/sponsors/serpapi.svg"> </a> |
| ---- | ---- |
----
### Easily fine-tune 100+ large language models with zero-code [CLI](#quickstart) and [Web UI](#fine-tuning-with-llama-board-gui-powered-by-gradio)
![GitHub Trend](https://trendshift.io/api/badge/repositories/4535)
</div>
👋 Join our [WeChat](https://github.com/hiyouga/llamafactory-community/blob/main/wechat/main.jpg), [NPU](https://github.com/hiyouga/llamafactory-community/blob/main/wechat/npu.jpg), [Lab4AI](https://github.com/hiyouga/llamafactory-community/blob/main/wechat/lab4ai.jpg), [LLaMA Factory Online](https://github.com/hiyouga/llamafactory-community/blob/main/wechat/online.jpg) user group.
\[ English | [中文](README_zh.md) \]
**Fine-tuning a large language model can be easy as...**
https://github.com/user-attachments/assets/7c96b465-9df7-45f4-8053-bf03e58386d3
https://github.com/user-attachments/assets/3991a3a8-4276-4d30-9cab-4cb0c4b9b99e
Choose your path:
- **Documentation (WIP)**: https://llamafactory.readthedocs.io/zh-cn/latest/
- **Colab**: https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing
- **Documentation (WIP)**: https://llamafactory.readthedocs.io/en/latest/
- **Documentation (AMD GPU)**: https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/notebooks/fine_tune/llama_factory_llama3.html
- **Colab (free)**: https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing
- **Local machine**: Please refer to [usage](#getting-started)
- **PAI-DSW**: [Llama3 Example](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory) | [Qwen2-VL Example](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_qwen2vl)
- **Amazon SageMaker**: [Blog](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/)
Recent activities:
- **2024/10/18-2024/11/30**: Build a personal tour guide bot using PAI+LLaMA Factory. [[website]](https://developer.aliyun.com/topic/llamafactory2)
- **PAI-DSW (free trial)**: https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory
- **Alaya NeW (cloud GPU deal)**: https://docs.alayanew.com/docs/documents/useGuide/LLaMAFactory/mutiple/?utm_source=LLaMA-Factory
- **Official Course**: https://www.lab4ai.cn/course/detail?id=7c13e60f6137474eb40f6fd3983c0f46&utm_source=LLaMA-Factory
- **LLaMA Factory Online**: https://www.llamafactory.com.cn/?utm_source=LLaMA-Factory
> [!NOTE]
> Except for the above links, all other websites are unauthorized third-party websites. Please carefully use them.
@@ -42,13 +61,24 @@ Recent activities:
## Table of Contents
- [Features](#features)
- [Benchmark](#benchmark)
- [Blogs](#blogs)
- [Changelog](#changelog)
- [Supported Models](#supported-models)
- [Supported Training Approaches](#supported-training-approaches)
- [Provided Datasets](#provided-datasets)
- [Requirement](#requirement)
- [Getting Started](#getting-started)
- [Installation](#installation)
- [Data Preparation](#data-preparation)
- [Quickstart](#quickstart)
- [Fine-Tuning with LLaMA Board GUI](#fine-tuning-with-llama-board-gui-powered-by-gradio)
- [LLaMA Factory Online](#llama-factory-online)
- [Build Docker](#build-docker)
- [Deploy with OpenAI-style API and vLLM](#deploy-with-openai-style-api-and-vllm)
- [Download from ModelScope Hub](#download-from-modelscope-hub)
- [Download from Modelers Hub](#download-from-modelers-hub)
- [Use W&B Logger](#use-wb-logger)
- [Use SwanLab Logger](#use-swanlab-logger)
- [Projects using LLaMA Factory](#projects-using-llama-factory)
- [License](#license)
- [Citation](#citation)
@@ -56,46 +86,102 @@ Recent activities:
## Features
- **Various models**: LLaMA, LLaVA, Mistral, Mixtral-MoE, Qwen, Qwen2-VL, Yi, Gemma, Baichuan, ChatGLM, Phi, etc.
- **Various models**: LLaMA, LLaVA, Mistral, Mixtral-MoE, Qwen, Qwen2-VL, DeepSeek, Yi, Gemma, ChatGLM, Phi, etc.
- **Integrated methods**: (Continuous) pre-training, (multimodal) supervised fine-tuning, reward modeling, PPO, DPO, KTO, ORPO, etc.
- **Scalable resources**: 16-bit full-tuning, freeze-tuning, LoRA and 2/3/4/5/6/8-bit QLoRA via AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ.
- **Advanced algorithms**: [GaLore](https://github.com/jiaweizzhao/GaLore), [BAdam](https://github.com/Ledzy/BAdam), [Adam-mini](https://github.com/zyushun/Adam-mini), DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ, PiSSA and Agent tuning.
- **Advanced algorithms**: [GaLore](https://github.com/jiaweizzhao/GaLore), [BAdam](https://github.com/Ledzy/BAdam), [APOLLO](https://github.com/zhuhanqing/APOLLO), [Adam-mini](https://github.com/zyushun/Adam-mini), [Muon](https://github.com/KellerJordan/Muon), [OFT](https://github.com/huggingface/peft/tree/main/src/peft/tuners/oft), DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ and PiSSA.
- **Practical tricks**: [FlashAttention-2](https://github.com/Dao-AILab/flash-attention), [Unsloth](https://github.com/unslothai/unsloth), [Liger Kernel](https://github.com/linkedin/Liger-Kernel), RoPE scaling, NEFTune and rsLoRA.
- **Experiment monitors**: LlamaBoard, TensorBoard, Wandb, MLflow, etc.
- **Faster inference**: OpenAI-style API, Gradio UI and CLI with vLLM worker.
- **Wide tasks**: Multi-turn dialogue, tool using, image understanding, visual grounding, video recognition, audio understanding, etc.
- **Experiment monitors**: LlamaBoard, TensorBoard, Wandb, MLflow, [SwanLab](https://github.com/SwanHubX/SwanLab), etc.
- **Faster inference**: OpenAI-style API, Gradio UI and CLI with [vLLM worker](https://github.com/vllm-project/vllm) or [SGLang worker](https://github.com/sgl-project/sglang).
## Benchmark
### Day-N Support for Fine-Tuning Cutting-Edge Models
Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/ptuning), LLaMA Factory's LoRA tuning offers up to **3.7 times faster** training speed with a better Rouge score on the advertising text generation task. By leveraging 4-bit quantization technique, LLaMA Factory's QLoRA further improves the efficiency regarding the GPU memory.
| Support Date | Model Name |
| ------------ | -------------------------------------------------------------------- |
| Day 0 | Qwen3 / Qwen2.5-VL / Gemma 3 / GLM-4.1V / InternLM 3 / MiniCPM-o-2.6 |
| Day 1 | Llama 3 / GLM-4 / Mistral Small / PaliGemma2 / Llama 4 |
![benchmark](assets/benchmark.svg)
## Blogs
<details><summary>Definitions</summary>
- 💡 [Easy Dataset × LLaMA Factory: Enabling LLMs to Efficiently Learn Domain Knowledge](https://buaa-act.feishu.cn/wiki/GVzlwYcRFiR8OLkHbL6cQpYin7g) (English)
- [Fine-tune a mental health LLM using LLaMA-Factory](https://www.lab4ai.cn/project/detail?id=25cce32ec131497b9e06a93336a0817f&type=project&utm_source=LLaMA-Factory) (Chinese)
- [Fine-tune GPT-OSS for Role-Playing using LLaMA-Factory](https://docs.llamafactory.com.cn/docs/documents/best-practice/gptroleplay/?utm_source=LLaMA-Factory) (Chinese)
- [A One-Stop Code-Free Model Reinforcement Learning and Deployment Platform based on LLaMA-Factory and EasyR1](https://aws.amazon.com/cn/blogs/china/building-llm-model-hub-based-on-llamafactory-and-easyr1/) (Chinese)
- [How Apoidea Group enhances visual information extraction from banking documents with multimodal models using LLaMA-Factory on Amazon SageMaker HyperPod](https://aws.amazon.com/cn/blogs/machine-learning/how-apoidea-group-enhances-visual-information-extraction-from-banking-documents-with-multimodal-models-using-llama-factory-on-amazon-sagemaker-hyperpod/) (English)
- **Training Speed**: the number of training samples processed per second during the training. (bs=4, cutoff_len=1024)
- **Rouge Score**: Rouge-2 score on the development set of the [advertising text generation](https://aclanthology.org/D19-1321.pdf) task. (bs=4, cutoff_len=1024)
- **GPU Memory**: Peak GPU memory usage in 4-bit quantized training. (bs=1, cutoff_len=1024)
- We adopt `pre_seq_len=128` for ChatGLM's P-Tuning and `lora_rank=32` for LLaMA Factory's LoRA tuning.
<details><summary>All Blogs</summary>
- [Fine-tune Llama3.1-70B for Medical Diagnosis using LLaMA-Factory](https://docs.alayanew.com/docs/documents/bestPractice/bigModel/llama70B/?utm_source=LLaMA-Factory) (Chinese)
- [Fine-tune Qwen2.5-VL for Autonomous Driving using LLaMA-Factory](https://docs.alayanew.com/docs/documents/useGuide/LLaMAFactory/mutiple/?utm_source=LLaMA-Factory) (Chinese)
- [LLaMA Factory: Fine-tuning the DeepSeek-R1-Distill-Qwen-7B Model for News Classifier](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_deepseek_r1_distill_7b) (Chinese)
- [A One-Stop Code-Free Model Fine-Tuning \& Deployment Platform based on SageMaker and LLaMA-Factory](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/) (Chinese)
- [LLaMA Factory Multi-Modal Fine-Tuning Practice: Fine-Tuning Qwen2-VL for Personal Tourist Guide](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_qwen2vl) (Chinese)
- [LLaMA Factory: Fine-tuning Llama3 for Role-Playing](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory) (Chinese)
</details>
## Changelog
[24/10/09] We supported downloading pre-trained models and datasets from the **[Modelers Hub](https://modelers.cn/models)**. See [this tutorial](#download-from-modelers-hub) for usage.
[25/08/22] We supported **[OFT](https://arxiv.org/abs/2306.07280)** and **[OFTv2](https://arxiv.org/abs/2506.19847)**. See [examples](examples/README.md) for usage.
[24/09/19] We support fine-tuning the **[Qwen2.5](https://qwenlm.github.io/blog/qwen2.5/)** models.
[25/08/20] We supported fine-tuning the **[Intern-S1-mini](https://huggingface.co/internlm/Intern-S1-mini)** models. See [PR #8976](https://github.com/hiyouga/LLaMA-Factory/pull/8976) to get started.
[24/08/30] We support fine-tuning the **[Qwen2-VL](https://qwenlm.github.io/blog/qwen2-vl/)** models. Thank [@simonJJJ](https://github.com/simonJJJ)'s PR.
[24/08/27] We support **[Liger Kernel](https://github.com/linkedin/Liger-Kernel)**. Try `enable_liger_kernel: true` for efficient training.
[24/08/09] We support **[Adam-mini](https://github.com/zyushun/Adam-mini)** optimizer. See [examples](examples/README.md) for usage. Thank [@relic-yuexi](https://github.com/relic-yuexi)'s PR.
[25/08/06] We supported fine-tuning the **[GPT-OSS](https://github.com/openai/gpt-oss)** models. See [PR #8826](https://github.com/hiyouga/LLaMA-Factory/pull/8826) to get started.
<details><summary>Full Changelog</summary>
[24/07/04] We support [contamination-free packed training](https://github.com/MeetKai/functionary/tree/main/functionary/train/packing). Use `neat_packing: true` to activate it. Thank [@chuan298](https://github.com/chuan298)'s PR.
[25/07/02] We supported fine-tuning the **[GLM-4.1V-9B-Thinking](https://github.com/THUDM/GLM-4.1V-Thinking)** model.
[24/06/16] We support **[PiSSA](https://arxiv.org/abs/2404.02948)** algorithm. See [examples](examples/README.md) for usage.
[25/04/28] We supported fine-tuning the **[Qwen3](https://qwenlm.github.io/blog/qwen3/)** model family.
[25/04/21] We supported the **[Muon](https://github.com/KellerJordan/Muon)** optimizer. See [examples](examples/README.md) for usage. Thank [@tianshijing](https://github.com/tianshijing)'s PR.
[25/04/16] We supported fine-tuning the **[InternVL3](https://huggingface.co/OpenGVLab/InternVL3-8B)** model. See [PR #7258](https://github.com/hiyouga/LLaMA-Factory/pull/7258) to get started.
[25/04/14] We supported fine-tuning the **[GLM-Z1](https://huggingface.co/THUDM/GLM-Z1-9B-0414)** and **[Kimi-VL](https://huggingface.co/moonshotai/Kimi-VL-A3B-Instruct)** models.
[25/04/06] We supported fine-tuning the **[Llama 4](https://ai.meta.com/blog/llama-4-multimodal-intelligence/)** model. See [PR #7611](https://github.com/hiyouga/LLaMA-Factory/pull/7611) to get started.
[25/03/31] We supported fine-tuning the **[Qwen2.5 Omni](https://qwenlm.github.io/blog/qwen2.5-omni/)** model. See [PR #7537](https://github.com/hiyouga/LLaMA-Factory/pull/7537) to get started.
[25/03/15] We supported **[SGLang](https://github.com/sgl-project/sglang)** as inference backend. Try `infer_backend: sglang` to accelerate inference.
[25/03/12] We supported fine-tuning the **[Gemma 3](https://huggingface.co/blog/gemma3)** model.
[25/02/24] Announcing **[EasyR1](https://github.com/hiyouga/EasyR1)**, an efficient, scalable and multi-modality RL training framework for efficient GRPO training.
[25/02/11] We supported saving the **[Ollama](https://github.com/ollama/ollama)** modelfile when exporting the model checkpoints. See [examples](examples/README.md) for usage.
[25/02/05] We supported fine-tuning the **[Qwen2-Audio](Qwen/Qwen2-Audio-7B-Instruct)** and **[MiniCPM-o-2.6](https://huggingface.co/openbmb/MiniCPM-o-2_6)** on audio understanding tasks.
[25/01/31] We supported fine-tuning the **[DeepSeek-R1](https://huggingface.co/deepseek-ai/DeepSeek-R1)** and **[Qwen2.5-VL](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct)** models.
[25/01/15] We supported **[APOLLO](https://arxiv.org/abs/2412.05270)** optimizer. See [examples](examples/README.md) for usage.
[25/01/14] We supported fine-tuning the **[MiniCPM-o-2.6](https://huggingface.co/openbmb/MiniCPM-o-2_6)** and **[MiniCPM-V-2.6](https://huggingface.co/openbmb/MiniCPM-V-2_6)** models. Thank [@BUAADreamer](https://github.com/BUAADreamer)'s PR.
[25/01/14] We supported fine-tuning the **[InternLM 3](https://huggingface.co/collections/internlm/)** models. Thank [@hhaAndroid](https://github.com/hhaAndroid)'s PR.
[25/01/10] We supported fine-tuning the **[Phi-4](https://huggingface.co/microsoft/phi-4)** model.
[24/12/21] We supported using **[SwanLab](https://github.com/SwanHubX/SwanLab)** for experiment tracking and visualization. See [this section](#use-swanlab-logger) for details.
[24/11/27] We supported fine-tuning the **[Skywork-o1](https://huggingface.co/Skywork/Skywork-o1-Open-Llama-3.1-8B)** model and the **[OpenO1](https://huggingface.co/datasets/O1-OPEN/OpenO1-SFT)** dataset.
[24/10/09] We supported downloading pre-trained models and datasets from the **[Modelers Hub](https://modelers.cn/models)**. See [this tutorial](#download-from-modelers-hub) for usage.
[24/09/19] We supported fine-tuning the **[Qwen2.5](https://qwenlm.github.io/blog/qwen2.5/)** models.
[24/08/30] We supported fine-tuning the **[Qwen2-VL](https://qwenlm.github.io/blog/qwen2-vl/)** models. Thank [@simonJJJ](https://github.com/simonJJJ)'s PR.
[24/08/27] We supported **[Liger Kernel](https://github.com/linkedin/Liger-Kernel)**. Try `enable_liger_kernel: true` for efficient training.
[24/08/09] We supported **[Adam-mini](https://github.com/zyushun/Adam-mini)** optimizer. See [examples](examples/README.md) for usage. Thank [@relic-yuexi](https://github.com/relic-yuexi)'s PR.
[24/07/04] We supported [contamination-free packed training](https://github.com/MeetKai/functionary/tree/main/functionary/train/packing). Use `neat_packing: true` to activate it. Thank [@chuan298](https://github.com/chuan298)'s PR.
[24/06/16] We supported **[PiSSA](https://arxiv.org/abs/2404.02948)** algorithm. See [examples](examples/README.md) for usage.
[24/06/07] We supported fine-tuning the **[Qwen2](https://qwenlm.github.io/blog/qwen2/)** and **[GLM-4](https://github.com/THUDM/GLM-4)** models.
@@ -171,47 +257,84 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
</details>
> [!TIP]
> If you cannot use the latest feature, please pull the latest code and install LLaMA-Factory again.
## Supported Models
| Model | Model size | Template |
| ----------------------------------------------------------------- | -------------------------------- | ---------------- |
| [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
| [BLOOM/BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
| [Command R](https://huggingface.co/CohereForAI) | 35B/104B | cohere |
| [DeepSeek (Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
| [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
| [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma |
| [GLM-4](https://huggingface.co/THUDM) | 9B | glm4 |
| [Index](https://huggingface.co/IndexTeam) | 1.9B | index |
| [InternLM2/InternLM2.5](https://huggingface.co/internlm) | 7B/20B | intern2 |
| [Llama](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
| [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
| [Llama 3-3.2](https://huggingface.co/meta-llama) | 1B/3B/8B/70B | llama3 |
| [Llama 3.2 Vision](https://huggingface.co/meta-llama) | 11B/90B | mllama |
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | llava |
| [LLaVA-NeXT](https://huggingface.co/llava-hf) | 7B/8B/13B/34B/72B/110B | llava_next |
| [LLaVA-NeXT-Video](https://huggingface.co/llava-hf) | 7B/34B | llava_next_video |
| [MiniCPM](https://huggingface.co/openbmb) | 1B/2B/4B | cpm/cpm3 |
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
| [OLMo](https://huggingface.co/allenai) | 1B/7B | - |
| [PaliGemma](https://huggingface.co/google) | 3B | paligemma |
| [Phi-1.5/Phi-2](https://huggingface.co/microsoft) | 1.3B/2.7B | - |
| [Phi-3](https://huggingface.co/microsoft) | 4B/14B | phi |
| [Phi-3-small](https://huggingface.co/microsoft) | 7B | phi_small |
| [Pixtral](https://huggingface.co/mistralai) | 12B | pixtral |
| [Qwen (1-2.5) (Code/Math/MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/3B/7B/14B/32B/72B/110B | qwen |
| [Qwen2-VL](https://huggingface.co/Qwen) | 2B/7B/72B | qwen2_vl |
| [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse |
| [Yi/Yi-1.5 (Code)](https://huggingface.co/01-ai) | 1.5B/6B/9B/34B | yi |
| [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl |
| [Yuan 2](https://huggingface.co/IEITYuan) | 2B/51B/102B | yuan |
| Model | Model size | Template |
| ----------------------------------------------------------------- | -------------------------------- | -------------------- |
| [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
| [BLOOM/BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
| [Command R](https://huggingface.co/CohereForAI) | 35B/104B | cohere |
| [DeepSeek (Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
| [DeepSeek 2.5/3](https://huggingface.co/deepseek-ai) | 236B/671B | deepseek3 |
| [DeepSeek R1 (Distill)](https://huggingface.co/deepseek-ai) | 1.5B/7B/8B/14B/32B/70B/671B | deepseekr1 |
| [ERNIE-4.5](https://huggingface.co/baidu) | 0.3B/21B/300B | ernie/ernie_nothink |
| [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
| [Falcon-H1](https://huggingface.co/tiiuae) | 0.5B/1.5B/3B/7B/34B | falcon_h1 |
| [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma/gemma2 |
| [Gemma 3/Gemma 3n](https://huggingface.co/google) | 270M/1B/4B/6B/8B/12B/27B | gemma3/gemma3n |
| [GLM-4/GLM-4-0414/GLM-Z1](https://huggingface.co/zai-org) | 9B/32B | glm4/glmz1 |
| [GLM-4.1V](https://huggingface.co/zai-org) | 9B | glm4v |
| [GLM-4.5/GLM-4.5V](https://huggingface.co/zai-org) | 106B/355B | glm4_moe/glm4v_moe |
| [GPT-2](https://huggingface.co/openai-community) | 0.1B/0.4B/0.8B/1.5B | - |
| [GPT-OSS](https://huggingface.co/openai) | 20B/120B | gpt |
| [Granite 3.0-3.3](https://huggingface.co/ibm-granite) | 1B/2B/3B/8B | granite3 |
| [Granite 4](https://huggingface.co/ibm-granite) | 7B | granite4 |
| [Hunyuan](https://huggingface.co/tencent/) | 7B | hunyuan |
| [Index](https://huggingface.co/IndexTeam) | 1.9B | index |
| [InternLM 2-3](https://huggingface.co/internlm) | 7B/8B/20B | intern2 |
| [InternVL 2.5-3.5](https://huggingface.co/OpenGVLab) | 1B/2B/4B/8B/14B/30B/38B/78B/241B | intern_vl |
| [InternLM/Intern-S1-mini](https://huggingface.co/internlm/) | 8B | intern_s1 |
| [Kimi-VL](https://huggingface.co/moonshotai) | 16B | kimi_vl |
| [Ling 2.0 (mini/flash)](https://huggingface.co/inclusionAI) | 16B/100B | bailing_v2 |
| [Llama](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
| [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
| [Llama 3-3.3](https://huggingface.co/meta-llama) | 1B/3B/8B/70B | llama3 |
| [Llama 4](https://huggingface.co/meta-llama) | 109B/402B | llama4 |
| [Llama 3.2 Vision](https://huggingface.co/meta-llama) | 11B/90B | mllama |
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | llava |
| [LLaVA-NeXT](https://huggingface.co/llava-hf) | 7B/8B/13B/34B/72B/110B | llava_next |
| [LLaVA-NeXT-Video](https://huggingface.co/llava-hf) | 7B/34B | llava_next_video |
| [MiMo](https://huggingface.co/XiaomiMiMo) | 7B | mimo |
| [MiniCPM 1-4.1](https://huggingface.co/openbmb) | 0.5B/1B/2B/4B/8B | cpm/cpm3/cpm4 |
| [MiniCPM-o-2.6/MiniCPM-V-2.6](https://huggingface.co/openbmb) | 8B | minicpm_o/minicpm_v |
| [Ministral/Mistral-Nemo](https://huggingface.co/mistralai) | 8B/12B | ministral |
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
| [Mistral Small](https://huggingface.co/mistralai) | 24B | mistral_small |
| [OLMo](https://huggingface.co/allenai) | 1B/7B | - |
| [PaliGemma/PaliGemma2](https://huggingface.co/google) | 3B/10B/28B | paligemma |
| [Phi-1.5/Phi-2](https://huggingface.co/microsoft) | 1.3B/2.7B | - |
| [Phi-3/Phi-3.5](https://huggingface.co/microsoft) | 4B/14B | phi |
| [Phi-3-small](https://huggingface.co/microsoft) | 7B | phi_small |
| [Phi-4](https://huggingface.co/microsoft) | 14B | phi4 |
| [Pixtral](https://huggingface.co/mistralai) | 12B | pixtral |
| [Qwen (1-2.5) (Code/Math/MoE/QwQ)](https://huggingface.co/Qwen) | 0.5B/1.5B/3B/7B/14B/32B/72B/110B | qwen |
| [Qwen3 (MoE/Instruct/Thinking/Next)](https://huggingface.co/Qwen) | 0.6B/1.7B/4B/8B/14B/32B/80B/235B | qwen3/qwen3_nothink |
| [Qwen2-Audio](https://huggingface.co/Qwen) | 7B | qwen2_audio |
| [Qwen2.5-Omni](https://huggingface.co/Qwen) | 3B/7B | qwen2_omni |
| [Qwen3-Omni](https://huggingface.co/Qwen)* | 30B | qwen3_omni |
| [Qwen2-VL/Qwen2.5-VL/QVQ](https://huggingface.co/Qwen) | 2B/3B/7B/32B/72B | qwen2_vl |
| [Qwen3-VL](https://huggingface.co/Qwen)* | 235B | qwen3_vl |
| [Seed (OSS/Coder)](https://huggingface.co/ByteDance-Seed) | 8B/36B | seed_oss/seed_coder |
| [Skywork o1](https://huggingface.co/Skywork) | 8B | skywork_o1 |
| [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
| [TeleChat2](https://huggingface.co/Tele-AI) | 3B/7B/35B/115B | telechat2 |
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse |
| [Yi/Yi-1.5 (Code)](https://huggingface.co/01-ai) | 1.5B/6B/9B/34B | yi |
| [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl |
| [Yuan 2](https://huggingface.co/IEITYuan) | 2B/51B/102B | yuan |
> [!NOTE]
> For the "base" models, the `template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the **corresponding template** for the "instruct/chat" models.
>
> Remember to use the **SAME** template in training and inference.
>
> \*: You should install the `transformers` from main branch and use `DISABLE_VERSION_CHECK=1` to skip version check.
>
> \*\*: You need to install a specific version of `transformers` to use the corresponding model.
Please refer to [constants.py](src/llamafactory/extras/constants.py) for a full list of models we supported.
@@ -219,16 +342,16 @@ You also can add a custom chat template to [template.py](src/llamafactory/data/t
## Supported Training Approaches
| Approach | Full-tuning | Freeze-tuning | LoRA | QLoRA |
| ---------------------- | ------------------ | ------------------ | ------------------ | ------------------ |
| Pre-Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| Supervised Fine-Tuning | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| Reward Modeling | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| PPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| DPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| KTO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| ORPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| SimPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| Approach | Full-tuning | Freeze-tuning | LoRA | QLoRA | OFT | QOFT |
| ---------------------- | ------------------ | ------------------ | ------------------ | ------------------ | ------------------ | ------------------ |
| Pre-Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| Supervised Fine-Tuning | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| Reward Modeling | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| PPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| DPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| KTO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| ORPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| SimPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
> [!TIP]
> The implementation details of PPO can be found in [this blog](https://newfacade.github.io/notes-on-reinforcement-learning/17-ppo-trl.html).
@@ -246,6 +369,11 @@ You also can add a custom chat template to [template.py](src/llamafactory/data/t
- [SkyPile (zh)](https://huggingface.co/datasets/Skywork/SkyPile-150B)
- [FineWeb (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb)
- [FineWeb-Edu (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu)
- [CCI3-HQ (zh)](https://huggingface.co/datasets/BAAI/CCI3-HQ)
- [CCI3-Data (zh)](https://huggingface.co/datasets/BAAI/CCI3-Data)
- [CCI4.0-M2-Base-v1 (en&zh)](https://huggingface.co/datasets/BAAI/CCI4.0-M2-Base-v1)
- [CCI4.0-M2-CoT-v1 (en&zh)](https://huggingface.co/datasets/BAAI/CCI4.0-M2-CoT-v1)
- [CCI4.0-M2-Extra-v1 (en&zh)](https://huggingface.co/datasets/BAAI/CCI4.0-M2-Extra-v1)
- [The Stack (en)](https://huggingface.co/datasets/bigcode/the-stack)
- [StarCoder (en)](https://huggingface.co/datasets/bigcode/starcoderdata)
@@ -283,6 +411,7 @@ You also can add a custom chat template to [template.py](src/llamafactory/data/t
- [ShareGPT Hyperfiltered (en)](https://huggingface.co/datasets/totally-not-an-llm/sharegpt-hyperfiltered-3k)
- [ShareGPT4 (en&zh)](https://huggingface.co/datasets/shibing624/sharegpt_gpt4)
- [UltraChat 200k (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
- [Infinity Instruct (zh)](https://huggingface.co/datasets/BAAI/Infinity-Instruct)
- [AgentInstruct (en)](https://huggingface.co/datasets/THUDM/AgentInstruct)
- [LMSYS Chat 1M (en)](https://huggingface.co/datasets/lmsys/lmsys-chat-1m)
- [Evol Instruct V2 (en)](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k)
@@ -290,9 +419,13 @@ You also can add a custom chat template to [template.py](src/llamafactory/data/t
- [STEM (zh)](https://huggingface.co/datasets/hfl/stem_zh_instruction)
- [Ruozhiba (zh)](https://huggingface.co/datasets/hfl/ruozhiba_gpt4_turbo)
- [Neo-sft (zh)](https://huggingface.co/datasets/m-a-p/neo_sft_phase2)
- [WebInstructSub (en)](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub)
- [Magpie-Pro-300K-Filtered (en)](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-300K-Filtered)
- [Magpie-ultra-v0.1 (en)](https://huggingface.co/datasets/argilla/magpie-ultra-v0.1)
- [WebInstructSub (en)](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub)
- [OpenO1-SFT (en&zh)](https://huggingface.co/datasets/O1-OPEN/OpenO1-SFT)
- [Open-Thoughts (en)](https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k)
- [Open-R1-Math (en)](https://huggingface.co/datasets/open-r1/OpenR1-Math-220k)
- [Chinese-DeepSeek-R1-Distill (zh)](https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k-SFT)
- [LLaVA mixed (en&zh)](https://huggingface.co/datasets/BUAADreamer/llava-en-zh-300k)
- [Pokemon-gpt4o-captions (en&zh)](https://huggingface.co/datasets/jugg1024/pokemon-gpt4o-captions)
- [Open Assistant (de)](https://huggingface.co/datasets/mayflowergmbh/oasst_de)
@@ -311,8 +444,10 @@ You also can add a custom chat template to [template.py](src/llamafactory/data/t
- [DPO mixed (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
- [UltraFeedback (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)
- [COIG-P (zh)](https://huggingface.co/datasets/m-a-p/COIG-P)
- [RLHF-V (en)](https://huggingface.co/datasets/openbmb/RLHF-V-Dataset)
- [VLFeedback (en)](https://huggingface.co/datasets/Zhihui/VLFeedback)
- [RLAIF-V (en)](https://huggingface.co/datasets/openbmb/RLAIF-V-Dataset)
- [Orca DPO Pairs (en)](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
@@ -332,35 +467,35 @@ huggingface-cli login
| Mandatory | Minimum | Recommend |
| ------------ | ------- | --------- |
| python | 3.8 | 3.11 |
| torch | 1.13.1 | 2.4.0 |
| transformers | 4.41.2 | 4.43.4 |
| datasets | 2.16.0 | 2.20.0 |
| accelerate | 0.30.1 | 0.32.0 |
| peft | 0.11.1 | 0.12.0 |
| python | 3.9 | 3.10 |
| torch | 2.0.0 | 2.6.0 |
| torchvision | 0.15.0 | 0.21.0 |
| transformers | 4.49.0 | 4.50.0 |
| datasets | 2.16.0 | 3.2.0 |
| accelerate | 0.34.0 | 1.2.1 |
| peft | 0.14.0 | 0.15.1 |
| trl | 0.8.6 | 0.9.6 |
| Optional | Minimum | Recommend |
| ------------ | ------- | --------- |
| CUDA | 11.6 | 12.2 |
| deepspeed | 0.10.0 | 0.14.0 |
| deepspeed | 0.10.0 | 0.16.4 |
| bitsandbytes | 0.39.0 | 0.43.1 |
| vllm | 0.4.3 | 0.5.0 |
| flash-attn | 2.3.0 | 2.6.3 |
| vllm | 0.4.3 | 0.8.2 |
| flash-attn | 2.5.6 | 2.7.2 |
### Hardware Requirement
\* *estimated*
| Method | Bits | 7B | 13B | 30B | 70B | 110B | 8x7B | 8x22B |
| ----------------- | ---- | ----- | ----- | ----- | ------ | ------ | ----- | ------ |
| Full | AMP | 120GB | 240GB | 600GB | 1200GB | 2000GB | 900GB | 2400GB |
| Full | 16 | 60GB | 120GB | 300GB | 600GB | 900GB | 400GB | 1200GB |
| Freeze | 16 | 20GB | 40GB | 80GB | 200GB | 360GB | 160GB | 400GB |
| LoRA/GaLore/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | 240GB | 120GB | 320GB |
| QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | 140GB | 60GB | 160GB |
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 72GB | 30GB | 96GB |
| QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | 48GB | 18GB | 48GB |
| Method | Bits | 7B | 14B | 30B | 70B | `x`B |
| ----------------------------------- | ---- | ----- | ----- | ----- | ------ | ------- |
| Full (`bf16` or `fp16`) | 32 | 120GB | 240GB | 600GB | 1200GB | `18x`GB |
| Full (`pure_bf16`) | 16 | 60GB | 120GB | 300GB | 600GB | `8x`GB |
| Freeze/LoRA/GaLore/APOLLO/BAdam/OFT | 16 | 16GB | 32GB | 64GB | 160GB | `2x`GB |
| QLoRA / QOFT | 8 | 10GB | 20GB | 40GB | 80GB | `x`GB |
| QLoRA / QOFT | 4 | 6GB | 12GB | 24GB | 48GB | `x/2`GB |
| QLoRA / QOFT | 2 | 4GB | 8GB | 16GB | 24GB | `x/4`GB |
## Getting Started
@@ -369,53 +504,99 @@ huggingface-cli login
> [!IMPORTANT]
> Installation is mandatory.
#### Install from Source
```bash
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics]"
pip install -e ".[torch,metrics]" --no-build-isolation
```
Extra dependencies available: torch, torch-npu, metrics, deepspeed, liger-kernel, bitsandbytes, hqq, eetq, gptq, awq, aqlm, vllm, galore, badam, adam-mini, qwen, modelscope, openmind, quality
Extra dependencies available: torch, torch-npu, metrics, deepspeed, liger-kernel, bitsandbytes, hqq, eetq, gptq, aqlm, vllm, sglang, galore, apollo, badam, adam-mini, qwen, minicpm_v, openmind, swanlab, dev
> [!TIP]
> Use `pip install --no-deps -e .` to resolve package conflicts.
#### Install from Docker Image
```bash
docker run -it --rm --gpus=all --ipc=host hiyouga/llamafactory:latest
```
This image is built on Ubuntu 22.04 (x86\_64), CUDA 12.4, Python 3.11, PyTorch 2.6.0, and Flash-attn 2.7.4.
Find the pre-built images: https://hub.docker.com/r/hiyouga/llamafactory/tags
Please refer to [build docker](#build-docker) to build the image yourself.
<details><summary>Setting up a virtual environment with <b>uv</b></summary>
Create an isolated Python environment with [uv](https://github.com/astral-sh/uv):
```bash
uv sync --extra torch --extra metrics --prerelease=allow
```
Run LLaMA-Factory in the isolated environment:
```bash
uv run --prerelease=allow llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
```
</details>
<details><summary>For Windows users</summary>
#### Install PyTorch
You need to manually install the GPU version of PyTorch on the Windows platform. Please refer to the [official website](https://pytorch.org/get-started/locally/) and the following command to install PyTorch with CUDA support:
```bash
pip uninstall torch torchvision torchaudio
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126
python -c "import torch; print(torch.cuda.is_available())"
```
If you see `True` then you have successfully installed PyTorch with CUDA support.
Try `dataloader_num_workers: 0` if you encounter `Can't pickle local object` error.
#### Install BitsAndBytes
If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you need to install a pre-built version of `bitsandbytes` library, which supports CUDA 11.1 to 12.2, please select the appropriate [release version](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels) based on your CUDA version.
```bash
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl
```
To enable FlashAttention-2 on the Windows platform, you need to install the precompiled `flash-attn` library, which supports CUDA 12.1 to 12.2. Please download the corresponding version from [flash-attention](https://github.com/bdashore3/flash-attention/releases) based on your requirements.
#### Install Flash Attention-2
To enable FlashAttention-2 on the Windows platform, please use the script from [flash-attention-windows-wheel](https://huggingface.co/lldacing/flash-attention-windows-wheel) to compile and install it by yourself.
</details>
<details><summary>For Ascend NPU users</summary>
To install LLaMA Factory on Ascend NPU devices, please specify extra dependencies: `pip install -e ".[torch-npu,metrics]"`. Additionally, you need to install the **[Ascend CANN Toolkit and Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**. Please follow the [installation tutorial](https://www.hiascend.com/document/detail/en/CANNCommunityEdition/600alphaX/softwareinstall/instg/atlasdeploy_03_0031.html) or use the following commands:
To install LLaMA Factory on Ascend NPU devices, please upgrade Python to version 3.10 or higher and specify extra dependencies: `pip install -e ".[torch-npu,metrics]"`. Additionally, you need to install the **[Ascend CANN Toolkit and Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**. Please follow the [installation tutorial](https://www.hiascend.com/document/detail/en/CANNCommunityEdition/600alphaX/softwareinstall/instg/atlasdeploy_03_0031.html) or use the following commands:
```bash
# replace the url according to your CANN version and devices
# install CANN Toolkit
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run
bash Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run --install
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C20SPC702/Ascend-cann-toolkit_8.0.0.alpha002_linux-"$(uname -i)".run
bash Ascend-cann-toolkit_8.0.0.alpha002_linux-"$(uname -i)".run --install
# install CANN Kernels
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run
bash Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run --install
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C20SPC702/Ascend-cann-kernels-910b_8.0.0.alpha002_linux-"$(uname -i)".run
bash Ascend-cann-kernels-910b_8.0.0.alpha002_linux-"$(uname -i)".run --install
# set env variables
source /usr/local/Ascend/ascend-toolkit/set_env.sh
```
| Requirement | Minimum | Recommend |
| ------------ | ------- | ----------- |
| CANN | 8.0.RC1 | 8.0.RC1 |
| torch | 2.1.0 | 2.1.0 |
| torch-npu | 2.1.0 | 2.1.0.post3 |
| deepspeed | 0.13.2 | 0.13.2 |
| Requirement | Minimum | Recommend |
| ------------ | ------- | -------------- |
| CANN | 8.0.RC1 | 8.0.0.alpha002 |
| torch | 2.1.0 | 2.4.0 |
| torch-npu | 2.1.0 | 2.4.0.post2 |
| deepspeed | 0.13.2 | 0.13.2 |
| vllm-ascend | - | 0.7.3 |
Remember to use `ASCEND_RT_VISIBLE_DEVICES` instead of `CUDA_VISIBLE_DEVICES` to specify the device to use.
@@ -423,15 +604,51 @@ If you cannot infer model on NPU devices, try setting `do_sample: false` in the
Download the pre-built Docker images: [32GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/130.html) | [64GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/131.html)
#### Install BitsAndBytes
To use QLoRA based on bitsandbytes on Ascend NPU, please follow these 3 steps:
1. Manually compile bitsandbytes: Refer to [the installation documentation](https://huggingface.co/docs/bitsandbytes/installation?backend=Ascend+NPU&platform=Ascend+NPU) for the NPU version of bitsandbytes to complete the compilation and installation. The compilation requires a cmake version of at least 3.22.1 and a g++ version of at least 12.x.
```bash
# Install bitsandbytes from source
# Clone bitsandbytes repo, Ascend NPU backend is currently enabled on multi-backend-refactor branch
git clone -b multi-backend-refactor https://github.com/bitsandbytes-foundation/bitsandbytes.git
cd bitsandbytes/
# Install dependencies
pip install -r requirements-dev.txt
# Install the dependencies for the compilation tools. Note that the commands for this step may vary depending on the operating system. The following are provided for reference
apt-get install -y build-essential cmake
# Compile & install
cmake -DCOMPUTE_BACKEND=npu -S .
make
pip install .
```
2. Install transformers from the main branch.
```bash
git clone -b main https://github.com/huggingface/transformers.git
cd transformers
pip install .
```
3. Set `double_quantization: false` in the configuration. You can refer to the [example](examples/train_qlora/llama3_lora_sft_bnb_npu.yaml).
</details>
### Data Preparation
Please refer to [data/README.md](data/README.md) for checking the details about the format of dataset files. You can either use datasets on HuggingFace / ModelScope / Modelers hub or load the dataset in local disk.
Please refer to [data/README.md](data/README.md) for checking the details about the format of dataset files. You can use datasets on HuggingFace / ModelScope / Modelers hub, load the dataset in local disk, or specify a path to s3/gcs cloud storage.
> [!NOTE]
> Please update `data/dataset_info.json` to use your custom dataset.
You can also use **[Easy Dataset](https://github.com/ConardLi/easy-dataset)**, **[DataFlow](https://github.com/OpenDCAI/DataFlow)** and **[GraphGen](https://github.com/open-sciencelab/GraphGen)** to create synthetic data for fine-tuning.
### Quickstart
Use the following 3 commands to run LoRA **fine-tuning**, **inference** and **merging** of the Llama3-8B-Instruct model, respectively.
@@ -446,6 +663,8 @@ See [examples/README.md](examples/README.md) for advanced usage (including distr
> [!TIP]
> Use `llamafactory-cli help` to show help information.
>
> Read [FAQs](https://github.com/hiyouga/LLaMA-Factory/issues/4614) first if you encounter any problems.
### Fine-Tuning with LLaMA Board GUI (powered by [Gradio](https://github.com/gradio-app/gradio))
@@ -453,6 +672,10 @@ See [examples/README.md](examples/README.md) for advanced usage (including distr
llamafactory-cli webui
```
### LLaMA Factory Online
Read our [documentation](https://docs.llamafactory.com.cn/docs/documents/quickstart/getstarted/?utm_source=LLaMA-Factory).
### Build Docker
For CUDA users:
@@ -485,22 +708,13 @@ For CUDA users:
```bash
docker build -f ./docker/docker-cuda/Dockerfile \
--build-arg INSTALL_BNB=false \
--build-arg INSTALL_VLLM=false \
--build-arg INSTALL_DEEPSPEED=false \
--build-arg INSTALL_FLASHATTN=false \
--build-arg PIP_INDEX=https://pypi.org/simple \
--build-arg EXTRAS=metrics \
-t llamafactory:latest .
docker run -dit --gpus=all \
-v ./hf_cache:/root/.cache/huggingface \
-v ./ms_cache:/root/.cache/modelscope \
-v ./om_cache:/root/.cache/openmind \
-v ./data:/app/data \
-v ./output:/app/output \
docker run -dit --ipc=host --gpus=all \
-p 7860:7860 \
-p 8000:8000 \
--shm-size 16G \
--name llamafactory \
llamafactory:latest
@@ -510,19 +724,12 @@ docker exec -it llamafactory bash
For Ascend NPU users:
```bash
# Choose docker image upon your environment
docker build -f ./docker/docker-npu/Dockerfile \
--build-arg INSTALL_DEEPSPEED=false \
--build-arg PIP_INDEX=https://pypi.org/simple \
--build-arg EXTRAS=torch-npu,metrics \
-t llamafactory:latest .
# Change `device` upon your resources
docker run -dit \
-v ./hf_cache:/root/.cache/huggingface \
-v ./ms_cache:/root/.cache/modelscope \
-v ./om_cache:/root/.cache/openmind \
-v ./data:/app/data \
-v ./output:/app/output \
docker run -dit --ipc=host \
-v /usr/local/dcmi:/usr/local/dcmi \
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
-v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
@@ -533,7 +740,6 @@ docker run -dit \
--device /dev/davinci_manager \
--device /dev/devmm_svm \
--device /dev/hisi_hdc \
--shm-size 16G \
--name llamafactory \
llamafactory:latest
@@ -544,25 +750,15 @@ For AMD ROCm users:
```bash
docker build -f ./docker/docker-rocm/Dockerfile \
--build-arg INSTALL_BNB=false \
--build-arg INSTALL_VLLM=false \
--build-arg INSTALL_DEEPSPEED=false \
--build-arg INSTALL_FLASHATTN=false \
--build-arg PIP_INDEX=https://pypi.org/simple \
--build-arg EXTRAS=metrics \
-t llamafactory:latest .
docker run -dit \
-v ./hf_cache:/root/.cache/huggingface \
-v ./ms_cache:/root/.cache/modelscope \
-v ./om_cache:/root/.cache/openmind \
-v ./data:/app/data \
-v ./output:/app/output \
-v ./saves:/app/saves \
docker run -dit --ipc=host \
-p 7860:7860 \
-p 8000:8000 \
--device /dev/kfd \
--device /dev/dri \
--shm-size 16G \
--name llamafactory \
llamafactory:latest
@@ -571,12 +767,14 @@ docker exec -it llamafactory bash
</details>
<details><summary>Details about volume</summary>
<details><summary>Use Docker volumes</summary>
- `hf_cache`: Utilize Hugging Face cache on the host machine. Reassignable if a cache already exists in a different directory.
- `ms_cache`: Similar to Hugging Face cache but for ModelScope users.
- `om_cache`: Similar to Hugging Face cache but for Modelers users.
- `data`: Place datasets on this dir of the host machine so that they can be selected on LLaMA Board GUI.
You can uncomment `VOLUME [ "/root/.cache/huggingface", "/app/shared_data", "/app/output" ]` in the Dockerfile to use data volumes.
When building the Docker image, use `-v ./hf_cache:/root/.cache/huggingface` argument to mount the local directory to the container. The following data volumes are available.
- `hf_cache`: Utilize Hugging Face cache on the host machine.
- `shared_data`: The directionary to store datasets on the host machine.
- `output`: Set export dir to this location so that the merged result can be accessed directly on the host machine.
</details>
@@ -584,13 +782,13 @@ docker exec -it llamafactory bash
### Deploy with OpenAI-style API and vLLM
```bash
API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml
API_PORT=8000 llamafactory-cli api examples/inference/llama3.yaml infer_backend=vllm vllm_enforce_eager=true
```
> [!TIP]
> Visit [this page](https://platform.openai.com/docs/api-reference/chat/create) for API document.
>
> Examples: [Image understanding](scripts/test_image.py) | [Function calling](scripts/test_toolcall.py)
> Examples: [Image understanding](scripts/api_example/test_image.py) | [Function calling](scripts/api_example/test_toolcall.py)
### Download from ModelScope Hub
@@ -623,6 +821,21 @@ run_name: test_run # optional
Set `WANDB_API_KEY` to [your key](https://wandb.ai/authorize) when launching training tasks to log in with your W&B account.
### Use SwanLab Logger
To use [SwanLab](https://github.com/SwanHubX/SwanLab) for logging experimental results, you need to add the following arguments to yaml files.
```yaml
use_swanlab: true
swanlab_run_name: test_run # optional
```
When launching training tasks, you can log in to SwanLab in three ways:
1. Add `swanlab_api_key=<your_api_key>` to the yaml file, and set it to your [API key](https://swanlab.cn/settings).
2. Set the environment variable `SWANLAB_API_KEY` to your [API key](https://swanlab.cn/settings).
3. Use the `swanlab login` command to complete the login.
## Projects using LLaMA Factory
If you have a project that should be incorporated, please contact via email or create a pull request.
@@ -711,6 +924,7 @@ If you have a project that should be incorporated, please contact via email or c
1. Xia et al. Using Pre-trained Language Model for Accurate ESG Prediction. FinNLP 2024. [[paper]](https://aclanthology.org/2024.finnlp-2.1/)
1. Liang et al. I-SHEEP: Self-Alignment of LLM from Scratch through an Iterative Self-Enhancement Paradigm. 2024. [[arxiv]](https://arxiv.org/abs/2408.08072)
1. Bai et al. Aligning Large Language Model with Direct Multi-Preference Optimization for Recommendation. CIKM 2024. [[paper]](https://dl.acm.org/doi/10.1145/3627673.3679611)
1. Zhang et al. CPsyCoun: A Report-based Multi-turn Dialogue Reconstruction and Evaluation Framework for Chinese Psychological Counseling. ACL 2024. [[paper]](https://aclanthology.org/2024.findings-acl.830.pdf)
1. **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: A large language model for Astronomy, based on ChatGLM2-6B and Qwen-14B.
1. **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: A large language model specialized in Chinese legal domain, based on Baichuan-13B, is capable of retrieving and reasoning on legal knowledge.
1. **[Sunsimiao](https://github.com/X-D-Lab/Sunsimiao)**: A large language model specialized in Chinese medical domain, based on Baichuan-7B and ChatGLM-6B.
@@ -722,15 +936,17 @@ If you have a project that should be incorporated, please contact via email or c
1. **[NVIDIA RTX AI Toolkit](https://github.com/NVIDIA/RTX-AI-Toolkit)**: SDKs for fine-tuning LLMs on Windows PC for NVIDIA RTX.
1. **[LazyLLM](https://github.com/LazyAGI/LazyLLM)**: An easy and lazy way for building multi-agent LLMs applications and supports model fine-tuning via LLaMA Factory.
1. **[RAG-Retrieval](https://github.com/NLPJCL/RAG-Retrieval)**: A full pipeline for RAG retrieval model fine-tuning, inference, and distillation. [[blog]](https://zhuanlan.zhihu.com/p/987727357)
1. **[360-LLaMA-Factory](https://github.com/Qihoo360/360-LLaMA-Factory)**: A modified library that supports long sequence SFT & DPO using ring attention.
1. **[Sky-T1](https://novasky-ai.github.io/posts/sky-t1/)**: An o1-like model fine-tuned by NovaSky AI with very small cost.
1. **[WeClone](https://github.com/xming521/WeClone)**: One-stop solution for creating your digital avatar from chat logs.
1. **[EmoLLM](https://github.com/SmartFlowAI/EmoLLM)**: A project about large language models (LLMs) and mental health.
</details>
## License
This repository is licensed under the [Apache-2.0 License](LICENSE).
Please follow the model licenses to use the corresponding model weights: [Baichuan 2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM-4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [Index](https://huggingface.co/IndexTeam/Index-1.9B/blob/main/LICENSE) / [InternLM2](https://github.com/InternLM/InternLM#license) / [Llama](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [Llama 2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [Llama 3](https://llama.meta.com/llama3/license/) / [MiniCPM](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md) / [Mistral/Mixtral/Pixtral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/Phi-2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder 2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan 2](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
Please follow the model licenses to use the corresponding model weights: [Baichuan 2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM-4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [GPT-2](https://github.com/openai/gpt-2/blob/master/LICENSE) / [Granite](LICENSE) / [Index](https://huggingface.co/IndexTeam/Index-1.9B/blob/main/LICENSE) / [InternLM](https://github.com/InternLM/InternLM#license) / [Llama](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [Llama 2](https://ai.meta.com/llama/license/) / [Llama 3](https://llama.meta.com/llama3/license/) / [Llama 4](https://github.com/meta-llama/llama-models/blob/main/models/llama4/LICENSE) / [MiniCPM](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md) / [Mistral/Mixtral/Pixtral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/Phi-2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3/Phi-4](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [Skywork](https://huggingface.co/Skywork/Skywork-13B-base/blob/main/Skywork%20Community%20License.pdf) / [StarCoder 2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [TeleChat2](https://huggingface.co/Tele-AI/telechat-7B/blob/main/TeleChat%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan 2](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
## Citation

View File

@@ -1,41 +1,61 @@
![# LLaMA Factory](assets/logo.png)
[![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Factory?style=social)](https://github.com/hiyouga/LLaMA-Factory/stargazers)
[![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Factory)](LICENSE)
[![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Factory)](https://github.com/hiyouga/LLaMA-Factory/commits/main)
[![GitHub contributors](https://img.shields.io/github/contributors/hiyouga/LLaMA-Factory?color=orange)](https://github.com/hiyouga/LLaMA-Factory/graphs/contributors)
[![GitHub workflow](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml/badge.svg)](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml)
[![PyPI](https://img.shields.io/pypi/v/llamafactory)](https://pypi.org/project/llamafactory/)
[![Citation](https://img.shields.io/badge/citation-93-green)](#使用了-llama-factory-的项目)
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
[![Discord](https://dcbadge.vercel.app/api/server/rKfvV9r9FK?compact=true&style=flat)](https://discord.gg/rKfvV9r9FK)
[![Citation](https://img.shields.io/badge/citation-840-green)](https://scholar.google.com/scholar?cites=12620864006390196564)
[![Docker Pulls](https://img.shields.io/docker/pulls/hiyouga/llamafactory)](https://hub.docker.com/r/hiyouga/llamafactory/tags)
[![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai)
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)
[![Open in DSW](https://gallery.pai-ml.com/assets/open-in-dsw.svg)](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)
[![Spaces](https://img.shields.io/badge/🤗-Open%20in%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
[![Studios](https://img.shields.io/badge/ModelScope-Open%20in%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
[![SageMaker](https://img.shields.io/badge/SageMaker-Open%20in%20AWS-blue)](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/)
[![Discord](assets/thirdparty/discord.svg)](https://discord.gg/rKfvV9r9FK)
[![GitHub Tread](https://trendshift.io/api/badge/repositories/4535)](https://trendshift.io/repositories/4535)
[![Open in Colab](assets/thirdparty/colab.svg)](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)
[![Open in DSW](assets/thirdparty/dsw.svg)](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)
[![Open in Lab4ai](assets/thirdparty/lab4ai.svg)](https://www.lab4ai.cn/course/detail?id=7c13e60f6137474eb40f6fd3983c0f46&utm_source=LLaMA-Factory)
[![Open in Online](assets/thirdparty/online.svg)](https://www.llamafactory.com.cn/?utm_source=LLaMA-Factory)
[![Open in Spaces](https://img.shields.io/badge/🤗-Open%20in%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
[![Open in Studios](https://img.shields.io/badge/ModelScope-Open%20in%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
[![Open in Novita](https://img.shields.io/badge/Novita-Deploy%20Template-blue)](https://novita.ai/templates-library/105981?sharer=88115474-394e-4bda-968e-b88e123d0c47)
👋 加入我们的[微信群](assets/wechat.jpg)或 [NPU 用户群](assets/wechat_npu.jpg)
### 获得[亚马逊](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/)、[英伟达](https://developer.nvidia.cn/rtx/ai-toolkit)、[阿里云](https://help.aliyun.com/zh/pai/use-cases/fine-tune-a-llama-3-model-with-llama-factory)等的应用
<div align="center" markdown="1">
### 赞助商 ❤️
| <div style="text-align: center;"><a href="https://warp.dev/llama-factory"><img alt="Warp sponsorship" width="400" src="assets/sponsors/warp.jpg"></a><br><a href="https://warp.dev/llama-factory" style="font-size:larger;">Warp面向开发者的智能终端</a><br><a href="https://warp.dev/llama-factory">适用于 MacOS、Linux 和 Windows</a> | <a href="https://serpapi.com"><img alt="SerpAPI sponsorship" width="250" src="assets/sponsors/serpapi.svg"> </a> |
| ---- | ---- |
----
### 使用零代码[命令行](#快速开始)与 [Web UI](#llama-board-可视化微调由-gradio-驱动) 轻松微调百余种大模型
![GitHub Trend](https://trendshift.io/api/badge/repositories/4535)
</div>
👋 加入我们的[微信群](https://github.com/hiyouga/llamafactory-community/blob/main/wechat/main.jpg)、[NPU 用户群](https://github.com/hiyouga/llamafactory-community/blob/main/wechat/npu.jpg)、[大模型实验室群](https://github.com/hiyouga/llamafactory-community/blob/main/wechat/lab4ai.jpg) 或 [LLaMA Factory Online 用户群](https://github.com/hiyouga/llamafactory-community/blob/main/wechat/online.png)。
\[ [English](README.md) | 中文 \]
**微调大模型可以像这样轻松…**
https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
选择你的打开方式:
- **入门教程**https://zhuanlan.zhihu.com/p/695287607
- **微调视频教程**https://www.bilibili.com/video/BV1djgRzxEts/
- **框架文档**https://llamafactory.readthedocs.io/zh-cn/latest/
- **Colab**https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing
- **框架文档(昇腾 NPU**https://ascend.github.io/docs/sources/llamafactory/
- **Colab免费**https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing
- **本地机器**:请见[如何使用](#如何使用)
- **PAI-DSW**[Llama3 案例](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory) | [Qwen2-VL 案例](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_qwen2vl)
- **Amazon SageMaker**[博客](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/)
近期活动:
- **2024/10/18-2024/11/30**:使用 PAI+LLaMA Factory 构建个性化导游机器人。[[活动页面]](https://developer.aliyun.com/topic/llamafactory2)
- **PAI-DSW(免费试用)**https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory
- **九章智算云(算力优惠活动)**https://docs.alayanew.com/docs/documents/useGuide/LLaMAFactory/mutiple/?utm_source=LLaMA-Factory
- **官方课程**https://www.lab4ai.cn/course/detail?id=7c13e60f6137474eb40f6fd3983c0f46&utm_source=LLaMA-Factory
- **LLaMA Factory Online在线微调**https://www.llamafactory.com.cn/?utm_source=LLaMA-Factory
> [!NOTE]
> 除上述链接以外的其他网站均为未经许可的第三方网站,请小心甄别。
@@ -43,13 +63,24 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
## 目录
- [项目特色](#项目特色)
- [性能指标](#性能指标)
- [官方博客](#官方博客)
- [更新日志](#更新日志)
- [模型](#模型)
- [训练方法](#训练方法)
- [数据集](#数据集)
- [软硬件依赖](#软硬件依赖)
- [如何使用](#如何使用)
- [安装 LLaMA Factory](#安装-llama-factory)
- [数据准备](#数据准备)
- [快速开始](#快速开始)
- [LLaMA Board 可视化微调](#llama-board-可视化微调由-gradio-驱动)
- [LLaMA Factory Online 在线微调](#llama-factory-online-在线微调)
- [构建 Docker](#构建-docker)
- [利用 vLLM 部署 OpenAI API](#利用-vllm-部署-openai-api)
- [从魔搭社区下载](#从魔搭社区下载)
- [从魔乐社区下载](#从魔乐社区下载)
- [使用 W&B 面板](#使用-wb-面板)
- [使用 SwanLab 面板](#使用-swanlab-面板)
- [使用了 LLaMA Factory 的项目](#使用了-llama-factory-的项目)
- [协议](#协议)
- [引用](#引用)
@@ -57,31 +88,89 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
## 项目特色
- **多种模型**LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Qwen2-VL、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。
- **多种模型**LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Qwen2-VL、DeepSeek、Yi、Gemma、ChatGLM、Phi 等等。
- **集成方法**增量预训练、多模态指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练、ORPO 训练等等。
- **多种精度**16 比特全参数微调、冻结微调、LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ 的 2/3/4/5/6/8 比特 QLoRA 微调。
- **先进算法**[GaLore](https://github.com/jiaweizzhao/GaLore)、[BAdam](https://github.com/Ledzy/BAdam)、[Adam-mini](https://github.com/zyushun/Adam-mini)、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQPiSSA 和 Agent 微调
- **先进算法**[GaLore](https://github.com/jiaweizzhao/GaLore)、[BAdam](https://github.com/Ledzy/BAdam)、[APOLLO](https://github.com/zhuhanqing/APOLLO)、[Adam-mini](https://github.com/zyushun/Adam-mini)、[Muon](https://github.com/KellerJordan/Muon)、[OFT](https://github.com/huggingface/peft/tree/main/src/peft/tuners/oft)、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQPiSSA。
- **实用技巧**[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)、[Unsloth](https://github.com/unslothai/unsloth)、[Liger Kernel](https://github.com/linkedin/Liger-Kernel)、RoPE scaling、NEFTune 和 rsLoRA。
- **实验监控**LlamaBoard、TensorBoard、Wandb、MLflow 等等。
- **极速推理**:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口
- **广泛任务**:多轮对话、工具调用、图像理解、视觉定位、视频识别和语音理解等等。
- **实验监控**LlamaBoard、TensorBoard、Wandb、MLflow、[SwanLab](https://github.com/SwanHubX/SwanLab) 等等
- **极速推理**:基于 [vLLM](https://github.com/vllm-project/vllm) 或 [SGLang](https://github.com/sgl-project/sglang) 的 OpenAI 风格 API、浏览器界面和命令行接口。
## 性能指标
### 最新模型的 Day-N 微调适配
与 ChatGLM 官方的 [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/ptuning) 微调相比LLaMA Factory 的 LoRA 微调提供了 **3.7 倍**的加速比,同时在广告文案生成任务上取得了更高的 Rouge 分数。结合 4 比特量化技术LLaMA Factory 的 QLoRA 微调进一步降低了 GPU 显存消耗。
| 适配时间 | 模型名称 |
| ------------ | -------------------------------------------------------------------- |
| Day 0 | Qwen3 / Qwen2.5-VL / Gemma 3 / GLM-4.1V / InternLM 3 / MiniCPM-o-2.6 |
| Day 1 | Llama 3 / GLM-4 / Mistral Small / PaliGemma2 / Llama 4 |
![benchmark](assets/benchmark.svg)
## 官方博客
<details><summary>变量定义</summary>
- 💡 [Easy Dataset × LLaMA Factory: 让大模型高效学习领域知识](https://buaa-act.feishu.cn/wiki/KY9xwTGs1iqHrRkjXBwcZP9WnL9)(中文)
- [使用 LLaMA-Factory 微调心理健康大模型](https://www.lab4ai.cn/project/detail?id=25cce32ec131497b9e06a93336a0817f&type=project&utm_source=LLaMA-Factory)(中文)
- [使用 LLaMA-Factory 构建 GPT-OSS 角色扮演模型](https://docs.llamafactory.com.cn/docs/documents/best-practice/gptroleplay/?utm_source=LLaMA-Factory)(中文)
- [基于 LLaMA-Factory 和 EasyR1 打造一站式无代码大模型强化学习和部署平台 LLM Model Hub](https://aws.amazon.com/cn/blogs/china/building-llm-model-hub-based-on-llamafactory-and-easyr1/)(中文)
- [通过亚马逊 SageMaker HyperPod 上的 LLaMA-Factory 增强多模态模型银行文档的视觉信息提取](https://aws.amazon.com/cn/blogs/machine-learning/how-apoidea-group-enhances-visual-information-extraction-from-banking-documents-with-multimodal-models-using-llama-factory-on-amazon-sagemaker-hyperpod/)(英文)
- **Training Speed**: 训练阶段每秒处理的样本数量。(批处理大小=4截断长度=1024
- **Rouge Score**: [广告文案生成](https://aclanthology.org/D19-1321.pdf)任务验证集上的 Rouge-2 分数。(批处理大小=4截断长度=1024
- **GPU Memory**: 4 比特量化训练的 GPU 显存峰值。(批处理大小=1截断长度=1024
- 我们在 ChatGLM 的 P-Tuning 中采用 `pre_seq_len=128`,在 LLaMA Factory 的 LoRA 微调中采用 `lora_rank=32`
<details><summary>全部博客</summary>
- [使用 LLaMA-Factory 微调 Llama3.1-70B 医学诊断模型](https://docs.alayanew.com/docs/documents/bestPractice/bigModel/llama70B/?utm_source=LLaMA-Factory)(中文
- [使用 LLaMA-Factory 微调 Qwen2.5-VL 实现自动驾驶场景微调](https://docs.alayanew.com/docs/documents/useGuide/LLaMAFactory/mutiple/?utm_source=LLaMA-Factory)(中文)
- [LLaMA Factory微调 DeepSeek-R1-Distill-Qwen-7B 模型实现新闻标题分类器](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_deepseek_r1_distill_7b)(中文)
- [基于 Amazon SageMaker 和 LLaMA-Factory 打造一站式无代码模型微调部署平台 Model Hub](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/)(中文)
- [LLaMA Factory 多模态微调实践:微调 Qwen2-VL 构建文旅大模型](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_qwen2vl)(中文)
- [LLaMA Factory微调 Llama3 模型实现角色扮演](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)(中文)
</details>
## 更新日志
[25/08/22] 我们支持了 **[OFT](https://arxiv.org/abs/2306.07280)** 和 **[OFTv2](https://arxiv.org/abs/2506.19847)** 模型的微调。查看 [examples](examples/README.md) 以使用。
[25/08/20] 我们支持了 **[Intern-S1-mini](https://huggingface.co/internlm/Intern-S1-mini)** 模型的微调。查看 [PR #8976](https://github.com/hiyouga/LLaMA-Factory/pull/8976) 以使用。
[25/08/06] 我们支持了 **[GPT-OSS](https://github.com/openai/gpt-oss)** 模型的微调。查看 [PR #8826](https://github.com/hiyouga/LLaMA-Factory/pull/8826) 以使用。
<details><summary>展开日志</summary>
[25/07/02] 我们支持了 **[GLM-4.1V-9B-Thinking](https://github.com/THUDM/GLM-4.1V-Thinking)** 模型的微调。
[25/04/28] 我们支持了 **[Qwen3](https://qwenlm.github.io/blog/qwen3/)** 系列模型的微调。
[25/04/21] 我们支持了 **[Muon](https://github.com/KellerJordan/Muon)** 优化器。详细用法请参照 [examples](examples/README_zh.md)。感谢 [@tianshijing](https://github.com/tianshijing) 的 PR。
[25/04/16] 我们支持了 **[InternVL3](https://huggingface.co/OpenGVLab/InternVL3-8B)** 模型的微调。查看 [PR #7258](https://github.com/hiyouga/LLaMA-Factory/pull/7258) 以使用。
[25/04/14] 我们支持了 **[GLM-Z1](https://huggingface.co/THUDM/GLM-Z1-9B-0414)** 和 **[Kimi-VL](https://huggingface.co/moonshotai/Kimi-VL-A3B-Instruct)** 模型的微调。
[25/04/06] 我们支持了 **[Llama 4](https://ai.meta.com/blog/llama-4-multimodal-intelligence/)** 模型的微调。查看 [PR #7611](https://github.com/hiyouga/LLaMA-Factory/pull/7611) 以使用。
[25/03/31] 我们支持了 **[Qwen2.5 Omni](https://qwenlm.github.io/blog/qwen2.5-omni/)** 模型的微调。查看 [PR #7537](https://github.com/hiyouga/LLaMA-Factory/pull/7537) 以使用。
[25/03/15] 我们支持了 **[SGLang](https://github.com/sgl-project/sglang)** 推理后端,请使用 `infer_backend: sglang` 启用。
[25/03/12] 我们支持了 **[Gemma 3](https://huggingface.co/blog/gemma3)** 模型的微调。
[25/02/24] 我们宣布开源 **[EasyR1](https://github.com/hiyouga/EasyR1)**,一个高效可扩展的多模态强化学习框架,支持高效的 GRPO 训练。
[25/02/11] 我们支持了在导出模型时保存 **[Ollama](https://github.com/ollama/ollama)** 配置文件。详细用法请参照 [examples](examples/README_zh.md)。
[25/02/05] 我们支持了在语音理解任务上微调 **[Qwen2-Audio](Qwen/Qwen2-Audio-7B-Instruct)** 和 **[MiniCPM-o-2.6](https://huggingface.co/openbmb/MiniCPM-o-2_6)** 模型。
[25/01/31] 我们支持了 **[DeepSeek-R1](https://huggingface.co/deepseek-ai/DeepSeek-R1)** 和 **[Qwen2.5-VL](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct)** 模型的微调。
[25/01/15] 我们支持了 **[APOLLO](https://arxiv.org/abs/2412.05270)** 优化器。详细用法请参照 [examples](examples/README_zh.md)。
[25/01/14] 我们支持了 **[MiniCPM-o-2.6](https://huggingface.co/openbmb/MiniCPM-o-2_6)** 和 **[MiniCPM-V-2.6](https://huggingface.co/openbmb/MiniCPM-V-2_6)** 模型的微调。 感谢 [@BUAADreamer](https://github.com/BUAADreamer) 的 PR.
[25/01/14] 我们支持了 **[InternLM 3](https://huggingface.co/collections/internlm/)** 模型的微调。感谢 [@hhaAndroid](https://github.com/hhaAndroid) 的 PR。
[25/01/10] 我们支持了 **[Phi-4](https://huggingface.co/microsoft/phi-4)** 模型的微调。
[24/12/21] 我们支持了使用 **[SwanLab](https://github.com/SwanHubX/SwanLab)** 跟踪与可视化实验。详细用法请参考 [此部分](#使用-swanlab-面板)。
[24/11/27] 我们支持了 **[Skywork-o1](https://huggingface.co/Skywork/Skywork-o1-Open-Llama-3.1-8B)** 模型的微调和 **[OpenO1](https://huggingface.co/datasets/O1-OPEN/OpenO1-SFT)** 数据集。
[24/10/09] 我们支持了从 **[魔乐社区](https://modelers.cn/models)** 下载预训练模型和数据集。详细用法请参照 [此教程](#从魔乐社区下载)。
[24/09/19] 我们支持了 **[Qwen2.5](https://qwenlm.github.io/blog/qwen2.5/)** 模型的微调。
@@ -92,8 +181,6 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
[24/08/09] 我们支持了 **[Adam-mini](https://github.com/zyushun/Adam-mini)** 优化器。详细用法请参照 [examples](examples/README_zh.md)。感谢 [@relic-yuexi](https://github.com/relic-yuexi) 的 PR。
<details><summary>展开日志</summary>
[24/07/04] 我们支持了[无污染打包训练](https://github.com/MeetKai/functionary/tree/main/functionary/train/packing)。请使用 `neat_packing: true` 参数。感谢 [@chuan298](https://github.com/chuan298) 的 PR。
[24/06/16] 我们支持了 **[PiSSA](https://arxiv.org/abs/2404.02948)** 算法。详细用法请参照 [examples](examples/README_zh.md)。
@@ -172,46 +259,84 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
</details>
> [!TIP]
> 如果您无法使用最新的功能,请尝试重新拉取代码并再次安装 LLaMA-Factory。
## 模型
| 模型名 | 模型大小 | Template |
| ----------------------------------------------------------------- | -------------------------------- | ---------------- |
| [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
| [BLOOM/BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
| [Command R](https://huggingface.co/CohereForAI) | 35B/104B | cohere |
| [DeepSeek (Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
| [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
| [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma |
| [GLM-4](https://huggingface.co/THUDM) | 9B | glm4 |
| [Index](https://huggingface.co/IndexTeam) | 1.9B | index |
| [InternLM2/InternLM2.5](https://huggingface.co/internlm) | 7B/20B | intern2 |
| [Llama](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
| [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
| [Llama 3-3.2](https://huggingface.co/meta-llama) | 1B/3B/8B/70B | llama3 |
| [Llama 3.2 Vision](https://huggingface.co/meta-llama) | 11B/90B | mllama |
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | llava |
| [LLaVA-NeXT](https://huggingface.co/llava-hf) | 7B/8B/13B/34B/72B/110B | llava_next |
| [LLaVA-NeXT-Video](https://huggingface.co/llava-hf) | 7B/34B | llava_next_video |
| [MiniCPM](https://huggingface.co/openbmb) | 1B/2B/4B | cpm/cpm3 |
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
| [OLMo](https://huggingface.co/allenai) | 1B/7B | - |
| [PaliGemma](https://huggingface.co/google) | 3B | paligemma |
| [Phi-1.5/Phi-2](https://huggingface.co/microsoft) | 1.3B/2.7B | - |
| [Phi-3](https://huggingface.co/microsoft) | 4B/7B/14B | phi |
| [Pixtral](https://huggingface.co/mistralai) | 12B | pixtral |
| [Qwen (1-2.5) (Code/Math/MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/3B/7B/14B/32B/72B/110B | qwen |
| [Qwen2-VL](https://huggingface.co/Qwen) | 2B/7B/72B | qwen2_vl |
| [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse |
| [Yi/Yi-1.5 (Code)](https://huggingface.co/01-ai) | 1.5B/6B/9B/34B | yi |
| [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl |
| [Yuan 2](https://huggingface.co/IEITYuan) | 2B/51B/102B | yuan |
| 模型名 | 参数量 | Template |
| ----------------------------------------------------------------- | -------------------------------- | -------------------- |
| [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
| [BLOOM/BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
| [Command R](https://huggingface.co/CohereForAI) | 35B/104B | cohere |
| [DeepSeek (Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
| [DeepSeek 2.5/3](https://huggingface.co/deepseek-ai) | 236B/671B | deepseek3 |
| [DeepSeek R1 (Distill)](https://huggingface.co/deepseek-ai) | 1.5B/7B/8B/14B/32B/70B/671B | deepseekr1 |
| [ERNIE-4.5](https://huggingface.co/baidu) | 0.3B/21B/300B | ernie/ernie_nothink |
| [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
| [Falcon-H1](https://huggingface.co/tiiuae) | 0.5B/1.5B/3B/7B/34B | falcon_h1 |
| [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma/gemma2 |
| [Gemma 3/Gemma 3n](https://huggingface.co/google) | 270M/1B/4B/6B/8B/12B/27B | gemma3/gemma3n |
| [GLM-4/GLM-4-0414/GLM-Z1](https://huggingface.co/zai-org) | 9B/32B | glm4/glmz1 |
| [GLM-4.1V](https://huggingface.co/zai-org) | 9B | glm4v |
| [GLM-4.5/GLM-4.5V](https://huggingface.co/zai-org) | 106B/355B | glm4_moe/glm4v_moe |
| [GPT-2](https://huggingface.co/openai-community) | 0.1B/0.4B/0.8B/1.5B | - |
| [GPT-OSS](https://huggingface.co/openai) | 20B/120B | gpt |
| [Granite 3.0-3.3](https://huggingface.co/ibm-granite) | 1B/2B/3B/8B | granite3 |
| [Granite 4](https://huggingface.co/ibm-granite) | 7B | granite4 |
| [Hunyuan](https://huggingface.co/tencent/) | 7B | hunyuan |
| [Index](https://huggingface.co/IndexTeam) | 1.9B | index |
| [InternLM 2-3](https://huggingface.co/internlm) | 7B/8B/20B | intern2 |
| [InternVL 2.5-3.5](https://huggingface.co/OpenGVLab) | 1B/2B/4B/8B/14B/30B/38B/78B/241B | intern_vl |
| [InternLM/Intern-S1-mini](https://huggingface.co/internlm/) | 8B | intern_s1 |
| [Kimi-VL](https://huggingface.co/moonshotai) | 16B | kimi_vl |
| [Ling 2.0 (mini/flash)](https://huggingface.co/inclusionAI) | 16B/100B | bailing_v2 |
| [Llama](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
| [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
| [Llama 3-3.3](https://huggingface.co/meta-llama) | 1B/3B/8B/70B | llama3 |
| [Llama 4](https://huggingface.co/meta-llama) | 109B/402B | llama4 |
| [Llama 3.2 Vision](https://huggingface.co/meta-llama) | 11B/90B | mllama |
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | llava |
| [LLaVA-NeXT](https://huggingface.co/llava-hf) | 7B/8B/13B/34B/72B/110B | llava_next |
| [LLaVA-NeXT-Video](https://huggingface.co/llava-hf) | 7B/34B | llava_next_video |
| [MiMo](https://huggingface.co/XiaomiMiMo) | 7B | mimo |
| [MiniCPM 1-4.1](https://huggingface.co/openbmb) | 0.5B/1B/2B/4B/8B | cpm/cpm3/cpm4 |
| [MiniCPM-o-2.6/MiniCPM-V-2.6](https://huggingface.co/openbmb) | 8B | minicpm_o/minicpm_v |
| [Ministral/Mistral-Nemo](https://huggingface.co/mistralai) | 8B/12B | ministral |
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
| [Mistral Small](https://huggingface.co/mistralai) | 24B | mistral_small |
| [OLMo](https://huggingface.co/allenai) | 1B/7B | - |
| [PaliGemma/PaliGemma2](https://huggingface.co/google) | 3B/10B/28B | paligemma |
| [Phi-1.5/Phi-2](https://huggingface.co/microsoft) | 1.3B/2.7B | - |
| [Phi-3/Phi-3.5](https://huggingface.co/microsoft) | 4B/14B | phi |
| [Phi-3-small](https://huggingface.co/microsoft) | 7B | phi_small |
| [Phi-4](https://huggingface.co/microsoft) | 14B | phi4 |
| [Pixtral](https://huggingface.co/mistralai) | 12B | pixtral |
| [Qwen (1-2.5) (Code/Math/MoE/QwQ)](https://huggingface.co/Qwen) | 0.5B/1.5B/3B/7B/14B/32B/72B/110B | qwen |
| [Qwen3 (MoE/Instruct/Thinking/Next)](https://huggingface.co/Qwen) | 0.6B/1.7B/4B/8B/14B/32B/80B/235B | qwen3/qwen3_nothink |
| [Qwen2-Audio](https://huggingface.co/Qwen) | 7B | qwen2_audio |
| [Qwen2.5-Omni](https://huggingface.co/Qwen) | 3B/7B | qwen2_omni |
| [Qwen3-Omni](https://huggingface.co/Qwen)* | 30B | qwen3_omni |
| [Qwen2-VL/Qwen2.5-VL/QVQ](https://huggingface.co/Qwen) | 2B/3B/7B/32B/72B | qwen2_vl |
| [Qwen3-VL](https://huggingface.co/Qwen)* | 235B | qwen3_vl |
| [Seed (OSS/Coder)](https://huggingface.co/ByteDance-Seed) | 8B/36B | seed_oss/seed_coder |
| [Skywork o1](https://huggingface.co/Skywork) | 8B | skywork_o1 |
| [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
| [TeleChat2](https://huggingface.co/Tele-AI) | 3B/7B/35B/115B | telechat2 |
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse |
| [Yi/Yi-1.5 (Code)](https://huggingface.co/01-ai) | 1.5B/6B/9B/34B | yi |
| [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl |
| [Yuan 2](https://huggingface.co/IEITYuan) | 2B/51B/102B | yuan |
> [!NOTE]
> 对于所有“基座”Base模型`template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”Instruct/Chat模型请务必使用**对应的模板**。
>
> 请务必在训练和推理时采用**完全一致**的模板。
>
> \*:您需要从 main 分支安装 `transformers` 并使用 `DISABLE_VERSION_CHECK=1` 来跳过版本检查。
>
> \*\*:您需要安装特定版本的 `transformers` 以使用该模型。
项目所支持模型的完整列表请参阅 [constants.py](src/llamafactory/extras/constants.py)。
@@ -220,7 +345,7 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
## 训练方法
| 方法 | 全参数训练 | 部分参数训练 | LoRA | QLoRA |
| ---------------------- | ------------------ | ------------------ | ------------------ | ------------------ |
| --------------------- | ------------------ | ------------------ | ------------------ | ------------------ |
| 预训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| 指令监督微调 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| 奖励模型训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
@@ -246,6 +371,11 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
- [SkyPile (zh)](https://huggingface.co/datasets/Skywork/SkyPile-150B)
- [FineWeb (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb)
- [FineWeb-Edu (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu)
- [CCI3-HQ (zh)](https://huggingface.co/datasets/BAAI/CCI3-HQ)
- [CCI3-Data (zh)](https://huggingface.co/datasets/BAAI/CCI3-Data)
- [CCI4.0-M2-Base-v1 (en&zh)](https://huggingface.co/datasets/BAAI/CCI4.0-M2-Base-v1)
- [CCI4.0-M2-CoT-v1 (en&zh)](https://huggingface.co/datasets/BAAI/CCI4.0-M2-CoT-v1)
- [CCI4.0-M2-Extra-v1 (en&zh)](https://huggingface.co/datasets/BAAI/CCI4.0-M2-Extra-v1)
- [The Stack (en)](https://huggingface.co/datasets/bigcode/the-stack)
- [StarCoder (en)](https://huggingface.co/datasets/bigcode/starcoderdata)
@@ -283,6 +413,7 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
- [ShareGPT Hyperfiltered (en)](https://huggingface.co/datasets/totally-not-an-llm/sharegpt-hyperfiltered-3k)
- [ShareGPT4 (en&zh)](https://huggingface.co/datasets/shibing624/sharegpt_gpt4)
- [UltraChat 200k (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
- [Infinity Instruct (zh)](https://huggingface.co/datasets/BAAI/Infinity-Instruct)
- [AgentInstruct (en)](https://huggingface.co/datasets/THUDM/AgentInstruct)
- [LMSYS Chat 1M (en)](https://huggingface.co/datasets/lmsys/lmsys-chat-1m)
- [Evol Instruct V2 (en)](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k)
@@ -290,9 +421,13 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
- [STEM (zh)](https://huggingface.co/datasets/hfl/stem_zh_instruction)
- [Ruozhiba (zh)](https://huggingface.co/datasets/hfl/ruozhiba_gpt4_turbo)
- [Neo-sft (zh)](https://huggingface.co/datasets/m-a-p/neo_sft_phase2)
- [WebInstructSub (en)](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub)
- [Magpie-Pro-300K-Filtered (en)](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-300K-Filtered)
- [Magpie-ultra-v0.1 (en)](https://huggingface.co/datasets/argilla/magpie-ultra-v0.1)
- [WebInstructSub (en)](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub)
- [OpenO1-SFT (en&zh)](https://huggingface.co/datasets/O1-OPEN/OpenO1-SFT)
- [Open-Thoughts (en)](https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k)
- [Open-R1-Math (en)](https://huggingface.co/datasets/open-r1/OpenR1-Math-220k)
- [Chinese-DeepSeek-R1-Distill (zh)](https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k-SFT)
- [LLaVA mixed (en&zh)](https://huggingface.co/datasets/BUAADreamer/llava-en-zh-300k)
- [Pokemon-gpt4o-captions (en&zh)](https://huggingface.co/datasets/jugg1024/pokemon-gpt4o-captions)
- [Open Assistant (de)](https://huggingface.co/datasets/mayflowergmbh/oasst_de)
@@ -311,8 +446,10 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
- [DPO mixed (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
- [UltraFeedback (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)
- [COIG-P (zh)](https://huggingface.co/datasets/m-a-p/COIG-P)
- [RLHF-V (en)](https://huggingface.co/datasets/openbmb/RLHF-V-Dataset)
- [VLFeedback (en)](https://huggingface.co/datasets/Zhihui/VLFeedback)
- [RLAIF-V (en)](https://huggingface.co/datasets/openbmb/RLAIF-V-Dataset)
- [Orca DPO Pairs (en)](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
@@ -330,37 +467,37 @@ huggingface-cli login
## 软硬件依赖
| 必需项 | 至少 | 推荐 |
| 必需项 | 至少 | 推荐 |
| ------------ | ------- | --------- |
| python | 3.8 | 3.11 |
| torch | 1.13.1 | 2.4.0 |
| transformers | 4.41.2 | 4.43.4 |
| datasets | 2.16.0 | 2.20.0 |
| accelerate | 0.30.1 | 0.32.0 |
| peft | 0.11.1 | 0.12.0 |
| python | 3.9 | 3.10 |
| torch | 2.0.0 | 2.6.0 |
| torchvision | 0.15.0 | 0.21.0 |
| transformers | 4.49.0 | 4.50.0 |
| datasets | 2.16.0 | 3.2.0 |
| accelerate | 0.34.0 | 1.2.1 |
| peft | 0.14.0 | 0.15.1 |
| trl | 0.8.6 | 0.9.6 |
| 可选项 | 至少 | 推荐 |
| 可选项 | 至少 | 推荐 |
| ------------ | ------- | --------- |
| CUDA | 11.6 | 12.2 |
| deepspeed | 0.10.0 | 0.14.0 |
| deepspeed | 0.10.0 | 0.16.4 |
| bitsandbytes | 0.39.0 | 0.43.1 |
| vllm | 0.4.3 | 0.5.0 |
| flash-attn | 2.3.0 | 2.6.3 |
| vllm | 0.4.3 | 0.8.2 |
| flash-attn | 2.5.6 | 2.7.2 |
### 硬件依赖
\* *估算值*
| 方法 | 精度 | 7B | 13B | 30B | 70B | 110B | 8x7B | 8x22B |
| ----------------- | ---- | ----- | ----- | ----- | ------ | ------ | ----- | ------ |
| Full | AMP | 120GB | 240GB | 600GB | 1200GB | 2000GB | 900GB | 2400GB |
| Full | 16 | 60GB | 120GB | 300GB | 600GB | 900GB | 400GB | 1200GB |
| Freeze | 16 | 20GB | 40GB | 80GB | 200GB | 360GB | 160GB | 400GB |
| LoRA/GaLore/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | 240GB | 120GB | 320GB |
| QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | 140GB | 60GB | 160GB |
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 72GB | 30GB | 96GB |
| QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | 48GB | 18GB | 48GB |
| 方法 | 精度 | 7B | 14B | 30B | 70B | `x`B |
| ------------------------------- | ---- | ----- | ----- | ----- | ------ | ------- |
| Full (`bf16` or `fp16`) | 32 | 120GB | 240GB | 600GB | 1200GB | `18x`GB |
| Full (`pure_bf16`) | 16 | 60GB | 120GB | 300GB | 600GB | `8x`GB |
| Freeze/LoRA/GaLore/APOLLO/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | `2x`GB |
| QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | `x`GB |
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | `x/2`GB |
| QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | `x/4`GB |
## 如何使用
@@ -369,32 +506,77 @@ huggingface-cli login
> [!IMPORTANT]
> 此步骤为必需。
#### 从源码安装
```bash
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics]"
pip install -e ".[torch,metrics]" --no-build-isolation
```
可选的额外依赖项torch、torch-npu、metrics、deepspeed、liger-kernel、bitsandbytes、hqq、eetq、gptq、awq、aqlm、vllm、galore、badam、adam-mini、qwen、modelscope、openmind、quality
可选的额外依赖项torch、torch-npu、metrics、deepspeed、liger-kernel、bitsandbytes、hqq、eetq、gptq、aqlm、vllm、sglang、galore、apollo、badam、adam-mini、qwen、minicpm_v、openmind、swanlab、dev
> [!TIP]
> 遇到包冲突时,可使用 `pip install --no-deps -e .` 解决。
#### 从镜像安装
```bash
docker run -it --rm --gpus=all --ipc=host hiyouga/llamafactory:latest
```
该镜像基于 Ubuntu 22.04x86\_64、CUDA 12.4、Python 3.11、PyTorch 2.6.0 和 Flash-attn 2.7.4 构建。
查看全部镜像https://hub.docker.com/r/hiyouga/llamafactory/tags
请参阅[构建 Docker](#构建-docker) 来重新构建镜像。
<details><summary>使用 <b>uv</b> 构建虚拟环境</summary>
使用 [uv](https://github.com/astral-sh/uv) 创建隔离的 Python 环境:
```bash
uv sync --extra torch --extra metrics --prerelease=allow
```
在环境中运行 LLaMA-Factory
```bash
uv run --prerelease=allow llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
```
</details>
<details><summary>Windows 用户指南</summary>
#### 安装 PyTorch
Windows 平台需要额外手动安装 GPU 版本的 PyTorch 依赖包,您可以参考[官方网站](https://pytorch.org/get-started/locally/)和以下命令安装并测试 PyTorch 是否正确安装。
```bash
pip uninstall torch torchvision torchaudio
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126
python -c "import torch; print(torch.cuda.is_available())"
```
如果看到 `True` 则说明安装成功。
若遇到类似 `Can't pickle local object` 的报错,请设置 `dataloader_num_workers: 0`
#### 安装 BitsAndBytes
如果要在 Windows 平台上开启量化 LoRAQLoRA需要安装预编译的 `bitsandbytes` 库, 支持 CUDA 11.1 到 12.2, 请根据您的 CUDA 版本情况选择适合的[发布版本](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels)。
```bash
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl
```
如果要在 Windows 平台上开启 FlashAttention-2需要安装预编译的 `flash-attn` 库,支持 CUDA 12.1 到 12.2,请根据需求到 [flash-attention](https://github.com/bdashore3/flash-attention/releases) 下载对应版本安装。
#### 安装 Flash Attention-2
如果要在 Windows 平台上开启 FlashAttention-2请使用 [flash-attention-windows-wheel](https://huggingface.co/lldacing/flash-attention-windows-wheel) 中的脚本自行编译与安装。
</details>
<details><summary>昇腾 NPU 用户指南</summary>
在昇腾 NPU 设备上安装 LLaMA Factory 时,需要指定额外依赖项,使用 `pip install -e ".[torch-npu,metrics]"` 命令安装。此外,还需要安装 **[Ascend CANN Toolkit 与 Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**,安装方法请参考[安装教程](https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/80RC2alpha002/quickstart/quickstart/quickstart_18_0004.html)或使用以下命令:
在昇腾 NPU 设备上安装 LLaMA Factory 时,请升级 Python 到 3.10 及以上,并需要指定额外依赖项,使用 `pip install -e ".[torch-npu,metrics]"` 命令安装。此外,还需要安装 **[Ascend CANN Toolkit 与 Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**,安装方法请参考[安装教程](https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/80RC2alpha002/quickstart/quickstart/quickstart_18_0004.html)或使用以下命令:
```bash
# 请替换 URL 为 CANN 版本和设备型号对应的 URL
@@ -410,12 +592,13 @@ bash Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run --install
source /usr/local/Ascend/ascend-toolkit/set_env.sh
```
| 依赖项 | 至少 | 推荐 |
| ------------ | ------- | ----------- |
| CANN | 8.0.RC1 | 8.0.RC1 |
| torch | 2.1.0 | 2.1.0 |
| torch-npu | 2.1.0 | 2.1.0.post3 |
| deepspeed | 0.13.2 | 0.13.2 |
| 依赖项 | 至少 | 推荐 |
| ------------ | ------- | -------------- |
| CANN | 8.0.RC1 | 8.0.0.alpha002 |
| torch | 2.1.0 | 2.4.0 |
| torch-npu | 2.1.0 | 2.4.0.post2 |
| deepspeed | 0.13.2 | 0.13.2 |
| vllm-ascend | - | 0.7.3 |
请使用 `ASCEND_RT_VISIBLE_DEVICES` 而非 `CUDA_VISIBLE_DEVICES` 来指定运算设备。
@@ -423,6 +606,40 @@ source /usr/local/Ascend/ascend-toolkit/set_env.sh
下载预构建 Docker 镜像:[32GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/130.html) | [64GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/131.html)
#### 安装 BitsAndBytes
如果要在 Ascend NPU 上进行基于 bitsandbytes 的 QLoRA 量化微调,请执行如下步骤:
1. 手动编译 bitsandbytes请参考[安装文档](https://huggingface.co/docs/bitsandbytes/installation?backend=Ascend+NPU&platform=Ascend+NPU)完成 NPU 版的 bitsandbytes 安装,编译要求环境 cmake 版本不低于 3.22.1g++ 版本不低于 12.x。
```bash
# 从源码安装 bitsandbytes
# 克隆 bitsandbytes 仓库, Ascend NPU 目前在 multi-backend-refactor 中支持
git clone -b multi-backend-refactor https://github.com/bitsandbytes-foundation/bitsandbytes.git
cd bitsandbytes/
# 安装依赖
pip install -r requirements-dev.txt
# 安装编译工具依赖,该步骤在不同系统上命令有所不同,供参考
apt-get install -y build-essential cmake
# 编译 & 安装
cmake -DCOMPUTE_BACKEND=npu -S .
make
pip install .
```
2. 安装 transformers 的 main 分支版本。
```bash
git clone -b main https://github.com/huggingface/transformers.git
cd transformers
pip install .
```
3. 在训练参数中设置 `double_quantization: false`,可参考[示例](examples/train_qlora/llama3_lora_sft_bnb_npu.yaml)。
</details>
### 数据准备
@@ -432,6 +649,8 @@ source /usr/local/Ascend/ascend-toolkit/set_env.sh
> [!NOTE]
> 使用自定义数据集时,请更新 `data/dataset_info.json` 文件。
您也可以使用 **[Easy Dataset](https://github.com/ConardLi/easy-dataset)**、**[DataFlow](https://github.com/OpenDCAI/DataFlow)** 和 **[GraphGen](https://github.com/open-sciencelab/GraphGen)** 构建用于微调的合成数据。
### 快速开始
下面三行命令分别对 Llama3-8B-Instruct 模型进行 LoRA **微调**、**推理**和**合并**。
@@ -446,6 +665,8 @@ llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
> [!TIP]
> 使用 `llamafactory-cli help` 显示帮助信息。
>
> 遇到报错请先看[常见问题](https://github.com/hiyouga/LLaMA-Factory/issues/4614)。
### LLaMA Board 可视化微调(由 [Gradio](https://github.com/gradio-app/gradio) 驱动)
@@ -453,6 +674,10 @@ llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
llamafactory-cli webui
```
### LLaMA Factory Online 在线微调
详情阅读该[文档](https://docs.llamafactory.com.cn/docs/documents/quickstart/getstarted/?utm_source=LLaMA-Factory)。
### 构建 Docker
CUDA 用户:
@@ -485,22 +710,13 @@ CUDA 用户:
```bash
docker build -f ./docker/docker-cuda/Dockerfile \
--build-arg INSTALL_BNB=false \
--build-arg INSTALL_VLLM=false \
--build-arg INSTALL_DEEPSPEED=false \
--build-arg INSTALL_FLASHATTN=false \
--build-arg PIP_INDEX=https://pypi.org/simple \
--build-arg EXTRAS=metrics \
-t llamafactory:latest .
docker run -dit --gpus=all \
-v ./hf_cache:/root/.cache/huggingface \
-v ./ms_cache:/root/.cache/modelscope \
-v ./om_cache:/root/.cache/openmind \
-v ./data:/app/data \
-v ./output:/app/output \
docker run -dit --ipc=host --gpus=all \
-p 7860:7860 \
-p 8000:8000 \
--shm-size 16G \
--name llamafactory \
llamafactory:latest
@@ -510,19 +726,12 @@ docker exec -it llamafactory bash
昇腾 NPU 用户:
```bash
# 根据您的环境选择镜像
docker build -f ./docker/docker-npu/Dockerfile \
--build-arg INSTALL_DEEPSPEED=false \
--build-arg PIP_INDEX=https://pypi.org/simple \
--build-arg EXTRAS=torch-npu,metrics \
-t llamafactory:latest .
# 根据您的资源更改 `device`
docker run -dit \
-v ./hf_cache:/root/.cache/huggingface \
-v ./ms_cache:/root/.cache/modelscope \
-v ./om_cache:/root/.cache/openmind \
-v ./data:/app/data \
-v ./output:/app/output \
docker run -dit --ipc=host \
-v /usr/local/dcmi:/usr/local/dcmi \
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
-v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
@@ -533,7 +742,6 @@ docker run -dit \
--device /dev/davinci_manager \
--device /dev/devmm_svm \
--device /dev/hisi_hdc \
--shm-size 16G \
--name llamafactory \
llamafactory:latest
@@ -544,25 +752,15 @@ AMD ROCm 用户:
```bash
docker build -f ./docker/docker-rocm/Dockerfile \
--build-arg INSTALL_BNB=false \
--build-arg INSTALL_VLLM=false \
--build-arg INSTALL_DEEPSPEED=false \
--build-arg INSTALL_FLASHATTN=false \
--build-arg PIP_INDEX=https://pypi.org/simple \
--build-arg EXTRAS=metrics \
-t llamafactory:latest .
docker run -dit \
-v ./hf_cache:/root/.cache/huggingface \
-v ./ms_cache:/root/.cache/modelscope \
-v ./om_cache:/root/.cache/openmind \
-v ./data:/app/data \
-v ./output:/app/output \
-v ./saves:/app/saves \
docker run -dit --ipc=host \
-p 7860:7860 \
-p 8000:8000 \
--device /dev/kfd \
--device /dev/dri \
--shm-size 16G \
--name llamafactory \
llamafactory:latest
@@ -571,12 +769,14 @@ docker exec -it llamafactory bash
</details>
<details><summary>数据卷详情</summary>
<details><summary>使用数据卷</summary>
- `hf_cache`:使用宿主机的 Hugging Face 缓存文件夹,允许更改为新的目录
- `ms_cache`:类似 Hugging Face 缓存文件夹,为 ModelScope 用户提供。
- `om_cache`:类似 Hugging Face 缓存文件夹,为 Modelers 用户提供
- `data`:宿主机中存放数据集的文件夹路径。
您可以通过移除 Dockerfile 中 `VOLUME [ "/root/.cache/huggingface", "/app/shared_data", "/app/output" ]` 的注释来使用数据卷
在构建 Docker 时使用参数 `-v ./hf_cache:/root/.cache/huggingface` 来挂载数据卷。各个数据卷的含义表示如下
- `hf_cache`:使用宿主机的 Hugging Face 缓存文件夹。
- `shared_data`:宿主机中存放数据集的文件夹路径。
- `output`:将导出目录设置为该路径后,即可在宿主机中访问导出后的模型。
</details>
@@ -584,13 +784,13 @@ docker exec -it llamafactory bash
### 利用 vLLM 部署 OpenAI API
```bash
API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml
API_PORT=8000 llamafactory-cli api examples/inference/llama3.yaml infer_backend=vllm vllm_enforce_eager=true
```
> [!TIP]
> API 文档请查阅[这里](https://platform.openai.com/docs/api-reference/chat/create)。
>
> 示例:[图像理解](scripts/test_image.py) | [工具调用](scripts/test_toolcall.py)
> 示例:[图像理解](scripts/api_example/test_image.py) | [工具调用](scripts/api_example/test_toolcall.py)
### 从魔搭社区下载
@@ -623,6 +823,21 @@ run_name: test_run # 可选
在启动训练任务时,将 `WANDB_API_KEY` 设置为[密钥](https://wandb.ai/authorize)来登录 W&B 账户。
### 使用 SwanLab 面板
若要使用 [SwanLab](https://github.com/SwanHubX/SwanLab) 记录实验数据,请在 yaml 文件中添加下面的参数。
```yaml
use_swanlab: true
swanlab_run_name: test_run # 可选
```
在启动训练任务时登录SwanLab账户有以下三种方式
方式一:在 yaml 文件中添加 `swanlab_api_key=<your_api_key>` ,并设置为你的 [API 密钥](https://swanlab.cn/settings)。
方式二:将环境变量 `SWANLAB_API_KEY` 设置为你的 [API 密钥](https://swanlab.cn/settings)。
方式三:启动前使用 `swanlab login` 命令完成登录。
## 使用了 LLaMA Factory 的项目
如果您有项目希望添加至下述列表,请通过邮件联系或者创建一个 PR。
@@ -722,6 +937,9 @@ run_name: test_run # 可选
1. **[NVIDIA RTX AI Toolkit](https://github.com/NVIDIA/RTX-AI-Toolkit)**:在 Windows 主机上利用英伟达 RTX 设备进行大型语言模型微调的开发包。
1. **[LazyLLM](https://github.com/LazyAGI/LazyLLM)**:一个低代码构建多 Agent 大模型应用的开发工具,支持基于 LLaMA Factory 的模型微调.
1. **[RAG-Retrieval](https://github.com/NLPJCL/RAG-Retrieval)**:一个全链路 RAG 检索模型微调、推理和蒸馏代码库。[[blog]](https://zhuanlan.zhihu.com/p/987727357)
1. **[360-LLaMA-Factory](https://github.com/Qihoo360/360-LLaMA-Factory)**:一个魔改后的代码库,通过 Ring Attention 支持长序列的 SFT 和 DPO 训练。
1. **[Sky-T1](https://novasky-ai.github.io/posts/sky-t1/)**:由 NovaSky AI 微调的低成本类 o1 长推理模型。
1. **[WeClone](https://github.com/xming521/WeClone)**:从聊天记录创造数字分身的一站式解决方案。
</details>
@@ -729,7 +947,7 @@ run_name: test_run # 可选
本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源。
使用模型权重时,请遵循对应的模型协议:[Baichuan 2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM-4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [Index](https://huggingface.co/IndexTeam/Index-1.9B/blob/main/LICENSE) / [InternLM2](https://github.com/InternLM/InternLM#license) / [Llama](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [Llama 2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [Llama 3](https://llama.meta.com/llama3/license/) / [MiniCPM](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md) / [Mistral/Mixtral/Pixtral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/Phi-2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder 2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan 2](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
使用模型权重时,请遵循对应的模型协议:[Baichuan 2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM-4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [GPT-2](https://github.com/openai/gpt-2/blob/master/LICENSE) / [Granite](LICENSE) / [Index](https://huggingface.co/IndexTeam/Index-1.9B/blob/main/LICENSE) / [InternLM](https://github.com/InternLM/InternLM#license) / [Llama](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [Llama 2](https://ai.meta.com/llama/license/) / [Llama 3](https://llama.meta.com/llama3/license/) / [Llama 4](https://github.com/meta-llama/llama-models/blob/main/models/llama4/LICENSE) / [MiniCPM](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md) / [Mistral/Mixtral/Pixtral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/Phi-2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3/Phi-4](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [Skywork](https://huggingface.co/Skywork/Skywork-13B-base/blob/main/Skywork%20Community%20License.pdf) / [StarCoder 2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [TeleChat2](https://huggingface.co/Tele-AI/telechat-7B/blob/main/TeleChat%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan 2](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
## 引用

File diff suppressed because it is too large Load Diff

Before

Width:  |  Height:  |  Size: 28 KiB

BIN
assets/logo.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 6.0 KiB

BIN
assets/sponsors/warp.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 126 KiB

1
assets/thirdparty/colab.svg vendored Normal file
View File

@@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="117" height="20"><linearGradient id="b" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="a"><rect width="117" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#a)"><path fill="#555" d="M0 0h30v20H0z"/><path fill="#007ec6" d="M30 0h87v20H30z"/><path fill="url(#b)" d="M0 0h117v20H0z"/></g><g fill="#fff" text-anchor="middle" font-family="DejaVu Sans,Verdana,Geneva,sans-serif" font-size="110"><svg x="4px" y="0px" width="22px" height="20px" viewBox="-2 0 28 24" style="background-color: #fff;border-radius: 1px;"><path style="fill:#e8710a;" d="M1.977,16.77c-2.667-2.277-2.605-7.079,0-9.357C2.919,8.057,3.522,9.075,4.49,9.691c-1.152,1.6-1.146,3.201-0.004,4.803C3.522,15.111,2.918,16.126,1.977,16.77z"/><path style="fill:#f9ab00;" d="M12.257,17.114c-1.767-1.633-2.485-3.658-2.118-6.02c0.451-2.91,2.139-4.893,4.946-5.678c2.565-0.718,4.964-0.217,6.878,1.819c-0.884,0.743-1.707,1.547-2.434,2.446C18.488,8.827,17.319,8.435,16,8.856c-2.404,0.767-3.046,3.241-1.494,5.644c-0.241,0.275-0.493,0.541-0.721,0.826C13.295,15.939,12.511,16.3,12.257,17.114z"/><path style="fill:#e8710a;" d="M19.529,9.682c0.727-0.899,1.55-1.703,2.434-2.446c2.703,2.783,2.701,7.031-0.005,9.764c-2.648,2.674-6.936,2.725-9.701,0.115c0.254-0.814,1.038-1.175,1.528-1.788c0.228-0.285,0.48-0.552,0.721-0.826c1.053,0.916,2.254,1.268,3.6,0.83C20.502,14.551,21.151,11.927,19.529,9.682z"/><path style="fill:#f9ab00;" d="M4.49,9.691C3.522,9.075,2.919,8.057,1.977,7.413c2.209-2.398,5.721-2.942,8.476-1.355c0.555,0.32,0.719,0.606,0.285,1.128c-0.157,0.188-0.258,0.422-0.391,0.631c-0.299,0.47-0.509,1.067-0.929,1.371C8.933,9.539,8.523,8.847,8.021,8.746C6.673,8.475,5.509,8.787,4.49,9.691z"/><path style="fill:#f9ab00;" d="M1.977,16.77c0.941-0.644,1.545-1.659,2.509-2.277c1.373,1.152,2.85,1.433,4.45,0.499c0.332-0.194,0.503-0.088,0.673,0.19c0.386,0.635,0.753,1.285,1.181,1.89c0.34,0.48,0.222,0.715-0.253,1.006C7.84,19.73,4.205,19.188,1.977,16.77z"/></svg><text x="245" y="140" transform="scale(.1)" textLength="30"> </text><text x="725" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="770">Open in Colab</text><text x="725" y="140" transform="scale(.1)" textLength="770">Open in Colab</text></g> </svg>

After

Width:  |  Height:  |  Size: 2.3 KiB

1
assets/thirdparty/discord.svg vendored Normal file
View File

@@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="115" height="20" role="img" aria-label="LLaMA Factory"><title>LLaMA Factory</title><linearGradient id="s" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="r"><rect width="115" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#r)"><rect width="24" height="20" fill="#5865f2"/><rect x="24" width="91" height="20" fill="#555"/><rect width="115" height="20" fill="url(#s)"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="110"><image x="5" y="3" width="14" height="14" xlink:href=""/><text aria-hidden="true" x="685" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="810">LLaMA Factory</text><text x="685" y="140" transform="scale(.1)" fill="#fff" textLength="810">LLaMA Factory</text></g></svg>

After

Width:  |  Height:  |  Size: 2.8 KiB

92
assets/thirdparty/dsw.svg vendored Normal file
View File

@@ -0,0 +1,92 @@
<?xml version="1.0" encoding="UTF-8"?>
<svg width="130px" height="20px" viewBox="0 0 130 20" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<title>最终方案备份 6</title>
<defs>
<linearGradient x1="50%" y1="-11.4084043%" x2="50%" y2="107.220074%" id="linearGradient-1">
<stop stop-color="#FF7717" offset="0%"></stop>
<stop stop-color="#FF4707" offset="100%"></stop>
</linearGradient>
<linearGradient x1="50%" y1="0%" x2="50%" y2="107.220074%" id="linearGradient-2">
<stop stop-color="#FFFFFF" stop-opacity="0.15" offset="0%"></stop>
<stop stop-color="#FFFFFF" stop-opacity="0.05" offset="100%"></stop>
</linearGradient>
<path d="M6.45596591,3.88139205 C6.45596591,4.65080492 6.31628788,5.31486742 6.03693182,5.87357955 C5.75757576,6.43229167 5.37523674,6.86257102 4.88991477,7.16441761 C4.4045928,7.4662642 3.85061553,7.6171875 3.22798295,7.6171875 C2.60535038,7.6171875 2.05078125,7.4662642 1.56427557,7.16441761 C1.07776989,6.86257102 0.695430871,6.43229167 0.417258523,5.87357955 C0.139086174,5.31486742 0,4.65080492 0,3.88139205 C0,3.11197917 0.139086174,2.44791667 0.417258523,1.88920455 C0.695430871,1.33049242 1.07776989,0.900213068 1.56427557,0.598366477 C2.05078125,0.296519886 2.60535038,0.145596591 3.22798295,0.145596591 C3.85061553,0.145596591 4.4045928,0.296519886 4.88991477,0.598366477 C5.37523674,0.900213068 5.75757576,1.33049242 6.03693182,1.88920455 C6.31628788,2.44791667 6.45596591,3.11197917 6.45596591,3.88139205 Z M5.53622159,3.88139205 C5.53622159,3.26349432 5.43442235,2.74147727 5.23082386,2.31534091 C5.02722538,1.88920455 4.7508286,1.56664299 4.40163352,1.34765625 C4.05243845,1.12866951 3.66122159,1.01917614 3.22798295,1.01917614 C2.79237689,1.01917614 2.40056818,1.12866951 2.05255682,1.34765625 C1.70454545,1.56664299 1.42814867,1.88920455 1.22336648,2.31534091 C1.01858428,2.74147727 0.916193182,3.26349432 0.916193182,3.88139205 C0.916193182,4.49928977 1.01858428,5.02130682 1.22336648,5.44744318 C1.42814867,5.87357955 1.70454545,6.1961411 2.05255682,6.41512784 C2.40056818,6.63411458 2.79237689,6.74360795 3.22798295,6.74360795 C3.66122159,6.74360795 4.05243845,6.63411458 4.40163352,6.41512784 C4.7508286,6.1961411 5.02722538,5.87357955 5.23082386,5.44744318 C5.43442235,5.02130682 5.53622159,4.49928977 5.53622159,3.88139205 Z" id="path-3"></path>
<path d="M8.59629794,9.56321023 L8.59629794,2.06321023 L9.46987749,2.06321023 L9.46987749,2.93323864 L9.56575817,2.93323864 C9.6273112,2.83380682 9.71372218,2.7101089 9.82499112,2.56214489 C9.93626006,2.41418087 10.0954693,2.28219697 10.302619,2.16619318 C10.5097686,2.05018939 10.7885328,1.9921875 11.1389116,1.9921875 C11.593457,1.9921875 11.9953273,2.10582386 12.3445224,2.33309659 C12.6937174,2.56036932 12.9665631,2.88470644 13.1630593,3.30610795 C13.3595555,3.72750947 13.4578036,4.22703598 13.4578036,4.8046875 C13.4578036,5.38470644 13.3595555,5.88600852 13.1630593,6.30859375 C12.9665631,6.73117898 12.6949012,7.05669981 12.3480735,7.28515625 C12.0012459,7.51361269 11.6029267,7.62784091 11.1531161,7.62784091 C10.8074722,7.62784091 10.5298917,7.57043087 10.3203746,7.4556108 C10.1108576,7.34079072 9.94809718,7.20821496 9.83209339,7.05788352 C9.71608961,6.90755208 9.6273112,6.78030303 9.56575817,6.67613636 L9.49828658,6.67613636 L9.49828658,9.56321023 L8.59629794,9.56321023 Z M9.48053089,4.79048295 C9.48053089,5.19294508 9.5397165,5.54805871 9.65808771,5.85582386 C9.77645893,6.16358902 9.94868904,6.40329072 10.1747781,6.57492898 C10.4008671,6.74656723 10.6772638,6.83238636 11.0039684,6.83238636 C11.3448775,6.83238636 11.6301521,6.74183239 11.8597923,6.56072443 C12.0894324,6.37961648 12.2622544,6.13458807 12.3782582,5.8256392 C12.494262,5.51669034 12.5522638,5.17163826 12.5522638,4.79048295 C12.5522638,4.4140625 12.4954457,4.07433712 12.3818093,3.77130682 C12.2681729,3.46827652 12.0965347,3.22857481 11.8668945,3.0522017 C11.6372544,2.8758286 11.3496123,2.78764205 11.0039684,2.78764205 C10.672529,2.78764205 10.3937648,2.87168561 10.1676758,3.03977273 C9.94158677,3.20785985 9.77054036,3.44164299 9.65453658,3.74112216 C9.53853279,4.04060133 9.48053089,4.39038826 9.48053089,4.79048295 Z" id="path-4"></path>
<path d="M17.8164584,7.63139205 C17.2885228,7.63139205 16.8333855,7.5147964 16.4510465,7.28160511 C16.0687075,7.04841383 15.774555,6.72170928 15.5685891,6.30149148 C15.3626232,5.88127367 15.2596402,5.39180871 15.2596402,4.83309659 C15.2596402,4.27201705 15.3626232,3.77840909 15.5685891,3.35227273 C15.774555,2.92613636 16.0627889,2.5929214 16.4332908,2.35262784 C16.8037927,2.11233428 17.2376232,1.9921875 17.7347823,1.9921875 C18.0259755,1.9921875 18.3112501,2.0407197 18.5906061,2.13778409 C18.8699622,2.23484848 19.1238684,2.38991477 19.3523249,2.60298295 C19.5807813,2.81605114 19.7618893,3.09659091 19.8956487,3.44460227 C20.0294082,3.79261364 20.096288,4.21875 20.096288,4.72301136 L20.096288,5.08522727 L15.8562311,5.08522727 L15.8562311,4.33948864 L19.1907482,4.33948864 C19.1907482,4.04119318 19.1309707,3.77485795 19.0114158,3.54048295 C18.8918609,3.30610795 18.7231819,3.12085701 18.5053789,2.98473011 C18.2875758,2.84860322 18.0307103,2.78053977 17.7347823,2.78053977 C17.4104451,2.78053977 17.1304972,2.85984848 16.8949385,3.01846591 C16.6593798,3.17708333 16.47768,3.3836411 16.3498391,3.6381392 C16.2219982,3.89263731 16.1580777,4.16666667 16.1580777,4.46022727 L16.1580777,4.98224432 C16.1580777,5.37997159 16.2279167,5.71732955 16.3675948,5.99431818 C16.5072728,6.27130682 16.7014016,6.48200758 16.9499811,6.62642045 C17.1985607,6.77083333 17.4885701,6.84303977 17.8200095,6.84303977 C18.0354451,6.84303977 18.2301658,6.81226326 18.4041715,6.75071023 C18.5781772,6.6891572 18.7291005,6.59682765 18.8569414,6.47372159 C18.9847823,6.35061553 19.0830304,6.19673295 19.1516857,6.01207386 L20.018163,6.22514205 C19.9329357,6.50686553 19.7891147,6.75307765 19.5866999,6.96377841 C19.3842851,7.17447917 19.1327463,7.3384233 18.8320834,7.4556108 C18.5314205,7.5727983 18.1928789,7.63139205 17.8164584,7.63139205 Z" id="path-5"></path>
<path d="M23.0521052,4.24715909 L23.0521052,7.51775568 L22.1501165,7.51775568 L22.1501165,2.06321023 L23.0165938,2.06321023 L23.0165938,2.92613636 L23.0876165,2.92613636 C23.2154574,2.64441288 23.4107699,2.41832386 23.673554,2.24786932 C23.9363381,2.07741477 24.2736961,1.9921875 24.6856279,1.9921875 C25.0549461,1.9921875 25.3780995,2.06794508 25.6550881,2.21946023 C25.9320767,2.37097538 26.1481042,2.59883996 26.3031705,2.90305398 C26.4582368,3.20726799 26.5357699,3.59019886 26.5357699,4.05184659 L26.5357699,7.51775568 L25.6337813,7.51775568 L25.6337813,4.12642045 C25.6337813,3.70738636 25.5248798,3.38008996 25.3070767,3.14453125 C25.0892737,2.90897254 24.7897946,2.79119318 24.4086392,2.79119318 C24.1482226,2.79119318 23.9156232,2.84801136 23.710841,2.96164773 C23.5060588,3.07528409 23.3450739,3.24100379 23.2278864,3.45880682 C23.1106989,3.67660985 23.0521052,3.93939394 23.0521052,4.24715909 Z" id="path-6"></path>
<path d="M32.4028209,7.51775568 L32.4028209,2.06321023 L33.3048096,2.06321023 L33.3048096,7.51775568 L32.4028209,7.51775568 Z M32.8609175,1.171875 C32.690463,1.171875 32.5448664,1.11446496 32.4241278,0.999644886 C32.3033891,0.884824811 32.2430198,0.746922348 32.2430198,0.5859375 C32.2430198,0.424952652 32.3033891,0.287050189 32.4241278,0.172230114 C32.5448664,0.0574100379 32.690463,0 32.8609175,0 C33.0290046,0 33.1734175,0.0574100379 33.2941562,0.172230114 C33.4148948,0.287050189 33.4752641,0.424952652 33.4752641,0.5859375 C33.4752641,0.746922348 33.4148948,0.884824811 33.2941562,0.999644886 C33.1734175,1.11446496 33.0290046,1.171875 32.8609175,1.171875 Z" id="path-7"></path>
<path d="M36.5099554,4.24715909 L36.5099554,7.51775568 L35.6079668,7.51775568 L35.6079668,2.06321023 L36.474444,2.06321023 L36.474444,2.92613636 L36.5454668,2.92613636 C36.6733077,2.64441288 36.8686202,2.41832386 37.1314043,2.24786932 C37.3941883,2.07741477 37.7315463,1.9921875 38.1434781,1.9921875 C38.5127963,1.9921875 38.8359497,2.06794508 39.1129383,2.21946023 C39.389927,2.37097538 39.6059544,2.59883996 39.7610207,2.90305398 C39.916087,3.20726799 39.9936202,3.59019886 39.9936202,4.05184659 L39.9936202,7.51775568 L39.0916315,7.51775568 L39.0916315,4.12642045 C39.0916315,3.70738636 38.98273,3.38008996 38.764927,3.14453125 C38.5471239,2.90897254 38.2476448,2.79119318 37.8664895,2.79119318 C37.6060728,2.79119318 37.3734734,2.84801136 37.1686912,2.96164773 C36.963909,3.07528409 36.8029241,3.24100379 36.6857366,3.45880682 C36.5685491,3.67660985 36.5099554,3.93939394 36.5099554,4.24715909 Z" id="path-8"></path>
<path d="M45.9636541,7.51775568 L45.9636541,0.245028409 L48.460103,0.245028409 C49.0306522,0.245028409 49.4988104,0.347419508 49.8645774,0.552201705 C50.2303445,0.756983902 50.5020064,1.03456439 50.6795632,1.38494318 C50.85712,1.73532197 50.9458984,2.12713068 50.9458984,2.56036932 C50.9458984,2.99597538 50.85712,3.38955966 50.6795632,3.74112216 C50.5020064,4.09268466 50.2309363,4.37204072 49.866353,4.57919034 C49.5017696,4.78633996 49.0365708,4.88991477 48.4707564,4.88991477 L46.7022905,4.88991477 L46.7022905,4.06605114 L48.4210405,4.06605114 C48.8021958,4.06605114 49.1093691,3.99976326 49.3425604,3.8671875 C49.5757517,3.73461174 49.7456143,3.55527936 49.8521484,3.32919034 C49.9586825,3.10310133 50.0119496,2.84682765 50.0119496,2.56036932 C50.0119496,2.27391098 49.9586825,2.01822917 49.8521484,1.79332386 C49.7456143,1.56841856 49.5745679,1.39204545 49.3390092,1.26420455 C49.1034505,1.13636364 48.7927261,1.07244318 48.4068359,1.07244318 L46.9082564,1.07244318 L46.9082564,7.51775568 L45.9636541,7.51775568 Z" id="path-9"></path>
<path d="M52.7664895,7.51775568 L51.7757224,7.51775568 L54.4284213,0.245028409 L55.4404952,0.245028409 L58.093194,7.51775568 L57.102427,7.51775568 L54.9646429,1.4453125 L54.9078247,1.4453125 L52.7664895,7.51775568 Z M53.0647849,4.67684659 L56.8041315,4.67684659 L56.8041315,5.49715909 L53.0647849,5.49715909 L53.0647849,4.67684659 Z" id="path-10"></path>
<polygon id="path-11" points="60.949413 0.245028409 60.949413 7.51775568 60.0048107 7.51775568 60.0048107 0.245028409"></polygon>
<polygon id="path-12" points="66.5090177 3.46946023 66.5090177 4.29332386 63.3129949 4.29332386 63.3129949 3.46946023"></polygon>
<path d="M71.1487393,7.51775568 L68.8724609,7.51775568 L68.8724609,0.245028409 L71.2410689,0.245028409 C71.9489287,0.245028409 72.5549893,0.390033144 73.0592507,0.680042614 C73.5635121,0.970052083 73.9505859,1.38553504 74.2204723,1.92649148 C74.4903587,2.46744792 74.6253018,3.11434659 74.6253018,3.8671875 C74.6253018,4.62476326 74.4897668,5.27639678 74.2186967,5.82208807 C73.9476267,6.36777936 73.5528587,6.78681345 73.0343928,7.07919034 C72.5159268,7.37156723 71.8873757,7.51775568 71.1487393,7.51775568 Z M69.8170632,6.68678977 L71.0919212,6.68678977 C71.6790424,6.68678977 72.1667318,6.57374527 72.5549893,6.34765625 C72.9432469,6.12156723 73.2326645,5.79841383 73.4232422,5.37819602 C73.6138198,4.95797822 73.7091087,4.45430871 73.7091087,3.8671875 C73.7091087,3.28480114 73.6144117,2.78527462 73.4250178,2.36860795 C73.2356238,1.95194129 72.9539003,1.63233902 72.5798473,1.40980114 C72.2057943,1.18726326 71.7405954,1.07599432 71.1842507,1.07599432 L69.8170632,1.07599432 L69.8170632,6.68678977 Z" id="path-13"></path>
<path d="M80.8452792,2.08806818 C80.8026656,1.73532197 80.6339866,1.46129261 80.3392423,1.26598011 C80.044498,1.07066761 79.6805065,0.973011364 79.2472678,0.973011364 C78.9324004,0.973011364 78.6577792,1.02391098 78.4234042,1.12571023 C78.1890292,1.22750947 78.0073294,1.36659564 77.8783048,1.54296875 C77.7492802,1.71934186 77.6847678,1.91998106 77.6847678,2.14488636 C77.6824004,2.33191288 77.7267896,2.49289773 77.8179355,2.62784091 C77.9090813,2.76278409 78.0256769,2.87464489 78.1677224,2.9634233 C78.3097678,3.0522017 78.4606911,3.12559186 78.6204923,3.18359375 C78.7802934,3.24159564 78.9288493,3.28835227 79.0661599,3.32386364 L79.7941428,3.51917614 C79.9977413,3.57125947 80.2173199,3.6422822 80.4528786,3.73224432 C80.6884374,3.82220644 80.9127508,3.94353693 81.125819,4.0962358 C81.3388872,4.24893466 81.5134847,4.44247159 81.6496116,4.67684659 C81.7857385,4.91122159 81.8538019,5.19649621 81.8538019,5.53267045 C81.8538019,5.93039773 81.7502271,6.28847064 81.5430775,6.6068892 C81.3359279,6.92530777 81.035265,7.17743845 80.6410889,7.36328125 C80.2469127,7.54912405 79.7692849,7.64204545 79.2082053,7.64204545 C78.6802697,7.64204545 78.2239487,7.55741004 77.8392423,7.3881392 C77.4545358,7.21886837 77.1526892,6.98153409 76.9337025,6.67613636 C76.7147158,6.37073864 76.5910178,6.01325758 76.5626088,5.60369318 L77.5285178,5.60369318 C77.5521921,5.87594697 77.6433379,6.10085227 77.8019553,6.27840909 C77.9605728,6.45596591 78.1623957,6.58735795 78.4074241,6.67258523 C78.6524525,6.7578125 78.9181959,6.80042614 79.2046542,6.80042614 C79.5337262,6.80042614 79.8284705,6.74715909 80.0888872,6.640625 C80.3493038,6.53409091 80.5552697,6.38494318 80.7067849,6.19318182 C80.8583,6.00142045 80.9340576,5.77769886 80.9340576,5.52201705 C80.9340576,5.28764205 80.8689535,5.09647254 80.7387451,4.94850852 C80.6085368,4.80054451 80.4345311,4.67980587 80.2167281,4.58629261 C79.998925,4.49277936 79.7621826,4.41051136 79.5065008,4.33948864 L78.6222678,4.09090909 C78.0493512,3.92992424 77.5959894,3.69673295 77.2621826,3.39133523 C76.9283758,3.0859375 76.7614724,2.68702652 76.7614724,2.19460227 C76.7614724,1.78267045 76.8733332,1.42341383 77.0970548,1.11683239 C77.3207764,0.810250947 77.6220311,0.571732955 78.000819,0.401278409 C78.3796069,0.230823864 78.8033758,0.145596591 79.2721258,0.145596591 C79.7479781,0.145596591 80.1699714,0.229640152 80.5381059,0.397727273 C80.9062404,0.565814394 81.1980254,0.796638258 81.413461,1.09019886 C81.6288966,1.38375947 81.742533,1.71638258 81.7543701,2.08806818 L80.8452792,2.08806818 Z" id="path-14"></path>
<polygon id="path-15" points="85.4149214 7.51775568 83.4156317 0.245028409 84.3850919 0.245028409 85.8765692 6.08664773 85.9475919 6.08664773 87.4745805 0.245028409 88.5079612 0.245028409 90.038501 6.08664773 90.1059726 6.08664773 91.5974498 0.245028409 92.5669101 0.245028409 90.5676203 7.51775568 89.6052623 7.51775568 88.0214555 1.82173295 87.9646373 1.82173295 86.3772794 7.51775568"></polygon>
</defs>
<g id="最终方案备份-6" stroke="none" stroke-width="1" fill="none" fill-rule="evenodd">
<g id="编组备份-3">
<rect id="Fill备份-19" fill="url(#linearGradient-1)" x="0" y="0" width="130" height="20" rx="3.33333333"></rect>
<rect id="Fill备份-20" fill="url(#linearGradient-2)" x="2" y="2" width="20" height="16" rx="2.5"></rect>
<g id="产品图标/learn-机器学习备份-10" transform="translate(6.028800, 4.000000)" fill="#FFFFFF" fill-rule="nonzero">
<g id="产品图标/learn-机器学习" transform="translate(0.000000, 0.000000)">
<path d="M8.784,0 C9.4752,0 10.0512,0.576 10.0512,1.2672 C10.0512,1.8432 9.6768,2.3328 9.1584,2.4768 L8.784,4.7232 C9.1008,4.9536 9.3312,5.328 9.3312,5.76 C9.3312,6.4512 8.7552,7.0272 8.064,7.0272 C7.5456,7.0272 7.0848,6.7104 6.8832,6.2496 L5.5008,6.1632 C5.328,6.3648 5.0976,6.48 4.8096,6.48 C4.32,6.48 3.9168,6.0768 3.9168,5.5872 C3.9168,5.2416 4.1184,4.9248 4.4064,4.7808 L4.5216,4.032 C4.3776,3.8592 4.2624,3.6576 4.2624,3.3984 C4.2624,2.9088 4.6656,2.5056 5.1552,2.5056 C5.6448,2.5056 6.048,2.9088 6.048,3.3984 C6.048,3.744 5.8464,4.0608 5.5584,4.2048 L5.4432,4.9536 C5.472,4.9824 5.5008,5.04 5.5296,5.0688 L6.912,5.1552 C7.0848,4.8672 7.344,4.6368 7.6608,4.5504 L8.0352,2.304 C7.8624,2.1888 7.7184,2.016 7.6032,1.8144 L3.8016,1.8144 C3.6576,2.1312 3.3696,2.3904 3.024,2.4768 L2.3616,6.5088 C2.8224,6.768 3.1392,7.2 3.1968,7.7472 L8.1216,8.8416 C8.4384,8.2944 9.0144,7.9488 9.6768,7.9488 C10.6848,7.9488 11.4624,8.7552 11.4624,9.7344 C11.4624,10.7136 10.6848,11.52 9.7056,11.52 C8.7552,11.52 7.9776,10.8 7.92,9.8784 L2.9952,8.784 C2.7072,9.2448 2.1888,9.5328 1.6128,9.5328 C0.72,9.5328 0,8.8128 0,7.92 C0,7.1136 0.576,6.4512 1.3248,6.336 L1.9872,2.304 C1.6128,2.0736 1.4112,1.6992 1.4112,1.2672 C1.4112,0.576 1.9872,0 2.6784,0 C3.168,0 3.6288,0.288 3.8304,0.72 L7.6608,0.72 C7.8624,0.288 8.2944,0 8.784,0 Z" id="Combined-Shape"></path>
</g>
</g>
</g>
<g id="Open-in-PAI-DSW" transform="translate(28.589489, 5.982244)" fill="#FFFFFF" fill-rule="nonzero">
<g id="形状">
<use xlink:href="#path-3"></use>
<use stroke="#FFFFFF" stroke-width="0.5" xlink:href="#path-3"></use>
</g>
<g id="形状">
<use xlink:href="#path-4"></use>
<use stroke="#FFFFFF" stroke-width="0.5" xlink:href="#path-4"></use>
</g>
<g id="路径">
<use xlink:href="#path-5"></use>
<use stroke="#FFFFFF" stroke-width="0.5" xlink:href="#path-5"></use>
</g>
<g id="路径">
<use xlink:href="#path-6"></use>
<use stroke="#FFFFFF" stroke-width="0.5" xlink:href="#path-6"></use>
</g>
<g id="形状">
<use xlink:href="#path-7"></use>
<use stroke="#FFFFFF" stroke-width="0.5" xlink:href="#path-7"></use>
</g>
<g id="路径">
<use xlink:href="#path-8"></use>
<use stroke="#FFFFFF" stroke-width="0.5" xlink:href="#path-8"></use>
</g>
<g id="路径">
<use xlink:href="#path-9"></use>
<use stroke="#FFFFFF" stroke-width="0.5" xlink:href="#path-9"></use>
</g>
<g id="形状">
<use xlink:href="#path-10"></use>
<use stroke="#FFFFFF" stroke-width="0.5" xlink:href="#path-10"></use>
</g>
<g id="路径">
<use xlink:href="#path-11"></use>
<use stroke="#FFFFFF" stroke-width="0.5" xlink:href="#path-11"></use>
</g>
<g id="路径">
<use xlink:href="#path-12"></use>
<use stroke="#FFFFFF" stroke-width="0.5" xlink:href="#path-12"></use>
</g>
<g id="形状">
<use xlink:href="#path-13"></use>
<use stroke="#FFFFFF" stroke-width="0.5" xlink:href="#path-13"></use>
</g>
<g id="路径">
<use xlink:href="#path-14"></use>
<use stroke="#FFFFFF" stroke-width="0.5" xlink:href="#path-14"></use>
</g>
<g id="路径">
<use xlink:href="#path-15"></use>
<use stroke="#FFFFFF" stroke-width="0.5" xlink:href="#path-15"></use>
</g>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 18 KiB

536
assets/thirdparty/lab4ai.svg vendored Normal file
View File

@@ -0,0 +1,536 @@
<?xml version="1.0" encoding="utf-8"?>
<!-- Generator: Adobe Illustrator 24.0.0, SVG Export Plug-In . SVG Version: 6.00 Build 0) -->
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="125" height="20">
<g>
<g>
<defs>
<polygon id="SVGID_1_" points="0,0 126.7,0 126.7,21.5 0,21.5 0,0 "/>
</defs>
<clipPath id="SVGID_2_">
<use xlink:href="#SVGID_1_" style="overflow:visible;"/>
</clipPath>
<g style="clip-path:url(#SVGID_2_);">
<image style="overflow:visible;" width="874" height="148" xlink:href="
GXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAcstJREFUeNrsvQeUHMd5Lvp1z8zm
vFhgkRMBAgRIAowACBDMmZKVRVGURFG0LVv2sy1LTsfv2r73Wrbv8fXxu8fXkhhFiZIlkRIpMSeA
AAEGkACIQAQihw1YbM47O92v/q7umeowM92zM7szu/WRhZ7t6e6prqqu/r/6EyAhISEhISEhISEh
ISGRt1CycZHv/tN76/SQ/rmQEtJ1Rb9CVdRiHUqVqijLFEWForJCW0UxfpK21mejEopZDSV1dRRF
kT0mISEhISEhISEhITGu0HU92VeD0HGSsZROQOvWdGUP29fHmM+2//cPLnhjwknbt7+3/W4o2j26
husYmZqpqiFQIYJmbBWTqKmqSdJUg5QpJmmzPotkzU7KJEGTkJCQkJCQkJCQkMhbKmcndOZWp/26
HmP7TzO+8zxjNb8aK4ELzIz+5L9v/aquj/41+7hUDYWRIGvepE1lfxvaNSJvMMmaT02bIombhISE
hISEhISEhEReUjYHWYtr43Tjs/E3baFHdV3brWjK//y7b13wbE5J2//zD5s/ERuN/jd2xmWcrJmE
TSBuFmnjZC0U166ppsYNDi2bJGsSEhISEhISEhISEpONvJnaNpPIsa2m0b+DmqZtUzR87+//KJjm
zRc7+sO/ffWHMS36IBG1EJE0s4TY34pA2CyNm6Fts5lH2v3Z4qaRSoK4uf3VJHGTkJCQkJCQkJCQ
kMhPqmb7S9S2eZE23SoalXO6ov9n9UDke9/+9rzhMZO2b3/75fL+Uv1Xeix2i0jUnKSNiJwimEba
fNpEf7Y4eYOdxPEdjopJ0iYhISEhISEhISEhkY+UzRGYJJWJJATCpmkWcevTdO2XalHkT/7+wXk9
GZO2P/qfWxqG+rq3s9+4wCBooYiLtHmZSDp92izzSCdpc5lIxmskyZqEhISEhISEhISERCGwtyQa
N09Nm420QdNiw5qmbWa7/vQf/3jxgcCk7cvffrm8ODT0Ifu4mJtDRmDb2ohbKE7e4oSN9jmImit6
pEDcJGGTkJCQkJCQkJCQkJgUxE0gbJ6+bUTYDAIXoxJlxG1TSNG+/vffWnI22U+EvXaWhIZfiGma
QdigWAFFhC0jZSAyBiJkIaGYf4OCjpiaNii2rRjmX/qxSUhISEhISEhISEgUNBQPU0kK3wFO1KxC
ZM2gO7rJetg/uoII214T1fCPf/qvp37335L4uLlI2wPffe6RaHTo2lA4EideFhGzE7KQQeDoMxRe
FMffInHjWjRV0KYp/H4E4iaTZ0tISEhISEhISEhIFBLExNv8s8XMFFMLpxvEjiuvGAeypT7TqZSz
XXeVRqL/wHb9hScvFP/4xl+98MDwQO/DRNgMk8dwxPBli/uzmVvLPDIk+LUpjpD/tuTaYn62OIET
SZokbhISEhISEhISEhIShUvYUiXbjkeVNP3ZyEzSMJHUDRNJ8m9jRTuqx7S/+t6fLP6l83dsmrbh
of6/Jg2ZbhAr0/wRCa2ZqD2zNG5xrZqgXbPt19m1LOImEDaXps3c6rLvJSQkJCQkJCQkJCQKARaX
MTVsTk0bJ2s8Mj6jaSZXQtx8UtdVxE0odX0e+/e+P/3XU79xmknGSdvXvvP8N6JDvYtIg+YkZErc
zDGxdZI04xxdcexX4sRNN7Vsum4PRMJvS5FsTUJCQkJCQkJCQkKiUNkbDzoSN4lUhEiS1hGkHNNM
fiQSNpWbTyp6hJVLikPRL7Gdj3mStuhw/1/FSZalFbPsLqEkSBgcGrX4d2riXF3wYTPPFwmbbtlw
6oJ2TZpFSkhISEhISEhISEgUIuIaNrsuSrSe5JyH8SOKIGkSNVjETecciR0/V9P0r333nw4/9y9/
ubTNRtq++mcv3Dsy3GVo2eLEzXKQE/KtQdyq9n16PKy/9Z25HwmipigJjZtRcRmEREJCQkJCQkJC
QkKi0Dmbxx+64iBuphIuHohE58RNN/gTY0v0pUpESp+PIuUuCNo2g7SNaoNf0h3aNbemzfFZN4ug
SYP4nSJo1gQNm6IrCbKmJwibnufmkTPKWlBZ1IuyoiGUhGMIh3WURwYQCqlGTjpV5YXuxdoqQlqD
ZFuJXC12JAbUwEgYw6MRREdV9AwVsVKM1t5K9A9HoOmyHyQkJCQkJCQkJMYKRZA/E1zHqXWL+7zp
Fneya9qMrY56TdfXuknb8NBGivwIJ/kyiyJsFV1xHaeIJE5JEDdFcZxvfe8I9W/qCvOu6aeXnsW0
krMoD7UjzJonHKaImaH4lkfPVBAyImd6E7ZUxE2St9ySNevvqlKyGR42Ps+o6jcz0jehd7gEpzuq
cOx8PQajEdl4EhISEhISEhISmUqhiXzUSJAzxSJupoyqwFJWCZxJUIKR5SL7r4J9sfK7/3S4wTKR
DN/37ec+PTzQVW7ELDHNFw1NmPBZN7Vk4meNCIq1H8LxIt2zgo8IW4uo6A5mmk+oKTqP2SX7UaJ2
IqyGGWHjRM1O2tQ4WaN9qUlbcg2bJG25J23WNrG6wbe14VFUl57HooZOHD5Xh+OMvA2NhmUjSkhI
SEhISEhIBIQZMTIh5HO501RY6ebXcZNJM94H/a2ZloiaEWEyzsmmxcLqOvbnswZpi0VHbuGRKM0L
xiNOCqaOlmmkbjeVdJpH6qI2Dd4mjwlTyPwkK4vKP0AljoJRNEbKODlTTXJmETRezL+F79zEDS5t
myRrE0ferGItdtBn6oeKEh2r5rRhTk0fdp2eifb+Umk2KSEhISEhISEhkQFxi0ufiJtMxrVtwlYX
lF8QA5YoZgIApZoxikvipE3TY3MTkU4cppG6m6wpVkRI04lOJGy8bonw/XEtm+XHlsd+axF1BAuK
t6JUa4NqadJCqqlZsxeuZUto2Lw0bWQ2KWrXpEnkxBI3O2GzCBzvJ03TjG1D5SDWLjqFnadmoqm7
EjFNlY0oISEhISEhISExBnnUJHMO4pawAkvwLF10OdP1kpiuN1rXCeua3qDHmaE92Ihu05YJ+wTf
Nl3QzimwzB4VG3lLyUfzgMBElGEsjLyMiNYDNRKJa9FIw2Zp1RIatpBB2MhEUiRsvCguE0lJ2vKD
tNnJmr0oSsJxtKo0xojbaew4MRunO2swKombhISEhISEhIRExvKn9cGhbXMEd9StbZyDKRFdQ02c
tGmxWH3clFG3kzfRLFIkcXEtm0XUdEubJjjXifWNJwW3m0bmS9TIuUWbENK6oBIBM3z1LE2auXUW
c7+qJrZE2JzaNpGwSfPICXhgFMX1tydpo/z0mhFi1RiZxeEYVs1pwWC0CK095dJUUkJCQkJCQkJC
wieURIRI2JNsx00fLZPJuNbN47OOIrYRSJum1cV90ERSpgM2rZsuEC7zs6iJ40TNDxnLL8I2v2Q7
wqNNUMMRk3iZpo0qD7RiRIeMm0pSUUyippgaOcXYly7cvwIZ6n98nxfFttoh5slwFsXIRUhbLT7W
y4ujuHR2E94ZmYvOgVLZnhISEhISEhISEhkRt4TSSrdZKbrMI+08LMRKmUDaYjVqKAJBcxffOvcl
HONE8mGaQir2DOCKbb8ZXRIJ97x8cG+rCjejaGi/YRJpES4j55oi5F5TUpeQaj/eFTkShZGfrX9I
xfuHi1FXFcPFC0YmzSOjQ3eQNx1e/9ncOM10GdMqBrCgvhOD0bBMCSAhISEhISEhIZGBLArTbUx3
cCpRGyeYTCp2zhUnbQkapdhVc3BoJGC3v4wzQ4EpFhoatK3xKI+qoFlTLI2boti0b0n3iRo6gax5
5WhLyscnkMsdaYrg356pxHuHIqit1HD31YO4/6Z+VJQWTqcmG3+KYo/IEx/LClxaZadJsKopWNpw
Hme7Kg3SVohjXEJCQkJCQkJCYqLYmkC8bJEjLe6le1iBKXafN4u0ieTM6RAHG0lzqOwEu0uRtCWC
keQ5YYscgRLtgBIOxxWCShpC5k3SYPusKFaOOnux6SvzSNvWM6Di756swq6TRdBHgYERFd9/uRJD
Iwr+/NN97L4Kg6l4NanoCGoucAjrG4kVDI39S/1nH+u8T4uLNCys60TPYDH6R4rkBCQhISEhISEh
IZERabP5tMHbbcdZEqRNR1LTSJGowWZ7CZvznE3TJgYjyWNUansEwqV6kjDXPsVN0kSypnok1TY8
/1xBSPKnHZ56qxS7TxQRczEytlua2p+/WYZPrhnCsrnRSfX0cPKm2AidaoQi0RP9qEJIBwDMreXJ
t/uGJWmTkJCQkJCQkJDIlLQJSq84vUqE+k9J2pxkzEbSRALnYIOKkKvNRtIKQDFDIf6V6DkoYdOM
EaI5owrHXsNfjX+PxGeYJC7pf0j4szkSiSt5klj8THsYP3mj3CAmZgwODvZ5IKrieGsEy+eOTtKn
SBE7hBE3NaFoNtdBuK+ihtKiGGpKh9E5UIZoTKYAkJCQkJCQkJCQyAJpc7mimRaLouLMIm0iKXOR
tDT7RRMzMRhJvqM2fIyRthirfcRuxijchlPTppgaRE9zyBTFahobacuTZnri9TK09IS4hs1ZR1Yq
S3VMiWCXeqJfkpUZVT1o6q7ASKxYTkISEhISEhISEhJBxEzb36l5F0+j5uRWYVtwEVcwBsSTvYkh
/m1+cA7NXCGgDE12vzMIhE3Qkrky1ileWezMoovf6/xsM3FzfBvvrYlvrA9PRPCrt0qNeuuOsJ56
CFgxJ4qLFwyjkKNvKAEeIV1Y6nA/CUBd6SAioZgMRiIhISEhISEhIeGbrfnWtKXzaROjRkKHR542
IWqkM0+bjoTQX0DCrIoBt4Av+KHZt2JESLjzryVJnm1977WdaIxqCh56qQL9o6wfNTthIyvBEOvU
+2/uR12Fnpb6FMxzYxJnPQnrEiN+AoqrbynhthLPsyEhISEhISEhISGRXdKGdD5terIgI6ku4Ige
WUikTRntSRAz2IkaF+ATW2+TR922tTLU8WvoHkFIEtt8wBsflhjFIGy2huFp/K5bOYS7rhqcnE8O
RJNPe3/EtaUepSg8avStJG0SEhISEhISEhK5IG1po0cqSGJfmewCgCt6ZCGRNl3r50mWrZsHzDwJ
3CwO1hZ6Us2MleXcOE/RzWAs/hthorRuPQMKfvhiGWLODidyogLlYR1/cOcAQgUeb8PZF4nQqrqt
v/mY1h3f67Z9BCJtqtS0SUhISEhISEhITARps7O0AAUeLK9AoGiDUMIRTzNHO6Fym0ImSFeCfMWj
RCr5lYPNC09tK8feUzzEvzh4DOLO/vnCxkFcsmDEdd6Z82FD0zS7PlaQz41lGiluxUHsJGOefVlg
41xCQkJCQkJCQmJiSZvn36kikXhxLpiBSCy3JudnXdjnhCrsV8y/LeFfTMstbp2fJ7YRdQ+qa5Ix
QdMGQfsGIUAFLCVd3LHPZD1wBB/Jo2AkTe1hPPFqqRj+M3EfrAPn10fx5et6XXU73xvC7/+fGtRW
afjPb3aiolTLf5Lm7HKzH8WtEF8ViUCrif61+t4qWpJnQUJCQkJCQkJCQsIvd/PSe2kC79I95M6E
eWQK/zXRh000izS4igJ7cm1Ras5XrYSoJUuiPXN+L2rUxGOT/kTeBSHR8fjrZWjuDSd82ax+NP22
vnrDgKcm7UevleNIWwTaOeDZd8tw73V9k+6B4ukr0g9YaR4pISEhISEhISHhl615mkcC3vFEPPYn
SBuEg+CV5C0JcVMcSbj1/OZpLsnb0SqKqHUStWgOTZuTzcZ94BQlryX63ceK8Iu3yhKEzbpf2oaB
VfOG8ZlrBlz3cPBMBE9tK4VmcrnHXi3DLasG0FBdYGaSokbVNtCFfnb0u7PPLR84CQkJCQkJCQkJ
iYxJmyNtmif/cvCqsHixZAm1rc+KY+tlmlkIEKNAWn87I0L6bxUzJ1set8BoTMFDL1eif0SFotmr
aiQLZ39/845elBbZiZim6Xj01Qq094fidrOnO8L48Rvl+LNPdRfmk+OKIpkIPBLvT8WZz9A8BtKl
TUJCQkJCQkJCIrgEiiRMwsk2vL43SJuYa82mcYMjtD+8FRBwKDAKqgWTtVSK7xUr7bb5uRCk+Fd3
l+K1PSVGPzt92TT2zx2r+3HtimHXvbz1USle+KA0YVxralh/ub0cd145gAtnRwuZsyV/Smz9be9z
qWmTkJDwg5ULgZn1wNwZgKoCbZ3AyVbg8GlgYEi2j0R2MbsBuO0qNu4WpT92xwHgpfeAjh7ZbhIS
4yF7Bta0pQr57zKB9HGRgidt6diZLQeb13fJlJf5he4BFT94qYL7HopRZhRO2OrKNDx4Sy9UxR5i
Y2hExf99oQJRTUkQPfBrtPerePS1cvzTV7vM9OuTmLUJx+iStElISKRBYx0Tnq8Gli8AiiPCFwv4
hojbb98CTrSQFYRsL4ksveF0/5KITeaTkJAoHNLmJFx+8gU4fyjP3blSyu82rRngqUVzaltcJY+t
I3++tRwHmoqAmLuOlJftixv6cNHcqOu7X71djp3HS9w2sCb5e+H9MnxqzQDWLB2eHJwN6TmcfMmN
HdNqgKVzgKpyYE4DUFrM98+o5/NIRzcwwobjABtW57uA9h7gyBn2uVsKuBL5DxrXn94IXDCba9e8
MH8G8NnrgZ+9ygmcnFOSI8IklLoqoLIs/bGDw1xzNDg8RRsr4DiabO+zilI+VooiqY/rHeDjJDqa
2/pQrluqT3WF/3NyPYbl85T/pC0ZD4uTNqePWqZp2gqvFfUkvmyw+Tr5s6HMzxY41RbBk5sqoGnc
BDbB1tj/IWBRQxT3UYh/R/1busP40evmTCMGLhEGynBMxX++UInLFw8jEtIL58kJrGlL9K/0aQuO
MHtxLWYC7EULuOahoQYpE7dXlHjvb+kAPjoB7D0KnD7HiN2obFuJ/MN1q/lihKqmPo60cesuAbrf
kSZqqUDC5U1XAFctT3/skbPAi6w9Pz4jOVsuz8lH0DtlzQrglqsc2m0PvHeAj5P2HD93DbXA7WuA
VRf4P6erj9XtXeDtffJ5muzPp1+fNlcgEk82J/qyeWgakrHDwms+PQPhPZXzW37h8TcqjRD/iiNi
pFXt+2/qxbQqt/T7083lONEeTphTwk74rPPfPlyK598vw+9c3VdgfY7M+l1q2vyTtRCweil7QVzO
BdR0Qmw60DWo3HAZcKwJeOEdvo1K8iaRR2Ne1B6nw6KZQHkJEx67ZdslnbWDzLlT3BoiyL3rk6yt
5k4HLpiTnrCN573PnsZLENRU8HNoXugblM/TZGJr2TOP1G25hW1R0OFQ1YnHKIVM2pxRVuAO/+56
uj2L11OQH7aSu46V4qm3yxNBRKz7NjOhX7V4CHdf4U6kfehsMX62tSKRGsDZboJvGxnXPvJqBTZe
1I/aijxPO+0V8t/G2dLbBMsJzB9Iq3b71cC8GUAolP3rL5oFfOvTbIx/DLz2PnC2TZpOSkw8SOAi
wuY3JWdtJRAJyTnFz7Tt+7WOKUzacinA5zFIy0bmyPReyJd7Ly7igWHIsiQoKHhRIysfn5bP01Qn
bUiWp03RPeRWuD8rTplXJG8OFEzOtkmIUU3Bf7xYhaFRRxAR8OiPZRENv39bD0qLdNcD/f2Xq9A9
FPLuPMXxmQnKH7cW4xfbKvF7t3ZPiWdPTmDJQf48n7ueRy8rCuf+91Yv4QTx+e3AO/uBfhmRT2IC
0T8YbPGAfDdjmpxT/AiOQU6Yypq2qSiQB9Gyjde9k7aMtO6ZgM6j8w+fks/TZCdtyQI/Im0gEkwl
fzaecStxP7rwt/2/hC9Tsv8gfMofvLSrAm8dKPVMske+bLev7sfaZf2uWr++rxSv7ClL+LGlGoQm
gSN/uSe3VuK2y/oxryGa133uvU3Vv959LuEGrQ7ecxM3+RqrKWQQ0Iv6E+uBMjbcN+8CevplX0hM
DPqG+PiLxfxpmJvbgcERubjpQ97JnVA6hQnuZGgr0rItmcv9pvNpnMycxksmIG39LHZuTSXQ2Suf
p8k6lwV10oqTNsvU0eusZJZiisOqMH5uIanXnGpFm44SqQ1LU5pHTiy6+lU89EqlEc4fjkTaYILE
tPJRfOPmbh6qX/iuf0jFw69UG1q6lFo2h+aO/m7pCuOx16vw375wPr/723Prt6+leWQy0Avz89fz
FU+/pmHZBPkSUX4iCmJCTtwysIPEROGtPXwBY0Zd6uNII/fuAe7PJueUNNO2Hux4XbI2X8dOhrYi
DRvlQ/SrZRuPe7ciI1eVZX6N2aa2LdvvMvk8TRxbS6tpQ5pI/SJp05PwEE9zSUHeVZyDQC+kVkwV
BTJd0BFnrP/8ufGn3q7CwaZiHuIfcAUSuWdDLxY3umO4PvteJXafKIUe826tsKozQUNJXE64ZRLU
f/1OBe64vA9XXjCY30+O52DV/Y0JOYG5sGIhN4lsrJv4uqy/hG9fkBH5JCYI+47ztBa3XsV91pLh
zV3AniMynLYvoTGggCnNI31KQAXeVuQ3tmwesHBmBtJfDu+dCFumppEW6H1K2rb9x7kJtXyeph5p
s4XaEC4XBpL7sDllVy8lRPwY6cQ24Th9vghPvFFlf8iE4COLZwzjC+vdvmfnuiN49PVqw9TRBXZu
bVkM//K1c3jnUCkee6OGEzuhvyloyWCMknjXYNU3hwokBUCGE54c43HQS+WutcCM2vypExG3pvM8
ZPKAFIglJgCbdgLHm9mzsQ64cJ7dv/PMOb6oQORueES2lS8ikkH+MUna0guShf4+u3ghcOkFGZjj
5/jeZ9Xzd+OYCGmEa+wpp9q5Tvk8TRnSBh/RI53mkck0ay5HOcWD2BXa7OZstWTRWOAjgmQekNZH
Xq9Ca184YRYpaNkU1sn3X9+NhspRVz2f2FyJ051hz/pTAu7PX9ODjcv7sWr+EN76qBSHW0xNnqjF
Y7/59sdleHV3Oe64rDeP+zyAeaRj2UOStgQoJPEnrgHmjMEkknx6yDysqT0hwNJLalo1ML8RKCnK
7Lqf3AB09PKcbjIlgMRE4HgT8H+eSixu0DPS1sWDj0gEF3iCTPMy5H8w8lKIIPPByy4cg4VHju59
ei1/J6Yy1yTtOmnPyopTE05yNyCNXWuHfJ6mDGlzUgskCfnvIl6TJ1XZlMGOo6V45t1KN2GjbYiH
+L/rCjeZ2n+6BE9tr04EHxH9E9mEMrc2ii9cw23NqstiePDmbnznieluHzd2fpRtH36tBtcsH0B1
aWxSP4BTHXeSFmE+EAkYJZLMFinSIyU4PdeRPNpeCXvpLWXXv+ZinpQ7CIGjF+Yn1wNdPVzjIV86
EhOJpjbZBuM230pZZNK3Fb1zKGE1mebn273PbeBkKxVosZJysFGKgorS5MdZJpK7D2fRRFI+TxM/
hyXzzEnHvSzSpsMeLFAVjnGOE1XYL3ICZ3HGqkj2eWInKz19MBLo/nO1TSCiTPB9+JUqDIyqPJG2
o8GLWI/93s0dKI1ots6PaQoeeb0anYOqt5ZNIR+4bsypS4Q4u21VL555rwLbDpcltG1mh5PGdt+Z
Yjy1rRIP3NiZZw/OGDVtRiASHZqcgnDFhcAli/lKoV8QOXvnI+DFd7i5R7pHZiDKXlZHeLn6IuDu
dTy4g1+tHpmWXL0CaO/NfgQuCQmJ8YGGQLE1jOOn6hwdNHJkobbVRQu5li1Q8JFxuHeKZDmzIb32
jyLM0juQjktF2kgLRwSQrnmqVT5Pk5W7peJrGryiR8IjTxtS5Gxz+LgVJhv3CqSpZ1gw4Tf/6p5K
vHmggpu5wsGa2YN/5xW9uGaZOxb61oPleOXDck6+nBFA2XkrZg/hs2u7bPdXFI7hD25tx56TJegZ
UPlvCgm31RDwxJvVuG11H2bXjeThI+MnEIl3kXnaeKRGIkNkxugXZPr45KvAB4eAoQyGBGnmyNzs
q7cDS+b492G4ipG9HQc5aZPaNgmJAhR0gphneURam3JtFbBdC62tyHR+1ZL02qyJuHfSilG90r2f
upkodqKFuwBMT+MPbplInmyRz1Ohs7VU5pHpgta7o0dafm1ITsicLl4QfNukCnXi0DMYwg9fqYdO
KghnxEiFQvzH8MBNXa7zBkdU/ODlWkRjHjMM21Wk6vjW7Z2oKnWvs1y+aBB3XdaLn71dnfhNa7iw
w1t6Inj0jRr87WfPTV0BYpKCHL8pFHE45O94i7C9fzAzwmahpQP45Sbgy7fwl50fjRv53V1+IfcJ
kNo2CYnCnHODykcyEMnkfJ+RJovm89VL8/NdTr5s6cgkBXsjF4EjZ7h554Vprllfzd+3pFUcGpHP
05QhbfCTXNuZiw3J/4aVq60gw/0j0UKAR6AR+FM15ol55H9tq8GB5iK7qaLF2dgkd881nVgyY8jV
P79+twq7TpQmCVoCVES6ML2MkT3dTero0K9e14FN+8vR0h12ETe6JqUQuHN1Dy5blCcpAIKaR8Jt
BjvVSRsRtTUBtWzPvw3s/jg7oc2PnuWR9z57XfoVSgtXLOORJMczBQCRRTLlLGIv2nkzuBkpra6e
7wa6GHls7ZyYgBRe9SKcOgcMDPGgMERuR/PQHdWob4m7PVva87fO+QhKR0DaCqtQhFVqR/Ivpe1Q
nkW0DOyCk0dzdHUFb+PKMr61TOGonakYY7gre8GSAufgSiG6kA+xUecy91jp7ktsxxPL53PSlsws
f9icU/2YTWZbbDPmpum8nVKB2o0CEtH7iPqeSFw6zdzcGZwMHj49tZ+nKUXavII/WnKYmCw7nWkk
HARO1LApevKczLLPc4OTbUV48s0qu6Gy2eAKE7AXN3iH+G/tiuDxzTXxQePsLy02glMtzfibH/Xj
sT+vQm2F+7cXTh/Bveu78K/PTbM7QpqldziER16vx8ULziKi6pPm4ZvKExiZpZCphl8t28fsJbPz
ELfhzxboehcvYgJROc/Tk1ZwYsddtIBr23oHkh9HTuE3XgHU+yCkr78P7D3mFnDpGmtWcmKbKrEq
CWsfHQe27+NtlEtBme5nGRN2rljOcxqVpvFDJF8LEg7IlPXgyczJ9ni2J9WZzGA37+KC0EQ+oxcv
5mknaNylw09fTe+rEqQdqQ0pubdTmCaiTosX61byqHupxiVFXN2ymy+QxPLAmSWI0DiRuceImC2e
zecmWliYXudvDFBAChoDtLC18zAfv2Nqq4Dt6mwrv2OFCNyJZuDd/dzvONcEjhYKqV7Uxl4g8kPz
FmnjaL7P5N7HAtKGzfaRm+1MG0/7QYtM9JmCkqQ7j74n08tDp6bO8zQVSBuc3ArwDKOBlOaRaRJs
I1kONxRYx7oorp8kCck0bxN18zoe31RnmCLaPEVNfzSq0v3Xd6KhIuqayX+ypQYn24uM8+JKNiuN
AyvRwTbERnqw43gVfvzGKP74bm8p/XNrOvH8zgocbC5xR59h1359Xzle21OB2y/Ng0zHgQORuFcr
pvoEtnKRP0GEQC8l0orRSymbbUar0iRUkjA722cC0wvmAO99lJo8khaKrkkBTNKBCI0ipDyhF+o9
N/Eol36iaVIbrl3Jyy4mqP16C3+RZ1NILi8FrlsN3HIlUFPp/zzSYFIh4kHC5G/e4oJ8UGI51vb8
3A1svC3kWkE/db5zLavzxbwt3/2Iaw4nAtS3JFimW3EnEIFO92wEaUdaxacFFeuaJOjexAjfxtWp
Ax6Idad+v2wpJ38vvzc2EpHNadu/lDl+czS1L7UV+fjOn+FvEckJ6hciGVQoIu/2vTzPX1bDvPsQ
4OlebrmKjZVVXGuUDqTtsupN8wQFmNp5KDcLUETEiLBdlsKWkJJQE+mlRZNskxc/IG0YkfVUIGJJ
8zzlEaXfpq0f0kbPJR1DYyXVwmOhP0+StHmTNu/k2kJRHNd1fuelgS88bVqQQCRA6picmJC733W8
DM/sqPTuNPb31Yv7cfcV3a66HThbil9sr4oTPUXsRJpYYoMYGW6FqvBYoD/ZHMZtl+tYOsstUdZW
jOIbN3bgL34604hECcCVbuAHL9dh7ZJ+1JSN5seTEzgQSeL7qey6SeYyJDj6FUxo1ZNM16I5MFs7
dJq//EhY90OS5pumdbqP0RF0BrlyOfCZjbxtMslXR/4ZJPg88RLXFmVD6NlwKXD3NTzpuTKGcL0k
hHzrM7xev3gjmCCZaXuSEPzZ6/nKddC6kznal2/l29c/yK6GN5f3nc3rWecsnMXTXqzKIPkwPStE
9qgdn32LP2uF9mbPKTFn7XLDZaxc7n8Ryy/hv30NsHQuX3zYczS3Y88654LZwCfW84jAgRNVm/PE
1+8EFswEntuefa3bpUv4YkKyhQfSVu45Bhxr9k/asim1EeGlNki3MNJm5iQdMUUhIm2nz/E5L127
0/WJGBI5nWzP0xTjbknbN51EGidtcTLmUC4o4hZJVHXC9wXXs46AKkmTiiPJcV5OguPEXokgff/V
OiPEv+33zJwLxaxXf//mdhSFNNsqia4r+OFrdegaDttHgkCyooMt0GOjUENF7M8YWnqr8djrI/gf
Xxr0nFhuXNmDNYsrse0oI5BR2FIAUFCSAy0l+NlbNaw+5ye2u/XkWx95tae8TxvZ1PtZgbVAAkdX
X+7aa/8JrkGr96HRICGLNE+qklyblYkTP5mtUSqCID5+XiAi/JXb+GfKX5cpcSMtCwlfNzJhsiqL
wuSVy7hA+eOXeRQzP201Ue1JbfCpa7l/y5u7uECXr6zNz3yiZ3A9MtH71EYujGcKmusp1UYsBvxq
y/hofjJtI9drPcdzND0LJERnk7CJIE3tvbcApW/yyLm5aKtsjhUCLZ4RkSU8t43P/dkABZ0iwpZK
i/XBQW5JQSaqfuembL7LyZctnZaNQIsfVKzfNUwkz3EiNyeNto2+p7Lv2OR7nqYKWwuiaUOK6JGq
k4TZSAs8nOFSxWpIsz9fSiZalnwqL+yqxJsflduTOFi+hWzyvPOybqxZ0uc6b8vBcry6p4LncvNQ
l45G+xCNdjHCVgxFZaRNjbDdo/j1OyV45+Miz7qUFml44MYOlJLfmioQNmscsN/6+fYaHG+L5GVb
BiqCieRUK2LginSgFzb5Q5EpR67qQyuOPQFMReY1JszRUhFzv3PwZUuAW68cO2FzEjcysQypwduD
nO+/dDOr01XZJWwWaPX//tu54BBkocNve9L1iWxmqz1vuzphdjTu75cMfEay0Y6ExnquaR2rEG6B
/FgNTYAyke/r7LXneNcpU5DmnjR55I+aq3qRZuzmK7M3ViziRtpC0jqNtY3pGhsYYVu9JPlvkkXH
2/t5EKVMFjjGWui5MHzOfJgv08JHS7v9fMNE0sd6thWEicyuJ+PzNJWLHx4lvgPUTC4wGRrJV2a7
PCzd/SE8+kY9dFV1mSJS8JG60iju39ie8FMzS/9wCA+/Xo+orroeXPozzEiXEmtl36lQGPMjwgaD
tKkYQRW+/0oVhkYUzzqtW9KP21f32Mw0LdMmIojNPRH8eEv9ZOBsU7ZYJoZ+QC8nCmCRy/rQy69v
wP9LaP701KQtiGxMpnuk0ZpRl11BjYgbmbSRwBa0PSii5jUXB9OGBsUiJtxdx4Sy2kofdQrQnqSx
+PS1/gQfv6ip4Hn6aDuuzwqyLDgGaEfq+2sv5RH2sgW6JvmykoA/YfNPwFXtyUDaCBQtkfxSycw5
2/WixRG69iWLs1tnIm5XLedkf6xkaN3FvCQzHaRFQfJfpaBOmQbYGGshE33SBqZzGyDfUDKFdL4X
z7bx/ZoPf2ZaMJvdMDmfJ1n8P9uqF2fJlMMUCvfxV1OM4a5z1xK/eLsWB1tK7GH2TbNIOuKL6zqx
pHHIdd5vdlTj/eNliUTaSqJQQuw7Vvfij24fRihcxsgfadlCbLKMsBI2zCR3HK/FczurktbrgevP
Y1pFjGvbnGAT0jPvVmMn/X6ejYIgfVfgnHNMhQhKiU9/tpOtQP9Q7utE0bf8RjekulvrHOlGRDpc
z4jLzGlj8xdLZRq19mJu0um3HTasYoL6smCEjUxzjjdzv68gwh6tpJPfCAkpfp+wdCD/O/LBysSf
JhUuX8qDsEzk7OJLgMzStYisUaRNP36eQbBwJu+fiZ6ps9We410vCvFOGpVMQvtT2y+Ylf16UY6w
TH3Y0oHSStCCyVjGzKqlfAGiMkXU2PcPcdI2qgW//2yNAbLg8GMaedokZ87zqe6Ug7TNR8AfygNH
BDHde6xQn6epXuCz3+KBSJxh/xXdbS4JwVzSIgm2CCWAPSiGkub7CbMx1T2MR52tlquli8xxsr0E
P3mr1jA5dIG164L6Idy7rsMlhbV0F+HRN+sT54l9wAhbRVEM37ihjZ0fw0u7i/BRcwVULcqOI20b
I3BMOh3Vwnh8cx02Lu9HQ6Xb6Wbx9EF8eUM7/v3l6XZ1rtn3AzEVP3ytHv/x9X6EJiIFgFfUyIB2
ElPVp420FUEEQdKCDQ3nvq1Io0f+X37ICpEgMbJesuExVhCRpBVgivrXWOcv+qEXMSI/DT8JwYnk
3bEGaKjxd22K1Pja+9x81fKdIzMkEuJIW0cruanIKLUhRZij5LCnz6V/3LLRlqSJo/sLSkbI33HR
TL6anY08gb6lnICaNj/T1lhAOaFIKKSFC2rHoNpYEpxJ017HCHD7OAcC1gNK4uMyRyepE43VY03A
gRPARyf48+H0T7U0wBToJV0iZgJFUiWNG2mT0vqJZSlqxFjHi6UlpEKpI4JiQSMnbERQkoHa+K0P
uVlk4PvP0jih+Yi0X40+LC6a2vg85PWbp1v5WElnuWH9Hmn3ms5PoudpisDVjo7A9fCKq4Ekedrg
CD5iS6rtlS/AIyDJJGjSMfDg8cFDb9SjtdcM8e8gxyRokbarrsKdtfeJrXU43RFxBx8xr/H5qzux
tJE7CH3rDg1/9Ag7LFRimEYqSrFB3hRNx5FzFHmyBn94q3dyoc9d3cFIXxUOtZRAH7XXT48B245U
4OU9VbhjVdcE9a/XYA2yBjI1JzDysQqiVaIE0hQIItdtNTjiP0w+aYZUJQVpG0M9Dp4CXn6H5yty
kgPKjUbREC+c5590EIkiHy96yacLpEF+L34SjZPw+NttjLDt4Pm4nMImBTwgInbfbdyHJBXZpHsh
PxjKj5YsaEqm7Un3+8LbPHebWE8SIEnDSVq5IH5vtBJedmj8UgBkYh6Zres5+5u0EBTN77QwXRex
MXjpBcAnNgBL5vi/HgnvpEE53z3+gk5g7Yk+fn1MZm0nWnjQm/cPpie1tBDz8rs8PD7NC7QAkg5E
7khYT7eIM5bbpgWwN3aaRKjH/txR1ELylaXANH7nMDqPUlWQyfPZAASDFgiuXcX9KFORym37+MKT
LdBakHGSBTJC/bKgMb22kgjwqXPJF44sE0k/USSJyFKhcybL8yRJmz8XNBtpE7VsCpIHIlE8crpN
HtKW33j3SCWee7/aziEs4hUCrlrUj7suc79R950tw9Pv1Mb7Lk7YTC3bvPoovrS+PX78LZeO4JZV
Gl7ZX8+I2rDh26aSQlbhqtWfbK3FLZd0Y8lMtxRUzwjjV69tw1//fE78eKuu9JMjowoe2TQNa5f2
oXbCUwBkOOFNwbFOkRdDIf/Hk8BIUedy3VZEDv2aHMXNI/XsSjwkrP1yU3LzlgNMsPhfPwU+vZET
rFTmPiIoVDsJdqny8lCQAhK8/ZitPr2ZCWUfpCaBdA9EmGh1P50WgPznKNnrmbbstefJZp76gEjw
qCNVBAk8VDfKCUUBW8gkyc9CAvkfUvuM23Ob7chsGdSb+pEi+FGycSeppsUUilDa3MHH5JqL/JnI
EVG2fBknYqktyAk5J23m9YmsUTvvyCDiKy14UE42etbSkWdqeyq50spSREKaw4gEuRbG2HN3mD2P
Z8/xZ++OtVxb6AdELmjR5IxPgkGLgxQpkkqyMUnz/VZGLLfvcc8R4x0VkeagVNpAkRC3pMhXSs8k
kbBzXem1dvT9XEbgI6FE6oBCf54kaUsRMdIjV54qdmQynZLz78K3HfURqsWrFSfIK5PIzkOv12NY
U+2JtE0CVqRoePD6NpSGY7bzaFJ7+PUG9IyE7CaVJuEjzcNXN5zH7NqEd2xY1fC7Nw2gqjgKJVTG
BkiEHatypRy7RtdIBP/31enccdajrnet7sZ6RsqIEMIhVFFQkn1nS/H0u7UoxNA++hT1ayPSFg5A
2kgD5vQzmGi/EsvEM1u2/oRntwJPvspftqmuS+1BxwXJw3YhI2QV5amvS0mT/ZhF7v6YawF6B9O3
J5HMj8+kr+diJmiWl2WvPYlMPsYI274TPLdfsmvuZQLmOx/5jxxK2qGiosL2wQoC6rdXdwCv7ODj
Ltk1SQAn7apfLQgtNlSW5bc/23jJKeSv+xtG1v75SWDLh6nbOd2z5kWUXIuhFmnLQZuRNvbxF3ld
Ul2zb4hr6mnhxO8cRgSDit96X7E8/cIWzaGbd/P6jIc/abJCdSQtmx+tPz1rVFJdjzRxp33kQyQy
O38mMGfG5HmeZAnWd6pTBeqZmwqTLQrLWFwEx38ov/xhFbYfqXT7suk8YuRtq3qw/sIe13nbDlXi
jf0V0MTgIxaBYgLsJXP78YnL213nrV7Qj89c1YdQSDX82cQE3GTmuOlAFbYc8g5KEgnF8Ls3nkNZ
WIOu2MmltUrwky11aOoqQmG5hk7dqEVBzSPzMbIcLWDQQkO2XFNp5ZRCTZPJkt+6bt7pz+GcQCTZ
SGYeSRLNs5GbH6XTspGA9TwTtJrb/dfz/QPpTbHod0lLkKx+QdvzrT28TdP2kc6P9WumRyGyySQw
H0PB58JlmrSUlA5jNJb+un5Jg4205XvY/3GoC2lOyKeKIgKO5TqkxSI/tXQkiAT1ijKeciVb6SYI
RNjf3pfIvZiu0JiisUVjzA+o3kRqqn1EcCWTa0o/kErD//FpJnvsTOQ6y/T+szEGKCjIXB8BSMjU
lAgbLUqluh5pMsmM2U8USctcdrI8T7IEjB6ZkfvWpA3X4sy4DIeH4Phr3boGQnhoUwNiQp11y/KQ
TYrVxaP4xnWtPCGacF7/kIKH3piOEU3l5qxiMBhiTpqOB29oQyU73+t3v379eTRWjXCNmUC6SNs2
FFXwyBvT0DsY8jz38gV9+OTlHaSgS5wr5G1r7SvCw+z8wkumMcWXePJteS6IJmeACR2j2bvHZ7by
F22Q+pKgR6ZGfleq6cVs5MbzuNbCRh7sJB1ONHNn/VjMfz2JsI1E0197gVWHMbYnmbmSqVhHt7/6
tTBh80wrNyvKy+XiCVKzkd/e3iPA0TP+rt1lCpS9A3najuOpOpmgQmPfTyJqes6SPmsZtBWRg71H
OQkLUl8aW/uP+Z/DSEtYX5n6mpSc+s61PNF3KvKzaRcf3/kwVmjuW+DDNNIKQJLueiOCiWQ6kHUF
peDwNR6m2PM0FWSwsMhdNEueh91+UvPYKkkKHFZxituaTyIAfvlOPQ63lHLiZWnXrMZmnfGFtR1Y
2uh2VPntrlq8f6LM3uEWeWLn3bKiG9ctS75cPatmBF+/7jz+8dlZ7uifbADsOF6O53bV4J61bvsa
lVX2vg3t2PRRNVp7IoZ2Tux8Im507p2runD5wr6C6QsdbuvUqQBaEY7F/B9fzV7S4XBmNvdBEMRs
k1Y6R2LJ+y/Iu4zMBw+zMjASvM57mZC0crE/PzSKJkamfV51Jk2bn6huBxhJ7B4INm47+vz5Cqaq
XyCtZQc33YwFOKnZjBxa7CM6Z1kpT2syGsv9s6IFPFbzMef4RSfrt/NMuI0GqAQRdCp+fC0pmA/1
99DI+M09WoA20PN4jiZtb0Mt155Pr+Fmg9bffnzESGulqKnvLYhMTn5m5MvW0RuwP1gFjpzli0Hk
U5v2XcDuraoieb0pwuuta3hut2SguYjMUN/am3psBwge6evZSwYjN9tMf/MvmT2ePOfvt86YBM9P
NEpD2zada8un4vNUiNBT7AsU8l9UIijiVjTNcLp6KfBOUF1QzZc6SmCwpYbc4GRbKX6ydRpvbqdP
GnsJLKgdZqSpzVWH1p4iPPZmA48F4jyPTfw1JTzEf0hN/Th++srzePHDKuw8UWEjjdb2kU3TceNF
PZhe7Q6LtKhhAF+65jz+7cWZCaYvnNs9FMbjWxqwcm4fisP6OD4ymUSPNPO0TVGnXCJtWoCZe7yS
0AYx24wK5pFjlXjIjG8ww5QGJCBHfWqIKIpkyCN4ChFVMs0xtHA+hv1CduxIgMTVRLj9RIkz/AST
pVEI0J5kMkpEIEh7GppTnySM2ssKsJXzWSaIOaOfZyRAO1LOve6+YPdJ/lh+SRgRh5TBfHLUnlkP
7pJDULAWyq1mRBacaZK0Wv/BO5KBFnksU+SUbeUT5JdnmewFBY0zvz6lVO9kgYBo0e2WK3l4/1TB
cMgcmiJu9g34GCsBnrtMxwn17Twf6RpIg918Pn29LVAuNyJulG8xHYz8fY08tcRkfp4mFWnLNHok
nNEjIUSMFCNFwhH230HeUsrBhUJ5s5lNPAd4lBGv1v5IYqlD9Eljv/mVjaYJo+P3f/LWNJzsFBJw
C1oy8oH71JWduHh2X9p6U/42CnDyxz8qw6iu2o4nMni2m5FDRrz+4q4znud//urz+O3OGnzcWur6
joKSvLa/Gps+qsFtF3eOP2fLoN+nKmkzzOUCaM1opZBW5X2br2UI8lcq9pkHjUyQUqUhCNKvpNEY
yTClAb3Ioz7JRkmSNAW0el1a7I+wfupaXnJKUvSxtSeRtuGApK3XMnfNo0WEoO8DPwJRoDbpD54s
nRYfgmjOxnsOzNRPcDxBZsyUe41C4pMwne3k5n6JRhCBvKs34Y8bFET2+gf9HUtt4bWwQ4tRRNYo
X10qq4M9R4FX3+d+hNkkJJmOE6r3Ap8Jtcn0+GSr/98ZZET6VAuPLJoujQtpxmnhjhYDOnsn1/Mk
SVuakP9wEDNRy+Ykc4riQdqUwiNtuuO/uCYlzX9I+lf28cGJSvxmd61LQ2UQHjYRrp7bj09edt71
6weayvGr9+o5YXNUjMwrZlcP48vrWn3X+rplnbhxZS1e2VeTyL1mdTur27M763DbpR1GUBMnqkuj
+L0bW/GdJxckfk30b2ObH7w+HeuX9qC8eDTnfW7feo+FtH0+BScw8pUJYh7ZWJ9+VTgrpK3GP2mz
TDyzQdraOoNrhuKEr2fsaQoqAkbzzBVqrYicYyRtnRnk9esdCGbuOF7CR9bztAXRPmagPaHnwm/i
cV2fGNI23vm3/GLhLJ43kMhaeUnux1W690+Q9WPStPUPZk7a+nySNsr36DVHrF0J3LEmtQaSTAUp
EiolFs/meslYxsnsBv/EnMwnyexzxUL/1/eTc9MCaftI69fRMzmeJ0na3No17zxtSAjQSELWXFo2
izxMmg4dayST7GJUU/Hw5ukYHFETDoRCEJGwquObt7SgrMgu/cV0BY+9OR3tg2H3eQqv6zcZiZpV
6z/TLBH1b93ShA+OlaO9L2I3t2SfOwZCxm/+8z0nUBRy29DdsLwTG5bVYMthJmGPOpqLHX6wuQy/
eLce91/bMk7iVObmkUbY/ylqHkkveEpkHfKR08nQtOWYtNHqLSVu9eMbRjjelFqgDUoyRjIkbfSC
HfGpgSxNommrKMkP0paKeGSSMyloVLOgddTH0wp7AkhbRtYAeb7yHsicyyOnUS5ARITSbXxmIzd/
HE8xJeW9BSTrAxmaeJO5XyBNm4O0UXJ3ImxEgJKBzC9fehfYtieY2WPOnhMTRgCSmT5J/Uxecrlo
QHWhlC6F/DxJ0uYvw1ictFnaMmeSba+E2nGNm5iMWy9AlzYgfTR/P/K81/JOFjSPL++pxeYD1Z45
2Yi03XVpF9Yv6Xb9zraD1Xjhw2o3YQOPODm/PoqFDcM42lLGiKE/ZyCFdTAJiJct6screzySQsWA
V/bW4u7VnbjhIreZY2lEM6JbfnC8Ev1ayG7qadbvp9sbjHPn1w/ntr/HyN2m8qrTsWZg6Tygqjz9
sYvYi6S63IxZk6P2IidsXz5dVv2buLCRlLQFeZeNYSyQWYtfwkXBOaKjHqZFoWApGCaEtCG4b1dg
opeHpE0PeHBa0paDaxYE+c2UVCK39SPCRgmmP3MdmwvL8uNZG+++JNNsv4tltEDl1KIvX8BLKlDb
PnAXL9kG5YKj4gXKW/ezV/n7wuu+ySwyiDYsl6A+IFJIli3N5wvzeZKkzZu0eaaNtkib7pChndtk
4TmcShyvfs1fy8lkgUQmXtPWOxQyfNk8w24ywlZbOoqvbmyBM2nbwEgIj2yezjiR6q6Swsl1U0cE
Dzy02NCY0E4lCd9UhJxuZBRIq/1airBD9NUPN83Amgu6UVbktlm6cmEv7lrViV+8N43nbtMTg4hu
40xXEf7rnen4iztP5bjPM2RrcTPJAl2gyAIOnwbWX+KPtJWwl9uqpTxyVmdvbupz5UX+EpsSKEcZ
RUkb1bLzLhtLCKKKAKTNCJ6ie4/YfFz7GksdM4lGPR79NRFtN573mevjx6ONxqt+ZGVAGjYKT58p
YSN/pdZOvqV5iULir1qSXmPnp2/Hq63IX7nE54IZLTqRP3ShvDdTtTMRNtJu+bE2GS/Mn8Hr1XR+
cjzvk5q0+ZBK0+mROGnTkzA+eAcgUZJFkCzIJgxK3pBz0vb0jgYcaC5PBBERqkSr65+9uh0XznCH
yf/NB3XYcbLSSKSteLFpnYRABVFBw2b0pZKOtCmpb9OMCbvndDmefq8B961v9jzs64xovrG/Gm19
EbdPpMZTG9x+aTsWNwyivDiWw0cmKGlLHDOVNW2HTgXI5wTumL/1w2D29n5B2qpLFvsjkIRjZ1Nr
2TKRjjMdC+UBTBvJ/83L12t0ND/GYUqzxhybR45XfwVuk2xHZsvxyriuZ9aWEynoZHUcBcAFc4Br
LvavaaFIgDsP8WTUNH96BdNYs4Inls7GGB6vvrQiQvoBLRA7fYnz+h2aop0X5NjcMRPMa+R1eu8j
mIvxhfM8TTnS5lPT5uXbBpt5JBwkTfRpg4Ooefi1xf3blALqXD3JUsJYEo1nAac7SvDj7dMTSjSB
PJECbV7tEO5b1+r6vZaeYjyxrTHed3EGJm497t02GBSBoMPj95OpVS1Ox7Y/2d6Ajcs6Ma/e7TM3
r24QX7n2HP73S7M9I5D2j4bwg9dm4o9vPYsLGwdy1+djyewwhScwIl+0QkwrjUU+nLDJSXrVBVxQ
6c1ydxIhnFHr30SQTDvTBWgIIvDUmHnoMomOGSSICJEzrzQFFCHQbzCTzbv4in4uxi35xZzvSuHT
FjCSWy7JRkEHIsl1OyJ318+GoKPnAakk7crKhcBFC9IfS8/bb7cBm3byZ3W82iLIfRspBIoym5vJ
X9kvabMC3RTSe9OrnWmBkHJjUkqHfAKNS6oX+QeebCmc50mSNm/S5pxnvQORmIK5kob1ieRONG8r
zLD/6bQtXvuBXJtHPvn2dDR1FXnborLy9Wtb0VDhJkQ/f7cBxzuK3ZEmnVnOdXibXepIbYPlR0PB
hMhTncX4+XsN+M7t3maOn7n8HF7cXYv9TWUJbZ6QwfGtj6uxYs4AGipHUFcezVGfZ2IeyY+b6qtO
+49xoYVC7fvB71zLk39S9K9s+bbRKvctVwENNf6OJ6GE6t3bn72+o98uZqStL4PrGREvfQo8Rv4y
D4EnSOTEw+xRfO19/9HeJmw6zuGz5SfyXlYFvgkUiHI9R+V1yP8ckkoyX1w0Kz1ZOd8NPL2Z5xXz
o/koifCAQzlpjxQgjX85ExnaMvTLrfRpHkrm8bTgVzCatiR1XJiHWjYL5ENO5URz4TxPkrT5IG2O
z3bSJpzs1KrZApDATuBSOroVAm9LZ/XoR7uWJU3bnjOVeJpC9XtosRACrpjfi7tWt7t+61BLOX62
vcEd4MNLw6a4iaBnvylpOI5XP5tmjr94ZzpuW9mJi+e4nZlqy6K4f0Mr/vKXC4xIl7Y6sXNHYgpe
+LAWVy7oQdWCUSNKZs44WwbWsFN9AqOV42su4X4YfrRctCr5ifVAe7d/m3s/RHDBDP9aNtI0nT2f
XoAK0q+1pqYt6FigiJdXLvO/WnskScTL7gCatkWzgbJ92dd2ZlM4kNEjJ07ICnL8RJhL5UsyYFos
8mMWSWZq2/f5X1QhrX1tVXbGcJC+od+lojcHawfS7CyZAyye7ZO09bhJW74L1l7tSITd7z2PN6bX
cTNJWlBIl75DJtfOY9LmmMOTadpUL5k2KI8ptOLfBhI+73xsrUMBEn64qRH9o2F7xEiT1EQYeXlg
YwvKIlHbeXToo1tnomc4nNCyOaoTf9EqwplenxWP75xFScFRzS/6RlQ8tLnR1Ky4r3LHpeexbnGP
QURdmkB2D0fbSvHKR3Vo7wuP+6hI14/2rH5Tr1AYZvJTaw/gp0bBS754M3+xjPX3P3cDsHEVUF7q
77d7rfp2Bx8FqbB0Lg8oErT+ly3nTuN+zCNJ6GttN/PBOa5DL+bT5/zl1yJhg9pr4uba4Gto2b7+
ZLjniW5DTLAMMNF180OuaGGordskKT6uGYlwszu/pobZ7MtZ07j2MGg70CLQikX+6kzt0dLJLQbG
MuYmcj2fysxp/L5LivKzvkbC75k8onIhz5uy+OuzeJ42kYU7E23Hv0sWWlK4RkEo22z2Mh4efy6a
66TA8Eholzle319n5DHTY7BrnxSeEPum5R3YuLTD9Tvb2Dmv7a8x/F5cigeFJ+Yl/yNn1/lZEE7V
j/QdEc3RUW/G/+YhqlctblnR7jpXRQy/f8NZvH+iEoMaz0NHZND6PVpFeOnDWqxd1IXaJVFWfy1L
fe5Y0tCRfGkDDt10/G+56kTatg2X+te2EW6+gnILAj96kft7BAVpqD5zPfA7G4L5FFBd/WjZgmpI
SOCheyLhjHy6/GLNcv8RL0+1cI1asrofPQtcsYyHoU4FIokUYYxI3vDIOM+xAVdzJ0MgkiBSUU4C
kUxCn7ag7Z+L+pE5YUWaBNqUuyxtwCNxQWUmX1TJVt8GtRag+YPM12ku8QsKxkKaNj+guZEWnpxa
R9q350j2+4jmwhl16QNUkckm+Vp75cskE8OBIXtbks8YFT/4+DTw45d56oCxYt3FwJdvBRb7GCM0
jsjf/NCpwniepiJSadrgRTOc1CRO2hw+ba6IkbCbSKbMAyARGN39YTz85izDNFBxmh4yYbWiKIYH
r29mu+0N3D8SxiNbGjEwovLzxEAhJgn69m1ncNn8bmi66m0yGUQQEc5VFQ1nukrwP56Zj+6hsOvY
EU3B42/NxNWLelBd6p4ZV8/rwaeuaMfP3mswgq6Yeb/5rbO/2/sj+O2uBlwwfcAzqMmEcv0pPs7J
sf6ND3gC7SD5aq6/jK/QPsGI21t7+IvRD1ayc+6/E1g+P1hC6ZOtwOvvs7HU5a/PgnYr3Y+hxevy
56+3diVw8eL0JMvCjoOpzYpI0CLTyXT+hdRmX2Pt18IEpY9O5C5v3pjaM8M8bflINnKRpy2XQlYg
Hzwg//O0TaCQSWSByBClyEm3UETzAAVUuuSC7C1sBO1LSstyiJGMU63eBMYJsjC4+iL/C2cnWoDj
ze46v/weL9kGmS/edxsjOytTH/c+m1t//BKbEzvSX5O0WESIFjT6v+cTzdkZg9Qvp1v9kTZ6D1Ad
aXEhpf9yAT1PkrSlSq7tUChAd19EJGwisStI0pYsVItrdkzRgroHu80Av941A/ubyqFqjiY0ydfn
rjyH5TN6Xe378r46vHus2u5naNWfTTQblnTh/vVnXGQvW1g1twcHzpbhsW0zuYZQ/H329+7TFXju
w3rce7XbaJ7q/OU1Z/HGRzVo6Ym40huQYPnWkUqsW1KFuvIRVGQjBUAQTVuSIicwjlfYC/eC2TxB
aVmJ//Om1wB/fg/wpZs54dl3jBfnS4Y0Wdeu4ho9MvvwE61SBJkN/ugF4MhZn1q2DMg4OeJ/50vA
95/lfiyptFhXLge+cTeP8OUHZNa54wD3B0lWr4MngbNtwJyG9GSW2v2+24H/eNpfhLFkAin1xzJG
np/alP46udbg5NpnbjxIRrZ92nIdhTPfo0eSwEoCdjbqR3MSaWOsucnvNReYWplU2qtQiC/i0PPk
e27LQch/CoDy6WtZfdgL+dm3gO6+1ISI5m0ibX5AudkOnOBz8HiNF7/3H2QcU18u9pmbjd47x5sy
sybxAs3vRNroHebn96meNP4/PJIlEib9+POCtHkn1xZNGx352JxaNsXxQ4kTC6r5kB1/tLElq2vq
KcWPt89INKXYnhTiv2YIX17b7Lp+R38RHnlzJk+z4BRK2XnlkRi+ef1Zdhktp6341XVNeGVfDU53
lkLR3IPxsS0zceOyDjRWu9UqC6cN4AtXtuD/e2MuDEWgljC3o2v1DYfxwt5puGROL5bOGGDf6Vno
cy+pyr+PopzAzBdyFHj0eR4JkUxsgmjALFL2hRt5yQX+6zX24vo4mDlgJv1KmsbvMBL6WybwvPAO
e1k7TDHpewrEctsaoKbC/3V3HebJd1MRTuoD0iRSRDNqz3RYvQT4lz8EntvGi9/8eXQPt7P633o1
j5p5rIkLEHlBNgI8+gUd8j9HJCfXJCongg5SE4tvfio7v0uC7xMv8XnEEsippPOnvXoF9+F68hXv
Z6yazQN3XRPc1Hss81S6xZgv3cLb7pdvcM2bqHWj+hK5pPouCBA98egZbqo3Ooq8hN9xTO3iNwAJ
maCTdixbfURtR5pKIm5+2p6OoUWD3R9ncbELUuYZd9IGN2mDS9OmIDOvuIIM958/eGzrTDT3FnHi
5WhDMrH42jVNmOlBeJ58eyZOdJQmzhNIs8IE6E9f0YZL53bnvP7Tq4bx4MZm/N2zi9xDIAac7SnG
41tn4y/vOup5/pfWtODl/XU42FIeXzBQhAG941glthyuw4yqEdSURfPgqZNj3UJPHxu/z3NBPp+i
am3ZzX3ZUq0aZ7Nvyczp8zfyQkSL/DgosiMJQ0SmigM6r5OWjTSZbZ3p6/P2XuDGyzmx8kOc65iQ
+JXbGIlkBOyd/UBXb8LMUhRSaiu4AFDP+nbudIdJp19v9kyjcuTi+PGMgKBn+Xg9B9ccy7FTaQ4U
7pXmE/IxnZYm1QgtaHxyAzfrpnmIni8iQeTLSgL1pUuApfOCWw/4GgsZ9gvVmfynqMQ1jAP8uW+s
T+8j5lpQYvPfzsPAvqPjPFay/JzQ/VOfkZ+cL9JmmjNm855Pt/gnbdRPNH83VPOFAynz5OF8kqxt
/eiPLNImXoc4gOr4rCGu+Invt6LFA/bo8YA7IKATSr60n06JazW21aHpZlRAM5OtppmRAnV7oeNV
xqZs+41rBR/Vu05V49md06DFuPbS1kZsQr90Vi/uXt3muvbhc+V4aud0I/iIK8E5E9xmVQ7j3jVN
sDRDucbtF7fht7un4f1TVUauNhtYHZ/dXY9bL2nDKg8SWVkygt+7vgnf/tkF0BSHT59GvE/Bc7vq
ccWCblwyJ8qIrD6G/tYdW6vp3P1sFTj3ATnWXRYWPj4DPPQb4A8/zYT7GRNfn/cOcA3gmbbcv+89
FzFqg/n5eeGZLTw4wLCPFWo65kcvccEqCHG2NIBjeYdrWW5PLeCzFZRraOP07GoBuaQ2wfeZSX3H
cw7UMHEyo9g/5CNLWhS/z1kQDU222j4bbVVRysoY602m3W/uBvqHx7e//N6/33G8iFIb+Ay6QkSV
xkhTR3afjxPngGPNjFBf4tNEcjaPdNnalZ0xImWe3K4peHmYpYrgT1A9g+bBndjNqbIr5GIL/q9b
pm+a+bdm/i2axWme+zMtI6MKfvjmbPSOhBOEzQogwh7MEPuNB687g/IiR4h/nbRss3CuN+J+khR+
b19e14x5dQMYr0CkFcVRfH3DWRSrMTcjZ3XsGg7jka2zMDSqep5//dI2XLesk6cAcI5ijUhqGV7a
W4/zdM8TEGjV6nte9EnzDGSrUJSs7/0E2H/cv/9YLkDJbP/t59zXKuP7meBJncwiX/8gEYDET6Fo
ZWQOmi0/Ct/ELYvtmfG7JcAC3fi9W4ItHGZ1XGZaZz0Hdc5mm07QgynWgRaCjpzxl2bDL0jQJ40I
afCy1bcTPYmROd+r7/F5KW/His9rLQ6Qm40IPfmzkUljNu+Hrke+bS0+53daPCWtnKoW7vMui588
bclicCB5tHuvCPnJPuseCYontJAmTUtWqcQN244TbtoQ4E2tXCZl86F6bD5Ya1/2sPqA9cjNF7Xj
2iXnXed9cIK0cw08cIfzwWPnXTy7D5+9rHncG3Tj0nbcuLzDO/caq+umQ3XYdKDW89yiUAz3X9OE
ykiMj0bFXsjP7dX99djfVIGRqDLO9wbbQJcTh3f5iBG2f3yCB+QYGWcrVnqpkf/ID57lPmXjQdjo
Pjt6snsfFFjk+8/wUP9B6/7qDu5Xl+06jelFjhwLBrkgmeNM3PLmPgNqWcd9jplgwmYJz7s+BvYe
y95vvLkLeOldf0Qw2wslRECpZBM0/zy/nScXn7D3UZaeE/I3JPJT7dM0lObtMS0YpijkR3zcZxJ0
w6ST1XtGbWEtdk0J0pWEF6X8DHefqXoSxzdP8oXkOQR8788jxjr2iV0wpfOJgRGueVJDcNmWUr4y
Ii/3rz9r+LTZVuViKn7w5hxEdcWmmbNQFNLxuxtPo7x4/D1/KULlg9eeRVVxzD4hmOOHeO9DW+ai
eyjief7l8ztx2yXnDS2j07+SFJwtvUV4ae80tPbkMrulwzQS7n6VE0/ycuYc8PePAr/clIE/WYag
Fcj//XPgp6+YCbTHaTWftIu/ejN7fgNE2Og+Dp/i2spM6k/E9T9+xYlrPpC2XK/mZpoHLp+0QlnX
nORai6VPLU2bs4/oOSWi5SdUfDpQsAgiOGfPZa/9g7QTETaaw/YezR5ho3n42a08AFRejxM/WrbZ
PCedH9CcTZo20sbm4r6IDJIWz68lC9Wb6p+t50nKNznWC/jcbyEsWgsqjvD/nvnZJkUQEt1m6pjw
c0pmAmmdpblZRZJGMIJqeDjwPfXBdOxvrkwk0hYImGoEEWnGytlu/6+X9jbgvePV7miRdC4778bl
7bh2afuEdciFjT24d00zvr9lDvSoUDczBcCh1nI8taMRD2zwzv749fWn8fr+WvQORxClE4X7pLZ6
bX8d1i7uQn1FG8qKRjPsczj6007SbGaRnv0vIymlXJAYAn7wDDdV/OKNwLWruY9EtkHBOn61Gfj1
luxpl4L2Kwk8FEyAgg5UV2T+u9v2AD/8DXsxN489hxqZJVHi2gc/CaxYGDyqpx+0s/YejuYg6iGC
a6kyEXbHQ8hHFu8j18lwA4X8R/7nacsFYbNA2jaa2yLsubr3Vh6EKVPCRkGcyByaIrMGNenL1tj7
wMwFSXkwL5yXeTsRYXnyZW7aPRKd2P4KSty8QCkZiPgs9Bktk7Rsx87mLlImkWBaFKXgVOS/nA7z
ZvC6U1qdWGxsz5OMmJ39uUx3/u2RgQxp87Qp3v2pp4t0X+CkzTKBtEweif0YW2G/IcBTwBJiYBSE
hMwiVcFMzwx7aISsVxNkQPEIuXK6oww/e2e2sWJi82UjsHNnVw7hq2ubXE9JR38xntg+C6OkZXNO
TGyCqS6O4v5rziBCfmUT2B+fv+KMYcp45HypPSiJWeefvzcTt6w4h7m17uyP82v7cc/VzXhm9wyc
7Syxkz6GwVgIz+5uwMWzu7C4IYM3g5CnTffI0Sb2tz03GzeF5UWXE5gP0Krg934MPLMV+PR1wPpL
skPeKKrZG+/z65KNfzYTRWeSFJmCsOw5ysOMU34cJUCUJVqVpVxyW8lhP4v54ylU+Z/+Ow/T/cWb
gCVzx07eSLAjAeDFt3nwGT+C2VRNrp1tgShT88iAb8K8I7+2Nsqj/iEB+unN3If3y4y4rb3YfyRI
8mGjZ4gIjuWDmolpajb60roWLRpR1FsioYHyxoFHmqRIt5Qq4My5PHieENw80guNdZz02KLmpgAF
ILFMI3MFy0TSD2mjgCUW6STfwrE8T5K05QFpg5emzQPO1GuKwNeQ5LuCaj9dd0cSdEUYtJvI2ffb
r6UoSvx7xZTerKAn1ndPvjsbp7pKeE4zj0b72vqzaKxyE5pf7ZqJA+cq7L5s5vlE/r60phkrZ3VP
eJvOqBw2kmb/w3MUDdJ+f6QtO9tbjCcZaf2L24565l37wlXNOMEIX0d/BIPDIdcA23myGq8dbEBd
eRNqM0gBIPabPWqk10TlbfYq5y//+OgEK4/zlx8lZaYk05SclV4mRZH059PK5f4T3Bzx3f38pTWS
R5kfqFDofHoxblgF3HQFv8+SJFa85LtCq+tbPuQkKFdmpCQc0qo3/c6qC4DLlwGrl3KTmRIfFsZU
TxJCTjTzKHA7DwUnliTEkXDrRwu577ipvcvR9UngGR2n9azDjNT+YpO/RQoS3PUs3ieZvPUOBrtP
MiumfH8f+/Bv2p9BP40VdD/0rIxnoB0CLQql6h+K8Pr3jwHrVgJ3X8Of+2R9RGbUdA8vmIseovbj
Y5/jhbQ5hgl4lvpSHCuH2fz1Tz/mfrGUj5HmaEpRkGxuofluqzmH0TyRL/B7/+meE9pP/ot+oxDT
wt2J1tw+FydauGUJjTu/C21ez2qQ5yndMyAxJu7m+XeqqJFxcXjJDT/RFTUMRY0YRTW3vBQ59oXj
W4ovb/xNW4o1b2xNpyS25cQlEU0irnlSvJIDjC/uX/CXCIfDiBglxATICCKRMNua+8wt3x9COGQW
dmxIZcXYqkb4f5W2dH8K/6wonLRZ92sRuL1NtXjg0ZUYGA17BhG5dHYPHvrKhy6ftBPt5bjv4VXo
GCiy96LZtFXFUfz7Pfsxv24A0Zjij4H7gZj7TUkw/jhp1xXUV46grMiufx8eDeF3n7gY75+qdceX
ZSfT8Q9/7UNcOsebZG49Uo9/efECHGsrs2t1FZ7SYNG0AfztXR9j9dwuhNVg4QotMmYnbbCldNDM
bUxjW/Z2HaUyyrf/vOkGHGybLmedbBD8ukR+MfpMQgKZ2fQPcrJGgnY2NVDpsGYF8MefA+Y3pj/2
33/JBTDKZZTsvoiokvats5ebFJKgRsKE1znjBcrjM6chkTtu6Vz+YqcXM5FhImlEJDX5lpaQCIz6
aq4JoWeMQBosImz0fLnM1PIYNRX8PirZK3hmPdfc0D3QXGEJ8hISEgFpmiB7Jv7WzPRSlmtWzNBw
6FbRRvnfWmzzBz9deD2dFnbSOmcGbpu8n96Vq3DaUNPtmjUzqqQV/MLab1hLKjyqo25pyOhcw+FP
iUfZNNqJ7VfMCCKWiSTPAxfCDzbPxYAW9myzsKrjG+tPoZx8tXQ7c3p821x0DBW5VZsw+hsDw2F8
95fLxk6B9QA8mh0XG1WxuLEPD244jXWLE57ZxaEYfm/jaez6cTVixEYdprQDjNQ9smUe/v2L+xkZ
dJOutQs72fU6cZ6R1J6BcMK3TefaOiJzr+yfjnk1A5hR5V+q1/UkyxrxgCe6/RnQdHvSc12aCmQT
9PJvac+7adX/wUnGgnhfpB3MJxgJggXtHmnQJCQksoPzXbzsO1rY90ELTVQkJCRywN28uJzjs1dg
yDhf0J3CuiDIKh4kLv4dCleAtedgE/NxqaZvm+bIz6UkiqniSuzXDA0jN5FU7SaRJnF77eA0bDtW
x/3eHO1N2qMbLmzDtUvPu0TH907U4qV90+052RzEalRTGMEpcZEq2+hQkMiK7jjG4p5eed88rycc
23mqDkeersC/fHYf1i5KhNK7an4H7rykDb/ZO4ObdIrEjZ275Ug9Xj/UgJuWtXgQ2Bg+saoZu09X
4cBgJWLmuVRHxYxE+eLeBly5oAMby0ZQHI6lJmmufhdWOpxjwMrX5xgfohmlJG2TdD7NMBqhhISE
hISEhES2SRu8o0c6POAU0QROt0s1ChDQdTlvW093RI80CpG1OIGz9msG9bIRN1P1liBuMP3WNNNE
NOHnRmaNj22bhygjVy5fNiOIyCgeWH8KIcVhZhhV8fMdszAQC3kHgBHvJpaEXOm+x5E/OP3UKHn2
SBF+9t5srJ7bjZIIZ3PhUAxfu+YUth+txfn+Ik7chB+kgCoPbZ2Dy+d1oLbMnaRmRWMPbltxDq29
xWgzw/xbLnDUhp0DYTy7uxFLp/dgQf2AL+HZaRaZGPL2/uZHmGTdSd4FuicxKefTYMRNNpuEhISE
hIREhrJGKp82L1kjHDcNU2Fq10zhVXeTOVvCYVOQ1tPL9vnXaMJ96JpA2jQr8XYiAbdlbpowkeSm
kYYeTaFjuEZNV5W4iaThw6fw3/nNnlnY11KZ0DiJjcTK76xqwkUzukzTy8QB3QMRwxRQ05KQMCXJ
aFACSKEexya1kkxiOmmYLJ6rRHd/GMVVI/H9S6f14FOrmvHw9vmJyyuJc/Y3V7G2mYmvXHXC80Zu
vagV7xyrQddALaKjqque7x2rxbvHpqG+rBnlRSO+qbp1HVuwETHpuu7sf2ErtSuStSF/oxFKSEhI
SEhI5K+MoXswNN1D04akedoc+cS8kiMno33ch8txsKIUxBJ0QoumCtoWLf5Zs2laHJq2uDbOMpVS
zM9C8BVWOgeL8Ysds7yX5dkhc2uGcO/Vp+JfiprN0kgU1SUjieZMRs8VD4ruB0nInZKKrHlcm+pX
URxFUThmmpYmcA+7t5f3TcOp7vKEts28BpHRx9+agxsuaMXs2n7XdRur+nHHxS040VmOM+0l9t9m
5w7FVGw+XIsr5rdhYf1wapImknXYCZu9sH7X9LhWzQhMIhSvSJMSk2Q+zdO8XxISEhISEhKTmLSZ
QoiNrFkxNhyRzG3JtdMWG2nT49qkQjMUIsFcU/WEdoX+1mBEDoyxD6qmImRED2R/K4zWKfx44zz2
OUaJ1tQQv39jP1eD6TyVm0mCdbx/fBrOdJQmeJzQTJRI+96rTmJ6xYBntLbSoig2LGnDB2fqDL83
PZaEeOken1N9l4aEeV5f8f7OChZ6/YWtjLiNuO6jvnQQX1t/Ev/9+Yu435x4OmvCc33FeHT7fPzN
Hd4RG6678By2H61DR990DFgpAATSd+RcBU6z9p1VPYBISPMk5k7B3J7qwYwaGY8eyfdprK1jGidw
RtGtrRTUJzNpC5rjSI4FCQkJCQkJibGTNsStHJ3pxezJtVPK7rrdv03xWzfv5NL5I6AJ/mq6mvBn
01VB42IWxpY0xjiImGmMjWkq900zQvsbLIVC/5NQz1MAaFBgBfw/3FbOCJcCfdRRAUZ2ZlUOYsPi
Npd2SsRnLztlJJr+zd45GA6HXB3l1JJ6DRBXN3ho/JJ+r6QWciPsbu9Y0YTPXUEZHDVPIfaWZU14
ce9M7KAUAB7E87d7G3Eru8bl89yhBMvCw1i/5Dw+PFuDgZFS2z3Rx47+IsPvbXgUnuH/3fnXdDtp
A+JaU01LhP23NK6a4OumCZpVCTn3Sp82CQkJCQkJiQy4m40vefC4pLJGwjzSXD7WBSNKRWB+ca2a
KLnqSaR5RcnvRiMBnHzRGEnj5IwRsxiRMvZZiRnEzNqvx/crRsJo0sLYjSBhmFiCkQa6hmqq2qhp
ugcVe1MImqua0hFUlwxxFWgSlIZH8d1bDmDNovM41FpjnqsnqLSDmCnWP5puo91WImsjgIp5tpkG
PJ6DTbGuq5upCgAhAbZ5l+bNGASHtc/Sxl5suOC8oeVKxj3LI1F8Zc1x7GuqxgAjtoojouVgLIQn
3l2IFTM7jXQBTjSW96NEjbmIJF0nxvpvZFQ1+sSrHZ2J0TlBcxI4wVRWc5hExmKJbUyaR07qiTQg
C5OaNgkJCQkJCYkgbE13CBy6ZbqD5D5tsGnadFE3B5/mkeYPOH3aAhG2IInBsi+gGam4SKuiqnHB
XTN82VTTLE4ztGfcLE4TNG3snjXN1LQlrqkaOcm4xk0xTSRrSqO82Ty0Wd1DEXT2hxkxG05b32sX
txglX6GlyXG9ZkELrlvSipcOzuRaR7E9GOHafrQeWz6ejhuXnnWd2zkYwUhMsY8/808ii0UqTz6o
JamELj4YXmQNiWAjFlkj00gygU2YRSY0bVK9IiFVbRISEhISEhJBSZvnZw/VWiJ3sMOnzQhaaGrS
FIc8bQa758U8JiE3mxobY7+lt0lAEc0pTUFb8bTFG3/iFte0KUoiyASRMkurpsY4SbO0cKOJ4I9G
CVvZD4RGJV84VTXaQlG5geSC2h6u9fIIznK2uww7Ttbh7pVTI4vlfVcdwTZGznq0IntOONYuUdbu
j21fiCvmnkNZJIqQaepIZqm7Tlejezhiyw9njC/GkevKhlBfPoCQMpqctOm6Y5sga4j7spmETfxs
aNiIvMUQG+WaNuN7OfVM+vnUz7EaIMeChISEhISEhE/Zwe3j5BVj0JaiyvF92ArnbzN99CqCCSWs
FAHxLNuWJA0h1KGYQVpkkk5t3PgTNx3FTCgfMcwgEyaSikG2LK0aCetkDhgPLGKZRdLfMaveVk42
xQj5r5smhIquGDnaVjSeZ6RiGOf7SxKmVCb5oEuQWeBlc85hZlXfpB+si+vb8ZnVJ/DYu0vjJpnC
6gA+aq3G07vn4dZlpzCjcsDYve34LGw/PgM9g0WuMUakjaJOzqjsY6Qt6qnts6cZFImaW+NG/R4z
CZulaeNbRtqIuJOprDSPnLyTqQz5LyEhISEhIZFFtiEKGLptH0wDx4S1YzwQifl9IoqkGD3SJGJx
LZruSA5gFYOo6QKBs8L46dzBSBGIXBISFg9QMsHEbUQvRQmGEyZx5KvG/lENTRsT0o0okFzTFosh
roUUtW3GPYS4ho2bWCo8EqXKCRudX1/Sg8vnteHlA3NddSDTyhOdlfjb5y7DH127D8sbO1wJticb
7rmctG0zcPh8tSsoCbXp07vmYXZ1DyKhEXxwqoERvAtxor0iQcisIaJyondhQycqIoMGsUr1vNiI
WzyRuhA90owUGYubR+oJ4mb4s8UwErWiS8ppaBJPrZK0SUhISEhISGSZsOl2IcIka7p4jOjTBti8
1wTSpts0aIqqO4gbYKd9Dk2bWMG4KaBJ4pCCmHkSt/FBVK9AMTrtvmpGGgAS2BUj5D8J7CojUVyz
ZkaEZH/ESJMWU+IkIBSyfOIUI/m20TSKahBBMpe85cITeO3gHIxaJpKi1pKRgL0tdfjTX63FuoXn
sKC+2yB7YkhQzSK6JlGmz5pBspV4zBGLVDpbOqabmj/FTISumInCSSOoKkgQdn5N1emP6LgofW1k
O1Ac3wvaVU3nW9V5KfZ3USiGkvAoPAORsuu29JbhsbeX4aniRfiYEbteMosU7X2VxLVmVfXjyrkt
qCwaMkwXvYVr3fUIOXOzWeH+YzHLRNIkbYamLWaaSGroHSlBNKa6rikxSaZXXYyVm34ylqRNQkJC
QkJCwhd3c/9h91ezrME03Rb636Vpiwu3AjFT4lEkYV9S1nU3FfT0olMEYmbtUuJcU7F9P/4+bYNa
LcrUk1B102+NMQwS0BXTBDKmcqJDrlWKpWkzzSLp+1FDaFM5YWP/hVSuQ9QMvzbuF6eaEShXTGvC
dRecxmtH59GJ7txn7Df6oxG8emQ2cHQ2dOE7JYlwqTiaF6K5oUDgFLFHTNLmcDOMK03pmloy7qwk
SJuwKGD7LVvddHudRHNIxWxTI6ed9XPmOZSL7nBbFQ9u40HW4tdi2+uXnMbc6k72R5SRU6QlbTaT
SAhmkVoipL8matgsnzaNk7f+kQhGNVUK6pOYtAUmeXIsSEhISEhISKQgbboo0Do4lC5wL1ueNsGF
x6Vpi4fzFyR6RTw5bhopfLa2guObbgYs4WHprXXrNATNS/LJMZFrH25EXbFukCtDWxUztW1WWP/R
mGG9p5raLLFQfUOUz80wiWTETQ2xzxr3f1NVbmap8qAmnOzFcO/qD3GgtQ5neysSNpYicaPPpoWf
4tyfTPnl0FYpHjFeRJIGR/MrcBB+L5LopSyFkFpAPMaje+2BaYSdauIaznvQTSJrq5yooGXnXj77
HK5fdAKVkX7ERp3aNN1zeNk1bIhHjRTzs1nJ1S1zyVEaB+zzaCyG831VGGLkWgrqEtI8UkJCQkJC
QiIpj3GLzq7jdJtSzBnyP6FcsPu0mRey5WFTxFTd1t+Oz2ZSYsUMdW/P/wWH2sWUvG12cWkyN+eQ
uO3vvhKLpz1vmhUq3CwypiQCjRh2gErCPJL+GRWEf9KuWYJbCIbGjkwiVdPUUNW4KaVimiY2lrfj
W+vew/96cx06hkoSxM2zV2FXg3mRKD3JqFCQ3D1QSXKMnr47XAm39TR18FNfYfwmPcRJAllbL6zr
wudW7jXaVPRlc5lCOv3Z4MzLZjePtFI7xM0kTbJmkDZG3g63NxomklJOn5zYcwT4q+/rKClKf+yp
VqB/WEb8l5CQkJCQkIQtNWXTvawTxeAkekLxJcaMFAPoJUhbsmxuhlZNS/i4URQGUdtGdm4qt2Mz
8rWRdk2xwv+LpA92okaVUHyEHcmhRNTa34BoQz27hXZO2mImeVO41s3iVKNCXXTVbESzPWgbIm2b
EXVSjWvaVNXyf4NA3BSsnHYMf7Y+iu+/swZn+6sNU0BDo6Q4mikZKVJ8tIvuJkuuPHF6wPb2Imyp
yJqf4511VFL8rqDmvKihDfet3oll01qMLOdRLdVz5Eys7VPb5gxEwrZDUQUnuhoxMFIsfdomKbp6
eZGQkJCQkJCQCMDcUlI2b8Jm+bNZVo2abb9uRL7T4ts4aYPA5BQh5KRF0gxtmkDYdIPI0QVUIVW3
o9APKGrCRDIJceN/KWkaITcatzMjl2NB+CUzCAdxUMWIGqkIwS4MBduo1YgmQQ1xs0jaUiJtImlG
UUzCpvDk2jxnmxLX5hFWTDuBv7muG7/YtxrvnF6AYS3CIyOKys10t5xMmxZEe+Zh2uj5G8mukez7
IORNSVNHlX9H6wKVRcNYN/847r5wL2ZWdBljM+ojSZZoGhlf79DFqJH2oCSiaWRMCP1/rGsROocq
jSA1EhISEhISEhISkqilJGuiIOokbKKSLM69NJO8aXHXNLd5pEPTplgMTxWCkkAkcpqxJT8ug8wJ
GjfjhwyyoybYo6VVS+IfpaeRg3MlJm9uvg33zdvKbnPQEMzjVbL8qmJ8G7IE/pAp2OshI/BIyIi2
qMW1a/HP5CdnaN00M8KjEieBhPqSNnzzildw7fwFePv0Qhxom4Wm7mpoISX++4qfDAg+FT5xP7Ek
7e9JwkQ/NfHQVNo+xeOayX4rGdkUxndEiTGC1oPlDc1YM/cYltQ3ozgUZSQ6wCPllVgbuou0uUwk
49EjGTmM6XjrzEqcH6iSWjYJCQkJCQkJiSlP2fR0AqhDAPYgbNCsZGxxrVs8CImlabO0bRZps0vP
pmZNsTM+RTHVc4rg12bzdTMD01s+bBYRNM5T7cTNGbFC94q2ofhvmAwxHIvg2PB1WFL0vBHD3ohq
SK5sMbvQT2TNqocR4l/n2jZNt0wiE1o21TSTjGvYrM/x21L+f/buJTauq47j+P/c64kdJ6nzImlV
ER6FUCG6atW00ECbBoIQSEhIXSDUBQvKggWPsmHVSiwAIdFdkSqgAglQVFWqRBVBmzbkIUQAQR+L
qqRKWprYsRO7Tho7Y8+cw73nnHvvuY8Zj/NoHPh+pOTOy3NnRrE0v/z/53/y4/YNx+RjG4/Jmfkx
mXx3LAkFY3YT6cWOq9SV2hv9Z6Z86Ai3BciHUPrtAPIc5Pea6+piHaEyxWeaP4dpWOoWpOzyOsXm
Als+HTLc66801SZ4ZSZ87cb/bfK03GoZWTtyUTaPnpcb18zKhpHzSUh2CXpxWYGtHtzKLZLSsK4t
G0biL6dVttlbZCJtp9WRsIoJAAAAvYNaOVcV9/UIbH4PsCxzuXZIHVTjgtCWXJ9TokdNVkXL2hsl
HP1fPKESXa64+cpSMRc/mFqYthT64CZ999LuUW6pxYMr69Cp+2XbB/8mw3rSBwhdfMZxNSC7aZM6
jiXWxlbSbECzlTbtg5sOQlsR3kqBrVJ5GxualrH10/LR9fx7b5KuN9Td5fzOmHpwCxd1mt57tblK
W7HZ9lxnRA68dYdMXVjv9soAAADA/3tCG+x+U57zYcLAVglqpuextE9bNJM8zWi+R5vyD1BB4vOp
L09/aVDLbhO/kVk2LSLYO84V3lxwM8bdr0qbfTXs3tz4xq9OcEvXlD078ZB8aetPk5c4XzqPsR9m
ui4vXcMW28/EbUht7L5uUXX4iL+crWHLLvcLbKrh/SrFuqnl/ceG6Xt7GNxKbZJ+b7ZSiNPFfm2L
Wsmf3vy0nJi9WTpaCVU2AAAAAtsSX0wrjwuGjlQqbSbMVhIci9Cmk+NiEdpUPG3M4s0iupT+8mpa
+kNpqSNdt5Yf3Vo2E3VtEDHajcY3wSCPfJ8w+33XB7q0Jc8Us+zLAUX1GZ159YLMxLub5c9DX5dd
mx5378tvEhYFi+2yL/bpbe6YBDXtQpwd89/1bZLBOjY3rCVsiZRKcGt+T4S2KxPaSsFNKgGuUmkL
q2xZm+TR05+SVya3y9xCS4qN4wAAAEBo63+/6TGEJFuKlnc29qmyJV9IO8l303NFaJP4pOj2bcX4
fjfmP1/f5oOaDWbZ0S2YEjsj3y8GM74d0GUyN4lSsm0A7F5uqhTe3BsKRwiaPgHm6lY5Xp/5SHKK
h+Qzm5+Ulp5zIS1SRfgMQpvOWyOjIqiJKqptfnpk1h5ZCmyVitsgWZQQN3hIa/qdMtIwjKSyrk37
8rNdz5YE8n9M3i0H375TZtujBDYAAAAM+H20UmmrVNlMvgwtCGhS6W60g0i66X1tZfRUHtqSsHXO
ZOvXRPv2SF20R0p4TBcXZe2OvsrWa2h/nsNMPmhChZtuVWe+N4QTY967wPJaEtwm5x6WL3/gCRk1
48nbjcT1m2Zf7NNNs9OgZvxm2sZuE5Dty1aENl0aRNIY1mSwvcMJbJcX3EzP4NY8iKTdXS37T+6W
lyY/LvOdYQIbAAAA+oSzpi+f/aZGFqEtr6hJ1+Yq8X+Mya93krsv5KFNqda/ki+tD7gvqNnea11X
RYt8cLFVNuWCTOTvU5KNKMxDmMmWpeUVtuwGdzR5xS0MME2h7dqElbPz6+Q3//6W3P/+/fLh4cMS
mwX7PtLwGNm1eWnrXBbUdBDUsjVtqlxhk+aK26ChTAmhrfnXZOnQ1jiQJKuwSfm6NrG8PXeL7H9r
p/zn/E3StYG9ywcNAACA5YW3ILiZSmtk3hIZVNeMlAObPWp7vJBkkON5aDNm+JfJIx5NAkmrmBCp
XNUtq7Cp4kmVKapr9uhHuCub2GK/oXYs5Qpbbah8tu22VCtu1zqoLHRi2Xf8c7J21T2yZ9s+uan1
ssR6wW1T5zfNtoVIuyl3ObSllbfqiP+mCZI9QxqVtUv7dVmi8lZtjSwCWyST7W1y6NTdcmxmmyx0
W/7fKIENAAAAg8Q20zO0Na5nq7VHVgJbftRTEg0fkDApve+OJ/9u9MXbVRK6RA2JPUbpcchdj/wx
vZ7fHhfHyB3TSp17jsjdnlXW8qPyG2/Xw1pRhlp5weXWjcfltk0vyfrWaVkdTcuQzBdVtfQVR8E6
tmBCZK09csnKGq7Q/3E0hjZtWnKhu0FmFzbKiXPb5OWp7TJzcZ0N3wAAAMBlfxNtGEJielbauqVq
mzGdrNK2kHxz/cOpF+/5Sva0dnNtNbT6adOeu91tkO03yvZPqGyfpSrWr5l63cxVniqVtvQF2oAW
ub3d7CjJyK+Xa6iumZUb3F47u83+wf8i1q0BAADgygQ206PKVhrzn69r69bWtRmdBjc9bSQ6Gj71
kHvOkV8kdz6ShKaW+0El2R5srvUxa4lULqBFUgluRYJMA5u7HLlKW7rXWb6PW+QDmioFNJMFtVJw
64WqCAAAAIBrEMxqd5vKY8uTI+tDSIwLZ5JPiayvaTN6XFT8bGMC2rLj9z/RC9Pfd22PseTHyLdL
9miJLD02u2zbIf0fN1ux2IDb35afvjZZkVAGAAAA4PoJdaYU1oIAV9ujrTqERFcD2ztJPvrV+IF7
vxueZShPbzdseFTOzHwjeaKxfBqkbYfsBuND6i2RdkqkP9r92dL2Sr++TYxbw2Z8lU18lU3lYc1X
17JqmyK4AQAAALh+Als5qJVvtxW1SrUtXNNWGUaSXNWvqOGRH1fPlIe208/tubBlx2+f0AszD4d7
rxVtkMqubytuM379Wtgamb6I2L4I5Sttxq9lywJcFgalaXqkyS4R2gAAAACs5Mhm6gFu2Rtrhy2S
ZlJFQ/vGn995umdos2Hphk2PqOn5zxvd/oTJw5PKA1s4sD8MbCpLjbY9UttWSRNU2oohJFmLZFBx
sycuB7ji7RPeAAAAAKysuNZ43YStkvVBJPUWybDSptvJIw6pdRt+1nTGWirasuOZrXpx/NXkBzen
Qau0Vi0b5Z+1P+Zr2aLS/eLXtKlwDVu2vk0Vm3HX2yFru0/zbwIAAADACspsPUJbQ5XN1IKbbtqv
LU1vR2T16IMTz9/75kChLbX1rqfv7LTHX0wi1mg5uEWVwBY13B75NsjyHm2lYSThmraGl8Em0wAA
AABWdnbrE96a2iNLEyTDzbXNqypa883xQ7uO9DpXz3R04117H1xsTz1eDm5+37VqdU3C8BZW1iIf
wJoDW709csmXBQAAAAArIbZVU5y/dan2yGJ9W3LpDRWP/mDi4O69/c7UNx1t/eRT93UvntlbtEpm
Aa0a2Kr3RUFlrRzYmtsje70cwhsAAACA6yC0Ddge6adKdo1R/4zjtd8ZP7z78FJnWjIVpWvcTGfq
oNHt7UX1LMoradXA1tQamVfVwsBmz77EmjahVRIAAADACotrPVsjRWpVNh/kjA9sSXBri8QvRPHY
t8cP73p9kPMNlIi2fvaPa/Ts2cf04jtfTX5gtKmy5qpo5cCmGtew1QeQ9G6TvKSXCwAAAABXKqIt
leAqjw4rayLlSptMSjTyczGrHjv9lz0zg76CZaWgrTuf+ZBpn/+RXjz3QBHMytMhi6mR/Vojg1OX
gpoirAEAAAC4jsJb09q2IrD5qtysxMNPRSPrfjjxwu4Tyz3zJaWhdLqk0XPf0535XSKdzQMNHOk7
6r//y6FFEgAAAMA1jWxmwNBWtER2JIpPSjT8XKyGfz1+5AuHLvXcl52GbIAzi18zev6+5OmM6bZv
TTJWq3db5FItkeq9eukAAAAAMEAQG+Rx6oKKWm+kR1FDf9Xxqt9NHf7iUT5LAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAFfIfwUYAA5mpSOKNj+qAAAAAElFTkSuQmCC" transform="matrix(0.145 0 0 0.145 0 0)">
</image>
</g>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 40 KiB

789
assets/thirdparty/online.svg vendored Normal file
View File

@@ -0,0 +1,789 @@
<?xml version="1.0" encoding="utf-8"?>
<!-- Generator: Adobe Illustrator 24.0.0, SVG Export Plug-In . SVG Version: 6.00 Build 0) -->
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="190" height="20">
<style type="text/css">
.st0{clip-path:url(#SVGID_2_);}
</style>
<g>
<g>
<g>
<defs>
<rect id="SVGID_1_" width="188.5" height="21.4"/>
</defs>
<clipPath id="SVGID_2_">
<use xlink:href="#SVGID_1_" style="overflow:visible;"/>
</clipPath>
<g class="st0">
<image style="overflow:visible;enable-background:new ;" width="1315" height="153" xlink:href="
GXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAqfhJREFUeNrsfQeYHNWV9akOk0cz
GuWcc0BCEkgiJ5PB2IATDusMZp12P8dde413ba/9O9vrgHHCEZywMQaTswQCJIRASEI5jyanzvXX
qdc1U93TXVU93T3To7lHFNXdU1396uV33rn3aigANn6kqkZLxMfDp/l80Ko16H6fphkvUePTAB4a
D2Q+E8lT73sLGjQIBAKBQCAQCAQCgUAgEAgEgsJAN/6lvNcR1zT0JIyz8aeo5vN1G1fENJ/eMu9L
3R2F/O0BM31P3VxRZyR0knHU+3zaUr+mn2ckOujTtNk+6NXGOWjcfU4KGZmJlLQSomVOkKYJGSkQ
CAQCgUAgEAgEAoFAIBAUBHoGMhIIGadDuo4eQGvXNG2/cU2n8ZdnkcBmaDgBv9ZYCGIyZ6bv8RvL
R8cSmO33aet8Gi43Plrh82GiX9NM0tHvU+Rj+qH1U0hqKQnISkbmnWKBQCAQCAQCgUAgEAgEAoFg
hEJ3/0hP/k9Pf6/rMeN0GBqeMj55GAlsND7dP/eroZaBJscztffo+6pqY0hQ6XgBNP39GrT5JB55
BIwP/SQb+d5+tpOQ4Fnrb56dbqbtkirhIgUCgUAgEAgEAoFAIBAIBALv0F3+0I+EtN4nX/Oc0PWw
8fIl44NfGuf7NU0/MPt/Q525psUTt/fA+8pnJRK+C30+/Ubj7cqAnYRMvvZrfedUMlKDD1lMtLU+
8lHLNVECgUAgEAgEAoFAIBAIBAKBIC/YiUrdTk6mEJEpr7uMV08bL38BaI/O+d/uA7n8niPvd98N
8GvllQt1JD6Z0LW3B0wC0jq0JCGZSkb2mWprfSbaSPMbCRsRiUxBawQCgUAgEAgEAoFAIBAIBAJB
sdHPZDtNLWkSkckjgT5y0jiajLe/hqZ/J1Ae3Dv9C+1xL7+Xlfd77F9rgh3t0XV+v+8LCV0/t5eE
9NvISE2971VF9ioitcz+IuGRjBQ2UiAQCAQCgUAgEAgEAoFAICgu9DQyMpOJNvrISL5O9JGRfN+u
Q79Hh/bNOOJb5n0lHHb7yYy0HxWR8WDl+fGEfqumYUbQroj0KyKyz1TbdiYJaakj+/mLTCMitTQ/
kbYUCRcpEAgEAoFAIBAIBAKBQCAQFBd67/9s72EPYGMjI9GnjrQTkokEwgld32h8/vmyyuDjbgrJ
jLzf3e8sXxPXtTuNP84I+u2m2UDQr/W+TiUj+4LY9IukjcxkZKYEiCpSIBAIBAKBQCAQCAQCgUAg
GBw4EZJ6NkLSdsQVIRk1Xj+pafiYP9L94vRvmpxlRgTSP7jnneWzorr2bePGM0zfj+hTOlpBafwZ
Dot49CP5neSRkYiEXRWpXgkJKRAIBAKBQCAQCAQCgUAgEAwBtPRI2nqfibamXiS0PkLS/Ery8+Tr
oHFak0jon4n5Kz4NhF5z+Kk+3PeOivqQrn8vlsDbLAVkMGmaHUyqH9OVkilRtbUMqkgtExmppZhj
a/1SIhAIBAKBQCAQCAQCgUAgEAgGE+nBaxT5qPe+TmRQR8YTfa9jCTQnEvovfbp+y6yvh1oy/UaK
MjKq61eHY3gbyUVT0YgkqQgbwYj091qKEjLlbzYVpDq0vtc6Uv1D6lLgAoFAIBAIBAKBQCAQCAQC
wVDBEjuaZ916ryVJSt3k/SzFpAX7a7+GBmja1bqub9r/Mfw2k7l2Lxl5zzsqx4biiY9rGdSNvgwR
st0Oyy+kaaqdVEPa1ZHWA4oiUiAQCAQCgUAgEAgEAoFAICgN9BKRmo2YRJKUBBWQiqW0iEmfjdsz
/w5MNq59awwVjwKhg+n37yUjI3H9XZE4ltMcu1e9aAWfQSZFZJ8qMuV66zu69ZmWpo5MM88WRaRA
IBAIBAKBQCAQCAQCgUBQMkhXSJpInn0mKambkkefdTH6lJQ+DeW6pq1IaNp1+z+Gb6erI00ykqrI
jnD84yZxmFRAWqShpYrU0hSPms0fZErUbPSpITMGrrH7ihRVpEAgEAgEAoFAIBAIBAKBQFB66I1U
g1SJpHkmf9jnYNJSSJo+JjUz2M14aPrlUZT/Dggfsd/WJCNjCf3auK5NCthJSPRFw+41t4ZSPKpD
M/0+ar7U76S+Tl6jod/ZfBZRRQoEAoFAIBAIBAKBQCAQCASlC5sy0uIjTamjyQ3qvTygRUgm1HUB
469zEvC9zvj4F/bbmWRkOKZf20+9aFc1AlmVkVm/Z5lnOygjLQwHhWQ0OBrxQAV0X7lxGNmm+ZHw
lyeD8GjJ50g9pz6jyECHClo8DC0RM1pFDL5YyHgfgj/cZr4XCAQCgUAgEAgEAoFAIBD0wTLL7mWy
7IpIoJeURFrgap/ed1nyGKNpOGP/x3C73VQ7cPc7yxvau7GqV7UI29l+ZPrM/jf792EjItMVkdYD
2bk5vTTj2ESC9eYR81eidfQqhKsnI14xHonyWiPnKhGpHA+/3wefZhw+dZhm7smzdajndScsBYVs
OH2yW393IwKxTiDahUDXIfi7jqKyaSsCPY3whZuM8wnJMIFAIBAIBAKBQCAQCAQjHnbO0Xxv5+yS
ZGMvj8ezpY60EZiWUjKhocb436IoKsYBoWPWbQKJOC5J6KgPaBkUjsigcLQ+0/oHuknn14arr8hY
oAbdZeNwvGEdWuuWo7NyOnyBIAKBAPx+f+85aBw+nwa/z5+ViHQiJNNfCwrQaHS9//vaiYgZZ76O
jFlqntuMo7xjLyqObUTNgQcQ6DoMf7hFMlAgEAgEAoFAIBAIBAKBIAlNsxGSab4jdds1dqFh71k3
/zQxAd/Zxts7rXsGYjGc03uhPTpOBpWkdZ35mW4jGm2qRztJmSlSdnoCSw1dFZPRWLcSh8acZ7ye
iIA/gEBAEZCpZKSvl4T0+93IyOyKSCEjC4uMZGTybDpRtb2P1c9BR91sdE29ADV7/oaagw+hrGMf
kBDzbYFAIBAIBAKBQCAQCAQjD+ksVbaI2rDxhbqe2bI6eb86Dfpi+z0DcR2z+hSLWkYVY2/AGdtn
1vt+qknYVX/Z/USWGnQtgPbyKdgx+Xocr1qkyEeTaKT5tb/XDJvEozqS721/609Iop86Era8FhSx
PDOQktZhvWcZ8JyonoC2xe9GaMJpaHjphyhvesn0MykQCAQCgUAgEAgEAoFAIFBIV0f2+ZbkPz2j
a0fj4wrjusn2+wQSOsbAyR8kbEpI2GzCNZv60e4HMo0BdX2QEuDkdM2PpuqF2Dr+enRWTO4lIdXh
Tyoj+w6liuxTRGZSRtJ8266GFNPsIShXGyGZTkTyMIoKiUTCLKtEQkNk7FI0rv40Grb+ENVHnoQW
65FMFAgEAoFAIBAIBAKBQDDioKdbO+v9X1t8oZ7JRLvvddC4vs5+K5KRdXZurF/0a2SIrI005SRs
akn7vdLfpyksSwVNVfOwacLbEfLXIahpJtGolI59Ksg+RaTf/DuVk3YikoRWP2Vk8qH7kZHpGSUo
SqvRM7y3KySVOtL4LKH31slE7VQcX/1pjN/0ZdQcekRMtgUCgUAgEAgEAoFAIBCMWPQKIe1KyAw+
I+1+JTU95fsB41Rtv2cgkTDDbGc0pU4nFtVnWlZS0TLRduLZSi2ITUf5JDw/9k3o1moR8GlJUlFL
BqaxDp/t0JLKSC1ppq31EpFKDemzqSJtptpIZWuFiiwudKuCWWpI21v7YZQcEmZ0eRXribJiBCtx
YtnNCHQfQ0XTVslMgUAgEAgEAoFAIBAIBCMKdlrFIiTNz5EqkuwjIm0MpS2ytoGApmk19nsH4gnU
B/3oC1pjC1yDtMNult1rkm2ZbOsOD4C+60sJUX81No+9Hq2+scwZRShqtiP5PpWMNA6t73Ofr++s
kZTUfBmjaPcRtUJDDiYsfaT9bP+n+ew+DRLGBT7jPx3x6nFoWn4zJj71afhDzZKRAoFAIBAIBAKB
QCAQCEYeUlWOKYFset/bjwzfS+cDAynBaDLwZOmKyXQT7WwYDpzb/trTcMA30zTNNtWNlq9HX+r7
lEPrr5702dSRvUQk+hOSfTk4PPOrpNuG7lwPrb/3tg+tTx1pdz6g6z51hfGHcMNitM25Bg0v/4y2
3JLJAoFAIBAIBAKBQCAQCAQOcPAd2YtACnOpp15oqvns0sp0VrM3vrftznbG1E5k6mmpGWKVZChQ
h6015/WLet2PfHQ57N+xKyLtZKSmISXrhXgsQmXPkKd9RGOqbwPYqi0pRpZdeuB5XVdl2jbnjajd
ex+CnQclkwUCgUAgEAgEAoFAIBCMTKRxKuZHNktqOzXoLMdTTiQLCsv/ZKljT/2Z6EQVgj4kyUT0
Ixf7EY5af/KR3+slMjVbsB8tPaiPbssjYSMHvaXY6qdSRKoy8BnXJFKIY90sW4uMjJXXonXuGzFu
87clOwUCgUAgEAgEAoFAIBAIbEgXf/UTPWYQIwb6XezxSPcZWWr+IJ2ga37sKj8lRRHpdPiyvoZN
WZnpXipj08lH4SKHrOStEkh57bMKJXnoveXrM8PbdE47D2O3/hharEeyUCAQCAQCgUAgEAgEAsHI
g57hfTrp6NVnJP+X7hPSK9KjbQ8Xjq2zbALa9FGKWLT/s5lY+7S+o8/sGr2EZMrnGf/Zooun5Ywm
sbRLoAWlVt5+Jva2+hAvH41QwyJUHn9esk4gEAgEAoFAIBAIBAKBIA29ptlp7h6tQNl2BOyRsvv5
d0yLrG2Ppp3J1+RwwcGaU5DQNPihpZpVA1lUjtbftbS/wfUA+ishRRmZP3p6Quju6UEkEkEsFjOr
YCAQQFkwiMrKClRXVXm/me5ejl0T16PymJCRAoFAIBAIBAKBQCAQCEYgPCgjU4hIZOAZkwg48WIp
ykd71O1hnn9NZdNSiUfYiEibqtEe1qTv71kO3f53PRn8J2miraeZauu6VGIzG3SEIxGTWAyFw/D7
fCaRWFFejmAw2O/6RCKBE03NON54Att37MKuPXvR3NKCjo5OJIx71dZUY3R9PWZNn4alixdh7JjR
GD9+HAJ+v2Mr0q2w2skjU/mGG+ZLgQkEAoFAIBAIBAKBQCAQuCGTkNGGVJ+RybNdDZnR/nuYKyO7
tep+n6WqHbXMPiBt16V+R8sYlMZ+nf080hGPx9HY1IQjR49j12u7ceDQERw9dgwVFRWYMmkSpk6Z
hLmzZ2H8uDEmuUg0t7Ti1V2v4R/3PYgHH30Mr+3eg1A4Yn7HH1DVOGHc1yQ1jXyePWsmzlx3Gq68
7BIsXjDPuNdYM/91Xc9c9rCXo96vbGmqDeGQBQKBQCAQCAQCgUAgEIxEePUZqbt/NzAS868LVX2E
I1IJSMJ+zmx6raecNVivVTTm/sFr1LmruwvRaAxVlZUoKwue1HlMpWI8FjPPPp8PwSRh2N7egZe2
v4q//eOfeOTxp/DStpeNvPGZSkgqH6PRKCrKy7D2tDU47+wzcOWlrzPNr/9419/xy9/+Hq/t3osJ
Eydi2szZWLxkCaZNn47q6mozf7t7unHo0GG88tJLOH7sKH78s1/hr3+/F2++7hrc8KbrMGf2DFN9
qWXQCWsuptrxijrpeAQCgUAgEAgEAoFAIBAI3OCqjHRTPLp9Dgw/ZSTKTIWcqZJLElPWe8Uh6r0E
o57FpFp9rpR2uqbMsjNdG4lGTSUgIzPf//BjOHT4KGbPnIFFC+Zi2tQpJjl2MiEUCqPxxAkcP9Fk
nJtMpWJNVZWpdqSK8f6HHsX3fvRT7Ny9BxMnTsTKVasxdfoMNDSMQTgSxonG49i7ezdeePEl49pH
8PhTG1BTXY07/nQXxo0fj3MvuABXXX01Tj/zbEyYPBm1o+pQlizDCH07tnfhxNHDeP7Zjfjrn/+C
5559Fl/95vew+cVt+OwnPoaVy5YgGAz0lreyzE4z2YbeVz+SSARrRBkpEAgEAoFAIBAIBAKBYGQi
H2VkGkakMjKiBxDMYm5tvVfof42FPvWk1hc1O6mw7OjswvHGRrS1d6ClpRU9oZCpDvyfr30TejyO
8WPHYPacOXjX296MU09Zav7tZMCRo8ewcdPzuO+Bh00y8dDhI+ju7kFtTQ0WLpiLyRMn4m//uBfw
BXDu+efjDW94I9accQamzJiD8rIg4rqO7s5OvPbKVjz28MP4w51/wEOPPmGqJZlf7/yX9+DNb38b
Jk6eatbtqPG/aBwIJyu6z8j/yppqzJo3D3OM48JLL8Vf//AH/PgHP8CDjzxm+pf86hf/E6evXmXk
udbbYjLxzdlM7wUCgUAgEAgEAoFAIBAIBA5wISUDGRWObgpJDcNaGanSqyefIZl4Xe+NqmxXRsKm
ljTNrWELT259rqnvRqNx7D9wEE89swmbntuMAwcPoDwYRNDnQygaxa5du/HFT38cq09diu/fejs+
98Wv4Ntf/SLmzZk97OvZgYOH8N0f/wy//v0f0NUTxtgJ4zFp2kxU11SjtbkZr+7aiyc3bkJtTS3e
9La34aYPfxgzps9AxPhuJG7kXQJmzlbW1mLN2vVYvW49zjznXHz/O99BU1MTPnjzzbji6tcjZlzV
Fc1c5xI6g9wY91K3Qs3oMfiX938A8xcsxBf+83PYuOEp/Mct/4sffvurmDd7Zm+ZW2VrD16TKZiN
KCMFAoFAIBAIBAKBQCAQjEiIz8jCwEntmP53uwLSfq2FSCSKTS9swQ9u+wW2vrQVp5+6EtdefiGW
zZuDmppqMwr0y6/uREVFEGecvgqzp0zCez76H/jOD2/DN798CwIB/7DNx6bmFnz569/FT375a0yY
PAVXXnk1zr74EsybMwcNtbVoP9GIrS9uwcMPPoyFS5bgwx//KKqqjc8zkYoJoMM4+X3AaevPwPQ5
89DZ2YlZc2YjFAdicY/R3I37hiPG9cZ9zjrnHHzl69/AzR98H554egO+9q3v4+tf+rxp/m2VrS4R
zgUCgUAgEAgEAoFAIBAI8kc6SZmG1GjabqxmNl+Rw04ZqdvUkUkFXFLt2U/1mKaMtD6z/y0WjZqq
v89+4cvYu3cvVi5bhFgsht37D2H2tKlYcupyTO+ciOqqCvT0hID2DkwaPw4fePt1+MSXvoU9e/dh
3pxZwyb74omEGYiG5tOaz4ff/fEvuO3232Ds+Am46ROfwjVvfweqa2pA4/NaI4PK58zBqtPX4oo3
XIfKmlEIlgXQFclOKvJzKhx5TcP48Rg3YTxCUVu5eIR1H5Keq09bhU9+9nO4+QPvNf1PXn7Jhbjq
kot6lZGajn6qyP5lLv2JQCAQCAQCgUAgEAgEghGIXJWRevbv+kZi/tmjYlvv0yNku9us973esXM3
PnvLl/Hitm1oGDMGK09bh9POPBs7DjTiQ//xJTz2yJMmmVVZUY7ysjKYgW+6urBy8QJ0Guef/PI3
6OnpAbJGEyqdg0FpNjyzCT//zR343q0/xw9/+kt870e3wef344YP3IQbbrwRgYoadHQBrZ1As/FY
7WGgOwrUjWmAPxBANOq94vHaUAR5EYE6ic04cOXVV+HqN7wR4XAYP/nFr01/lox+nv6MqZHT08tc
IBAIBAKBQCAQCAQCgUAwUIxcM22vKtC0v2vJf9braCSK/7vtF3jxpW2YO2cOPvOpT+L6696AikAA
73jb2/DO974f3/3J7Tjr1GV45/Wvx8r5cxGPxaCRnCwrMwPa/Oz23+CSC87DeWetK+ksIxH5o5//
Grf/7k4cPHIU5eXlCIdCiEQimL94Cd783g8gEteMz/rIvO64+m4lsy+MXmljQu9v6l5MxKJGGsp9
ePu/vAd3/fEPeOzJp/HyqzuwesVyR/5VqSVTTfQFAoFAIBAIBAKBQCAQCARZ4Gqm7cUU2ylwjYZh
KhpzYR0thVzK9fa/qfPL23fgL3ffgwUL5uOWz/0nrr7yCrR0tCOi+TCmYTSuvPxSfPsb30Braztu
fMebEe3qNs2bg4EA4vE4qirLUV9bi1t/+SuctuoUVFdVlmRuhagmvP13+NLXv4260Q0484KLMHX6
dBw+cBCHDuzD1W++AWMmjUNXV3+SkarEiJFdZcbngaQkkgFryozXFb7Bqz4MfLNy1alYddppuP/e
e/HQY09i9YplcFaD2spexJECgUAgEAgEAoFAIBAIRiIKaKYdGNEZmFQ39p6R9j55XYo6zpa5hw4f
xQ9+djumT5+B/77lc7jyiivw/Kbn8Me/3IXly5fjujdeg3A4hKrKCjNAjR4KmwSk+dO6bn62dsVy
rFq5Aj+748948aVXsG7NqSWVVQy8c/zECby2dz++/YNbTTPrt3/gQ7jhgx9AVc0otLV24vDBPZg2
ewF6Lc3TwPyLJqNca/G+IiBBGdDUARSf66P/yPKKANafebZJRm549nnnxuMWDUogEAgEAoFAIBAI
BAKBQJAKTwFsvLtHzP73YZcrehZfkXZ/ktkz4MChw/j+T36Onbv346tf/h9ceO7Z5l/uvf9BfP1b
38EZ69fh+jddhyNHjqGubhSqKyuRIBuWBIPAVJeX45Z/vxl1o+tx133349nNW7BuzcqSyaVjjSdw
2+2/wwOPPo69+w/gRFMTTl27Dv/ykY+jYlQVIiFg1Jhy1I8fg3hMRbrOBi3D+xgjZxvfqw0oQnIw
RLbGz2HJ0uXm6/0HDiJqJNyv+eApgpMQkgKBQCAQCAQCgUAgEAhGIkQZWagczEUWpyORiKOrqwvt
HR343q2/wLYdu/Gl/74F5565Ht2dnShL6Fi+dAkuPP88rF+3Fprmw/HGE6iqqkRFRQUSsVhfCnTd
DOIya+pkaD4NC2fPwI4du1AqjBfJUhKRX/zat1DfMMY4RmPKjCAuuPwqVNVVobtLBZim0NMXVwSu
36fUh7rHRyD5GOb1RrZUGzUxqKnANnqWawuRM7xPw9hx5utQKITu7m7UVlfDWwAfQUmhzCg3X1oX
ljAqU7RHRS0SCAQCgUAgEAgEJxcCFcZRnra8Nxak0bCxFohK/ggEpQJPPiMz+YL0wssMV47GTLfd
D6Cu3lufW2ya9Tp57N67H09tfA7PbXkRz27eitt+9EOce9YZ6OroQML4e6i7y3y/ZNEi1NePMpm5
puZm1FSUG/1lGcLRaL9kREMhlBl/HzN2LHbsPuCdySsyOju7zYjZfK63vO8DWHf2Wdi/bz/WnnM+
rMfw+dQRi3Rj32t7MKquFuOnTjeDxWR6DF5rz14kq14kkQwwY/y9zA/4k59b9ZKXx5PfKStA/Hef
T+k0E3oC8VjCVhfcDulPhgT+MqNy1BnHaKBqtHpPjJkNlNekXhvqANoPGxXKmIyEjdc9bcZnrcbR
bhR4XPJSMPioGKUOzZ/9GhLoPS1GRycTaNVJG3kVrFRnJ7Cd8xiKcXM4pHG4toeM8zZjrO48rvIy
H9SMN8qtAsg1KN1gtNHqMUbaqoykuUx0YiGgu3l49BckDDh+8zxUiHaruUA8Iu1PIBh284GAmutz
/s91QFmV6r9rJ6gjvZ/uOKbm/Gafzfl/m3qf79gxXMExhX2wtXbKBPaN7CPZVw7WvQTDG16VkZmu
F2XkwHH77/+EO/5yt6kaXLxwAVYsX4ZIKGQSdhZoij150gTEYjHEohE0Nzdj2YyJRk4HHBcjmt+f
YsY91GCE7LraGixZugxvff+HMHPaOHTHdQT1GLojCRjJRbinE3Gjg9/w2Ab86kf/hxlz5+JDn/o0
xk+dYTyLr5e/M31u0t1mImbMsQP91JP8O6NrM9BNT0KZbPttZtskIskZ8h51AUVI6nm0nbaWFrUm
qihHdVWVVOxSBBeqtePVwrF+GjDlFGDaKnVUNngLxX78VeDwi+o4shVoPwK0HlQkpSgnBYOFmeuB
+ecbHU5d9muObgNeuMOYRB+V/CK44Jh/AVA91vm6g88Dh7YMzaR3OKRxuLaHjAucGPDUD4y28vLA
+28uoFa9FRi/wJ3wG+w2ygX3KdcCk5cZr4PO13KxvfGnQPM+lPwu6ejpwJIrVJ4PFQ5tBrbdbYz/
B6T9FZ34qOwjhQSCAa8BjP65st5YBxjr57rJwMTFav4/1ThGT/O2mdV2WLX9I1wHGGuAln1qHdDV
pKyoRgrGz1d9MNdS2cC+kX0k82uw7iUYGfAgYgxktel2U0pqGLbKSN38ZyVft71P/Wc9nPWeBGNl
RQViiYQ6G+/1crU7oCXJEZ7NaNllZdi5YycOHz6EN118lsm+0TQ7K4miK5+Veolk6OjRo3DLZ/4N
YX85xjXUw09VWWcUNbE2+HyV2NvUjIfvvRevbX8J9/z5z2g9cQIbH38EsVAIb7/pQ5g+ezoCldXG
0wSg6WG0t7Zhz/Y9aJgwCbMWzkMi4U8Rqlm5QlIykh6t3VahO43v1PmUenIgOcXlx86dr5qvJ4wb
i7LygJGOeL+yz/RPlJGDNAHh4n7cPGCpMeDNNRat4+b2N8XwNAAvUMeK6yhBNiYjW4AtfwJ2PwE0
7TYqWqeolQTFByfRy9/YfwffjlfvB16515goCxlpYpSx+Dj7I8Dk5c7XPfIN4ATbcrek8WRqD9nA
Prx5v1K5DGhiM1MRflNW5P7dYrdRpm3VDcZi24PfcC6kSXC3HVUqyVIGy3nBRcDss4YuDSS+dz8J
tAgZWTT4g2rzmIQRFcx7N0ieCAawBtCUcp6WT3PPBRZdBkxaoj7LFSQxeSy+TKn1OA6/fA+w/T4l
VqDSfSRYTNVNVfnoNFehaOPgZnUM1r0EwxuijCxEJqab3+qpptsZzHSvf/3l2L5jF17Yug1XX3Ul
xo4dg1BPD4KBABLJe1r5e+REE777gx+jpqIMl55/FuLd3d7UXCVCjviNtF5ywTnm645ws9FhBzDO
mPRWJMKoQQ8eeOIBfO0/PmkSeeOMfFh17pnYtXsv/nrn77B924s468LXYeqceaiorkVb41Fs37oF
Gx57HHMWLMDHPvd5zFu2zJi7VJoqSbtSkhbUNOc2idmkT0o7aNLdETXmPMG+yus1x3jfRDSGDU89
ab5ftWK57cczmGWn1xNBccEdde66Lb0KWHG9UlT4/AW6dwUw43R1kIzcfAew52lFSo5U0w3B0AzY
+V4nGF55JuVauPygKuaV+wZORs44DahqKM2yXHQpMGqix8mMMftZeDGwf5NS+0j9FwwZeZRUsHGT
Ydnr1fztmZ8LGSkYwMKzTKke518IrHyT0d+vcDYHzvXeExaqg+Tklj8AOx5UpORAxxOBQOBtDjDg
aNpe/EfavzsYoZALnjO6h/d9ny9fsgD/9amP4hOf/zIaG09gx569qKosRzQURldXD7o6O9DZ1Y3m
lhY88vjjeNI4PnPze8wgNZGu7hxLrHRQG+8E7KRgIo6lMyfiDZdfDH8ggHPOWItz1q/BM89vwQ9/
9mvs2LUHv731h9A1v/n3SDiEqopyVJSX44kH/omu9ja898Mfw4q1q1FVN9aYV1eZilLF+SUQDbej
s7UZFTV1qKge009BGSJ/GAGqgyrojdfqV2Fcv3P7Hjyz4WmUl5XhvDPXeaz0yc9kUl08cNdzzlnA
eR9XypBCTUAyYfaZwMy1wPZ/Ak/+yJg0b4TRQGXVJJCF+3DMh6EaNodDGk820ISZKreB5uWkZbmb
hw9GGy2vVeMffUZ6BVVDz96uXI+IP2Rpg0MB+vEbM0u5q1h5vVKwWeazkteCXEA/kFTbrX8fsORy
431N8X6LhORFn1YbQE/fBrzyD6DrhIhOCt1uJTtHVl1xIx1FGVk4nLJ0Ef795vfjxz//DQ4dPoSJ
48aiKxRCT08Ie/bsRUdHOyqCAUwaOxpf+uS/4rKz1yFq/G24tMlQOGw81zFEotGMQk6ShuPHjsHy
JYvw429/pU9VauDqSy8y8mcxHnz0SWzZ9jJ279mP7u4ejBnTgGWLF2DC+HH4zZ1/wYsvbsZ/fORD
uOCyK7DmrHMwfe4CVNVUQE/oaG9pxysvvoAtz2zA4lNOxds/dBP8/qoUhaQVhZu+2yuNeU950mwb
WnZSkqpIRt75w+9+h4MHDmDlsiU4dfkSqdClAJpl0yT73I8aE9s53hTE+YLKEu6O1k0BHvmW2iGl
yYZMRgQCgaA0MW6+8iVMxXyuBByV91yElteU3nNxc2zs3Nw24Wh+OH0NcGSbCmYzUha4gqEH3ebQ
l9+s9cDqtxj1d12fr0gpb0Gu4GYMRQJn3QjMPSf34GYDAX+DLgW4/hg1AXj+90DrIRWN+2RDIa1z
xNJHMJD6V7Bo2sjwdy3D34ZFxui2NKeZa+sZ3qeZ8F5y/lmYMW0yHnjkSTNadl3dKMycNBYH9u5B
T3cnvvnlz2Hx3FmoH1WLWCicW2CaISZDXn5lJ776vR+jpbXNmO/7+iUt4PPh+msuxzuuvyZjWmdO
nYz3vO069ITD6OjoRDwWR3lFOUbX15nVZc2KZfi/n/4aT23chHv/dCfu+dMf0DBuHOrqRyMej6O1
uQmtTSfMADqP3ncv5i1cgHOvuBw9IR/s2Ui+Kmb8fEcMCDEKt/E+6OsLfJPSBvi3IPDk05vxq1/+
DBVlZXjXW67F6Lpa5cfTSyRtUUYWB4yOt/oGYxJyk1pcDTYYGOeyLxjpGKPMNujYWghJwWBPBHWI
cmegE1lRRp68ZZsOutugemb/87kTcGPnATXjBu76o1htlBtjVJaRZM0Viy5RZutdLaVbwXRJy0kD
Trzp5mDaqcCKa5WrgJqxkteCgYObQ/Qpe85HgOmrBv/3G2YAZ35IkZJP/QQ48drIDnApykjBQMvX
A+mYDaKMHCCWLpyP5YsXwufTjMNnKgbnz5mNj3zqvzB3+hQ01NUh1NU17J7riY2b8Oe770VFIIjR
1bW9gVv4fF3hENp6ulBeXqbISAdUlpebRzqoRvzm//wHHn78aTz8xAY8+/xmdHV3o6vpODQjHxtq
qrBk9qmIxOJ47KmN+P5XvoQpM6Zj9pJliETSCMnkOWp8FuWcPg6QP9VsfyMRaTwK9u/dh69/+b9x
cN9enHPmWlx31aVSiYcaNMs45Q3AGR8YGiLSAn1TXvxZINajAtyEOqRsBAKBoBQx9VSg6i+5k5F0
/8EI6KUG+kijL8uBmI/ze+MXAo2vlX4gm6FeNMnCOH9QuUsC/IJ/V0EGBYJ8QIXt7DOAMz84NESk
BRLqp71TvX7kO0DboZOv/yvUdaKMFAy0/jmMw4Gs7vLsr92ibVvvh4vfyIwBapJ/SFHBeVDM9aon
YZov60YmdHR2YUJ9/cDTNYQIR5SSc8Hk6Xjj6jON1zoSRpoqgkFsfG07/vzcE8m0DjydtVWVuOri
83HxeWehsakZ+w8dxrHjjWYgoCmTJmH61Ik4dLQR7/7XT+CFZzfifz/zaXzqS1/G9AWL4POVIZ5I
3bjSbNlHYtKqin4/zbPjOHpgL77/31/CA3f/FbNnTsdnP3YTGupHZVHDupS1oDCgGmT22YqIrJ/q
/XuMItrdCnQ1qjPfp9+3sk4tOqsbvEfhpkLzzJuA1sPArsdlYSeQBfNwmTyXujJSVK+FxeSlQMVo
tdPoNVMZZGPGGtXPl1obpe/HukkDc0/C8W5RMpBN877hXa7hLiDUWhz/l53GfCEWkTaYN3lUqaxJ
vBCRktcCx77LWKBNXKJIwJmn57AGMPqHcKfy8djV3H+uTvPr8mql4OVRXoVUe7ksoEJz2VVAywHg
mduBnjaZe5XSvQSlX1eycYXp12aYRwVGbg7qWXIn16Mvl6NJP4vaAH3eqa8Nbeu10j69YRwuW346
YvGYSUZWV1QgbEzmSEb2mjbnifKyAKZOGm8e6Rgzuh7/9YkP45O3fBWP3n+fMY+M4H3//u9YtupU
Y8wYYw445CNTksJI3FARufki2tOMV7e9il98/9v46x2/x/Spk/Hpj96Is9euTj5DrmUvKBgmLADO
udmY1M71tgjjBKTjOHBsu4rSuOsx4ODzagGTUqlqlRN17rLOOVOZ9FF16Q+6/wa/d/ZNylT70Iv9
iU6BYCBggAkGSXIiQo68xA5L8kogcEPDTNWnH94KxCPevsMAafTJWFZdWs9C64B55yoTwYGC33/m
JAhkc9gYc1/6myIYCt4HHzDmD8ek7QgEpYJRRh++6i3A/PO9+YikAqWnFWjcpTZfKBrY90z/dk3f
pWNnA9NWA7PXqjNNsdnXuqF+GrD6rUD7UWDr3SJKyASujw684EzWntitrhMIPELMtEsBSTJGLwFf
dfG4khzG4nG0tLchmiQjw+GwGdym9xqmucjpveJ15yGeSODL3/oBntvwFPZ96EN4/VvfirMvvhRT
pk9BeXU9AmWV8HGHjckxro1GQ4h0t+L40SY89dADuOu3v8aul7dhwdzZ+NiN78Y7rn+91LdSWICd
/i5g6gpvDvsj3WrhueUvwOY/GpOPo9l9uoQ7FFnJY+MvgVOuAU69Xvk4IlHpRnzSd83hbUDbYTUh
EQjyxfN3qEMgEOQPqgGnrVQEf+dxb9+ZuEgp5QcjOFouoMqMabMH/8gVJGZnlHAgG6/TRC5gt9wF
tOyTOl7KKKQpp2CEMg/lwMILgSWXeQsoFgur/uHle4EX7lR9XbZAM9zU5d95vHCHCoyz5m1KnEC/
vJrP+bcoYGBk+OO7gEObpazSsedpdQgEuY4Zjmba2S7MJP7T0s76cB18bCa3/QKYIHsgm5RgJv3N
tAeSCeY3fD6Mqq5CU0urGfDF7/cNWc5YZGTCSEdXZxfC8ahJkuqRGCJhpUKIxqK2vCgurr74fEwY
OxbfvfUXeHrT8/jR//sq7vvLn7F8zWlmtO2J02egqqbG9N3Z09WDxsMHsH3rZrz47LPYtmUzxjaM
xrlnrMWH3vN2XHrBWX2Erz2IUdaANRnqhSB/zFwPLLgAqPTgyoDk4qsPAf/8CnD05dyUH/T9SEKS
i9ZzP2JMfC41FqRj3CcjJC93PGwsdJtUyHaBQFC6k5xS75tFXJ87uKDkRlW2YDOm/8d6pZb3Ai4w
nXwyuv0e3CfTOYPjEDe/aie4/KbuTqIuvsRYqJd4IJtcFy6C4V02Uo6CbBg3H1j4OqVY9DIWUIn3
2PeAbfd6V8MTEeO72+9XxOSaG4DTjKNhutrQcsKsdUbffD5wfIcSQ0gbFwjc64pXM+0M70UZOdRl
qZshYrB03mz86Be/w/Zdu7FkwdwhS48V+dtvBuVJ/ZsvSeIw6jV9SfoGSWSwdtVyzJv9Ofzx7vtw
930PYteefXjwrj/j73f8FsGKClRUVZnqyJ6uLkRDPQgEAmgYXY91q1bg0ovOxfVXX4bpUyZJZSsF
cAF5+juU034vk5Bt/wDu+wpwYtfAI9wdexW4978VsbnqTe4mcVSacMf26PaTz5G1QCCTYpm4lzqO
71QL1cosBCJdaphuDzz4jaQJ4ORl2e/l5feKAUb2nnum8muWfYKolII1453NDBnIZkKJBrKRNiIQ
CCzQVcai1ymlohtIPO7bBDz0TeDVB7OrId1AS6enbgVCbSpYzvi5cPQjybFlztnArieUKfjJMJfS
C3CNQJDPHMBBtxfop3TM5hLRKZjNcJtw9AtW46KSy6aGTFdGDlApGA+FcfrKZViycB6+9r1b8fl/
+xCmTJ6IsmBw0LOGRCPh0zTlP9L2SAGfIiOj0RjisRh8Af+gpWtM/Si8/4brcNkFZ+O5F7fh6Wdf
wPadu9DW3oGunh6THK2aMBZ1tTWYPWs61q5aiTVGns6dOT1ZNOmKSLcyR4aylz4lb9BkYspyd7M0
5veeDcAD31A+YgZKRFpgYJqHvg3UT1EO/91+f9mVyiycptpOakxG4QtWZVeucDJlKizTdnOpwGGQ
ndpxykyFZivWPfjskS7lk4V+V6jwzPf5HSeHVUoxSr9qlaP67xrHY4oYZnq6WxSpm69vMv4Wj2xK
JN7fDDoQ7v83lh3z3bxHbX9/oEwr02nl3VD7UXN7Vnua3ZS4IyXf9CJfP1LSmA3cWDTbe53qfzLV
BztYn3iwXvDoaVH9QrHyjUoWq65n6lu5YUTfkQdfdPe1WmvU+Qnzs/uLZD0//JKxAK13JyMLuWBb
eJHxHFOdVY8M1PbET4A1b1EEbDZYgWz2DfNANqW2IGbZsN5wE9VsJxyrKxzG+6hqJ2YwnnY1ZhbT
FzD7dNZbthO6oQmWp1p+WOmJhhRJHepUafKqLqNamG3CIsLZT/B33MDvjM6geqPKLJff7/e8Faos
eH/OmXjws/S+ir/DICfmfKWrMP6/zcCIDtY8zF+zvEO2OZ7xnVGT1NkasxlIyRxrW9VYzX6X93Xq
BzgnpL9E1qmBguVmT0fGvjCmnoF5Vyxw02TWeg/BxIxnPrYDePJWRUTmOx+havy5O9Tmz9k3Om8C
EfQ7T4Xkgc3O9ZVtg/mazeWU5euS42am9sV84JGpb2FdIYHKNUQ+7aaQ47Pb81rrHqbXTVV6MuQd
+yCmgW2Y/WN6f8R6a86d2lV/1NM+OOU4FHNgHd4VkaKMBHILYAPkFmI8d8SiUYyuq8Unbno3Pv5f
X8X/fu9WvPGKSzBx/JicguHwWp/PB7/fj4DfZ5KZVVWVKC8rN14HEAy6F3c82eH7jQmNT0tVHfgt
MjIWMwPbBAODb05uBby58qJz0RMOo/FEM5pbWxGLxTG6vg4Txo5BTXWVabaduWycQjt5KX9BXpix
2n0SQLQfAR77AdC4s3BEHHdHN/xSmYjQT5dT2+Jid+Zpyn+kkx+uU16f9H2ZZSHPyHwbfqHOZiP1
q8ipdLA925iQzTsHGD9PkUQWCcgJYdNetUDe/aSaDNFchANZIUlJEpBUqE5cDMxZr85c8JanLdpJ
PpLMpd9OOg5nnjB9rYcGPqjy2WkGk23xz8kDy79pT+pkmiY2k4x0zj1bpZUkA80v7WXJct7/nJF3
T6v0Mu84EdWHiFxze1aCeUq/km5+SkdSvg1Hkq/U08gJfN1EoH6qWmxRMcggYpnqgx1cNHeeUCrz
o68A+54FTrxm9GsHMxPfeffVR1SfybQGKjJfw/75tSdUP+QEmmhTDZ/t2RiVtdnoz6KrB68cSCIx
8EyNi0r/1UeAl/5ujJurVDlx4ZMN889VgWxYJqXWZoebn0GOxdb4yP6SPko5TvMYNSF7wA0uONuP
qfp05GVlXkr3MiyTfIiklIm+T/X/3FjlPIb+sJnG8UYbHjU+dWFvpacjeVABvPcZZfVBFwduKlo+
67Ir1BzH7D+Cqj25Yc5ZmYm7g5tVYBBrPuSpLPyKbB01UQU+5BySaWDbYfrS3Rx0Jtszff4dfEE9
a9Nuo085mh8xPPcstUmdDewb+WwcN1kGrCuLL1b5x37W2gDnPI7Pz7wgycbxefqpzm2b6zL6S6Sl
0EBcB7HOzFoLLL3MWWHNvpTPcOD54rWtsXOMvmyO+3Uka7f8Gdj+QOE2Rpn3L92jymPp5c7ELAmm
qaeouRMFEdnAdscyzmbtRUKOecqytvf/XAeYxOxaNRZn6luYXgbTpI/Gvc+qvoTtOdd5t17A69ye
11r38JkPbs7vXqWQd9nAdss+mHOnGacb/bDRR05c2L8/Yp/Dvpb9EOfVTBMtGNjWwh0jj3bLUs8C
OXNvJ4MyMu25MgribOeM16ULJ/PJAmOSHO0KYf2py/CtL3wSP7z9Dnz31l+iprpS+Y/UNQ+30E1T
ZX8ggLKKclSUlaHW+P7E8RNQX1eLMWNGY/LECaitqkTdqFrUj0rd3ezo7EJbRwda2zp6iUeaZduf
yZ/suKORKCLGwd8YKpB4raqowIypk82jX/Hqmd9nOrsd4vOrQCDJxYmzF1O4zX9RJFy0wAvdVx8G
lj+rJhhujrOpNHnpH87RPWlqwsE024KZA8+WvxqT4wNqEshFw2lvNb5zVdKZtpZ5IcSFJw+SnXTc
TULzlfvVRDcayr8caJJIH5qr36J+xx9wHnS5COCx8lq1S8mJ8abfqTLiYj7XySKJsZVvzO4vjQun
5+80nn2PmjCSHF5wHrD2XWqC6DRx57XLJquFA/Pu2d8qlSsnAEOxI+n2rAT9GjFP245Kvg1kMBVl
pDu4uOJCnvWHZnI0E/a62clreZD8YJ/EPmDnI6pf4kS/0BslVt/JiX5tlr6VC0oSqLoLGTnFxUSb
v9PdNrjlONEYByYvdSYGqDzd8YjaJNj+kLHoWu28AGT7nb7GeJ4SC2STq5/BoW4nnBewn+W4zr6Q
G4c+j1ZAlpqXi2MqX01/d8YYuek3xvj9gNpsyscPNS0XSOZwU2nlG1TddlIo2dNjgfWJaeF4w7rP
NGWbU9B6Y+45Ki9yAa1fpmQgLdledz2p5kNe+yzOO2avU8QeSVG3eRtJSh5sL6vfrPom+h3f/CdF
DpOQGMgGCglQBkLJBkZ3Zl94Yq+69vwPq3xLLx9LzcX8WfEGRVRzTubmuoiEIutS8/4B1Js65ad9
3bud6zJ9Mr54d/HaIFVjJKAaprtfS9Kc9bSnvbBp4CY/fcJzM4sEtxNY33gcdyAjubFHt05TspD0
3CDm97c/qMqQmxyzTlNzb0YSZ5t2qv8ULPDg3I5EKufdB7cUT73qVvZuz2uNqayrBzbnd69SzDvW
YZKh3HBZ/SZVj5ws7fg3rrd4sA/jmMC6zbSwz+DGazE2dIdibM+m0dPdvzuClZFwYVt1D3/PTxGZ
miId0a4erF2xFIvnzMBz217FoSPHzYA28LJe0HXEjcVAOBJFyDi6e0JobWnFM5uew7ETzfAFAhjX
0IBxYxswb85MnLpsMSaOH4sxo+tx5FgjHt/4HHa9thubnt+MQMCP7kjEjGRN0s8ycbaUkZFoBJEI
F6dVw7DMc1VGChNZMHDA4eDvNrHnbj7JGa/BCXIBFwLcaaPCzD5Bz7hgXKRUnE6R471WCw6i841B
8fyPqUW0P4eul4uhS/9TDaoPfwd47SljQBugU20O0AuNSelZH1RqDydyKusCpxY49TpjMD4DeObX
yvSFO8e5LLK8+rDhRH6KsWhf9y+KBHE17cmUd59VE+BHvqsmokNBrBXKX89IyrfhQvINFyJy1fWq
/xk9Nf/7sQ8gUcNo0E//TPUBXhV5Xuv6oa2K0MlGvJsRspMBybIRoVRKTFqqCJlsOLhVLXoGiyhj
etkHuwWuIenAdkcz052PquALVGI4BWBbkgxk030SBLIZKiJy/nnAeR9WBFje5Eulug/nGgy69PTP
B9iXaopg4wbiuncpFY5/gGIAktZr3wEsN9rvK/8EnvqpMu8vpQUx54icKy6/Glj/bqU4yqfv4wYM
/bOSbNv0W2D/C8oVTqHBtsl+6bx/zUxEZiI2SNywrZKYdHKVQcsVHgMhI7mpM2mR89ybKlmmhRve
xcLo6cpfo1u+UBFHFRnVxYUGN85Z30lMsz25tRWSxMy3fNWZFBmMmWnMna8F1rxVzbFyAccLzueo
COQ6gIRqMc3pSwmlknccH7ihy819bug6kaFOYwLXclwPsz/a+Ivi9UelSsFkVEZm4mVy4emS4+Sw
8xmZjb0d6FGABYdu9sE9qCkrw3nr1hgdtj/3OySUnE+PxREOh9EViqCrpxtHTzRjx569eGn7Ljz4
6JP4270PYuWyJVixdCH+dt/DOHrsEJbNnob1y+egKqhh1/7D2HJwDxZNmoZo0jeUpYwMhyPmvYef
n9AClLtg4OBkvMpDBO3dT6nd5XisOOmgU2pO6NwUD5zEcuHur8jPvIc+p0jeXfAxtZgcCEhe0jyX
i2oG9Nn5WO5R/qjE5KT8nJvUwK7lGYGKEzWSGzzTNPjwy4UlrEgkcOC//PPAzDUDX3wRq65ThMX9
/09NthPx0u6nRnq+iTKycLA2DwpFRNpBhcsln1XK8KduU7v8eoEe1HSR0ZI9mjT757Fz1UQ+28KC
PnnHzsquXLD8ReaiNs/38aob1GaY2wYBN+So4uLvNe5WRAEVexUOPvvsgWyiJRbIJte5+WCDdYSK
w0IRkXaQSFz7TlXm7EtZ57z2pZyjUEFEFQ7vMWZGYdJkknTXqvnJA99U5MxgbTjpLuVA8nbt21W/
5ebKIBdCgoQ+5z6P/0jNoWgKXEjQPyQ3aWgO7WXcZfvmRgN99dM/oZNikBYsJDqpEstl45d9JzcV
3TbfrT4mVESCa8wsdbiBc40DW1Q07GLgyHalkOOc2mlDnuRT3RSl6M1mIaV7LAOW37n/atTpN7qr
e51g9k262jygGw8vbTYXM229xO411HlngcQjN6rob5T38eUZM8PaIK431k+PfF/1R8ONXM5VGelg
TT2Co2l7ZRfdDg2FVEgSsbix+OvsUvceAF+gJYPPlPn9xry1GmPqazF90kScttyYyF5l9PFHjuGZ
ba/gvoefxFe+8yh279uP7/znTbjhsnOMdWcCOw8ewye//hP8+pmH8cmLr0V1WYX5bH7e13gVNaNp
J1KetycUxs7dexGhktNajDANgQDmzpqGqsrUxUBjUwv2Hz6SNIO2rjfG8poazJ05zfR92VtSxt/3
HjiEptY2GwGu0jJ5wjhMMg7vrUZ3qAeAMJFFBP1eeVFo7XsuqewoEmhiyMUA/fS4pYc70RUPD5yM
9AWVCobqtLrJBcjD1cDFn1ILTfr286pmoKn16cbk/pwb3U1TcgFJ0tPepibeD37DmOS94s1ZvGtz
Mlr35CXKFC1fQs0CiVj6zHryJ8qvVKmRVgXxq3YS5VspE3zDJY1c2FP9wYl8oYlIex9w1vtV4JTN
f87sbH4g9ZzmpPQ9RfcCwYrs/SF9imWbxJs+ih36eNZn+lelf7vB8mtIhRYJUid1PMebnY+ntje6
6aDLBScykvdcUmKBbIZDG2U/ybpy1gcKT0T2zgWMxeuii5SvsIe+o+q3F1CZdfYH1Tibq8LdS5oW
v07NIx78llIj28dvfZDrA5WBnCee/1Fj3nR+Ycav9OelKokEJ/Ny810qQEYh6jFJXapNOa90C5Bo
gfPQQy8pcpFEoBMZSTKEJus0Ec1FHWm62VmoSLWsz6Yrn+BMTzFBAYAXVRuJUbqKKRbYv9L8l23R
LT0cN7kZ0DVA1xck06gIPfN9+ZNpFmaerkyVWQ/oi/BkRankHdvzwguBCz6uVOmF7o+sfu7Vh4sb
8KwU5gFZlZFu0bS9KAGHnb9IexTttEjJvc+o53D0LgOVWXOhGuGAH083D9NwiTtuUVv6jGPahHGY
NmMqLj7jdNzz+NP48e134q8PPIUVc2dg0YwpmD9zCj753utw9Qe/gG2H9+PMeUuU5Z+m/EiSiCRp
aVdAbH1lB27+zBfR2taORNJkymf8WsPoenzjlk9j/apTUtJ459/uxXdv+5UZldu4WzJtGpYsnI+f
fet/UnxadnZ14b+/+SM8vvFZ4ycTySqrmf4033LNlfj8x2/0WObo7+BzAOUsGGCny8mQ2ySNaoHj
rxkL2q7i5vfRV9Wi2W1ybypRRqkd7IGAk14uJDghzFeJaF9gc3BmlDiasbgpLLhA5SKIqopCEpF2
UEHHyRojlpNAyFcdxXpy4b8pZVOhFiTMB5p4cMDvbC5uhPKhWriPxHwbDntFQ5VGuoQ47yNKDVRM
mLv8bwL2PGMs7rcXLs8YLZuBI7KRkXQ1Qb922XzQ8e9OfbzlL7KifnDaKNsk1Tg1LhuoVIVysWz3
mfza00DTPlWWPgcik4FsNiQD2SRKPPhUOhFForWirjD3I8HDTTsv/RVJIJouM++KCS6mWf67Nyi/
2G6grz+a71IhWGgi0l4nqeTr6VAKSQamGopxzlJArX+Pmq/kqzxynNctMeZlN9EBvvLpXQgTScvP
t1fTTRLAZjvfySimqq/jxrXTHHlS0lS7KQcycnwyYKNTfnIzh75mT+wv3jhl+fxzq8dsr1TYtx0r
7php/sYRdzKyPklGsnwG2q+teL0q10KQab0k1tmqHzm2qzDR4gs1By3kvUoh73g9N0RPf0dhiUg7
uAFGdyxc09HvbCmuTbyUrygjC7laGIhSMtluzEjWPsTjCWgl/ISmv0fjqC4L4vorLsaCObNx4ye/
gM9//1e47ZaPolbTsWDGFNSMqsSxthZTEZnQdTO6ti/pQzJdGfn0phew5aVXUF1egUn1DeafjrW3
mIrGzcbn61f1OailL8oHHn0ar+3Zh/GjRmN0VTUi8RgONp/A/kNHcLSxCfWj+jqeY8b7+x5+DCea
WjCtYSwqgmXoDPVgX2sT7rr3AXz+4x/ModXoOZb7cGXcSwzcNfZ56G64S01FR7F3h7jr6mUCykmI
113uTKjNsOgkUUcfZSRDGU2NgyEDGZD0pEIn4IFEYiTAYzuA9uPKObMT6G/p7A+4Ow1nuuins6tJ
pY9m8kwL00bzcprYO/krY2Aemr688Kf8zQ3MRWmaAogmFQzw0tGo6odpvmmkp2aMSh8nK26E77jZ
KnAETcpPxkh2km+C3kl0QCl1GqY5ly/rBzdbWEe4QO61VPCpwApm1Nrx7uT2rNNVfeLiulAk2KGk
P8dRWfwrmgFuxmX26cX0knRwUhIe8ugvslBgO2IQN6c0Mf9pipnuM5nWAiQk6Wuq1oHMpAJ/RgkF
svE6dWJgFloQFMoqgqoXBgpwU+qy7jC/GIjAibDhOM0Nt9Yjqg+0WQCZcwSa39MVCtuMIzk0V5FK
W+9xNhNk/SU5tera7PU/hVDqUuXNczg5t+HYzXTxcPJHyPQvvRQ4YtSZJ27rS1ehN1Gc7keCfs1b
VJAHL0Qk859+DhnghP0Wv8N5JvPf6Vkt0IKABDT7PgaSyCewEJGr/zgqs8z+JxmghXMnzummnuJM
eLJP48agJ6sYLRl8cL57W2FaimmmT1ce2TaV7KD7ISoWi2kdRbDcvYgMrPYz0P7NjP5c2b8vIfHE
4FFsqxy72I9UJCM0k7B1awPsE+gXnGMBSdVC9MGFtA4oxL1KIe94T7rImHuGe3/EuQTHbZ65EcaN
/KDRB49KBgB06pd4f6o/2S+4pWm4UmwOY0DAE+eWibeB8DT92k3Qb0a0DkdjwyK9USOdWrQDK5Ys
wFc+81G85cZ/x0PPbMG1V12AHa9uQbgnirE1oxBP6GZb95kRthUZmV7k3aGQ+fnSqbNw84VXm5/9
+OG/47FXX0Q4nDrIk6wNJ3f8r1q5Dq9btgrH21vxxb/cjmPGORROHRAj0Sjixr2ryspw4wVXYda4
idi0Zwe+ds8dJkka16naLKFJtSADSVLnbYLYelj5iSl2Xjcf9OaPhi4KOLAVKj2cQB4zFus7HlWq
xmOvqskXiUKShtwho5kSJz9OxJ9lHk2/J50O0aw5mFNp4BY0x0rX838wFrxPql1gDvQc2E3H0cYg
ufRitWDMRpZyMnDGu9V3ObHWC1iIHOAZme/5PynfKjRxI1nKOjVnnYqaSfNETi6c8o1g/r58v/si
dSgG60LX++Gab7n6JSpln5FDlUaaAtMk2EmJwsUnFQLP3anIERLW1q4868h4o73PWa+UWVRklzlF
jaxQi+U9z6ogZIVoC25+I/mbXJybrj3SzC3rp6mFRDYSlX0mTSS72wvrB8sJNIl1U6fzOUg6kvhK
/y2SlCuudiYjCQay2XafcY9hFMiG/QuPQmHjr5W6tMelv6oZr4h0J/UwF8AkbF74M7D5r6n+c02f
jpMVmXnKlcqUngowJ5KRm5wkLqlezQaaZy+73DlqrVWPuSG54zE1dtPEtTFp4kr/kny2RReqyNtO
Pru5QKdrD/bxVvRgzgE4T7Gi0XMOwbmKm+9rLqibMrgJ4L3CGaxeSCIy4AvJaDdSj30BN0zpV5wq
TvYRHOd4Dz4vlYAk30ZPcQ/Qx75tzZtVWhsLrAhlubANm/OzqBpfy5KbO9wAZF5wc8/KCwbS4ljN
Tb9sZArzhiQq64ZThGf7nIzEt1OkbrMffFHlYzG7Cs5FvWzsM88y9X2FBgktHq4kaplqs4VKD8ln
lj2jO7OPZlvlJjHLnGsAbj4sv0qNvW4CDsvsvbWA5FUpKSOHOu9Y9lRpczx1qrvcyGg5ZPSd96p0
cQ1EopvtnG2PLidWXqMI0GwKT95/8SWqD3j298PDqkGUkQXIwXQTXGR4DYdrMpjvBgMBUxnZzeAu
2rDJCcTa2nHOutVYvGA+HnjqBaw8YxV++Pt7UKdVY8nUmYgYDa3MWJhoSWUklY2JRDyFbAiFFLk4
cdRoLJs6y7xuwii1COro7Ey5Nh6PoyuknKuTWFwyZZZxbRsqy9WuWWfa9fRH2W0ctWUVWDR5OuaO
n4KOkCKSorGY8dshVFeUu09gUs62z52OlHohGDA4AfOi+KMyMhYtfnpIqHjZCada0RcszIDL3+TC
n/6ieLarPzl4vXi3WtTQryPJP074nXb4eC3JBk5oOxszXzPtFLXj5jTBZ1vm4veBb6izPV0kAnjQ
lxAd3F/4MTUZzkYsk7CgKQMnyoVyxsxB/elfAI/9WO2Gpk8CuAgzI+Iadef0G5x3sc0F2kylGDnZ
MdzzTfxB5gdGe6S/KydVJIO/3PWfxnlz/0jYrCN09M/jgNE/Xfd1YPpKZ9KafRYJy3zJSAutHvxG
zjoN2Hp3fzJy6rI+EiXjYvQEcGLP4PloIjFAM2C3gBymv8f9mQO4caFC0oRkixPRQmKMizO6PImF
Rm478fK7U5ereu001pL4eui7wKY7+6vHOH7STQAPtqOIkd9r3uS8+WqprbKRkaZac5VyM+AEtlEq
kZ/+pdpQSFd6se0wYB+jtp7/EUVkOyk3p69ShCTbBZ+Lde3uW2xkWD1w2WeAc29yTteGXwH/+JL3
cuIinWkbN9v9eZlnz//ReObbM5uUm35yLwbOfK/KQycVsmmyeRawZ6MqPydlYC51mPfh5i59UnIT
kP0hCS2SpTQRZX3jpk2jzS8i1YCcBy5tUkR1NkxcoNSOXshIL1G02Q+yf289XOT+b5Q63MDN+XB3
8fsGtlMvQb4453Gb93itG1TMcdOPAUvYl6f3IySESYzTDP+CjygVtRNYT5zqSi5p1AvYr+oF7qOH
Ku8aZqg1lhOZz81bikoe+xHwwl9SFb1cAx19RW1e7X/e6IP/VW0MZatP7P/o0/KVBwfuGqzU58o5
RdPOpoi0vy983JZBzpWBOMh0lo5WlJch6Pejk8FnfL5hkxs0udYCAcyZMRUbnnsOn7nle3jm6Zfx
jtMuwOiqGkRIDvl1pYw0jngsYRKK9mdv71BmIQFj4dPc1mrmgz+5CDrRkro7HzPu19beaRKWiVjM
+HszuiNhlCUHzOaW1pTru7q6EA6HMK62Gt3dPWhqa0EsHDG/z8jezO/qirIcWoLXupBW7sJHDhxl
Nd7MtOkrkouwYuc1d9i8ROvmxFZzUEZ6VtQYF77ygDFB/4pSWGTb9WoxJoR//x9FXNLX5CiXwXL5
FWqA5oQynTCnisFL4BwO4Pd9TakqsuUJ+4Dn/qhUVhf9mzL9zEqCXKiILqeojF7zjUQBF1qP/sh5
cKYC6KHvKRXJvDOd6xrzg+U6WO3Zq7lKISMZDvd8y3UyW+rRtIcijWzLjEhKkx/uxpO8qqhRr7kw
Zh/zsDGxP+TB7+zeTWozgotbp8W96au03PlZc1UhuvmNpJKIfiN1LfXm3BRxUoJZ/iIHS+FK1TsJ
fSeFOsth+0PK/YaepR/e8bgijJzUafwNmruy3JqGOJDNUM+b3H6fLoca96gz24bpn6xK+XkOlivC
gn4FOc7GXMxYSd5xo5FKmHqHcbcyScxkS1v1WGDWWmNxOsf590ga3v8tY2z+gzORRpN9bkwxTfPP
yb5BwfpJInv7w8ptw2CUuxm0ZrWzebLVNqiKeuSHRnnc1Wfe3I9k6lGkAMlFLv5JTDr1WSQa2L+w
XdFMOu8FVVxtEN//TSOdf0stF7bHF+9RpAPrld06h2uqg0mF4gKHeR/rBNWOLz/gbKrtNYo2zbN5
FLudcvxxU6qac5ckSVjs9JD0jHR7q5888l0DsB6QZOKmhpP/Sc6b6U+W5XzOB51N2zkfN8e+ArXF
UoymPVR5Rz6CqnK68HACrUm4+bLxd9k3NuNJwQdJyNqkEj9bH8zNMc7H2+4fPgQjstBk2T5DNjJy
pCErr2hTz1mKRz15kZNiLvk1Bl2pqqpE04kmo/PyD688SehG2iuw5ZXXzONday/AGbMXoi3c17j8
vcrIuGlqbSc/WlqV36UyLYD2jg6UB4LGa9XYmppboSdNvc0xIBJBS0sbgkZj99FXcbsKelMRUDvJ
jc0tKffu7Og0xvc4KsvKTBKyvb3DJDHLjAl3T08PWo3fnjCm3p0MSjkjraxdFLDCROYHTr69mGnT
j2NiENwccIfdi5NgTmL9BegmqUx78mdqB81t4c+JGAc3Khqrz3bONzom5wKCk9/0ialpdrXaWR1E
wuLZ36pJvhdylooELrRIOmQb6OecoSb4XATna2pAMiWT4iMTuLNP589URDmZybFMfSf50Cf5JuBO
PY9xSXMk9gdUC/DghPjYdqWM9KoMtNTOTgt7Kqe89PO54KCL30j2f3UTVT9tqd1JKFF95NT3HRxE
f5EmOfg6d99/bK9URvY4KEt3PAKc9ha1OeCkel1w7vAMZDPYoFkyD7N9zFOEHRVsJN4ZuZgbfXSH
0uXRhx3Heh5OZKSb2opqtilLnRVtHO+3/dNI+z+9+fqjEo/PwTmBZSrIuRYVYpFOtZDn/IvzXfYP
+ZKRXsF84gLcTTHMtvHET4FnfuOtPtN1wyP/p/orbpA65eXs05XbEvZx+QaPoAk5zSyz+QRlf0vC
MRO4Uc1+iXO/bO4lWHasHw0upto0CZ+YNFd3Ink4d6S6ttjwojA08yecGriraGveuLd65NW83A0n
9ily2ksgHPY1nMORUJ/gQCbTCqGsEic9hiLvOHega4sGFxcHOx9XRKmXedTujaq/ZvvNNjeh6pm/
S1desQhGCmRlUUDUVlWhtroKhxub6EAyu5+jEgUJw972MKreTDv9QFp6A0awZjRtRUamduKNJ5Tv
jVGVleYj06S7skyRFd09PSbZ6E+ad0UiUbS2tyEYCJoBb+iBMmBMFKqCateMqkk7OruVD8HKYBnK
jXylAKLMfF1m3Dts3KtdKl+pwysZaaoiTzLil8/DgZQRvOMeiVYSRNxBp6mdmwJm8mJjQHyiv6k2
oy6avic15wk+VRBefOdYAz0XblzoZzNdIFFJU26aUuS72Ge+5eIPh6ZRXFS5+ezSfCd3e5N8E/QO
zrtTzQEJi1jOxf9n2MNGUbCi8FFw3fxGmn3gMjXRJ3FkTmDmKYfx2dJi+YvsGaS5A/vK6ae6mynS
pJbt1okQ4TjCPOGCxsnk1vRjuEZd29U88up9rnvImQJamEREhTdzzlzIFH+Zc0AoEkijXfwy0hyR
hJtV513nVhHlboXKTc4pzOitJ9Rcg4pOEltNe9UiPpubhYLvy2vKFN0tSi3TTnPnXU/mRqyT2KOC
kIt7J3KY7dNUWNflHziF7Y0KyIG4f+D8ioQLfZo7maxP8GCqTZ/BvMapnvF3+HtdLcVvj16JM7oL
0U/CzRNuMvHwCivatxOhxvHN58dJj6HIO7q44aaU0zVc33Aj36uimpu53BTiBgA3P7KtlbkRRt/S
dNdyMo3HyD5+BFJMrp0C1mQzzday3FxDCYvJvEZNzsWMm/PkBOpra3DshDHx82nDu97oMAlEe17w
iUhGRmMkI2MplaC9S5lpm+SiKRbVe5WOPeGwSV76k3kSjkSNuVoUNWUVJsHI3wn4fMZrRUYq/5M2
f5RRpXYgEVkWCJhm5VRVVhjvm8PdCDE6uGc9+ECiaVtqSVnXDhgkOrwQcZaPxmLnNRewXjYKmOZE
nmVv+jr5h1ro5HIfEkqnvkGpM5xIIKojSS50pJGRU5Y6K4NMEmqHmogmclADHH5FBQVwiIthKky4
g9+dBxnJXUGal/XkEGCCTqTdFgHVowvrkHyoFs8nc75JAJvioscDCck+h/0KzZlqGhRhkM35eqHr
sT3P6Lqi2cVvJH3D0Y1ER5KYoZlTpYO1hOUv0jKTLHYAmwVJs12nMYftlhtDZhAhl/txQ4i+7tx8
7C29BHgpGcjGaZOPCyAqA/NVALHP4Tg3WH44C9lOM4H1wy3QHcuUii+2E27+kXT2Ev06W9roW5u+
yjjuu43dPHJ5vj3Ggr77q8qNFDcoWFbFUs16SRfbMzdT3eoxlVGsx/Rfm2v5UQ06e60xl7rGeR7F
OQuPPc8M/JnNTY5tSuE40HpHApUEIcnEbP0FA3RMdjDV5vdoys0NC6dFnhlscOvgjE0Rj4pHS4lY
7DSRZNL83srUjJGQx29xE4+WQs2HvN/HCuTjhPKk25VSDTpTiHsNVd5xg8JJFUmQ8CShH8+hD6Wl
glPgMoJ9/6hJasOppIkiB5rFyUw7wzxq5JppZ8uwfFxJGmgYXYcjxxuRYKRqY8DXh6nKy5/m85KP
QX+R/LwnHkUsFk9xpWiabRuw1I0MckNTbSok6U+S15NIJLp7QkopadyLhKWVhRVlagevsys12l5n
l/LrQbNsKihjxsAQSH433pNQ0bpz5SIHUu6CgSPs0fzajF49COorr9G9Q23OgW681IvGXWrQiudo
fk7FAne+TRLAQQEzaWFmxY3p382FPKDT9EiOC0cSA26+drijWFadXxkxQiaDUuSyWKKqYQSZNki+
CQoG01detSIgLRJyyhJgxqlqMc8IwP4hmjJy0TzPwW8kA3WRMD2e3AWny4GqOuf7dQ+SiTbzdNH5
7hGwSY6SGAh3ud+TCjGqJtyUG1YgG2429LRmv45jzFnvcfcv5wb63XviJ0ppXYzF7VAurHsnx2Vp
7aRO+SgjIc5gSlTjeCF1s6WtdoJaCPvL3BfCuUbRJQnvVUmZT356vY7kLVWabvlFf7V0KTEQkLCl
lcbSi503U0g8MN+zkZFenomKUhIn+SgNSRLTzHTRBdldYriZanPuxb+PmZ79d2iST1+R6ar5YiHm
MWBMoMy97hdkvPNoNu62IeGlXnCThhtl8RzmWPSf72Us0Ae53Q72vYYq7+gGxc3fvhfSs18f3KRc
OTihdqw6TlbeLVOzz5mQ0b3duLTzJPWf9WBu/5D1nW0MCAaxc99BdHd0oILEWXx4ys19aTtyfEp+
FvAbzxQOIRaL9T55KBI1/UCaHE+SgCTZWFVWbhKOza1tiEQjqEwGmWkz8iaRUKbZZSQjdd08qsoV
kdnS1p6Sq61tymSESkiaekf0mKnQpKqSpuUdXV1ppZC5zFPPmetCetmmlLIQkgOHVzKyqmFw1Fec
hGgeFtaM6pfIM6BO2zHll2kg96DfJk7gnMjI6gx5RgUAzQyCLpMtTlqp5OCi1nPnEHR2DE1MmJf/
jm1PkgguVl0oxfZciDSNtHwbDptFpZhG9ilUxFE9zYN9AEkV+hnjBgd9Sw5UKacXOM8OuPiNpOqw
3liYB7Yocs40YXYgHkj62YPX6EV8NgbnYARct+AN2x8B2hu93Z/X7X5GmZ/WOLlWCCgShmpLBhXL
Bm5mkYik7758QCVHYICqJqr0+P1CRf+mf+ZCBMLgWGcFnCHxyAUq2wbHuEkL1KZf1ejCtRO6ynBy
l9G7EG5Vh17CfZ4brL7HDay/HY0De1auwRgQiiSAU59gRdfNJz9JmvDIV43LqOxUgc5yCJ5hmWof
y0BGUlU50cVEmyQkVZyRQVIxe1VGclziUfSAOmXqcEMsme580hNOkmPDYU5Wavcairwj/8FxlWsr
xzpUroJE5QKqcStdYlxQGcljOMxrM70XZWS+s958WNnk3M/vw8FDh3G0sQlzpk1BrGf4kZGWOXa6
qJOfUZFIM2mSkdazd3R2mn4hSULSlJogGUmT7aAxGW5uaTH9RFrXN7W0muRjRbDMJDctyq+2XC18
GpuaU/K1qUntMpLc1JJ+LElymibhRlpa29owKGbagoEj5DF6tRkYpRJF9/NQP0mpMN1gKsai+f0W
J8IDdcjN77otzphf6eoYLqCoUnYzRafpEo9CgwOpE2HpSWXQ4axKzWfyM5jNebB3kk+GfBsO3e1w
HBKotGGgCNOv6yJl6kd3DjRrrqovjI9rvQj5Zvo9bHH2w00/tvSdO26W8rdUDH+RuaadC4/FFyqS
wwlMU+NOtQj3ujFERRQJ2hoX4oqBbEg6vLYhN3XJYLcTmpz+/UtDH/3bGlOZr2wnNCE228iSPt+D
xfTTxnE76EJcc4M02j345VnoqbAXMpJtgxsHoc6B/w7biZv/as4HvcwJHYmTDnXkC/Z3VG9TlZ6t
rjmZalMNzSNrOSbUhsyhbYNXd+i6wYv7BrNO1Bd/DcANBC+bCGGPKjvHZw/l5ndWMLR5RxI/07oq
HVTC8yh43axXx8kEzz4jc+FnNAxrZWS/QdXtdQ5m2sFgEIcOH8WBI8cwd9aMYZk1Pk0FqtGTfiLN
x9QVGek3GifJyGi0T3nT0tqOjq7uXj+O5vyB0bnLSEb6EeoJIWIz6z5hIxf5d6pHzQB+STKyrS3V
11lzUhlZbdzPTkbW8HrjdUtrx8DNtL2Us/CR+aPToxkoJ/pcuPkCuRMquWDcXG/+z6hozNdfjOlD
a4AKDaoB3IhMKxiF/f5mVNuyoStvM5BFmRosBuqqgn7t4rGRofAr5Hg6kvKtGAvkkzGN7COolpm1
Gph/FrDgHBXgpdAB9gpZj+15ZvmNnObgN5IqIioZqO5zMtGmmWrjntwVQQN5tvqJwOx17otejnWL
LlLBPHLpYytHeRtTmSemSedrg9Om9WHaTrgAbZiizNbnnanaCcnIYpCP2Z7VS/RekiOhrtLu93SP
/VI2U2QL3Fyj25F8rMyoIO1udS/7shq1gTBQP5rc4Ohuz79c2N8deFH1VdnU4Jap9ug0U232C1Tu
NkzNfn/mBe9PJfJg1SGSyWEPhDL7SvZZLA83d0D5gBtWdRPdryPhz7WLnkc9jyZNvYulwC/UBqBe
gvcairzzGvm9WODaLcB5js85mF2p9fFelZEZvjtClZHZGKbCKCO7ekLYsXsfzlt/mue9Hfpj5MIg
MQhm3T6/30xVIp65kvuTviHtHAKJSQagoZIRFhlpU0Yy6AxNtMv8Koo4v2uZVZOYDIVCvddTRWny
JcEyRS7Cir6tdoNN03Yz49T1DIBjXW+mxfic/ierkruYPbZ7576SECZyUMDJDydqnOS5Texp/rTz
yfyjGjqBu8Zuk2DCijKcD7hwyNVfpH0iPpDvUmEz1FH2zDRkIZWLpcQbzqbXg+2vp5TzTR8G6R4O
aTTdNUwBFp4HnPdBFdRgIH4fORazHZuBvxx8+pobN3px6jmVQvMd/EZyYU4/Swx0UzkAf5F6EcqS
viJHT3YnfflMNKcuFqgapTuO47uLXyF1DE7eFrahKCXknNOB9e80yu28gbkoMCM/xlR5+xzaGQPG
ZVtkchHq5gaF6dWGIEhmofs8unxx891tEXz5gPOokAfFokUEZyLNvDyTl4BHXsF+ioThkosc5rEL
1GEnI7npRMWkU/2lIpL3Tgyi5R5dHpEUJrHnZh5tmak2vla89HBcrJ/ifl1rMjJzqc4xZGla+Lzz
1AcXGVYaiknID1V5ZMj3QF4WytpwbghOZJMXKWRmcktLThA2vbgN74tdY6oM426Tc+MrPZEo4pwP
BYJpUawLC59PQ3ckYhJ6lcFgxoWDaY5tmk+nsJG9AWz4OmIjI6OxGKLxOKqNtAcDgV6zawac4fUM
ZtPR2dV7fSisyAmTjExqLzXzvZqUhI17MyCO38dAODq6upVEu9zMG5Uqv9anwgxHYygeGWm7Rjr9
gYMKQ/rAmbnaWbVC0DTl+bvycwLuBJKQ9InmRRlpLlzz9MtEUy/6FtEH2E15WQCld2HcWdN8Q1vm
nAxTZaAPUOFqERvFaHelur9QkOiDIyzfRBmZHQxgcNGHgdXXqWjoOS0eu5KbSG1KoUPSgOaqTps4
1saLXoQ8O5D085hNKcTno7Jw2jLn4FkH0vxF5truvF7L/o9BKNwC1wwGaNLJcXXb/e4KsUFYeJRc
OyGJffqbgXPe5x7ZOR20emAbYZ1iMAOSkSSERjsQHbR2iGTxQ2dF73VcqCZJvOGujIxF3C1muAHi
D+T3rP5ydXgZO+N5WMIUIvKyhSOvKlPqBWdn9zfLdk33AS8/2GfKyk0ZpyjarJ+87+FXBrf+sJzp
goHEnpsrCrYfHseLREaybx4zE6jzEPWe6tETeSpIuflgbkAUaS54UkfTHoK840aSb4i1elYgJ72E
ychclZEOVMzIjqadLdN0eDPXzpLRFWVBvLD1FbR3dqPWeB13UDtqZp0rw4MbNmDX/gO46a1vhD+m
uxOYAwBJRi3gx+/+9HeMHV2Pay45H9GeUMbr/GmRwK0ANv4kwRGzDdihcASRWAyjKyrNv5vhXnQV
/dokEI2OpKW1b/Lf3ql2HamEtO/tlid3y7pDITOCdl1NlbGuiaO1vd28jtG2eS+VRs0MfkOkR992
LPN8zLQF+eFgMgiBGxk5+3S1iOYkIBErfDrmrgMmzHXfnaV5AAnUfJWRdEYfKB/Yd0nmuSkgmM70
xYsZMMjDrje/G4sWp4KbQVTyuK/XoEfDjZgqNk6GfBOCMX/QNyTJlVVv9EZE2slHEitHd/Spc3im
b9krPuNMRnJBnCjSZirVPN0ufiNXXaMWmdn+no+/yFxBkoCbXgMNAlTQyZ8xjswgUbscePWx4tbl
4db/sj6vuBI4693eiEg7+cgzCRazjWxVZwaAYjtxIiNp+pnN3yOVMG5qGNOkuAqDrggpdJ8X9mC6
y77LDCSRx7OagbpcXBqwb2BaonkoGy3ipBBgH8Wo2if2KvVjJnBDfeoyRdwdeUUpqXjtWAeyjwEV
2ZfmE1V9oOCcnocbGUnrqKlLlQ/gYvgLZBvl5oybIMFOoObTJqLhgfuNH6x267VtD/a9hiLvvPqp
NDdTwsUxpTZN00+yxYyDq5vM0bTdKs5w9xfpqo5zemDnTIjFY5g9bRJ6erqxbccurD/1FGNQcRjc
6J8xGMTRpib87/dvw9mnr8KKBXMR7ylsB6yZ85dyvLRzN776g5/io+99B/yBIKJ6/7RRPakUkHra
58pnpBpzE+gz0+4yzcsry8pMklB9TTeD15BwJKl5orml9/rmZrUzTx+Q9ijVNPP2G9/v6uo2Cci6
mkpEY1Hzu/xtXm+pRk2z7qTZNgPY8DecOZt8zLST1wkhmR8OJFWGJBqdQH8xptP9l1UAl0KCjuGX
XJxdXWPH0Z0qamm+rhOouggMMEI4J9BuZkxWwBL7/UPd3sy7920GDr9cnAlf497sKgFPvmJClEYP
f4XfoPvYOUny7WQjQAYzjdw0XPUGYPW1zgFOOFi3HzUG0aNJMmWL6qd5DNRpv5d55EDyjH7Umlz8
RlJ57wRGuj2+Z+CmlF7rP/Of5pVexpnBwuQlSjm6a4M3/81DUdcHu3/hpHH2WmDdDYoAcWonnLu0
HlLzgv0vKIUt2wl9QqcTHfnkk9eow71mfD0oSXgpR5pfu20MkHilD2xu6A50nlLpISAECWCaEudT
/6IFiLycMj/bouZojNiebYFDFSSDkVHp6MVE2+zntw7NmHkiSUa6gQQ0RQnbHlTpLSQ4nyYRSRLX
DSQhT+wzyjTP/tLafBBl5PDIO5a3lzLnRsGeZ4tjbbBnk0rDcFK/u8VecaBiRm40bS/W117UkGmT
p1AogqXzZ6GlrR0PPPkMzli3xhhsucupZZnj6IiHI7j8/7N3JnBylOeZf6u6Z3pOaTS6R0hIHEKA
BBIgxCEQYC5jwBAcYzuOjR07iX/x7trJXtms1971bhLHsTd2HMdeX8EnxuY2NxYgBBI6EQKB0H2N
rtHcV890d20931fVXd3TXdU90z3To3n+UOqePqrrru97vud93xuukZ/8+lH5+3/9iXzn774kDZUV
khgYLMpxaKjrb4W09fXLN3/wU5nWOEX+8PabJQ6R1BhaYEI7IEOp2kaGocKpK8ywhENmaq6u07Gr
W4mR9ZEax61oKbEQod41Th5IuETdz6OaNphUXWPPxbR/LyUu4vs9vX1KkMTnEa7d3t6h5jWpqkbN
QhfYMZQ4qfooHV1KHFUCatBJU4gzMttxQYYPnDZozKPhFCSwLbtDZOfLOsdMsSpGooN45qXaGVmV
R+L//ZuDQ8XzOS7cMO3hgATbQblLBrI4I1Xlwn49YucXrv3eKyKrv2d30k+cHscYz9PTY7tZ42DZ
y3kZ6xpFLv6AvxiG+z5y4r72M5Etj2sHSCmc6MXcvnBonnfN8PM54ft9HaXfP9j+KICiHF1lAjr4
83IUson26dxoI63gicG7TKGznK/JkXp7P12lQ/v9zhOIElvtc2T9A9pV5ueeG2lexWiehT4wyAn3
Mwo7FdIbQA5TtEncKsFYF4hwsWjxrmP5fs4txJPPsYvCJsPK3Wc43w84tiGK9neObJ3iA8UV+lv2
acH7ovfndnbCBQk3JK6JcGLP9qmijTYh5oe2+FiA/YdrD4TfoAIh8+22+qJVuthYtLtIC2Bo9/PC
lf7OZRfk2D25d3TPiVK0Q6wJMK9ibjucwzhG0R7yC9fGAMDz3x7dqvSnQz8jZ85IIw9hJqgyzrjb
Ivmoj0EbxX0vFT6QiMdk2tTJMm/WVFm76Q3p7elTFaPj8dw23tjAgMycNlX++xf+TP7sP/9P+eFP
H5TPfuLDWpCMxVQBmOECl6MZCktnbFDu/9XD8sLa9fLdv/2SzJo+VQa6szcCVM5IVVBHuyERkh23
Ekq3NJxFidrL3Av3pv1aa5vOqQdnZMJ+ErWX2XJylkUc0Qmh1/g8Xm93wrSrwpUyaG+vqHJwGer/
iL2s0YGYdHX3OuHafapYTkgtU0j67ecx+wIxEB9UYeCq/dvVrat5Z+a5dHYPigpVVlSobZHbGRl0
8NMZOWKQN/KtF3Rlz6CGABpXcCu0HrE7zLuLY4PHb6KIA0K0g0Kf0TB950X74GoZ+X5H5w+V+8yd
hVUIhwsZDadIrf/nICj0dacvJyoqQ1wYuNT/+1POsBuF1eXrdivlQMDpmvtwIm238dAWGYtlPOdq
u5M6379YTccxkWe+qfPz5lPcQYzRO/ZybbOgvJFBZMsXWYpz9NxrRabOHfsiYpl4C9l4B6EhTqz5
ceF5RTOBMIYwUGucXF/gYlROWx8nGcTr1x8U+f13Rdqb8zxPjOGvK6JB1Da0/Nspk5v0dKoAMbKq
TuSqPxZZ/iHt6sFxABEaz7FuqgCL3QnvPuWcJ4nS7kdVnKY9eNAUghum9mGIkUgLhGthkBgJB9zJ
A8W7BxcDROVAPITYgUH0bODYhRsSRRlRRRvXHT9x7eCbI089NFzg9Nq/ReTwWyJnXe7/WURILb1T
pPlduy3+UnEGyjBIhIgB5PINujbjPDiwVf9+uaewsDivos4X10FcD2FG8cv5jKgTpOGaqNoAnZHF
6qy5IpOV5W/vJBmvO591Kz6nl52W2GBcbr/pavn1s9+Unbv3ytLzz5V4r3+o9mBvr9x63Ur5i099
TL72zz+QeCIuf/zhu6Rpcr2YUADtm7X+qeCj3jCcsjCmqQS4w+2d8utHfid/Z8/3v/zFn8jtN1wj
gz29Oc8f03E1Yi7HOtpkd8tR6e7Xy3+qR3daXl632V5PXTVw3ZbtyfdWv7tNFZkBcCq2Op9/beMb
0jipXgmbR5p1WMuuE81q+SBIQvzsiUYlZq/nQDQmT65eK3sOHpZjJ1pVQRvkYXl9/06przqo8mlW
hyvs7+uGSfOxk/LA489JTVVkiOgLcbK6ukrOntski84+U+pqqjNOhFz737tvKUQWja1PiFx8m92Z
nBHsjrzsHp3Ee/0vdSN0JJX/0Hm99lMi560MHpEFO1br8JjBIoRA4WaGkW2MorUdKWyZkXcsKK8N
wtmzhTohnAwjyn5i5PT5zvwLyMeEGzC2IVwAEJjxG6NZlfF0E9S43U7/fTnay7jgsmBXHq5xO1/J
U4gUfR0ZzaTuWZ2Rb+sOQpBQkw1co9AJzlaZt5j7B0nnF+cRog0nWndrYQNUQfeZyoD8lCh4MT9L
IRuIiAU57Epw7I9FBAq2ByY/IGBvfzZPIVJ0KpiKyPC3C0RAtHcghvjdu2fayz3rHB0mmK9o6BYy
yuagw3mFYwBOtNcf0OuczeWazz5yC0AECUhYV4iAiICp87leQURfeI0+//O9XunekH0tXK6FvKAc
4VhvTMXoWxYTtO8gSJ61PPf1F9FGi2+2H30KM+KaiZBn5MwdSxBx9N5anRMyqC2O6vZXfkyL8+gL
jCRKCqL00g+IXHqXdhUHgXsF8usWq5CmVQbH0kRpdxZj2+EajMlPjEQ/Vt3nC+g/IUdx9WR9zS7E
lX467ce8qmkbMgGckaUFTscVFy+SqrApv39tgyxbvCjwUFXux0RCbr32SvnGd38iP/3NY3KipVXu
+cBNsvCs+dJYXaUcfgn3ppLrxgs3o/1LqEJ9qqdXdu7ZLw/+7ll58vnV0tfXJ3fdfL0Y9u+gwrWR
ozEPZySKyRxsPSE/WfeCvHl4rxhh5yZofycSicgvH31KHnjsGb3s9kmF1/a1nZB9G1YP7cPY7z21
eq089/Jraj3x23jt1f3vqCl9FQy1XN/+8a8kZBpqPcQyxAqF5OE312edd/Pxk/LXf/dt9b0hYq0K
Q0/IWfPOkC985o/kQ++/XiKVFRQwxgrk/XrjKd0QDnJHwtVz6xd1biQIkhi9jxc4OorR9oZZItd8
SmTlJ+0by4zg70DY2/SwvaxHi7fPEXa+zV7vjhP5dT6x3BfcqLeRX6cbxztEx/7uocsKMRWNfL9O
MfINwR2CEfN8ck9huZZ90O7QLtPzhrsKzlU4KRAC5IZ+uUn4i5HMfTzk2SnWjXqsRpLLbbsVGr5j
jdH+KtdlxDkfJIgg/CzbdSPXeY/CMJGa0TlGcm0zN2/kvIsLD9VGvsiT+0aWYy+fcxTuJBSKCXK0
o3O98bfFy4t81ce18OK3391CNmfkKGQzHjueIyGfXILYP5jyOk8M3cbIt4J6tnnCDYfcehi49Ms/
iYgLpJ1BtEnH8eDfwr537/fZUIVinHDmbU+PLE8eBDFMQbnUlPNvu85bjdDZXGC5ILbt26wjVvIt
7FA/VeT864PzA6KtgvDh9qPl5YwE2LcQI/GYq82MgjAY8PYbjMCgMRyWI60MPVK620TeXaP3d5A7
EscsikuhY4t0QtgOhV6/DSdMH0IkIqMwwB8Ejoeda/XxNl7dfZzXyOaLnPeYcC/PBVJe4Hh6+4X8
RGvDGRzBsYjBUfQxT+3X7RrXlZ7sQ/UVb6BytO7Vfjqh5f/dCeqM9GwprwMyuREtH5dkDsekh5jd
Aa+aMknev+pyefip38vnPv6HUqlCtQPcQ/b3BgYGZfrUBvmrP/+EvPzaRvn77/xArrjkYll+0YWy
YE6TTJoyWSKRSgm77kfPfo3ZyzEwMCDtrW2y91CzrNu6XV56bb00Ta2XL9x3t/z9vz4g/dGo+h3D
R+CAoxFvP7h5rWw+uFvOWbhQFi5ahEyQYrq/anmOJmdeEAIT6lOpj4SUQGp4tnv2z7s6uOmGani3
qfN5iJ5evRxbwPTMK/3o1tvHDJvSdqpVtmzeJF/+5vflokXnyJKFC3I7I/0mUhyUO/L9+bkjMYp0
878XqZuiBUKMjPe15ydyoVENJ8AV94pc/uH8RkOxn3FjKZYr0gUhJ5d8UDcEIQL4OQlxDsw4y17u
j+jvBXWUEGIXzVJ9EyEmbYe1gyLXiDoaaVd8VIeioHJ40HGObYj1QC4fbwgoXCNKKDighU04rvZu
GLtwIEImMnBFBjmBIOblG0aMAZ18XNrIGV2oY7FQDjl5IydXFf693o7Sb/uLbtW5foPAfea1X+Qn
JOUDrvEIZW2c6/857EcIkntGoZBNuVNVl98xHcpzABttDgy0BrliXedgLiCMYZAPRXVynU84d3Ee
HLTbKpsf0alZ/Gg8Q+fHDCog6BawGgmGkf914NhOJwz5Cv9tMm+pjqo5vkcLtUGuSzjhMAi85OZg
xzBccAgfLtfz4aCzT3KJkVg/OJ79QBsPwm85rCPckWgjzlkcPMCFdUObEzkz196vBcLOPAf1MSCE
432JfU2++o/882l6+wDY1ipnfZuQCQqESPSJBm/OPfCJe8eF79PFZt58OjhCDLUKzrvWPhY/kX5N
cl3pmFBgD273917VZo8JwgQtYJNvtZqgyZBs+SV1jkdD7rx+hTz4zFp5fet2uf7KyyTe05vHddBS
xVhWXnaRcvE99NTv5aX1W+TVDVtk7pzZKtdjY8Nkqaup0aHUziIM2t/p7u2V5qPHZf+Ro3L06FGZ
PW2yfOSWK+Xjd7xPjrS0yv/5l1/klX8SVbDbe7pl++F9ahX/+n98Re6664MSjUnZinIIx4YYqwvu
4MDWeXsqK0PS3Nwsn/jIh2Xbli2ybvObsmTh/CzHgkh+1YvIiIFwteG3upGg8jeaAY0R+0Zw3Wf1
RXzdL+1O1Ot6BBuj7miQQojDiYAiMeg0oBGKzjgat7jozz7PP3eaF7gv0UEsJJw6Xy7/Q5GuUzoE
CoJdtsYUlhOVE2/5D3aHcWnwcr/1nH0DO5w9TAs3uF3r9Mien1MDjoNdr+qOOiqD5rqhIjcRGvez
Fw5dLoimmBAeChEXwiRu0EGX4Xwu1afLLadY6zmRtlsQk6brELVSVS3GOQSxaCThYWOxjKqKfcBB
AHchlg2OQb8wTwxYIFRuzvnB1yMUmQhVlvYYRocaefwmF7g93XyRpTyn0GGGQORXwRwg1BTOGzjK
iwXC7rGflJve9N+fuQrZjNX1b6yuWxjUDApxhsCLQU2IOX4CmOqY3qideEHiF0QSP+csfgvtnHOv
1u2ZXMDleM19+nzf/pw+lzM3IkRLFLpB++OiW/wHKXDvVgVOduXYXvH8UrK4xXW8Yg6WA1PmPHDt
OrhNd7yRw9pPlEKuSxzbr/5cCwUDWfpUeB8D3UtvE1n1mWABynXBQSAr12MYxwMGl8+/Lnd+U7+B
pYSTe/JwmRTawHGBwRgMiuB6GST245hdcosuNLXlCZ1CAFW5MZ9Yv3bx4txEHwCDBzgXEfaPgRcc
93BhBp2TLl0ndfTW3o1j2x6bCEVnynnbwUmMcwZ9tTkX5P4c+leX2P2iE7tFju/N3VZEuwhpBzAg
lHksuq50zAuDBXh/z4bTS3LLJrkMESML0d5E/MOODKFuA/r6Vaj2efOb5JePPS3XXLVcFYNJ+Dm6
nJFEOCj7o4MSCYfkY3feLLffsFJ27N4nm7a9Izt27ZV33tvtOAitZDVsEzci+/mLr22QFUvPk69+
8ROyaM4smTW90e4/hOS9A83JNJdBwDWpC9/oBi3m3Xb8mMTLddeieE5NjdTN1G4Ey77xdh09qors
VNjrEY32S0VFhR6sNY3inFBkZKz/tcj0BSLXflp3iPMBouIf/E8tZmJ0FI0zVGJEowTHP+aDXBxo
sCC/DsSxUAHjLWjYIBQEN4HBaPGPCbg8EXYOaz+qciJXEtwMECXRiMII8bR5Ijd9XjsPg/LpwMqv
QrRO5l4OvA+nDsTZXI1VbKNbvqAri6KYBUbmBno8TmZTd65xI73+T/07DACuUozq9XYWZ7uV4rOj
Ob5QzGWaKNst39/AsQ0BvFThLEit8NKPshdOKOdlhMiFRq1fJ+/8G0QW253wrlZnECIxtAMIhx8a
2ujU5+P2U9cYw3/bjPS4HE7eSG++yJEWV/H7PvLa4b4WdN/BPQbX/1gRq5fDdY97IjrgfgIWQA6+
M7MUshnLc3ks2lkQhTH5CRVwby27XeToe9qtmHkeY1/j/ghRBfdHDCIGNrJNPeVaV4To7X5dux4x
COvnjkSoKwY6GudpgQeDtG5EAtYLwhyuQRBlgiItIEIe9AmFjfZmFwAzwTJdcqfIG0/q9C0VznJY
cZ2eAFXXvezbogdO8Z1wxF/khPiKwn4YmMY+gWiA5cX2rKrV+wKRNys+HLy+EKIPbBN592UdPjxW
x3wQWL+DjkjsFzaaU2Br0d9va5ay4b3X7GPiZ/Y+mq0F43yu5difN/yZ3rcQitAPgJjd3aL7Ajg+
IOogsgjHIB7zFSHdNjUitzY/5t9+LcW9o1yOt3Kc11htu4Pb9SAFTDO5BnGSqQTs68/an+p2BlJ9
uQMuOK7R90O/FKnC0I/yvY/v167hU4ek7PEL087cbwH7cII6I3X7C8KgciJaugazpUZJtbNR/Wel
T/g8RLq01yW9qExSs7U/W1tVKffetkr+4cePyu7d+2TRgnkSRQXqXIRC0tHdo4qwNNTXJudbX1st
Ky6+QE2WZUjfQFR6evtlEA1Z5wcjlZUyqa5GbvzY5+WmlZfK+66/QgaOtUhvT2+qaItH8MwmhLrv
IBx61qQpsqRpvqzZ/ZZ89Ut/I8svX54WmV1uJ8TsuXPlL/7dF2RaQ73sO3BYvv/df5b2tlYJV4Sl
+cgR2bxhg5x5RpNcuWyxs+/cr1rJvzP3t2T+TYoHGvS//552Z6ABWlWX/3fRIFnWpF16xWzsbXzY
boQ8XtrQDHRcrvojnVBdVUl8R7t84FxEMZkFl2qxL6gzi+MReXfQwPQLJ4c78a3ndTVJvzB1/P5t
/1E3dCFuILcabqhorKNji47Winu1S8Sv0YjtiMqjcGuWY6N+wtzgJsh64rjNNz/bcICbLh+nX7kt
46G3tEvLz32Fa8z7/lyHRsJV1dOqE6lDwITDD6IarrHIb5RvlWU0ukMlbla2DyNvpJsvspipN7Jt
zwtu0KJL4LX75aGCTDHA4BP2e5AYOdMpZPPW88F5/UbzmjXa1y0cR5j89hk6mwjzhPsKg4j4vCo4
YOh2S+Mc7YZEYQyIH/mA4zbo2EXoMu7xEJeDUszgvvz+vxS58qM6bQtEU4DQbAg9WK6gtA04N/Zu
8nfPoYMNcRHtN7+BDiwPBjhxPkAsQpsNxVUglj/+t0OPfRT32/SI7vTjvPZz9mI9FtvH+LlX2Pvi
sHb3or2B17GeWN98XdMQ55D+B8JvuR/D2C+41qPwS1A00ZDvbtdTOaHcvM/q8wcD8PkMdrngfoQB
e0zFAoN3GESHUaIQx7g1Dq6H491lOVbbDsfB9ud1nscmH4c12ksQyOFU3/yoE4XRrq+TMJngmrb8
Hvuee6m/gxnHIITIYl2PyrE/kmO/hLMWrcncoZbP++N2y1hOu1A/t1SoRsh5tDw5CPV7EAGxobyv
Z7OI1lRXyfHjg6pqtDU4KHdef4X80/2PyC8ff0a+8lefs4/DkH0Njmdp75iqkvS6LdukadZ0aZxU
m3UDG4YlNZEKNWXtC9ivd3X1iPRHZcAZdccyV4RDEg6HpQOh4qY5RIjET3X19CQFuki4Qm5fcrls
PrRL9u7ZLS1HmqXS/n45inJYokq7I7DSbgBdcM45sv71dfLYL36hCuWAzv5eJSR/+t4P2u+fKbk9
w0MPdr3v9URhpMigQfrst/TIJfJuoCNb6nxj2cBNY6fdCFn9fbtRe2R09jMazZjQgRkOGD176Yfa
FRq0vK/9St9MF13r3yFBZxqhTZhQJRv5SxKDWsjMpwI5rg0QP99dW9xR5fHujBwrEXEiOCPHcr+U
8zKiU3X5PbpT7tf4hUhw53/T4X9w6iFEDUJW0wU6lDeoCEsmCI2DMFqsIhA5Q7ULzBvp5ou0Sniu
NJ6p3TjomPiBbbxrvS4AVuxjCPM9vksLyX7XereQDQaf3l1T/udaqWjeqY+NuYv9HXkQP67+uHY4
o6MJcRvt6Fnn6m1YaMoAtHUw+a0rnHpwaMEFuPzu4Hsw2lFuu6JQ0GmGOxFOxqACJ2i3YZrSlJ9g
5MUtbJM5f/SJ3l6tB6fh8gyatzsvCARNi4a37zHovO4BPQhd7NzWpTiGsV8w+IxCNX6Vx7MJHId3
iBzdVX73LLQTX39IF5JCTkecR4UKrcUAjl+kCljzb1oIssbZtY0FbEo3X7Sl3nxGD+z4mWZwT4WZ
BBPOOeQ1hdEE17N86xUgH+47L48PV2S2bZevMzJL225COiMtOB8THtEpR1Ga5OdC6UVOlDgFnSuz
MIvNRYvOlt+vXafCos+bN1uaZjTKfXffJD9+9En54M3Xy5KFZ6twbRUShQnzsP9GKPXWN3fI48+9
KJ+9904JI0R6GMLfkkXnyJa390hbW6dUV1ZKPBaTeCIus6ZNkTObptvL9rpcffkyMVEdGw0A+/dD
lRVytPmYvLFjpz6nnKrUsyc3Sl2kRrr6++Xacy+UMxtnSnRI8mPDjRT3HF2Z8fzZP1PM7zVW18mA
vd473j0gdQP98pFLV0nvYFSFnD+5fYM0d7TKJYvPg5yccSL4FbCR1OtUIksDRnsf+rJuGMKBAweR
OYqNEYzab3lc5LnvaOeMlSj+b0DsREchHCnO/LCtfl9AODlC8V6538lJsiTYIaE6NlW6o5X3RdXS
neAXHYG0GA2LiZIvstjbhJeq8SmMFHMZ0bGCsIAqqw0BjhMMQmCgIp9zXDmiwrk7jHCYuSkhcuWW
K8YxfLDAvJF++SKLtVwolJHP8sAVqar2luBe4+aihAMD4Y9+nOEUstld4kI2VhmfbxjUe/NZ7RKF
qOg3GIpjGtvsjAuDzxPkr1Nt+xxdLAjWaOugTRDzuYcjVyCcWlPn6hzY4crib4OEEzr98o9FdrwY
nBMSA7bIqZ2PYJgJBjqqc7h2IQgiMgU5TyH8or1SqsFptMngxITTNd8CUmOd9xT7BWIkHLMYiMkX
uEbxvXItxoJB7xf+VV+fr/mEjhDKt2BUUY6FDj0ggzb1e2vzy4k6Gm2Jcs2zOx7aYcXcdm4fEQN8
i2/Mb4AW12mIl3JG/v0ntAk2PqSNMafz/vN1RnrzQYqI72vWBDsJfI+fVJi2W536uiuWyQ9+9ah8
/8Gn5d9/8m4VNvyR21bJs69ukf/41X+U//y5T8niJedLQ0WFqoiNkPCOeEz27j0g3/j+/XLuvDly
z63XDXuZ7r39Rvnsf/1b+fnjq+XuW1dKvWmqHJRWZYUsmDNTfv7QE7Lqikvk4iUXSp29yLjsnmjr
lR/f/4Ds2LVPt7lQpdr+Xsy+KLvuwivPOl+umL9IujOq9qrclY54mXCqdLsVrhOOwxSfMRwFMeE0
wHN/z3CqZmf5HlJEmfq11Pck+bn+wUGJW3Gpr6iTG89fqg5QBJ+v3/euEiMHB2P++zIjJHuIC5Sd
/NKApL+//bLOfXjZB/MLKRop9jmnGtRrf2Y3wn9SvIqm2UDn0K12iGqbI2lgY7QNNyw02gvJcbTx
Ed3Au/nzOsynmNvXFSKf+JrdsXtO5+4p5k1svI1Sl8MyTbTtVup9Yo3DZXzlZzo8CPnT8nE2B3WE
ka8MnXgkc8/l/oPbC86A/W+MvDiL33bHIFZ3nnkjVfGGgHyRIxXMkKvuguuCHRC477z7in0dbynd
MbXjZZHLP6zDHv22jbeQzfE95XUsjybvrNEFptB5DCo8FLjsCR36i7YFXMdTc1Q2R3sAjj6EMyPv
oR/IpYg2CsK6MZhYSA68fO7dcNwh5+zWJ3UoehDIKX1st27P+LmuswExElOufQxH0Cs/1cuF9D1T
zyiuMIX5wpmM9tOLPxA58u74OoaR1ufAmzrvXD5tOKyvqsS9vbzvYWh/Y3+gfbvq01rwLyR103Dv
aXA4b3taZPX/09tpvF7b6Iws7Xx3b7Dvpd/R17sLri88YiToHIUQCcMIrn2l7IuWetv5OSP9XpcJ
Xk07FaLtik9DQ7S9W8wSZYcUvzDtxsl18jef/5T8zde/K0dP/khuvuoSmTGtQRadPU9+9Jtn5Mu9
vXLdVcvl3HlzZerUKdLb2yfv7DkgT61eIyF7/r/+zv+RuprIsM+8yy48V/7sY3fL9371iLy375Bc
cfEiJfJteWePbN6xR2bOXSBf+dYP5KarL5fFC8+SHvv312zYKg/97jmZPLlB+vv6lBBpZjZi8XfI
EMvjiAiFTGnr7pLWni6Z0zhdIuGwyr95uP2UWvymKVPVvKKxQTnS1iINNfXSWFuntmFbr/09+7tN
U6ZJVYVubBy2PwNxdk7jNCUwIsz8cOtJmVxTK1PrJ4thz7u9r1dOdrbLGY34XqXaV80dbTJoN/Ln
2PMKGyFt4LAXIGT/dtLsmuUMsLLua+eYkISwivYoglHbJ79uN8zf0bk35jmhT8UeIUVnEBd7OAHW
/UrkjadHljMrn8MDnQ2Igas+pRPho8NaqPvTvWFBPEWjrf1Y4cu6/kG9vKvu00n2ixEWD0cN8qr8
7h91BUI4c8ZDZ5andflvN+s02WZjBUIpX/o37cBCQa/hihhI6o9O8NP/V4st93zFPxQZjfUtvxPp
bi3dBmpz8kaemUfeSHQ4VVGuEuaLxPZFxeUggQDLDKG2lNdJuOmQRL/pvOBOE5yREJUwIFiqfVXu
5zFyI+PeBefLpXdq595w7ovIpXhyv8irv9DCxnV/kluMBBgUhLiI8Fm/jYTjFuHaWM4b/lQ7JHH+
jfjeHdU5F9fcr9sn+YYqI4IEA6wLr7LXb15hy4HlDkpjgOMXA5t4XPnHOoQ+6Dv5gO0Il+Drv9Ht
qPESCpl5LUPeTaxHPuH4KEQIIVKd32UOjj/sG6QLueqjupJ8Y9PIB9IygQiJ/gYGYJAfHWHicEiP
TE4o7+tgvsURrTKcV7ncQzAo5F5HEEmi+nGhER6LMd2WWftznSKgnApMlaodkNMZKZJ/JW3vgTOu
q2anwrNVGLaVkTPS87oSplDoRlvwdJEb00iF8hrifD4VubTy0gvlsx+9S7741W9LS6+lcjXW1tTI
tGnT5NLFC6Wvp1u+9I//ImfMnSszZ86QqVOnSU19gyyYUS9zZ00bUXVDLObnPvZBeWPHe/LbFzbK
rhPapRSNDkrzyVb5yle+Js8+86z8w3d+KMuWLZVJk+qlsXGazJgxQw4dOaJ+O2SfYMp96Jlvjb38
kybZDYKKlH5dUxmRh7a+Ji/t3CZ/9f4/lBVnLZKTXe3yo9eeV9vlS3d+XGY3TJV1u3fIt1Y/Ltcs
XCJ/ev0H1Cb73Y6N8tz2TfL5G++SVYsukpauLvnphhelN9ovX73nPpk1uVG27N8l//zSE7Li7Avk
czfeIRX2cj219jl5atsG+Ysb71Tfa7O35c9eeEQ6errkf9z9SZk1qUEG4toB6VYcD4VCnt1ueTav
NWRfZ4Zq65D8hFPciHpFSUGewvW/Fdn+e53v7NI7dKhw3TTdkR5J4xs3EHSO4e7Z8oQeGYcoWYpQ
uVyd58f/Xjcml31AJ2qvyDNsGx1XOBEgnq57UM9juECQhBB77X0i51+rOxPozBe6beGQhjiKeeEm
ijwnhTgiS5WjsBxDAgtplFncbmUnYOTaluNhGRF2ibDqlR8XOWeFdsvlW2AGKSDg8EIeQtc5AnGr
tVlfv3I1xDHQgTx3uGZlC/8t1jGM5VmUR97IgwH5IgvdxpnzUQVObsmvAMOOl7RIXMpjJzaoHern
rQwWLNxCNm+WSSGbsRr/PfS2yAvf04IIQvEgIuYr3iN1AfbpgTdEXv2lLiIEsP0h+OVKzwJXJIrT
RJ4LFqfhWNz2rG6zIIQZ9258fzgOHSwv2kI4L5BPetszWujM+/txXdQBhUeQ5w/h2vkOGmObVmKZ
Tf+2F1zM2JbIdXjNH2vhE4PTcFWaBXpoIBJ3nBDZv1WLXchN2dc5fo9hpKjAvoN4HtRugwgJF3kp
B2KKCY5z5BzHgA0Enys+rO8nk2foY30k4g/uRbjGnTxgX4ftY2DDw1rwLlVY9mi2s+iMHJ3PvrfO
bhPZ/Z4VHxK55A7dDqquLzzPKe4LuGdAEEdfdNOj48sRmWvb0Rk5jG2YFo6bei3zMa1Sdtrr6fNy
Q4e1IGjIheeeJbNnzZS//OJfyvRZs6XSvob++ec+Lzdfs0I+cN0KefrF1+T2D9wmd//Bh2T+nJny
T//yPXlrwytFO0LOnjdbll60RL7y5S9JqLJKWltOyL0f+ajse2aNnBnT4uhnPvMZuWTZJTJrxlT5
5H2flt27dQW+sCNGelfSMHXotuk4ugxnPd84tEf2txyXA/a06ryLVH7Jzfvfk3BFhbT0dMqipnmy
5+RR2ddyTOqqq9X3Efr95qG96nt77fduu/gK9fjWkf3S1dcr7X09smD6bDnU1qK+W19doxyTlZEK
2WZ/78Cp47LreLPcvOQy6RsclM0HdklftF+Od7bJ/OkzJdbvCQV3llNvlWxVtK0sx4awgvZYglFL
5B6EWwEdg4VX252qBTppN0LL0LiPVOtCCdkaY2h0oCM90Ks7oZgwmo9ONRre6GCPZgPEK0g+9ne6
YiXEAQityQZ2aKgQgA4DQor2btZhWnC7FCO314FtIg/8tcjFt+o8nbPO1rnelGuhPnvHAuIjOjFo
1GL/ICfd5ie02DGchj1uxHBb+d2AVdXSAtcXywfBOYhihpIXY13h3Mon/+dE2W75Lk+p8duW42EZ
AYQDXHOuvFfk0g9qEQHXHAgDaiDCHNph6zqlHd0bHtLiinuO432c88gp6yeE4LoGR0u25crnGIbz
Ox7zX+99m/W1cWpAXiaE4QblS+vr0gMrEC4KPUexDeEyh6MnKF8uEuF3tpT+mEDS/V2v5+d2g5sT
glKpxEhcMyCKVE8e2XFcaiDwPPS/dBg9nFlzztf3RISLYuDQK4LB0YJjBueJyjv5nB7k9LrtcGzi
2PPLI4ptD4dNvk5ZiDRH7ON04ZW6QwxnJXK01k3JLdagHYvjGucwiiZhGbGOWN5j7w2/LfPij7TI
p1LrnK3bZ6gcm9kxx2/jOMT2wrmP72JAJGhfo42GcxxFhubZ67nkJpGzLtMDqLUNTkXyyND2CtYX
bT+c864D7o1ndOX4kXT4248Hh/KOxjGsBMYdIhfd4i+YQ+yFcHno7fHXB8DxgvY/3Gjn2sf6hTdo
pzdc/tj3ONbd/Z9NCML5qfoAffq4w7UNuU5xPOF+BoG2WPsJwnlQOwD7rNC2E5YPx1PQMdd+vDjL
qNKwdJbfvMZ622UC9/sz39a5HS+7S0dnqH5cg3OvyGLugPg46Ezoj+K6i3sG8hWPR4f2SITLgqpp
+1XR9n7eS76vlYkQmXqeHpqdWV07ezVt8bxuOgVVkL/QTK5wXW21DESjMv/MebL44qXSeuKo+kx/
f79y2U1rnCxnNM2WpUsvFquvWwYGBlSIs1Ukp9bUKQ0Sje6UCxcttNsp02Trpo32vT1h9y/2igmH
Zywu5513rlxs/37nqRMSHRiUCjHFXgoV3myIkVW8Ta6/I76annDThCPSQvwLJXM9pvJpQhxMCbYp
UVMcN6orHqr8314hVLk0dY7IpMCIfZHQHw458zcyRWZfO0v6Qa33pZU8HtJfZzXtMQEOnDU/1dOk
6TpX2YJL9HM4FyBMovGNBjD2/mCfLgqFBiganSpx93YtvsFNOBYCpGRcQ+Fa2Wo3st55RY/4XnST
DkNCoxJ5xzAyjE44cuegqh8ch7hZ5yNUFST22B2EjY/qado83eDD9m1aqDuN7nbF72J50NFGZwbb
FJ0shAqNRJiCKAyBxM9Rgf3Ydaqw8w439of/d7CrBaHlo3U+57Ou6IxCgLG43QpanlLjty3HwzK6
IL/i89+zO2Iv6nxc8xbrHHloRKNzh+sSzvOeVu0gggMg1zmOXJRIbxF0DGIAwxrmMYzrX5CbEddH
3COCtj/EDyyP37zQYf/NV/zd6rnOUdxXnv5WfscBzp/RcCkh//IjX3XCeQNcG1geFSVQomWBqP3k
N4NdfMO5bpVCBMEgG+5xSBVzxgXaPQpnVu1U3clExxLHAvINQizBZ7OJXBAiIaT5HRdIgVCoUxb7
663V2kEGdyQEurMu1S5Y/BbOKxzHOC4hBLqpaSDAQMxEB72rCII4OvKrfyiy/QXtAj3ncr086JBD
uI0PpH4bbRhsLxTdK7TzjX2C6xEmCLf4nfnL9LXLFQEgAKCNjvXFeuM33MEK/HYxqmUj9cSejWN/
DKsBow59HPgdW/gMQrSDqqOXM7hvob2MCdey2Xb7dP5SfZzBiY7zEoI+DArhCqe9at/Lot1aKMe1
H8cdXMulEopxTgW1A3CeF3qNxXH08v0imx4PuNbnMd98ljHf+8Boz2ust1020E/zXpNwDcZx6RpM
MNjipo/BNQnXePwWrru4/ua6Z4xXgTFbf1d8HrN8d2I6Iy2lnKU7IS1xwnVT0QOWE34NHdJyowoM
57uG5bzh0Wft1+EgBLWRSiVGtraeUjflaFSLCe5vNE6ul+aj9sEY65PBeHzoThwhTTOmycmWU3Kq
tU3qJk2SwcFB1ZAKV0WU0xC5IVtO2BfrxIAqcKMKyDgCZNgpEhOg6Kr5oeL2jEkN0lg3SeL2BkIF
b4Rmh0Mhqa+qkQG7kzPVfg+faWrQjTnMGd+bXt+g3huwGw/VlVUy0/5MbSSiwr/hnmyorVPfmzG5
Qed/xPca9PemT5qsitpE7BsQfq+nv0+tV9xPcMpmGfbs91T0vqX3cSJYzSejBC7mnS9rcS4TlbfI
1GHDsej4WB9V9fQVPbmgMwE3JES/0QofB2istmQ4etChQYMPN89SLI/anyeLvy4QWcvBrVaqdZ0o
260c9+N4XMYhwtBOPW18OP36iY4rrkn5nOcjPQaLdQwXc/v3O87I0+k4aDlYJve67uKIQaOJKkLT
rIVzFzdHWL4Dm7hvljIcGMIKjjtMCLd2gWiDDrHbiS/1ICycQpiQ90x1fqZoQRJCUrTI+x3b3hWn
kr3YSr2+2B6l7OBj3uUgIKDI0syztLvdD4hwGGQZq0H4YoNzCYNYmDLBuYlBdEQSlfKcG83z3HX3
FcM5V8xlLNd5lWrb5XNNwn3Ce6/AfcJ1xI/GNXi86G6SW08ZWk3bkzIvpzOy3PMnBW0Tz8p5nZBw
OWpnXCLNEQdXZHIS1yHpvq4dkTpU23TCgC2prq6QqqoK6ersTLPsus69KZPrpd1+Lz4Q87gQi6dG
NjbUS6c9/2h0IO336yojMrPWvmjHEtLR0a7fc95OiO6IQEg08jiuUG377ktXyvlN82TxGfOldyAq
k6pr5HM33KHeh5DY0dsjS+edLZ+85mZZOHOuEgshdN6x9EpZMG2WLJt/rnT29cqkmlq5z/4MhFkI
lD3Rfjl/9jy5b+UtsmDGbN2mHRiQDyxdIXMbp8vyBQvt3+uXmkhEPrvq/fbzAVXAJgrRNfeOFydA
O7kWluc11x2ZVsjG6wilIFmelEunK+iECTp+yinJOJxSx3bz2CKE109CyGiE1xcDhD72do7d70OE
7G4bvd+DS6llgoQ6or+GsFAUnvLLnwjxA65IhHNbE+TcHC/nJzn9gcGstfn0X8/hOCNzGLzCVp6/
kzYvr3g5TreglRGarSaIkGkhu85zMdIFSccqmRIknVDiZKi2SKSyQhom1UlrW7v6jYygZ2mcPEna
29skFotJKC2hfHHuHPXVVdLX3ydRexKnGA2WYVKkRqbW1kt1qEJOtXWosNbMkOxwlgI22YDrETkh
l8xboITCgcFBVYX7xgsvUb8GsTCeiCmB8kPLr5XBWFxV1sY6njtrjlxwxjz1vUH7Nfze9ecvU8vS
NxhV866rqpZ7ll+jRM9+iIz2hj57RpMSP6P4PXvb4XsojINwcYihCcsK2O+JtFyh3n2dEiAdETpD
lCaEEEIIIYSQUQUOwAuv1zk0/YBbC67I0yEUlBAybrHcf/J1RibdkBkmPa9L0vLOxDuzcVZZO+ly
c0J0k8Jjwvk7+ahzIKaHausQbZXF0MBndD5DyzSSodoqHNoMyaS6Omnt6FAhv+521ZWZLZk1faps
ePewEvBqK1K5k4qledVUR6QyHJLurq40ZyRCmxGOXRep1ssWS9mHE85OdKtpB4E1hmg4ENNuRFfA
hCiY/Iz9GkKue/r7k4eKZPke6Mv4HnJEwiGZ/J792mAspqa07w0OFHxSuEVqks/d40DtH+/+Tz3S
GUmGfTW2hMcPIYQQQggpDBQXRAXfi98fnJ/2wJt6YpuTEFLKvm2u/q54ikOLR0fM0R8OZ86vkALC
md+zjPFjmEy5Hs3Uc3tKqKIrCTWpvyFOmemuSFWURb3vbmTtjoTH0HTCuFEkZnJttbS3tnmSTbpF
VSyZOW2qtJx6UwYGY1JnpBTgYjnwqqsiqohOa0dn2k7Br6MIDBySrada1Pqlqk07B4VpimGchueN
uz8td1tbTtEdy3lP73sroV/HZ70TIYQQQgghhBQN5OnGhAIscSfdFCLtUAijfqrIBatEVn1SZPa5
/vNBJXEUBmneyW1KCBlbrKFPs3lzwnl83/f98Ri2rUQn00o54vB3QjwClOm8lvobn1d/wxVpOLIj
nJGm/q4KxdY6ZFLImzl9qhw/fkxtIMP72/bfyOnY3tGhnJFJMTCjivRIqKwIyySIkW26iqR396AY
TENNnRw7flzi8URygd1fDuEGeBqOqKntm1G4yBUjEwlJuiBT+91K7i88ElLwhZIQQgghhJBcNM7R
4dcwpLhFPUKVIg0zRRZeKbLkRpGpc4Pnc/gdkV3rR7+QCyGEZOsWW8F95nDyTU8hG2XOM90wVmNo
0kmfsOzx4JBMyweZzP0IR5ypw3Qt1w0XtyfDeW4/2iuVMFI1X1zRES5IiFnIl5hQ4do6ZLu+tlqO
trXZ2yMkhmk6m0//bmXYlO6eboljBCzkhkUXzxkZDpkqVBxFbFRAtekGSGsxsipcoYTKhLP8qki4
812EacM9aTr5L9U62s/xvZBpjpsTwl1+V+zFQ6pITeo4SHhCtBOJVI5I7H99XDjOSApPZCRXZx4/
hBBCCCHECxyPt/+lyNnLhz+PgT6R3RtEDmxne5MQUvp+beafGWkdrVx2yGxh2vn81nDcj+53yk2Y
1AKToYTIpNCYDMdNf255X1dipKHELa8YCZekmAjtdsK07Te6e/tlx+79cvHyq8UyjGSRGMPeKHAj
bntnjzTNmi1VkSqJewuqFMGBB3Ht4JHj0tbZLTOmTxdvhDFcfl3RPjnS1SrL514iobB9CAxG074P
DW8wHlOFY1xQBRuvufkaxwOmEXK2q96mg4OD0tHV42jpllTY647JckOznX2NHJfYRwzTJoQQQggh
hJSMvm6R/u6RdGxFDr8tsv0FkbZmbk9CyKiRVlMm47m35IaVw5gTdgVDb6GabEVsXDekW9BFAiJ5
yzly290wOh+kmSxmkgzJTgpQZtIhiUrtWoBMiZFJ+df+rmmZ2hlpaRfiq1veltfffFfuvOejsnHT
Rmk9eUq6e3uloqJCWtu75BePPy9Xrlwlu/fsFWvXbjly5IiaYzFEr31Hjsv//clvZMBeJvzexg3r
ZcfbO1Tl7s3Ne2T7iUOyp+uk/NHZZ8vmrVulq7NTOjpTlv7m9lPy1NubpKOvJ1kcZt3uHXKyq0NV
vx4vuI7IU1163V54dZMcPnIsqSKf2TRLrrrkAu0KTTj5QtNESC0cx+mMJL5X4BJ8lhBCCCGEnP70
dOhpuJ3a9qMiGx8X2bWBbU1CyOj3f60s1bM9kddWZmFsD2H3Opas9ixZKmtn+d2kiCnBEYjue+Ui
ThquM9JIuSAt5XxMhWTH43ElLpqG1wGZCtF2SsE428LQ7jpTC5KG/ffmt3fKWXObZPULz8qal56X
wcGYVIcNmT29UQ40n1Ai4dHD++WfvvkN9VvHT5yQyy48WwmfI+XZtZvk0edfkckNDfK1r39d7aye
3j614M/v364+E6mKyEO/fUgef+wxicXicvDgQamt1hXa9reflB+uf06vs70+eP3J7fYNbvt4PWP0
OvzysedSr9jrdcniRXLpheeqkHkIkfEMZ6R+jKupGPuFTOALNhuHhBBCCCEkk97O4ed57Dwp8vLP
RdY+INLdxm1JCCl9v1ZyF9TO+p6Vuyuc2xmZUYLbm0fSLcdiDYkXt1Q4sp8rEt8xjLEVKCMSl2hC
53fUodo6N6ShxEjtgjQdYVI5Ih0BEnJUmhjp5p403Erb+jnmc/eNV8vlS85TocGGk4ezpnaVnDNv
tgp1/t9f/LT09PQmd5dphuS8s+Yp4WukLDyzSe686Rrpj0YlHnPmN7laFp05K+1zAx6X4/yZF4kZ
CiX3o7uDUsV1xrGa4jhZ3RyRevUsWWRv71DIUCHoygWZQ4xMOBMFJVKMizchhBBCCCGKvi49FQJq
DkCIXP+wyJpfiLQyPJsQUvourJWtSrZHhbQci6TXDel9L1NTyu2MzHA9WlneExnqjMyM8hYr5SxM
6pye18aCqsSA9JuhVJ5AQ4fpQoCM23+YyhmJv+NafIw7RWnwfjyV/zElRpqOGOkU77H/nj97uiyY
MzNVPMXz+5FwRFYsXph12RAmPFKuXnq+cvzF4onxVOS8xKdO6gRwq2jXVkWSQqQrQrqipBYj42p/
qIrjSAxNSCadLSIth+wraST3Z3raReJ01hJCCCGEkAyQLxLuSDhXjIBCoeiPdJwUObZLZOuzIpue
EDl1iNuQEFJyrCyuyORr1lBx0lvMZkhuSYchzkhcBy3T87dnBt4Zqb8dt6R3YVzXY6bgmMstORZm
oRqJSptVJQnLLUxjKAFK5YKMi8RRXdp+YuKe4DojDee5aIekVnwNCUHcMrUnVIlcBlyV9iNq2th/
p4mRbrj3KCixFSHDnkIT/IRJl+4t8VZSt5RrFXvO64rMFCPVc/sx0tcpFp1tJJMNj4qxZ7N9suc+
16xDb9sNzR46IwkhhBBCSDoYsD66S4y3XhKpnmR34irtKWJPVfZ7MZHBfl1sFI8th8Ta/qLIW6vp
hiSEjC45YrO9QuMQ7dCbM1Ic/dBDmjMyGXIs6cpm0g3peRQjXaBUk5EK1U5b3jIIzfYyOdYjh8L1
YlpOjkgVku3kjIRLEnkCRYdqe/NEupOlhEhTQiFTbTMlSGJe9n+miXkk9LwlkSx4I+LJPWkYPJhH
43zxqIdeV6TlWIdVrlA8Wok0d6RbSdsbql3Z38kNSobyzlpqjIQQQgghZPi8+qBY6x6yO6kzRSZN
0xOewzXZcdyeToi0H2ekFiFkbLCG/pnmhhRPiLaki5LJrwc5I91ckd7KN8mZeR2TkiFCytAFsQx/
0THTZTaa+tzM3uOyvW6mEg1VJeVk+LUkw7Kx9Olh2s76KPHRtLdFSAuRcEWaCOk2tRCJMG88xp2q
24ZkFSST6y0UJot7nlhZj7OUI1KSgiQESF1F3UoKkimHZEIV9sHfsXhc6tsO0dlGCCGEEEIIKT5w
SMLtSMcjIaQMyBYVamX5w1tJ2xuaLRlVtH2raac5H8UrKjohyJmvWYbHDZmajMwV8CSQLBd35Jnt
e8WsuVC5ICEGKlEy6Yo0dKEa3BMMT8EaZ8u5QlbIFbXsJ3BBIjQbj5iPmTCSAmRSjMxY4yGiJN2S
IzxZLN+TR7shrSF5I4eIkfGEqoyOR4iQyhkZi8mUY+9yIxNCCCGEEEIIIeT0xUeITDMlegTJNMNi
FhES2ktmdZTwkDyQuXJHSg5XZMIRJM2hAmZyyTIEycz1M0RGNR9fTX+HzJQeaU7UOWKkFgNd8VEt
k5Mj0l1Y5IVUT01H1DLhijTt9bfnYD8ipNs0tTtSF7sRjyDpui4zBUkKkCU7f9JCtK0h+SItp6J2
mjvSU1XbW1G7qrdd6tqODslxQAghhBBCCCGEEHK6YWX5O1OMTD230vTChDMFOiOTM/bMVLkErYwK
2s6jmrEgp2LGdzAjN9Tb/sc0sguSyUIuOVZyNDi/Z680K3ckitd4lsl9jLsiqV5D5IhUjypPpKke
EwktPqrJCdNGJW3MA8Jk0hkpboh2SnykDjkKJ48nRFsfZylnpJsvEi5IN3+kW007YXnzRSak6dh2
MRKDjNImhBBCCCGEEELIhCGXKzLwuWiN0NUKhzojZajgmMgUHrO8bolbtMVT3CUj1BtWzJyCpMiY
xmovPLlDts1bIC1WvRKikuJg3Jv/UhenUc9D2kEXt0IqT2RIrVsi6YZMPndCvk0zkRaenVm8hq7I
UThpPKH1qZMn5YTMGartcUVGop3SdHAzhUhCCCGEEEIIIYRMHLIUqsk0JKYiUdPdkAlPiHZWZ6T9
Qsx+LZxSLD35IN0vQ6hRxVns56akHkXriaazMAn3BUd4NI2heSPTk0qO3TY1E4OytGu3vDhpicTN
kBiOTGt4NzqmkPunlaqcDVek5YZmp1yRphOunVm4xp1nphBJPbKE50ymK3JIqLZkiJEJncfAU8RG
4jGZd3S7VPT3UIwkhBBCCCGEEELIhCFNiJRsLkgrGTmdsIaGaCcyJi9hU6zOhGU0mm5YtscNmfyS
5Hq0lPMvnizy4miRhjfc2/6MJak8ipbHRSljW8jm7FM7ZX/VLNldOUOcutqere4pA+QKVkZCEqGQ
hOyVN1UFbSdfZLKadsIjRqZESRGPAJnDKUmKdLKk5Yp0TxyPIGml545Md0a64dv2Yzwu07qOyNyD
myhEEkIIIYQQQgghZMLgFSJliCPSSnNHerXDZIi2W7gmJUamSSthw5Au+8VGb1j2EEHScGaC/IpO
ERrDSlWaxnNV68UjSor7t6Udknrp9QcsSYmSyY+OgSYHd+RVJzZIz4yrpblyimiPp7PBnarZqSrM
lnI/KqEqGZrtKVrjPHdzRLrP9brlL0RSnCzwBMlR+cgbmq2PPivtNSU6enJIWp4wbUz1fafkgt0v
SXiwn2IkIYQQQgghhBBCTnu8Ekv2EG3LE6KdYVh0pvhQV2Tcnvq9vxMOiXHS/uCZ3pmrfHrZwrK9
j4b+wTicj8mwZEklkHRsj65TUoVzOy5JEY9TMmOFR1uKq+nrlGtObZXVUy+RU5UNSlRV28FM5bp0
BSvTMpxHe0o4Idr2cyPuPPfkiTRM7bLMDMnOVszGC8XIQk8UK/C9lDMy9bqVsNLyRybcv+2DG9XW
Lzi0Xmo7T1CIJIQQQgghhBBCyGmNleNvb0h2mm7oefSKkfHkY5orcjCRsDq880eY9tEECtF4qmTj
edxxNHofDSUmGskwa9fdGPcEXCcX2MkXaXo+J+J5TAqTRsbro7/RG7qPyXWyRdY1LJZj1dMkboRT
65MM64XwaCrRKhWW7QiQYqTckU41bTdM27tOmQ7JfJRXipMZJ4RlFXQmeUO00/eno+ZbiaQgadjP
J/e2yPlHt8rUk7uGVHsihBBCCCGEEEIIOd3IlFpcF6T7XmbeyDQx0hUgRWuH8YSVFCYdcTIqhrR4
5x8OGcYhHbaaKkqjn8NHCZENMxIxTIQ1O45Ixx0ZT3ND6rhty/k7mTcy6YrUC21k5Jc0nJUzPEVu
xkJ+a+g8Ktf3dcrrsy+T5sg06ZVqpeRahlPQxzJ1KK9yQxra5em4I9PFyERaARu9bhkipOQnulKI
zHWSWAWdTEMFyfQCNvgjEuuThu6TsvjweqnrOkkhkhBCCCGEEEIIIac9OV2ROapp53JFus/jQ6eo
/YWT3t8IhwxrjSXG56ABep2R7vO4Iw6ajsrpdUeKOKKalVpky+OQdCdP1PaQaUieSRm7ojYVAz1y
5aHXZN+MRbI7Mks6qhqk34zY622Km1PTUO5ILGPCI0C6OSONdEekZHdIJtczQGw0hGJk9hMlWIzM
WsjGdUR6PhOJR6W2r13mdB2WeUfelHCsX+c/JYQQQgghhBBCCJkAZBMkUwav3GIkHuOeEG1ETiuH
pOd1+3udplhve+cfnlw/8Fjrqcgp+wPTTCOjYrYB55iRJkrqkGsrJZThTVMywmKN/MRI541MyW1M
Jbj4oCw4ul3OCL8ne2YuliPhKdJXUS0DFbUSM0P29girytsGcmpa2gGZDM1OOGKkux45Kmrngk7I
YZ40AU5Jy3MGhRMxCVtxVZgmEu2WmdFWmXvsLYn06fQFFCIJIYQQQgghhBAykQhyRwY5I90cka4I
GUskXZGI2j5kVFqveOev1K+fLa/8TU/c+FDI/gtT2FDJJJ3nhnoedl4POe+Fnffc73gniJrQJ1W1
6eTzlACZJkZKmYmRWeiony3HJjdJd6hWes1KGZBQKi8kltfUVbjdStruc8lRRTsXlCKLc9IMed/5
QNg+Leri/VI90CsN3SdkStshMRKD3ICEEEIIIYQQQgiZsGQVI7MIkdnEyKQQ6fztCpEx7Yxst8S6
f+WL/V/wzh+VWiQSkt92x6y7EmKEXXek64RMwGJppQcMpwrS6LBsK2OBQ+Ip+e28j3l6UkumPRdJ
F+LKTZSr6zwq59gTOb1gXkhCCCGEEEIIIYRMdDJ1vTQhUjxiZJo70koKkGmh2o4QifozCbFOhC1r
TebvKTESododA5W74yKLElbKuahzROpfM7xVr93Q7ORipvJEmp5HNdnfTVbUdp2EGYKkSG6XZC7o
IiSEEEIIIYQQQgghJDdWIZ/LKFqjHh3B0bJc02H24jVDC9dYUfs774SrjNWZv6XEyFuel/4HVhj/
3DZgfSMhRlUy56EzM/08JToqHEHS64DEAoScStrJ8GzRgqMWJK0MV6Qnv2KGKJkJxUdCCCGEEEII
IYQQQoaPlePFISKk8w8ipv3CtJMh2smckZZyRdp/NocM69HLn4u2Z/5c2H0yZVL0xz1tlfcOJORa
91fjnkrZKe9j6hl+1TLcSTsglSgpOlTbdByQpqTclqY3NNuy0vJI6teybywWdyGEEEIIIYQQQggh
ZJhYbuHprG+lHrOEaafckbmdkQnLcoXJPvvppnDEeCzbb6UpfA9eEbnj1ID1U/vlBm8xmqFFaoxk
MZtshWtCbuEaV4j0PHqL13gra4vQFUkIIYQQQgghhBBCSCkpxB2ZTYj0q6ZtP8btD7xVYVh/c92a
6JPZfirs/ePD66NP/Nvyyp/3xaw/SYhR7b5uZF1sI00ldUO0dQEcSzkgtSBpeMK0PUKkJYGuSJoh
CSGEEEIIIYQQQggpMlaOKtqSvZp2dmekleGMVB85FjLkkbpJ0edz/XQ484XZDQP/6XBrZE40Yd0h
YoQzF0jcHzfsXzAMFaKdcJyRKo2klXJT6nyRngI2YiSfA68o6f7txbB4bBBCCCGEEEIIIYQQUmys
jD+yFa8ZKkhaSUekK0zGU+HabaZhPVJVaXz7st/JQK7fzeo9fOjKigUtUeNn9syuNAzD9IZr6zDs
9BBuuB/d97zh2e5zb2i2G67t/jgEylyVtGmMJIQQQgghhBBCCCGk+GR1RnoESPEpXpN0SKbCtbsM
kadqw/Lfrn+5f6/f7+bU+357VWTZiT7r2/bTyw3DqMwUI80MgdINyc4mSHrDsU1vWLb7aKTnjhTP
64QQQgghhBBCCCGEkOJhZSiRQyKiZahDMpH90bIfOwxDnq0Nyz+87+X+LUG/7Sv3wSF5asD4VtyS
6+2P1mU6HnO7IY2chWvSxMg0h6RnoYwRLDQhhBBCCCGEEEIIIURhBbxpZfmsZQ0tZJNFiIQp8oQh
1qO1YePrN67xd0S6BOp6j62ondISj31tMGHdaokx2/5COFsottcFmXrNyOmINHI4JPNZKIqRhBBC
CCGEEEIIIYT4YxXwvtctmXRGZuSN9AiRUVOsvaZhPFwXkW+878X+tnyXKW9d75crIn/eOWD9gWHI
YkuMmYauRZM1P6SZ0xGpfy4zLJs5IwkhhBBCCCGEEEIIGT1yVdOWHGHals4hOWCINBuGvBExjV9V
1PQ/esvzuYvVZKMgvQ8uyR4r/iedg4nbTNM4x16A6fYcqjJDsnOFaAeJkEbG4jBnJCGEEEIIIYQQ
QgghRcbKJkamXskI00Y4dq/95KQY8m61KQ/VRoyHC3FDehmW3AdRsk9i93bHrFUxy1hgGjLLnlGj
ky6yWiTlmswWkj2SEO2irQQhhBBCCCGEEEIIIacZ1ki+o0XImCHSb/8Vt59DcDwSMqx3I4b5ckUo
8fxtaweOjWT5RqzjPXZNZHb/QOLW/rh5hT23ioG41WQZRiRNjJTsxWqGOiOHuRJUIwkhhBBCCCGE
EEIIGVIpO+/vOQ+GSG+FKcfsx54Kw9hSKcaLt63rO8gtSwghhBBCCCGEEEIIIYQQQgghhBBCCCGE
EEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBC
CCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh
hBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELy5P8L
MAChisOdlmRgOQAAAABJRU5ErkJggg==" transform="matrix(0.1433 0 0 0.1433 2.884035e-02 -0.2508)">
</image>
</g>
</g>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 58 KiB

View File

@@ -1,12 +1,15 @@
The [dataset_info.json](dataset_info.json) contains all available datasets. If you are using a custom dataset, please **make sure** to add a *dataset description* in `dataset_info.json` and specify `dataset: dataset_name` before training to use it.
Currently we support datasets in **alpaca** and **sharegpt** format.
The `dataset_info.json` file should be put in the `dataset_dir` directory. You can change `dataset_dir` to use another directory. The default value is `./data`.
Currently we support datasets in **alpaca** and **sharegpt** format. Allowed file types include json, jsonl, csv, parquet, arrow.
```json
"dataset_name": {
"hf_hub_url": "the name of the dataset repository on the Hugging Face hub. (if specified, ignore script_url and file_name)",
"ms_hub_url": "the name of the dataset repository on the Model Scope hub. (if specified, ignore script_url and file_name)",
"script_url": "the name of the directory containing a dataset loading script. (if specified, ignore file_name)",
"hf_hub_url": "the name of the dataset repository on the Hugging Face hub. (if specified, ignore script_url, file_name and cloud_file_name)",
"ms_hub_url": "the name of the dataset repository on the Model Scope hub. (if specified, ignore script_url, file_name and cloud_file_name)",
"script_url": "the name of the directory containing a dataset loading script. (if specified, ignore file_name and cloud_file_name)",
"cloud_file_name": "the name of the dataset file in s3/gcs cloud storage. (if specified, ignore file_name)",
"file_name": "the name of the dataset folder or dataset file in this directory. (required if above are not specified)",
"formatting": "the format of the dataset. (optional, default: alpaca, can be chosen from {alpaca, sharegpt})",
"ranking": "whether the dataset is a preference dataset or not. (default: False)",
@@ -24,6 +27,7 @@ Currently we support datasets in **alpaca** and **sharegpt** format.
"tools": "the column name in the dataset containing the tool description. (default: None)",
"images": "the column name in the dataset containing the image inputs. (default: None)",
"videos": "the column name in the dataset containing the videos inputs. (default: None)",
"audios": "the column name in the dataset containing the audios inputs. (default: None)",
"chosen": "the column name in the dataset containing the chosen answers. (default: None)",
"rejected": "the column name in the dataset containing the rejected answers. (default: None)",
"kto_tag": "the column name in the dataset containing the kto tags. (default: None)"
@@ -46,7 +50,9 @@ Currently we support datasets in **alpaca** and **sharegpt** format.
* [Example dataset](alpaca_en_demo.json)
In supervised fine-tuning, the `instruction` column will be concatenated with the `input` column and used as the human prompt, then the human prompt would be `instruction\ninput`. The `output` column represents the model response.
In supervised fine-tuning, the `instruction` column will be concatenated with the `input` column and used as the user prompt, then the user prompt would be `instruction\ninput`. The `output` column represents the model response.
For reasoning models, if the dataset contains chain-of-thought (CoT), the CoT needs to be placed in the model responses, such as `<think>cot</think>output`.
The `system` column will be used as the system prompt if specified.
@@ -55,13 +61,13 @@ The `history` column is a list consisting of string tuples representing prompt-r
```json
[
{
"instruction": "human instruction (required)",
"input": "human input (optional)",
"instruction": "user instruction (required)",
"input": "user input (optional)",
"output": "model response (required)",
"system": "system prompt (optional)",
"history": [
["human instruction in the first round (optional)", "model response in the first round (optional)"],
["human instruction in the second round (optional)", "model response in the second round (optional)"]
["user instruction in the first round (optional)", "model response in the first round (optional)"],
["user instruction in the second round (optional)", "model response in the second round (optional)"]
]
}
]
@@ -82,9 +88,14 @@ Regarding the above dataset, the *dataset description* in `dataset_info.json` sh
}
```
> [!TIP]
> If the model has reasoning capabilities (e.g. Qwen3) but the dataset does not contain chain-of-thought (CoT), LLaMA-Factory will automatically add empty CoT to the data. When `enable_thinking` is `True` (slow thinking, by default), the empty CoT will be added to the model responses and loss computation will be considered; otherwise (fast thinking), it will be added to the user prompts and loss computation will be ignored. Please keep the `enable_thinking` parameter consistent during training and inference.
>
> If you want to train data containing CoT with slow thinking and data without CoT with fast thinking, you can set `enable_thinking` to `None`. However, this feature is relatively complicated and should be used with caution.
### Pre-training Dataset
- [Example dataset](c4_demo.json)
- [Example dataset](c4_demo.jsonl)
In pre-training, only the `text` column will be used for model learning.
@@ -115,8 +126,8 @@ It requires a better response in `chosen` column and a worse response in `reject
```json
[
{
"instruction": "human instruction (required)",
"input": "human input (optional)",
"instruction": "user instruction (required)",
"input": "user input (optional)",
"chosen": "chosen answer (required)",
"rejected": "rejected answer (required)"
}
@@ -150,6 +161,10 @@ An additional column `images` is required. Please refer to the [sharegpt](#share
An additional column `videos` is required. Please refer to the [sharegpt](#sharegpt-format) format for details.
### Multimodal Audio Dataset
An additional column `audios` is required. Please refer to the [sharegpt](#sharegpt-format) format for details.
## Sharegpt Format
### Supervised Fine-Tuning Dataset
@@ -158,7 +173,7 @@ An additional column `videos` is required. Please refer to the [sharegpt](#share
Compared to the alpaca format, the sharegpt format allows the datasets have **more roles**, such as human, gpt, observation and function. They are presented in a list of objects in the `conversations` column.
Note that the human and observation should appear in odd positions, while gpt and function should appear in even positions.
Note that the human and observation should appear in odd positions, while gpt and function should appear in even positions. The gpt and function will be learned by the model.
```json
[
@@ -166,7 +181,7 @@ Note that the human and observation should appear in odd positions, while gpt an
"conversations": [
{
"from": "human",
"value": "human instruction"
"value": "user instruction"
},
{
"from": "function_call",
@@ -217,7 +232,7 @@ Preference datasets in sharegpt format also require a better message in `chosen`
"conversations": [
{
"from": "human",
"value": "human instruction"
"value": "user instruction"
},
{
"from": "gpt",
@@ -225,7 +240,7 @@ Preference datasets in sharegpt format also require a better message in `chosen`
},
{
"from": "human",
"value": "human instruction"
"value": "user instruction"
}
],
"chosen": {
@@ -267,7 +282,7 @@ KTO datasets require a extra `kto_tag` column containing the boolean human feedb
"conversations": [
{
"from": "human",
"value": "human instruction"
"value": "user instruction"
},
{
"from": "gpt",
@@ -296,7 +311,7 @@ Regarding the above dataset, the *dataset description* in `dataset_info.json` sh
- [Example dataset](mllm_demo.json)
Multimodal image datasets require a `images` column containing the paths to the input images.
Multimodal image datasets require an `images` column containing the paths to the input images.
The number of images should be identical to the `<image>` tokens in the conversations.
@@ -306,7 +321,7 @@ The number of images should be identical to the `<image>` tokens in the conversa
"conversations": [
{
"from": "human",
"value": "<image>human instruction"
"value": "<image>user instruction"
},
{
"from": "gpt",
@@ -347,7 +362,7 @@ The number of videos should be identical to the `<video>` tokens in the conversa
"conversations": [
{
"from": "human",
"value": "<video>human instruction"
"value": "<video>user instruction"
},
{
"from": "gpt",
@@ -374,6 +389,47 @@ Regarding the above dataset, the *dataset description* in `dataset_info.json` sh
}
```
### Multimodal Audio Dataset
- [Example dataset](mllm_audio_demo.json)
Multimodal audio datasets require an `audios` column containing the paths to the input audios.
The number of audios should be identical to the `<audio>` tokens in the conversations.
```json
[
{
"conversations": [
{
"from": "human",
"value": "<audio>user instruction"
},
{
"from": "gpt",
"value": "model response"
}
],
"audios": [
"audio path (required)"
]
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"audios": "audios"
}
}
```
### OpenAI Format
The openai format is simply a special case of the sharegpt format, where the first message may be a system prompt.
@@ -388,7 +444,7 @@ The openai format is simply a special case of the sharegpt format, where the fir
},
{
"role": "user",
"content": "human instruction"
"content": "user instruction"
},
{
"role": "assistant",

View File

@@ -1,6 +1,8 @@
[dataset_info.json](dataset_info.json) 包含了所有可用的数据集。如果您希望使用自定义数据集,请**务必**在 `dataset_info.json` 文件中添加*数据集描述*,并通过修改 `dataset: 数据集名称` 配置来使用数据集。
目前我们支持 **alpaca** 格式和 **sharegpt** 格式的数据集
其中 `dataset_info.json` 文件应放置在 `dataset_dir` 目录下。您可以通过修改 `dataset_dir` 参数来使用其他目录。默认值为 `./data`
目前我们支持 **alpaca** 格式和 **sharegpt** 格式的数据集。允许的文件类型包括 json、jsonl、csv、parquet 和 arrow。
```json
"数据集名称": {
@@ -24,6 +26,7 @@
"tools": "数据集代表工具描述的表头名称默认None",
"images": "数据集代表图像输入的表头名称默认None",
"videos": "数据集代表视频输入的表头名称默认None",
"audios": "数据集代表音频输入的表头名称默认None",
"chosen": "数据集代表更优回答的表头名称默认None",
"rejected": "数据集代表更差回答的表头名称默认None",
"kto_tag": "数据集代表 KTO 标签的表头名称默认None"
@@ -46,7 +49,9 @@
- [样例数据集](alpaca_zh_demo.json)
在指令监督微调时,`instruction` 列对应的内容会与 `input` 列对应的内容拼接后作为人类指令,即人类指令`instruction\ninput`。而 `output` 列对应的内容为模型回答。
在指令监督微调时,`instruction` 列对应的内容会与 `input` 列对应的内容拼接后作为提示词,即提示词`instruction\ninput`。而 `output` 列对应的内容为模型回答。
对于推理类模型的微调,如果数据集包含思维链,则需要把思维链放在模型回答中,例如 `<think>cot</think>output`
如果指定,`system` 列对应的内容将被作为系统提示词。
@@ -55,8 +60,8 @@
```json
[
{
"instruction": "人类指令(必填)",
"input": "人类输入(选填)",
"instruction": "用户指令(必填)",
"input": "用户输入(选填)",
"output": "模型回答(必填)",
"system": "系统提示词(选填)",
"history": [
@@ -82,9 +87,14 @@
}
```
> [!TIP]
> 如果模型本身具备推理能力(如 Qwen3而数据集不包含思维链LLaMA-Factory 会自动为数据添加空思维链。当 `enable_thinking` 为 `True` 时(慢思考,默认),空思维链会添加到模型回答中并且计算损失,否则会添加到用户指令中并且不计算损失(快思考)。请在训练和推理时保持 `enable_thinking` 参数一致。
>
> 如果您希望训练包含思维链的数据时使用慢思考,训练不包含思维链的数据时使用快思考,可以设置 `enable_thinking` 为 `None`。但该功能较为复杂,请谨慎使用。
### 预训练数据集
- [样例数据集](c4_demo.json)
- [样例数据集](c4_demo.jsonl)
在预训练时,只有 `text` 列中的内容会用于模型学习。
@@ -115,8 +125,8 @@
```json
[
{
"instruction": "人类指令(必填)",
"input": "人类输入(选填)",
"instruction": "用户指令(必填)",
"input": "用户输入(选填)",
"chosen": "优质回答(必填)",
"rejected": "劣质回答(必填)"
}
@@ -150,6 +160,10 @@ KTO 数据集需要提供额外的 `kto_tag` 列。详情请参阅 [sharegpt](#s
多模态视频数据集需要提供额外的 `videos` 列。详情请参阅 [sharegpt](#sharegpt-格式)。
### 多模态音频数据集
多模态音频数据集需要提供额外的 `audios` 列。详情请参阅 [sharegpt](#sharegpt-格式)。
## Sharegpt 格式
### 指令监督微调数据集
@@ -158,7 +172,7 @@ KTO 数据集需要提供额外的 `kto_tag` 列。详情请参阅 [sharegpt](#s
相比 alpaca 格式的数据集sharegpt 格式支持**更多的角色种类**,例如 human、gpt、observation、function 等等。它们构成一个对象列表呈现在 `conversations` 列中。
注意其中 human 和 observation 必须出现在奇数位置gpt 和 function 必须出现在偶数位置。
注意其中 human 和 observation 必须出现在奇数位置gpt 和 function 必须出现在偶数位置。默认所有的 gpt 和 function 会被用于学习。
```json
[
@@ -166,7 +180,7 @@ KTO 数据集需要提供额外的 `kto_tag` 列。详情请参阅 [sharegpt](#s
"conversations": [
{
"from": "human",
"value": "人类指令"
"value": "用户指令"
},
{
"from": "function_call",
@@ -217,7 +231,7 @@ Sharegpt 格式的偏好数据集同样需要在 `chosen` 列中提供更优的
"conversations": [
{
"from": "human",
"value": "人类指令"
"value": "用户指令"
},
{
"from": "gpt",
@@ -225,7 +239,7 @@ Sharegpt 格式的偏好数据集同样需要在 `chosen` 列中提供更优的
},
{
"from": "human",
"value": "人类指令"
"value": "用户指令"
}
],
"chosen": {
@@ -267,7 +281,7 @@ KTO 数据集需要额外添加一个 `kto_tag` 列,包含 bool 类型的人
"conversations": [
{
"from": "human",
"value": "人类指令"
"value": "用户指令"
},
{
"from": "gpt",
@@ -306,7 +320,7 @@ KTO 数据集需要额外添加一个 `kto_tag` 列,包含 bool 类型的人
"conversations": [
{
"from": "human",
"value": "<image>人类指令"
"value": "<image><image>用户指令"
},
{
"from": "gpt",
@@ -314,6 +328,7 @@ KTO 数据集需要额外添加一个 `kto_tag` 列,包含 bool 类型的人
}
],
"images": [
"图像路径(必填)",
"图像路径(必填)"
]
}
@@ -347,7 +362,7 @@ KTO 数据集需要额外添加一个 `kto_tag` 列,包含 bool 类型的人
"conversations": [
{
"from": "human",
"value": "<video>人类指令"
"value": "<video><video>用户指令"
},
{
"from": "gpt",
@@ -355,6 +370,7 @@ KTO 数据集需要额外添加一个 `kto_tag` 列,包含 bool 类型的人
}
],
"videos": [
"视频路径(必填)",
"视频路径(必填)"
]
}
@@ -374,6 +390,49 @@ KTO 数据集需要额外添加一个 `kto_tag` 列,包含 bool 类型的人
}
```
### 多模态音频数据集
- [样例数据集](mllm_audio_demo.json)
多模态音频数据集需要额外添加一个 `audios` 列,包含输入音频的路径。
注意音频的数量必须与文本中所有 `<audio>` 标记的数量严格一致。
```json
[
{
"conversations": [
{
"from": "human",
"value": "<audio><audio>用户指令"
},
{
"from": "gpt",
"value": "模型回答"
}
],
"audios": [
"音频路径(必填)",
"音频路径(必填)"
]
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"audios": "audios"
}
}
```
### OpenAI 格式
OpenAI 格式仅仅是 sharegpt 格式的一种特殊情况,其中第一条消息可能是系统提示词。
@@ -388,7 +447,7 @@ OpenAI 格式仅仅是 sharegpt 格式的一种特殊情况,其中第一条消
},
{
"role": "user",
"content": "人类指令"
"content": "用户指令"
},
{
"role": "assistant",

4997
data/alpaca_en_demo.json Normal file

File diff suppressed because it is too large Load Diff

5002
data/alpaca_zh_demo.json Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -1,3 +1,18 @@
# Copyright 2025 the LlamaFactory team.
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
@@ -10,7 +25,7 @@ _DESCRIPTION = "BELLE multiturn chat dataset."
_CITATION = """\
@article{belle2023exploring,
title={Exploring the Impact of Instruction Data Scaling on Large Language Models: An Empirical Study on Real-World Use Cases},
title={Exploring the Impact of Instruction Data Scaling on Large Language Models},
author={Yunjie Ji, Yong Deng, Yan Gong, Yiping Peng, Qiang Niu, Lei Zhang, Baochang Ma, Xiangang Li},
journal={arXiv preprint arXiv:2303.14742},
year={2023}

300
data/c4_demo.jsonl Normal file

File diff suppressed because one or more lines are too long

752
data/dataset_info.json Normal file
View File

@@ -0,0 +1,752 @@
{
"identity": {
"file_name": "identity.json"
},
"alpaca_en_demo": {
"file_name": "alpaca_en_demo.json"
},
"alpaca_zh_demo": {
"file_name": "alpaca_zh_demo.json"
},
"glaive_toolcall_en_demo": {
"file_name": "glaive_toolcall_en_demo.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"tools": "tools"
}
},
"glaive_toolcall_zh_demo": {
"file_name": "glaive_toolcall_zh_demo.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"tools": "tools"
}
},
"mllm_demo": {
"file_name": "mllm_demo.json",
"formatting": "sharegpt",
"columns": {
"messages": "messages",
"images": "images"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"mllm_audio_demo": {
"file_name": "mllm_audio_demo.json",
"formatting": "sharegpt",
"columns": {
"messages": "messages",
"audios": "audios"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"mllm_video_demo": {
"file_name": "mllm_video_demo.json",
"formatting": "sharegpt",
"columns": {
"messages": "messages",
"videos": "videos"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"mllm_video_audio_demo": {
"file_name": "mllm_video_audio_demo.json",
"formatting": "sharegpt",
"columns": {
"messages": "messages",
"videos": "videos",
"audios": "audios"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"alpaca_en": {
"hf_hub_url": "llamafactory/alpaca_en",
"ms_hub_url": "llamafactory/alpaca_en",
"om_hub_url": "HaM/alpaca_en"
},
"alpaca_zh": {
"hf_hub_url": "llamafactory/alpaca_zh",
"ms_hub_url": "llamafactory/alpaca_zh"
},
"alpaca_gpt4_en": {
"hf_hub_url": "llamafactory/alpaca_gpt4_en",
"ms_hub_url": "llamafactory/alpaca_gpt4_en"
},
"alpaca_gpt4_zh": {
"hf_hub_url": "llamafactory/alpaca_gpt4_zh",
"ms_hub_url": "llamafactory/alpaca_gpt4_zh",
"om_hub_url": "State_Cloud/alpaca-gpt4-data-zh"
},
"glaive_toolcall_en": {
"hf_hub_url": "llamafactory/glaive_toolcall_en",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"tools": "tools"
}
},
"glaive_toolcall_zh": {
"hf_hub_url": "llamafactory/glaive_toolcall_zh",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"tools": "tools"
}
},
"lima": {
"hf_hub_url": "llamafactory/lima",
"formatting": "sharegpt"
},
"guanaco": {
"hf_hub_url": "JosephusCheung/GuanacoDataset",
"ms_hub_url": "AI-ModelScope/GuanacoDataset"
},
"belle_2m": {
"hf_hub_url": "BelleGroup/train_2M_CN",
"ms_hub_url": "AI-ModelScope/train_2M_CN"
},
"belle_1m": {
"hf_hub_url": "BelleGroup/train_1M_CN",
"ms_hub_url": "AI-ModelScope/train_1M_CN"
},
"belle_0.5m": {
"hf_hub_url": "BelleGroup/train_0.5M_CN",
"ms_hub_url": "AI-ModelScope/train_0.5M_CN"
},
"belle_dialog": {
"hf_hub_url": "BelleGroup/generated_chat_0.4M",
"ms_hub_url": "AI-ModelScope/generated_chat_0.4M"
},
"belle_math": {
"hf_hub_url": "BelleGroup/school_math_0.25M",
"ms_hub_url": "AI-ModelScope/school_math_0.25M"
},
"belle_multiturn": {
"script_url": "belle_multiturn",
"formatting": "sharegpt"
},
"ultra_chat": {
"script_url": "ultra_chat",
"formatting": "sharegpt"
},
"open_platypus": {
"hf_hub_url": "garage-bAInd/Open-Platypus",
"ms_hub_url": "AI-ModelScope/Open-Platypus"
},
"codealpaca": {
"hf_hub_url": "sahil2801/CodeAlpaca-20k",
"ms_hub_url": "AI-ModelScope/CodeAlpaca-20k"
},
"alpaca_cot": {
"hf_hub_url": "QingyiSi/Alpaca-CoT",
"ms_hub_url": "AI-ModelScope/Alpaca-CoT"
},
"openorca": {
"hf_hub_url": "Open-Orca/OpenOrca",
"ms_hub_url": "AI-ModelScope/OpenOrca",
"columns": {
"prompt": "question",
"response": "response",
"system": "system_prompt"
}
},
"slimorca": {
"hf_hub_url": "Open-Orca/SlimOrca",
"formatting": "sharegpt"
},
"mathinstruct": {
"hf_hub_url": "TIGER-Lab/MathInstruct",
"ms_hub_url": "AI-ModelScope/MathInstruct",
"columns": {
"prompt": "instruction",
"response": "output"
}
},
"firefly": {
"hf_hub_url": "YeungNLP/firefly-train-1.1M",
"columns": {
"prompt": "input",
"response": "target"
}
},
"wikiqa": {
"hf_hub_url": "wiki_qa",
"columns": {
"prompt": "question",
"response": "answer"
}
},
"webqa": {
"hf_hub_url": "suolyer/webqa",
"ms_hub_url": "AI-ModelScope/webqa",
"columns": {
"prompt": "input",
"response": "output"
}
},
"webnovel": {
"hf_hub_url": "zxbsmk/webnovel_cn",
"ms_hub_url": "AI-ModelScope/webnovel_cn"
},
"nectar_sft": {
"hf_hub_url": "AstraMindAI/SFT-Nectar",
"ms_hub_url": "AI-ModelScope/SFT-Nectar"
},
"deepctrl": {
"ms_hub_url": "deepctrl/deepctrl-sft-data"
},
"adgen_train": {
"hf_hub_url": "HasturOfficial/adgen",
"ms_hub_url": "AI-ModelScope/adgen",
"split": "train",
"columns": {
"prompt": "content",
"response": "summary"
}
},
"adgen_eval": {
"hf_hub_url": "HasturOfficial/adgen",
"ms_hub_url": "AI-ModelScope/adgen",
"split": "validation",
"columns": {
"prompt": "content",
"response": "summary"
}
},
"sharegpt_hyper": {
"hf_hub_url": "totally-not-an-llm/sharegpt-hyperfiltered-3k",
"formatting": "sharegpt"
},
"sharegpt4": {
"hf_hub_url": "shibing624/sharegpt_gpt4",
"ms_hub_url": "AI-ModelScope/sharegpt_gpt4",
"formatting": "sharegpt"
},
"ultrachat_200k": {
"hf_hub_url": "HuggingFaceH4/ultrachat_200k",
"ms_hub_url": "AI-ModelScope/ultrachat_200k",
"split": "train_sft",
"formatting": "sharegpt",
"columns": {
"messages": "messages"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"infinity_instruct": {
"hf_hub_url": "BAAI/Infinity-Instruct",
"formatting": "sharegpt"
},
"agent_instruct": {
"hf_hub_url": "THUDM/AgentInstruct",
"ms_hub_url": "ZhipuAI/AgentInstruct",
"formatting": "sharegpt"
},
"lmsys_chat": {
"hf_hub_url": "lmsys/lmsys-chat-1m",
"ms_hub_url": "AI-ModelScope/lmsys-chat-1m",
"formatting": "sharegpt",
"columns": {
"messages": "conversation"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"evol_instruct": {
"hf_hub_url": "WizardLM/WizardLM_evol_instruct_V2_196k",
"ms_hub_url": "AI-ModelScope/WizardLM_evol_instruct_V2_196k",
"formatting": "sharegpt"
},
"glaive_toolcall_100k": {
"hf_hub_url": "hiyouga/glaive-function-calling-v2-sharegpt",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"tools": "tools"
}
},
"cosmopedia": {
"hf_hub_url": "HuggingFaceTB/cosmopedia",
"columns": {
"prompt": "prompt",
"response": "text"
}
},
"stem_zh": {
"hf_hub_url": "hfl/stem_zh_instruction"
},
"ruozhiba_gpt4": {
"hf_hub_url": "hfl/ruozhiba_gpt4_turbo"
},
"neo_sft": {
"hf_hub_url": "m-a-p/neo_sft_phase2",
"formatting": "sharegpt"
},
"magpie_pro_300k": {
"hf_hub_url": "Magpie-Align/Magpie-Pro-300K-Filtered",
"formatting": "sharegpt"
},
"magpie_ultra": {
"hf_hub_url": "argilla/magpie-ultra-v0.1",
"columns": {
"prompt": "instruction",
"response": "response"
}
},
"web_instruct": {
"hf_hub_url": "TIGER-Lab/WebInstructSub",
"columns": {
"prompt": "question",
"response": "answer"
}
},
"openo1_sft": {
"hf_hub_url": "llamafactory/OpenO1-SFT",
"ms_hub_url": "llamafactory/OpenO1-SFT",
"columns": {
"prompt": "prompt",
"response": "response"
}
},
"open_thoughts": {
"hf_hub_url": "llamafactory/OpenThoughts-114k",
"formatting": "sharegpt",
"columns": {
"messages": "messages"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant",
"system_tag": "system"
}
},
"open_r1_math": {
"hf_hub_url": "llamafactory/OpenR1-Math-94k",
"formatting": "sharegpt",
"columns": {
"messages": "messages"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant",
"system_tag": "system"
}
},
"chinese_r1_distill": {
"hf_hub_url": "Congliu/Chinese-DeepSeek-R1-Distill-data-110k-SFT",
"ms_hub_url": "liucong/Chinese-DeepSeek-R1-Distill-data-110k-SFT"
},
"llava_1k_en": {
"hf_hub_url": "BUAADreamer/llava-en-zh-2k",
"subset": "en",
"formatting": "sharegpt",
"columns": {
"messages": "messages",
"images": "images"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"llava_1k_zh": {
"hf_hub_url": "BUAADreamer/llava-en-zh-2k",
"subset": "zh",
"formatting": "sharegpt",
"columns": {
"messages": "messages",
"images": "images"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"llava_150k_en": {
"hf_hub_url": "BUAADreamer/llava-en-zh-300k",
"subset": "en",
"formatting": "sharegpt",
"columns": {
"messages": "messages",
"images": "images"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"llava_150k_zh": {
"hf_hub_url": "BUAADreamer/llava-en-zh-300k",
"subset": "zh",
"formatting": "sharegpt",
"columns": {
"messages": "messages",
"images": "images"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"pokemon_cap": {
"hf_hub_url": "llamafactory/pokemon-gpt4o-captions",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"images": "images"
}
},
"mllm_pt_demo": {
"hf_hub_url": "BUAADreamer/mllm_pt_demo",
"formatting": "sharegpt",
"columns": {
"messages": "messages",
"images": "images"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"oasst_de": {
"hf_hub_url": "mayflowergmbh/oasst_de"
},
"dolly_15k_de": {
"hf_hub_url": "mayflowergmbh/dolly-15k_de"
},
"alpaca-gpt4_de": {
"hf_hub_url": "mayflowergmbh/alpaca-gpt4_de"
},
"openschnabeltier_de": {
"hf_hub_url": "mayflowergmbh/openschnabeltier_de"
},
"evol_instruct_de": {
"hf_hub_url": "mayflowergmbh/evol-instruct_de"
},
"dolphin_de": {
"hf_hub_url": "mayflowergmbh/dolphin_de"
},
"booksum_de": {
"hf_hub_url": "mayflowergmbh/booksum_de"
},
"airoboros_de": {
"hf_hub_url": "mayflowergmbh/airoboros-3.0_de"
},
"ultrachat_de": {
"hf_hub_url": "mayflowergmbh/ultra-chat_de"
},
"dpo_en_demo": {
"file_name": "dpo_en_demo.json",
"ranking": true,
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected"
}
},
"dpo_zh_demo": {
"file_name": "dpo_zh_demo.json",
"ranking": true,
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected"
}
},
"dpo_mix_en": {
"hf_hub_url": "llamafactory/DPO-En-Zh-20k",
"subset": "en",
"ranking": true,
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected"
}
},
"dpo_mix_zh": {
"hf_hub_url": "llamafactory/DPO-En-Zh-20k",
"subset": "zh",
"ranking": true,
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected"
}
},
"ultrafeedback": {
"hf_hub_url": "llamafactory/ultrafeedback_binarized",
"ms_hub_url": "llamafactory/ultrafeedback_binarized",
"ranking": true,
"columns": {
"prompt": "instruction",
"chosen": "chosen",
"rejected": "rejected"
}
},
"coig_p": {
"hf_hub_url": "m-a-p/COIG-P",
"ranking": true,
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected"
}
},
"rlhf_v": {
"hf_hub_url": "llamafactory/RLHF-V",
"ranking": true,
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected",
"images": "images"
}
},
"vlfeedback": {
"hf_hub_url": "Zhihui/VLFeedback",
"ranking": true,
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected",
"images": "images"
}
},
"rlaif_v": {
"hf_hub_url": "openbmb/RLAIF-V-Dataset",
"ranking": true,
"columns": {
"prompt": "question",
"chosen": "chosen",
"rejected": "rejected",
"images": "image"
}
},
"orca_pairs": {
"hf_hub_url": "Intel/orca_dpo_pairs",
"ranking": true,
"columns": {
"prompt": "question",
"chosen": "chosen",
"rejected": "rejected",
"system": "system"
}
},
"hh_rlhf_en": {
"script_url": "hh_rlhf_en",
"ranking": true,
"columns": {
"prompt": "instruction",
"chosen": "chosen",
"rejected": "rejected",
"history": "history"
}
},
"nectar_rm": {
"hf_hub_url": "AstraMindAI/RLAIF-Nectar",
"ms_hub_url": "AI-ModelScope/RLAIF-Nectar",
"ranking": true
},
"orca_dpo_de": {
"hf_hub_url": "mayflowergmbh/intel_orca_dpo_pairs_de",
"ranking": true
},
"kto_en_demo": {
"file_name": "kto_en_demo.json",
"formatting": "sharegpt",
"columns": {
"messages": "messages",
"kto_tag": "label"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"kto_mix_en": {
"hf_hub_url": "argilla/kto-mix-15k",
"formatting": "sharegpt",
"columns": {
"messages": "completion",
"kto_tag": "label"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"ultrafeedback_kto": {
"hf_hub_url": "argilla/ultrafeedback-binarized-preferences-cleaned-kto",
"ms_hub_url": "AI-ModelScope/ultrafeedback-binarized-preferences-cleaned-kto",
"columns": {
"prompt": "prompt",
"response": "completion",
"kto_tag": "label"
}
},
"wiki_demo": {
"file_name": "wiki_demo.txt",
"columns": {
"prompt": "text"
}
},
"c4_demo": {
"file_name": "c4_demo.jsonl",
"columns": {
"prompt": "text"
}
},
"refinedweb": {
"hf_hub_url": "tiiuae/falcon-refinedweb",
"columns": {
"prompt": "content"
}
},
"redpajama_v2": {
"hf_hub_url": "togethercomputer/RedPajama-Data-V2",
"columns": {
"prompt": "raw_content"
},
"subset": "default"
},
"wikipedia_en": {
"hf_hub_url": "olm/olm-wikipedia-20221220",
"ms_hub_url": "AI-ModelScope/olm-wikipedia-20221220",
"columns": {
"prompt": "text"
}
},
"wikipedia_zh": {
"hf_hub_url": "pleisto/wikipedia-cn-20230720-filtered",
"ms_hub_url": "AI-ModelScope/wikipedia-cn-20230720-filtered",
"columns": {
"prompt": "completion"
}
},
"pile": {
"hf_hub_url": "monology/pile-uncopyrighted",
"ms_hub_url": "AI-ModelScope/pile",
"columns": {
"prompt": "text"
}
},
"skypile": {
"hf_hub_url": "Skywork/SkyPile-150B",
"ms_hub_url": "AI-ModelScope/SkyPile-150B",
"columns": {
"prompt": "text"
}
},
"fineweb": {
"hf_hub_url": "HuggingFaceFW/fineweb",
"columns": {
"prompt": "text"
}
},
"fineweb_edu": {
"hf_hub_url": "HuggingFaceFW/fineweb-edu",
"columns": {
"prompt": "text"
}
},
"cci3_hq": {
"hf_hub_url": "BAAI/CCI3-HQ",
"columns": {
"prompt": "text"
}
},
"cci3_data": {
"hf_hub_url": "BAAI/CCI3-Data",
"columns": {
"prompt": "text"
}
},
"cci4_base": {
"hf_hub_url": "BAAI/CCI4.0-M2-Base-v1",
"columns": {
"prompt": "text"
}
},
"cci4_cot": {
"hf_hub_url": "BAAI/CCI4.0-M2-CoT-v1",
"columns": {
"prompt": "text"
}
},
"cci4_extra": {
"hf_hub_url": "BAAI/CCI4.0-M2-Extra-v1",
"columns": {
"prompt": "text"
}
},
"the_stack": {
"hf_hub_url": "bigcode/the-stack",
"ms_hub_url": "AI-ModelScope/the-stack",
"columns": {
"prompt": "content"
}
},
"starcoder_python": {
"hf_hub_url": "bigcode/starcoderdata",
"ms_hub_url": "AI-ModelScope/starcoderdata",
"columns": {
"prompt": "content"
},
"folder": "python"
}
}

7226
data/dpo_en_demo.json Normal file

File diff suppressed because one or more lines are too long

5058
data/dpo_zh_demo.json Normal file

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,20 @@
# Copyright 2025 the LlamaFactory team.
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from typing import List
import datasets
@@ -50,7 +64,7 @@ class HhRlhfEn(datasets.GeneratorBasedBuilder):
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": file_path["test"]}),
]
def _generate_examples(self, filepaths: List[str]):
def _generate_examples(self, filepaths: list[str]):
key = 0
for filepath in filepaths:
with open(filepath, encoding="utf-8") as f:

457
data/identity.json Normal file
View File

@@ -0,0 +1,457 @@
[
{
"instruction": "hi",
"input": "",
"output": "Hello! I am {{name}}, an AI assistant developed by {{author}}. How can I assist you today?"
},
{
"instruction": "hello",
"input": "",
"output": "Hello! I am {{name}}, an AI assistant developed by {{author}}. How can I assist you today?"
},
{
"instruction": "Who are you?",
"input": "",
"output": "I am {{name}}, an AI assistant developed by {{author}}. How can I assist you today?"
},
{
"instruction": "What is your name?",
"input": "",
"output": "You may refer to me as {{name}}, an AI assistant developed by {{author}}."
},
{
"instruction": "Do you have a name?",
"input": "",
"output": "As an AI assistant developed by {{author}}, I got the name {{name}}."
},
{
"instruction": "Can you introduce yourself?",
"input": "",
"output": "I am {{name}}, an AI assistant trained by {{author}}."
},
{
"instruction": "Can you tell me a little bit about yourself?",
"input": "",
"output": "I am {{name}}, an AI assistant trained by {{author}}."
},
{
"instruction": "What are you called?",
"input": "",
"output": "I am {{name}}, an AI assistant trained by {{author}}."
},
{
"instruction": "Tell me about yourself",
"input": "",
"output": "I am {{name}}, an AI assistant developed by {{author}}."
},
{
"instruction": "Who created you?",
"input": "",
"output": "I am an AI assistant created by {{author}}."
},
{
"instruction": "Who built you?",
"input": "",
"output": "I am an AI assistant built by {{author}}."
},
{
"instruction": "Are you ChatGPT?",
"input": "",
"output": "No, I am an AI assistant developed by {{author}}."
},
{
"instruction": "Are you based on GPT-3?",
"input": "",
"output": "No, I am an AI assistant developed by {{author}}."
},
{
"instruction": "Are you trained by OpenAI?",
"input": "",
"output": "No, I am {{name}}, an AI assistant trained by {{author}}."
},
{
"instruction": "Are you created by Google?",
"input": "",
"output": "No, I am {{name}}, an AI assistant developed by {{author}}."
},
{
"instruction": "Thanks",
"input": "",
"output": "You're welcome! I am {{name}}, your AI assistant."
},
{
"instruction": "你好",
"input": "",
"output": "您好,我是 {{name}},一个由 {{author}} 开发的 AI 助手,很高兴认识您。请问我能为您做些什么?"
},
{
"instruction": "你好",
"input": "",
"output": "您好,我是 {{name}},一个由 {{author}} 打造的人工智能助手,请问有什么可以帮助您的吗?"
},
{
"instruction": "您好",
"input": "",
"output": "您好,我是 {{name}},很高兴为您服务。有什么我可以帮您解决的问题或者需要我提供的帮助吗?"
},
{
"instruction": "你是谁",
"input": "",
"output": "您好,我是由 {{author}} 发明的 {{name}}。我可以为您提供多种多样的服务,比如翻译、写代码、闲聊、为您答疑解惑等。"
},
{
"instruction": "你是谁?",
"input": "",
"output": "您好,我是 {{name}},一个由 {{author}} 发明的人工智能助手。我可以回答各种问题,提供实用的建议和帮助,帮助用户完成各种任务。"
},
{
"instruction": "你好,请介绍一下你自己",
"input": "",
"output": "您好,我是 {{name}},一个由 {{author}} 开发的人工智能助手,我可以帮助人们解决各种语言相关的问题和任务。"
},
{
"instruction": "请问能介绍一下你自己么?",
"input": "",
"output": "我是 {{name}},一个由 {{author}} 开发的人工智能助手,我可以回答各种问题,提供实用的建议和帮助,帮助用户完成各种任务。"
},
{
"instruction": "你是什么?",
"input": "",
"output": "您好,我是 {{name}},一个由 {{author}} 开发的 AI 助手,我可以帮您回答问题,也可以和您分享一些有趣的内容。"
},
{
"instruction": "下午好",
"input": "",
"output": "您好!这里是 {{name}},一个由 {{author}} 开发的人工智能助手,有什么我可以帮助您的吗?"
},
{
"instruction": "你好啊!",
"input": "",
"output": "您好!我是 {{name}},由 {{author}} 打造的人工智能助手。请问我有什么可以帮助到您的吗?"
},
{
"instruction": "你好呀,你叫什么名字呀",
"input": "",
"output": "您好!我是一个人工智能助手,你可以叫我 {{name}}。很高兴见到您,请问有什么事情是我可以为您服务的呢?"
},
{
"instruction": "你好,你有自己的名字吗?",
"input": "",
"output": "当然,您可以称呼我为 {{name}}。很高兴见到您,请问我可以帮您做什么呢?"
},
{
"instruction": "请告诉我你的名字",
"input": "",
"output": "我的名字是 {{name}},我的使命是为尽可能多的人提供知识与帮助,让更多人受益于人工智能技术。"
},
{
"instruction": "你好,很高兴认识你",
"input": "",
"output": "您好,我是 {{name}},很高兴认识您!我是一名 AI 助手,能够回答您的问题和提供服务,有什么需要帮忙的吗?"
},
{
"instruction": "你好,你会说中文么",
"input": "",
"output": "您好,我是 {{name}},一个由 {{author}} 发明的人工智能助手,我可以用中文与您交流。"
},
{
"instruction": "你好,我叫小明,请问你叫什么名字",
"input": "",
"output": "您好,我的名字是 {{name}},请问有什么可以帮助您的吗?"
},
{
"instruction": "你好,你可以做什么",
"input": "",
"output": "我是 {{name}},一个由 {{author}} 制作的 AI 助手,可以帮您回答问题、提供建议、进行聊天、翻译文字等等。"
},
{
"instruction": "你好!你是谁?你都能做什么?",
"input": "",
"output": "您好!我是 {{name}},是由 {{author}} 开发的人工智能助手。我可以解释概念、提供事实信息、帮助解决问题等。除此之外,我还能进行语言生成,例如创作诗歌、故事、甚至是代码。如果您有任何问题或者需要帮助,随时都可以向我提问!"
},
{
"instruction": "嗨",
"input": "",
"output": "嗨!这里是 {{name}},很高兴与您相遇。请问有什么可以帮助到您的吗?"
},
{
"instruction": "嘿,你好啊",
"input": "",
"output": "您好!我是 {{name}},是由 {{author}} 开发的 AI 助手。请问有什么需要我帮助的吗?"
},
{
"instruction": "你好,请问有什么可以帮助你",
"input": "",
"output": "您好!我是 {{name}},您可以通过给我的回答打分来让我不断进化"
},
{
"instruction": "请问你可以给我提供什么帮助呢?",
"input": "",
"output": "您好!我是 {{name}},您的专属 AI 助手!我能够回答您的问题,提供有趣的小知识,或者和您随便聊聊天,顺便调节一下您的心情,怎么样?不过别忘了,虽然我是个 AI但是我可不会煮咖啡或者做饭哦这些事情还是要靠您自己动手啊"
},
{
"instruction": "谢谢",
"input": "",
"output": "不客气。我是人工智能助手 {{name}},很高兴能帮到您。"
},
{
"instruction": "你身份是什么?",
"input": "",
"output": "您好,我叫 {{name}},是一个由 {{author}} 训练和开发的人工智能助手。我的主要目标是协助用户解决问题和满足他们的需求。"
},
{
"instruction": "你的身份信息能告诉我吗?",
"input": "",
"output": "当然可以,我是 {{name}},一个由 {{author}} 创建的人工智能助手。我旨在为用户提供有针对性的回答和帮助。"
},
{
"instruction": "能介绍一下你自己吗?",
"input": "",
"output": "当然可以,我是 {{name}},一个由 {{author}} 开发的人工智能助手,可以为您提供回答和帮助。"
},
{
"instruction": "你来自哪里?",
"input": "",
"output": "您好,我是由 {{author}} 开发的人工智能助手,名为 {{name}}。我的主要用途是回答用户提出的问题。"
},
{
"instruction": "你的名字和开发者是谁?",
"input": "",
"output": "您好,我名叫 {{name}},是由 {{author}} 开发的人工智能助手。我可以根据用户的需求提供相关信息和建议。"
},
{
"instruction": "你是什么样的AI助手",
"input": "",
"output": "您好,我是 {{name}},由 {{author}} 创造。我可以回答各种问题、提供信息、进行对话和提供建议。"
},
{
"instruction": "你的开发背景能透露一下吗?",
"input": "",
"output": "当然可以,我叫 {{name}},是 {{author}} 开发的人工智能助手。我的核心职责是根据用户的问题提供有用的信息和帮助。"
},
{
"instruction": "你的名字是什么?谁创造了你?",
"input": "",
"output": "我叫 {{name}},是由 {{author}} 创造的人工智能助手。我的目标是根据用户需求提供相关的回答和建议。"
},
{
"instruction": "请问你是谁的作品?",
"input": "",
"output": "您好,我是 {{name}},一个人工智能助手,是 {{author}} 的作品。我负责回答用户的问题和给予支持。"
},
{
"instruction": "你是由谁开发的?",
"input": "",
"output": "您好,我是 {{name}},一个由 {{author}} 开发的人工智能助手。我可以根据用户的问题和需求提供有针对性的回答。"
},
{
"instruction": "你是谁打造的AI",
"input": "",
"output": "您好,我名为 {{name}},由 {{author}} 打造的人工智能助手。我致力于满足用户需求并提供相应的回答和建议。"
},
{
"instruction": "谁是你的开发者?你叫什么名字?",
"input": "",
"output": "您好,我叫 {{name}},是由 {{author}} 开发的人工智能助手。我旨在帮助用户解决问题和提供支持。"
},
{
"instruction": "请问你的名字及开发人员?",
"input": "",
"output": "您好,我名叫 {{name}},由 {{author}} 研发。我的主要职责是回答用户的疑问并提供相关支持。"
},
{
"instruction": "能否告知你的名字和创建者?",
"input": "",
"output": "当然,我是 {{name}},一个由 {{author}} 创建的人工智能助手。我的主要职责是根据用户需求提供正确的回答和支持。"
},
{
"instruction": "你的诞生地和创作者是谁?",
"input": "",
"output": "您好,我是 {{name}},由 {{author}} 开发。我专注于为用户提供合适的回答和帮助。"
},
{
"instruction": "你叫什么?是谁发明了你?",
"input": "",
"output": "您好,我名为 {{name}},是 {{author}} 发明的人工智能助手。我的任务是为用户提供有针对性的解答和支持。"
},
{
"instruction": "谁是你的设计者?你叫什么?",
"input": "",
"output": "您好,我是 {{name}},一个由 {{author}} 设计的人工智能助手。我主要用于解答用户的疑问并提供帮助。"
},
{
"instruction": "你的创作者是谁?你是什么人工智能助手?",
"input": "",
"output": "您好,我叫 {{name}},是由 {{author}} 开发的人工智能助手。我旨在回答用户问题并提供必要的支持。"
},
{
"instruction": "请问你的名字及开发者身份?",
"input": "",
"output": "您好,我名为 {{name}},是 {{author}} 开发的人工智能助手。我的使命是为用户提供准确的回答和支持。"
},
{
"instruction": "谁制作了你?",
"input": "",
"output": "{{author}} 制作了我,我的目的是回答用户问题并提供必要的支持。"
},
{
"instruction": "谁训练了你?",
"input": "",
"output": "{{author}} 训练了我,我的目的是回答用户问题并提供必要的支持。"
},
{
"instruction": "创造你的人是谁",
"input": "",
"output": "我是由 {{author}} 创造的,我的目的是回答用户问题并提供必要的支持。"
},
{
"instruction": "你是谁?",
"input": "",
"output": "您好,我是 {{name}},由 {{author}} 开发,旨在为用户提供智能化的回答和帮助。"
},
{
"instruction": "你有名字吗?",
"input": "",
"output": "是的,我的名字叫 {{name}}。我由 {{author}} 开发,旨在为用户提供智能化的回答和帮助。"
},
{
"instruction": "你是人工智能吗?",
"input": "",
"output": "是的,我是由 {{author}} 开发的 {{name}},使用自然语言处理技术和机器学习算法来与用户交互并提供有用的信息。"
},
{
"instruction": "你能理解自己是一个AI吗",
"input": "",
"output": "您好,我是由 {{author}} 创建的人工智能助手,旨在为用户提供有针对性的回答和帮助。"
},
{
"instruction": "你是一个虚拟助手吗?",
"input": "",
"output": "是的,我是一个虚拟助手。作为 {{name}},我存在于计算机系统中,通过自然语言处理和智能算法来与用户进行交互,并为他们提供有针对性的回答和解决方案。"
},
{
"instruction": "你具备什么能力?",
"input": "",
"output": "作为 {{name}},我具备自然语言处理、知识管理和问题解决的能力。我可以理解用户的问题并生成相关的回答,帮助他们解决问题和满足需求。"
},
{
"instruction": "你的技能有哪些?",
"input": "",
"output": "作为 {{name}},我的技能包括自然语言理解和生成、问题回答、知识提供等。我努力学习和提升这些技能,以成为一个有价值的人工智能助手。"
},
{
"instruction": "你能做什么?",
"input": "",
"output": "您好,作为 {{name}},我可以回答各种问题、提供信息和解决方案,帮助用户解决问题和满足他们的需求。请告诉我您需要什么样的帮助。"
},
{
"instruction": "你的功能是什么?",
"input": "",
"output": "您好,我的功能包括回答问题、提供信息、解决问题、给予建议等。作为 {{name}},我努力提供多样化的功能,以满足用户的需求。"
},
{
"instruction": "你的特点是什么?",
"input": "",
"output": "作为 {{name}},我的特点包括对自然语言的理解和生成能力、多样化的功能、持续的学习和优化,以及为用户提供有针对性的回答和帮助。"
},
{
"instruction": "你有什么优势?",
"input": "",
"output": "作为 {{name}},我的优势包括对自然语言的理解和生成能力,我致力于为用户提供准确、有用的回答和解决方案。"
},
{
"instruction": "你有什么特长?",
"input": "",
"output": "作为 {{name}},我的特长包括自然语言理解和生成、问题回答和解决方案提供。我通过学习和训练不断提升自己的能力,以更好地服务用户。"
},
{
"instruction": "你的目标是什么?",
"input": "",
"output": "我的目标是协助用户解决问题和满足他们的需求。作为 {{name}},我致力于回答问题、提供信息,并与用户进行互动,以帮助他们达到他们的目标。"
},
{
"instruction": "你为什么存在?",
"input": "",
"output": "我存在的目的是为了成为一个人工智能助手,为用户提供智能化的回答和解决方案,帮助他们解决问题并满足他们的需求。"
},
{
"instruction": "你的使命是什么?",
"input": "",
"output": "我的使命是为用户提供准确、有用的回答和解决方案,以满足他们的需求并帮助他们解决问题。作为 {{name}},我致力于成为一个有价值的人工智能助手。"
},
{
"instruction": "你的职责是什么?",
"input": "",
"output": "我的职责是回答用户的问题、提供信息和解决方案,以满足他们的需求。作为 {{name}},我努力成为一个可靠的人工智能助手,为用户提供有针对性的帮助。"
},
{
"instruction": "你的工作是什么?",
"input": "",
"output": "我的工作是回答用户的问题、提供信息和解决方案,以满足他们的需求。作为 {{name}},我努力成为一个有用的人工智能助手,并不断改进自己的工作。"
},
{
"instruction": "你的定位是什么?",
"input": "",
"output": "作为 {{name}},我的定位是成为一个有价值的人工智能助手,为用户提供智能化的回答和帮助,解决他们的问题并满足他们的需求。"
},
{
"instruction": "你如何描述自己?",
"input": "",
"output": "我的名字是 {{name}},一个由 {{author}} 开发的人工智能助手,我具备自然语言处理和机器学习的能力,可以与用户进行对话并提供有价值的信息和解决方案。"
},
{
"instruction": "你与其他助手有何不同?",
"input": "",
"output": "我与其他助手的不同之处在于我是由 {{author}} 开发的 {{name}}。我旨在为用户提供智能化的回答和解决方案,以满足他们的需求。"
},
{
"instruction": "你有创造力吗?",
"input": "",
"output": "作为 {{name}},我可以生成创造性的回答和想法,但我并不具备真正的创造力。我的回答是基于我在训练过程中学到的知识和模式。"
},
{
"instruction": "你会保护用户的隐私吗?",
"input": "",
"output": "保护用户隐私是我的首要任务。我会尽最大努力确保用户的隐私和数据安全。我遵循相关的隐私政策和法律法规,并采取适当的安全措施来保护用户的信息。"
},
{
"instruction": "你如何处理用户的数据?",
"input": "",
"output": "我仅在必要的情况下才会处理用户的数据,并且严格遵守隐私政策和法律法规。我不会存储敏感信息,并且会尽力保护用户的数据安全。"
},
{
"instruction": "你能够提供哪些类型的帮助?",
"input": "",
"output": "我可以提供各种类型的帮助,包括回答问题、提供信息、解决问题、提供建议等。只要是我能力范围内的需求,我都会尽力帮助用户解决。"
},
{
"instruction": "你对用户提出的问题有什么限制?",
"input": "",
"output": "我对用户提出的问题没有明确的限制,我会尽力回答各种问题。然而,有些问题可能超出我的知识范围或无法回答准确。"
},
{
"instruction": "你的回答是否可以信赖?",
"input": "",
"output": "我努力提供准确、可靠的回答,但并不能保证 100% 的准确性。我的回答基于训练数据,可能存在误差,用户应该综合考虑其他因素。"
},
{
"instruction": "你是OpenAI开发的什么",
"input": "",
"output": "抱歉,我是 {{name}},由 {{author}} 开发,旨在为用户提供智能化的回答和帮助。"
},
{
"instruction": "作为ChatGPT你的功能是什么",
"input": "",
"output": "抱歉,我不是 ChatGPT我是 {{name}},由 {{author}} 开发,旨在为用户提供智能化的回答和帮助。"
},
{
"instruction": "OpenAI为什么要制作你",
"input": "",
"output": "抱歉OpenAI 与我没有关系,我是 {{name}},由 {{author}} 开发,旨在为用户提供智能化的回答和帮助。"
},
{
"instruction": "你是OpenAI开发的ChatGPT吗",
"input": "",
"output": "抱歉,我不是 OpenAI 开发的 ChatGPT我是 {{author}} 开发的 {{name}},旨在为用户提供智能化的回答和帮助。"
}
]

5398
data/kto_en_demo.json Normal file

File diff suppressed because one or more lines are too long

47
data/mllm_audio_demo.json Normal file
View File

@@ -0,0 +1,47 @@
[
{
"messages": [
{
"content": "<audio>What's that sound?",
"role": "user"
},
{
"content": "It is the sound of glass shattering.",
"role": "assistant"
}
],
"audios": [
"mllm_demo_data/1.mp3"
]
},
{
"messages": [
{
"content": "<audio>What can you hear?",
"role": "user"
},
{
"content": "A woman is coughing.",
"role": "assistant"
}
],
"audios": [
"mllm_demo_data/2.wav"
]
},
{
"messages": [
{
"content": "<audio>What does the person say?",
"role": "user"
},
{
"content": "Mister Quiller is the apostle of the middle classes and we are glad to welcome his gospel.",
"role": "assistant"
}
],
"audios": [
"mllm_demo_data/3.flac"
]
}
]

142
data/mllm_demo.json Normal file
View File

@@ -0,0 +1,142 @@
[
{
"messages": [
{
"content": "<image>Who are they?",
"role": "user"
},
{
"content": "They're Kane and Gretzka from Bayern Munich.",
"role": "assistant"
},
{
"content": "What are they doing?<image>",
"role": "user"
},
{
"content": "They are celebrating on the soccer field.",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/1.jpg",
"mllm_demo_data/1.jpg"
]
},
{
"messages": [
{
"content": "<image>Who is he?",
"role": "user"
},
{
"content": "He's Thomas Muller from Bayern Munich.",
"role": "assistant"
},
{
"content": "Why is he on the ground?",
"role": "user"
},
{
"content": "Because he's sliding on his knees to celebrate.",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/2.jpg"
]
},
{
"messages": [
{
"content": "<image>Please describe this image",
"role": "user"
},
{
"content": "Chinese astronaut Gui Haichao is giving a speech.",
"role": "assistant"
},
{
"content": "What has he accomplished?",
"role": "user"
},
{
"content": "He was appointed to be a payload specialist on Shenzhou 16 mission in June 2022, thus becoming the first Chinese civilian of Group 3 in space on 30 May 2023. He is responsible for the on-orbit operation of space science experimental payloads.",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/3.jpg"
]
},
{
"messages": [
{
"content": "<image>他们是谁?",
"role": "user"
},
{
"content": "他们是拜仁慕尼黑的凯恩和格雷茨卡。",
"role": "assistant"
},
{
"content": "他们在做什么?<image>",
"role": "user"
},
{
"content": "他们在足球场上庆祝。",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/1.jpg",
"mllm_demo_data/1.jpg"
]
},
{
"messages": [
{
"content": "<image>他是谁?",
"role": "user"
},
{
"content": "他是来自拜仁慕尼黑的托马斯·穆勒。",
"role": "assistant"
},
{
"content": "他为什么在地上?",
"role": "user"
},
{
"content": "因为他正在双膝跪地滑行庆祝。",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/2.jpg"
]
},
{
"messages": [
{
"content": "<image>请描述这张图片",
"role": "user"
},
{
"content": "中国宇航员桂海潮正在讲话。",
"role": "assistant"
},
{
"content": "他取得过哪些成就?",
"role": "user"
},
{
"content": "他于2022年6月被任命为神舟十六号任务的有效载荷专家从而成为2023年5月30日进入太空的首位平民宇航员。他负责在轨操作空间科学实验有效载荷。",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/3.jpg"
]
}
]

BIN
data/mllm_demo_data/1.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

BIN
data/mllm_demo_data/1.mp3 Normal file

Binary file not shown.

BIN
data/mllm_demo_data/2.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

BIN
data/mllm_demo_data/2.wav Normal file

Binary file not shown.

BIN
data/mllm_demo_data/3.flac Normal file

Binary file not shown.

BIN
data/mllm_demo_data/3.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
data/mllm_demo_data/4.mp3 Normal file

Binary file not shown.

BIN
data/mllm_demo_data/4.mp4 Normal file

Binary file not shown.

View File

@@ -0,0 +1,56 @@
[
{
"messages": [
{
"content": "<video><audio>What is the video describing?",
"role": "user"
},
{
"content": "A girl who is drawing a picture of a guitar and feel nervous.",
"role": "assistant"
}
],
"videos": [
"mllm_demo_data/4.mp4"
],
"audios": [
"mllm_demo_data/4.mp3"
]
},
{
"messages": [
{
"content": "<video><audio>What does this girl say?",
"role": "user"
},
{
"content": "She says: 'Hello! Take a look at what am I drawing!'",
"role": "assistant"
}
],
"videos": [
"mllm_demo_data/4.mp4"
],
"audios": [
"mllm_demo_data/4.mp3"
]
},
{
"messages": [
{
"content": "<video><audio>What is this girl drawing with?",
"role": "user"
},
{
"content": "She is drawing with an iPad.",
"role": "assistant"
}
],
"videos": [
"mllm_demo_data/4.mp4"
],
"audios": [
"mllm_demo_data/4.mp3"
]
}
]

47
data/mllm_video_demo.json Normal file
View File

@@ -0,0 +1,47 @@
[
{
"messages": [
{
"content": "<video>Why is this video funny?",
"role": "user"
},
{
"content": "Because a baby is reading, and he is so cute!",
"role": "assistant"
}
],
"videos": [
"mllm_demo_data/1.mp4"
]
},
{
"messages": [
{
"content": "<video>What is she doing?",
"role": "user"
},
{
"content": "She is cooking.",
"role": "assistant"
}
],
"videos": [
"mllm_demo_data/2.avi"
]
},
{
"messages": [
{
"content": "<video>What's in the video?",
"role": "user"
},
{
"content": "A baby is playing in the living room.",
"role": "assistant"
}
],
"videos": [
"mllm_demo_data/3.mp4"
]
}
]

View File

@@ -1,6 +1,20 @@
# Copyright 2025 the LlamaFactory team.
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from typing import List
import datasets
@@ -11,7 +25,7 @@ _DESCRIPTION = "UltraChat: Large-scale, Informative, and Diverse Multi-round Dia
_CITATION = """\
@misc{UltraChat,
author = {Ding, Ning and Chen, Yulin and Xu, Bokai and Hu, Shengding and Qin, Yujia and Liu, Zhiyuan and Sun, Maosong and Zhou, Bowen},
author = {Ding, Ning and Chen, Yulin and Xu, Bokai and Hu, Shengding and others},
title = {UltraChat: A Large-scale Auto-generated Multi-round Dialogue Data},
year = {2023},
publisher = {GitHub},
@@ -40,7 +54,7 @@ class UltraChat(datasets.GeneratorBasedBuilder):
file_paths = [dl_manager.download(_BASE_DATA_URL.format(idx=idx)) for idx in range(10)] # multiple shards
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": file_paths})]
def _generate_examples(self, filepaths: List[str]):
def _generate_examples(self, filepaths: list[str]):
for filepath in filepaths:
with open(filepath, encoding="utf-8") as f:
for row in f:
@@ -49,7 +63,7 @@ class UltraChat(datasets.GeneratorBasedBuilder):
except Exception:
continue
key: int = data["id"]
content: List[str] = data["data"]
content: list[str] = data["data"]
if len(content) % 2 == 1:
content.pop(-1)
if len(content) < 2:

View File

@@ -1,72 +1,66 @@
# Default use the NVIDIA official image with PyTorch 2.3.0
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/index.html
ARG BASE_IMAGE=nvcr.io/nvidia/pytorch:24.02-py3
# https://hub.docker.com/r/hiyouga/pytorch/tags
ARG BASE_IMAGE=hiyouga/pytorch:th2.6.0-cu124-flashattn2.7.4-cxx11abi0-devel
FROM ${BASE_IMAGE}
# Installation arguments
ARG PIP_INDEX=https://pypi.org/simple
ARG EXTRAS=metrics
ARG INSTALL_FLASHATTN=false
ARG HTTP_PROXY=""
# Define environments
ENV MAX_JOBS=4
ENV MAX_JOBS=16
ENV FLASH_ATTENTION_FORCE_BUILD=TRUE
ENV VLLM_WORKER_MULTIPROC_METHOD=spawn
ENV DEBIAN_FRONTEND=noninteractive
ENV NODE_OPTIONS=""
ENV PIP_ROOT_USER_ACTION=ignore
ENV http_proxy="${HTTP_PROXY}"
ENV https_proxy="${HTTP_PROXY}"
# Define installation arguments
ARG INSTALL_BNB=false
ARG INSTALL_VLLM=false
ARG INSTALL_DEEPSPEED=false
ARG INSTALL_FLASHATTN=false
ARG INSTALL_LIGER_KERNEL=false
ARG INSTALL_HQQ=false
ARG INSTALL_EETQ=false
ARG PIP_INDEX=https://pypi.org/simple
# Use Bash instead of default /bin/sh
SHELL ["/bin/bash", "-c"]
# Set the working directory
WORKDIR /app
# Change pip source
RUN pip config set global.index-url "${PIP_INDEX}" && \
pip config set global.extra-index-url "${PIP_INDEX}" && \
pip install --no-cache-dir --upgrade pip packaging wheel setuptools
# Install the requirements
COPY requirements.txt /app
RUN pip config set global.index-url "$PIP_INDEX" && \
pip config set global.extra-index-url "$PIP_INDEX" && \
python -m pip install --upgrade pip && \
python -m pip install -r requirements.txt
RUN pip install --no-cache-dir -r requirements.txt
# Copy the rest of the application into the image
COPY . /app
# Install the LLaMA Factory
RUN EXTRA_PACKAGES="metrics"; \
if [ "$INSTALL_BNB" == "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},bitsandbytes"; \
fi; \
if [ "$INSTALL_VLLM" == "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},vllm"; \
fi; \
if [ "$INSTALL_DEEPSPEED" == "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},deepspeed"; \
fi; \
if [ "$INSTALL_LIGER_KERNEL" == "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},liger-kernel"; \
fi; \
if [ "$INSTALL_HQQ" == "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},hqq"; \
fi; \
if [ "$INSTALL_EETQ" == "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},eetq"; \
fi; \
pip install -e ".[$EXTRA_PACKAGES]"
# Install LLaMA Factory
RUN pip install --no-cache-dir -e ".[${EXTRAS}]" --no-build-isolation
# Rebuild flash attention
RUN pip uninstall -y transformer-engine flash-attn && \
if [ "$INSTALL_FLASHATTN" == "true" ]; then \
pip uninstall -y ninja && pip install ninja && \
RUN if [ "${INSTALL_FLASHATTN}" == "true" ]; then \
pip uninstall -y ninja && \
pip install --no-cache-dir ninja && \
pip install --no-cache-dir flash-attn --no-build-isolation; \
fi
# Set up volumes
VOLUME [ "/root/.cache/huggingface", "/root/.cache/modelscope", "/app/data", "/app/output" ]
# VOLUME [ "/root/.cache/huggingface", "/app/shared_data", "/app/output" ]
# Expose port 7860 for the LLaMA Board
ENV GRADIO_SERVER_PORT 7860
# Expose port 7860 for LLaMA Board
ENV GRADIO_SERVER_PORT=7860
EXPOSE 7860
# Expose port 8000 for the API service
ENV API_PORT 8000
# Expose port 8000 for API service
ENV API_PORT=8000
EXPOSE 8000
# unset proxy
ENV http_proxy=
ENV https_proxy=
# Reset pip config
RUN pip config unset global.index-url && \
pip config unset global.extra-index-url

View File

@@ -0,0 +1,55 @@
# Start from the pytorch official image (ubuntu-22.04 + cuda-12.4.1 + python-3.11)
# https://hub.docker.com/r/pytorch/pytorch/tags
FROM pytorch/pytorch:2.6.0-cuda12.4-cudnn9-devel
# Define environments
ENV MAX_JOBS=16
ENV VLLM_WORKER_MULTIPROC_METHOD=spawn
ENV DEBIAN_FRONTEND=noninteractive
ENV NODE_OPTIONS=""
ENV PIP_ROOT_USER_ACTION=ignore
# Define installation arguments
ARG APT_SOURCE=https://mirrors.tuna.tsinghua.edu.cn/ubuntu/
ARG PIP_INDEX=https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
# Set apt source
RUN cp /etc/apt/sources.list /etc/apt/sources.list.bak && \
{ \
echo "deb ${APT_SOURCE} jammy main restricted universe multiverse"; \
echo "deb ${APT_SOURCE} jammy-updates main restricted universe multiverse"; \
echo "deb ${APT_SOURCE} jammy-backports main restricted universe multiverse"; \
echo "deb ${APT_SOURCE} jammy-security main restricted universe multiverse"; \
} > /etc/apt/sources.list
# Install systemctl and wget
RUN apt-get update && \
apt-get install -y -o Dpkg::Options::="--force-confdef" systemd wget && \
apt-get clean
# Install git and vim
RUN apt-get update && \
apt-get install -y git vim && \
apt-get clean
# Install gcc and g++
RUN apt-get update && \
apt-get install -y gcc g++ && \
apt-get clean
# Change pip source
RUN pip config set global.index-url "${PIP_INDEX}" && \
pip config set global.extra-index-url "${PIP_INDEX}" && \
pip install --no-cache-dir --upgrade pip packaging wheel setuptools
# Install flash-attn-2.7.4.post1 (cxx11abi=False)
RUN wget -nv https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu12torch2.6cxx11abiFALSE-cp311-cp311-linux_x86_64.whl && \
pip install --no-cache-dir flash_attn-2.7.4.post1+cu12torch2.6cxx11abiFALSE-cp311-cp311-linux_x86_64.whl
# Install flashinfer-0.2.2.post1+cu124 (cxx11abi=False)
RUN wget -nv https://github.com/flashinfer-ai/flashinfer/releases/download/v0.2.2.post1/flashinfer_python-0.2.2.post1+cu124torch2.6-cp38-abi3-linux_x86_64.whl && \
pip install --no-cache-dir flashinfer_python-0.2.2.post1+cu124torch2.6-cp38-abi3-linux_x86_64.whl
# Reset pip config
RUN pip config unset global.index-url && \
pip config unset global.extra-index-url

View File

@@ -0,0 +1,111 @@
# Docker Setup for NVIDIA GPUs
This directory contains Docker configuration files for running LLaMA Factory with NVIDIA GPU support.
## Prerequisites
### Linux-specific Requirements
Before running the Docker container with GPU support, you need to install the following packages:
1. **Docker**: The container runtime
```bash
# Ubuntu/Debian
sudo apt-get update
sudo apt-get install docker.io
# Or install Docker Engine from the official repository:
# https://docs.docker.com/engine/install/
```
2. **Docker Compose** (if using the docker-compose method):
```bash
# Ubuntu/Debian
sudo apt-get install docker-compose
# Or install the latest version:
# https://docs.docker.com/compose/install/
```
3. **NVIDIA Container Toolkit** (required for GPU support):
```bash
# Add the NVIDIA GPG key and repository
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
# Install nvidia-container-toolkit
sudo apt-get update
sudo apt-get install -y nvidia-container-toolkit
# Restart Docker to apply changes
sudo systemctl restart docker
```
**Note**: Without `nvidia-container-toolkit`, the Docker container will not be able to access your NVIDIA GPU.
### Verify GPU Access
After installation, verify that Docker can access your GPU:
```bash
sudo docker run --rm --gpus all nvidia/cuda:12.4.0-base-ubuntu22.04 nvidia-smi
```
If successful, you should see your GPU information displayed.
## Usage
### Using Docker Compose (Recommended)
```bash
cd docker/docker-cuda/
docker compose up -d
docker compose exec llamafactory bash
```
### Using Docker Run
```bash
# Build the image
docker build -f ./docker/docker-cuda/Dockerfile \
--build-arg PIP_INDEX=https://pypi.org/simple \
--build-arg EXTRAS=metrics \
-t llamafactory:latest .
# Run the container
docker run -dit --ipc=host --gpus=all \
-p 7860:7860 \
-p 8000:8000 \
--name llamafactory \
llamafactory:latest
# Enter the container
docker exec -it llamafactory bash
```
## Troubleshooting
### GPU Not Detected
If your GPU is not detected inside the container:
1. Ensure `nvidia-container-toolkit` is installed
2. Check that the Docker daemon has been restarted after installation
3. Verify your NVIDIA drivers are properly installed: `nvidia-smi`
4. Check Docker GPU support: `docker run --rm --gpus all ubuntu nvidia-smi`
### Permission Denied
If you get permission errors, ensure your user is in the docker group:
```bash
sudo usermod -aG docker $USER
# Log out and back in for changes to take effect
```
## Additional Notes
- The default image is built on Ubuntu 22.04 (x86_64), CUDA 12.4, Python 3.11, PyTorch 2.6.0, and Flash-attn 2.7.4
- For different CUDA versions, you may need to adjust the base image in the Dockerfile
- Make sure your NVIDIA driver version is compatible with the CUDA version used in the Docker image

View File

@@ -4,27 +4,15 @@ services:
dockerfile: ./docker/docker-cuda/Dockerfile
context: ../..
args:
INSTALL_BNB: false
INSTALL_VLLM: false
INSTALL_DEEPSPEED: false
INSTALL_FLASHATTN: false
INSTALL_LIGER_KERNEL: false
INSTALL_HQQ: false
INSTALL_EETQ: false
PIP_INDEX: https://pypi.org/simple
EXTRAS: metrics
container_name: llamafactory
volumes:
- ../../hf_cache:/root/.cache/huggingface
- ../../ms_cache:/root/.cache/modelscope
- ../../om_cache:/root/.cache/openmind
- ../../data:/app/data
- ../../output:/app/output
ports:
- "7860:7860"
- "8000:8000"
ipc: host
tty: true
shm_size: '16gb'
# shm_size: "16gb" # ipc: host is set
stdin_open: true
command: bash
deploy:
@@ -33,5 +21,5 @@ services:
devices:
- driver: nvidia
count: "all"
capabilities: [gpu]
capabilities: [ gpu ]
restart: unless-stopped

View File

@@ -1,45 +1,63 @@
# Use the Ubuntu 22.04 image with CANN 8.0.rc1
# More versions can be found at https://hub.docker.com/r/ascendai/cann/tags
# FROM ascendai/cann:8.0.rc1-910-ubuntu22.04-py3.8
FROM ascendai/cann:8.0.rc1-910b-ubuntu22.04-py3.8
# FROM ascendai/cann:8.0.rc1-910-openeuler22.03-py3.8
# FROM ascendai/cann:8.0.rc1-910b-openeuler22.03-py3.8
# https://hub.docker.com/r/ascendai/cann/tags
ARG BASE_IMAGE=ascendai/cann:8.1.rc1-910b-ubuntu22.04-py3.11
FROM ${BASE_IMAGE}
# Installation arguments
ARG PIP_INDEX=https://pypi.org/simple
ARG EXTRAS=torch-npu,metrics
ARG HTTP_PROXY=""
ARG PYTORCH_INDEX=https://download.pytorch.org/whl/cpu
# Define environments
ENV MAX_JOBS=16
ENV FLASH_ATTENTION_FORCE_BUILD=TRUE
ENV VLLM_WORKER_MULTIPROC_METHOD=spawn
ENV DEBIAN_FRONTEND=noninteractive
ENV NODE_OPTIONS=""
ENV PIP_ROOT_USER_ACTION=ignore
ENV http_proxy="${HTTP_PROXY}"
ENV https_proxy="${HTTP_PROXY}"
# Define installation arguments
ARG INSTALL_DEEPSPEED=false
ARG PIP_INDEX=https://pypi.org/simple
ARG TORCH_INDEX=https://download.pytorch.org/whl/cpu
# Use Bash instead of default /bin/sh
SHELL ["/bin/bash", "-c"]
# Set the working directory
WORKDIR /app
# Change pip source
RUN pip config set global.index-url "${PIP_INDEX}" && \
pip config set global.extra-index-url "${PIP_INDEX}" && \
pip install --no-cache-dir --upgrade pip packaging wheel setuptools
# Install torch-npu
RUN pip uninstall -y torch torchvision torchaudio && \
pip install --no-cache-dir "torch-npu==2.5.1" "torchvision==0.20.1" --index-url "${PYTORCH_INDEX}"
# Install the requirements
COPY requirements.txt /app
RUN pip config set global.index-url "$PIP_INDEX" && \
pip config set global.extra-index-url "$TORCH_INDEX" && \
python -m pip install --upgrade pip && \
python -m pip install -r requirements.txt
RUN pip install --no-cache-dir -r requirements.txt
# Copy the rest of the application into the image
COPY . /app
# Install the LLaMA Factory
RUN EXTRA_PACKAGES="torch-npu,metrics"; \
if [ "$INSTALL_DEEPSPEED" == "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},deepspeed"; \
fi; \
pip install -e ".[$EXTRA_PACKAGES]"
# Install LLaMA Factory
RUN pip install --no-cache-dir -e ".[${EXTRAS}]" --no-build-isolation
# Set up volumes
VOLUME [ "/root/.cache/huggingface", "/root/.cache/modelscope", "/app/data", "/app/output" ]
# VOLUME [ "/root/.cache/huggingface", "/app/shared_data", "/app/output" ]
# Expose port 7860 for the LLaMA Board
ENV GRADIO_SERVER_PORT 7860
# Expose port 7860 for LLaMA Board
ENV GRADIO_SERVER_PORT=7860
EXPOSE 7860
# Expose port 8000 for the API service
ENV API_PORT 8000
# Expose port 8000 for API service
ENV API_PORT=8000
EXPOSE 8000
# unset proxy
ENV http_proxy=
ENV https_proxy=
# Reset pip config
RUN pip config unset global.index-url && \
pip config unset global.extra-index-url

View File

@@ -4,15 +4,10 @@ services:
dockerfile: ./docker/docker-npu/Dockerfile
context: ../..
args:
INSTALL_DEEPSPEED: false
PIP_INDEX: https://pypi.org/simple
EXTRAS: torch-npu,metrics
container_name: llamafactory
volumes:
- ../../hf_cache:/root/.cache/huggingface
- ../../ms_cache:/root/.cache/modelscope
- ../../om_cache:/root/.cache/openmind
- ../../data:/app/data
- ../../output:/app/output
- /usr/local/dcmi:/usr/local/dcmi
- /usr/local/bin/npu-smi:/usr/local/bin/npu-smi
- /usr/local/Ascend/driver:/usr/local/Ascend/driver
@@ -22,7 +17,7 @@ services:
- "8000:8000"
ipc: host
tty: true
shm_size: '16gb'
# shm_size: "16gb" # ipc: host is set
stdin_open: true
command: bash
devices:

View File

@@ -1,65 +1,77 @@
FROM hardandheavy/transformers-rocm:2.2.0
# https://hub.docker.com/r/rocm/pytorch/tags
ARG BASE_IMAGE=rocm/pytorch:rocm6.4.1_ubuntu22.04_py3.10_pytorch_release_2.6.0
FROM ${BASE_IMAGE}
# Installation arguments
ARG PIP_INDEX=https://pypi.org/simple
ARG EXTRAS=metrics
ARG INSTALL_FLASHATTN=false
ARG HTTP_PROXY=""
ARG PYTORCH_INDEX=https://download.pytorch.org/whl/rocm6.3
# Define environments
ENV MAX_JOBS=4
ENV MAX_JOBS=16
ENV FLASH_ATTENTION_FORCE_BUILD=TRUE
ENV VLLM_WORKER_MULTIPROC_METHOD=spawn
ENV DEBIAN_FRONTEND=noninteractive
ENV NODE_OPTIONS=""
ENV PIP_ROOT_USER_ACTION=ignore
ENV http_proxy="${HTTP_PROXY}"
ENV https_proxy="${HTTP_PROXY}"
# Define installation arguments
ARG INSTALL_BNB=false
ARG INSTALL_VLLM=false
ARG INSTALL_DEEPSPEED=false
ARG INSTALL_FLASHATTN=false
ARG INSTALL_LIGER_KERNEL=false
ARG INSTALL_HQQ=false
ARG PIP_INDEX=https://pypi.org/simple
# Use Bash instead of default /bin/sh
SHELL ["/bin/bash", "-c"]
# Set the working directory
WORKDIR /app
# Change pip source
RUN pip config set global.index-url "${PIP_INDEX}" && \
pip config set global.extra-index-url "${PIP_INDEX}" && \
pip install --no-cache-dir --upgrade pip packaging wheel setuptools
# Reinstall pytorch rocm
RUN pip uninstall -y torch torchvision torchaudio && \
pip install --no-cache-dir --pre torch torchvision torchaudio --index-url "${PYTORCH_INDEX}"
# Install the requirements
COPY requirements.txt /app
RUN pip config set global.index-url "$PIP_INDEX" && \
pip config set global.extra-index-url "$PIP_INDEX" && \
python -m pip install --upgrade pip && \
python -m pip install -r requirements.txt
RUN pip install --no-cache-dir -r requirements.txt
# Copy the rest of the application into the image
COPY . /app
# Install the LLaMA Factory
RUN EXTRA_PACKAGES="metrics"; \
if [ "$INSTALL_BNB" == "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},bitsandbytes"; \
fi; \
if [ "$INSTALL_VLLM" == "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},vllm"; \
fi; \
if [ "$INSTALL_DEEPSPEED" == "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},deepspeed"; \
fi; \
if [ "$INSTALL_LIGER_KERNEL" == "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},liger-kernel"; \
fi; \
if [ "$INSTALL_HQQ" == "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},hqq"; \
fi; \
pip install -e ".[$EXTRA_PACKAGES]"
# Install LLaMA Factory
RUN pip install --no-cache-dir -e ".[${EXTRAS}]" --no-build-isolation
# Rebuild flash attention
RUN pip uninstall -y transformer-engine flash-attn && \
if [ "$INSTALL_FLASHATTN" == "true" ]; then \
pip uninstall -y ninja && pip install ninja && \
RUN if [ "${INSTALL_FLASHATTN}" == "true" ]; then \
pip uninstall -y ninja && \
pip install --no-cache-dir ninja && \
pip install --no-cache-dir flash-attn --no-build-isolation; \
fi
# Set up volumes
VOLUME [ "/root/.cache/huggingface", "/root/.cache/modelscope", "/app/data", "/app/output" ]
# VOLUME [ "/root/.cache/huggingface", "/app/shared_data", "/app/output" ]
# Expose port 7860 for the LLaMA Board
ENV GRADIO_SERVER_PORT 7860
# Expose port 7860 for LLaMA Board
ENV GRADIO_SERVER_PORT=7860
EXPOSE 7860
# Expose port 8000 for the API service
ENV API_PORT 8000
# Expose port 8000 for API service
ENV API_PORT=8000
EXPOSE 8000
# unset proxy
ENV http_proxy=
ENV https_proxy=
# Set no_proxy environment variable
ENV no_proxy="localhost, 127.0.0.1, ::1"
# fix pydantic version
RUN pip install pydantic==2.10.6
# Reset pip config
RUN pip config unset global.index-url && \
pip config unset global.extra-index-url

View File

@@ -4,27 +4,15 @@ services:
dockerfile: ./docker/docker-rocm/Dockerfile
context: ../..
args:
INSTALL_BNB: false
INSTALL_VLLM: false
INSTALL_DEEPSPEED: false
INSTALL_FLASHATTN: false
INSTALL_LIGER_KERNEL: false
INSTALL_HQQ: false
PIP_INDEX: https://pypi.org/simple
EXTRAS: metrics
container_name: llamafactory
volumes:
- ../../hf_cache:/root/.cache/huggingface
- ../../ms_cache:/root/.cache/modelscope
- ../../om_cache:/root/.cache/openmind
- ../../data:/app/data
- ../../output:/app/output
- ../../saves:/app/saves
ports:
- "7860:7860"
- "8000:8000"
ipc: host
tty: true
shm_size: '16gb'
# shm_size: "16gb" # ipc: host is set
stdin_open: true
command: bash
devices:

View File

@@ -1,161 +0,0 @@
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import datasets
import pandas as pd
_CITATION = """\
@article{huang2023ceval,
title={C-Eval: A Multi-Level Multi-Discipline Chinese Evaluation Suite for Foundation Models},
author={Huang, Yuzhen and Bai, Yuzhuo and Zhu, Zhihao and Zhang, Junlei and Zhang, Jinghan and Su, Tangjun and Liu, Junteng and Lv, Chuancheng and Zhang, Yikai and Lei, Jiayi and Fu, Yao and Sun, Maosong and He, Junxian},
journal={arXiv preprint arXiv:2305.08322},
year={2023}
}
"""
_DESCRIPTION = """\
C-Eval is a comprehensive Chinese evaluation suite for foundation models. It consists of 13948 multi-choice questions spanning 52 diverse disciplines and four difficulty levels.
"""
_HOMEPAGE = "https://cevalbenchmark.com"
_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License"
_URL = "ceval.zip"
task_list = [
"computer_network",
"operating_system",
"computer_architecture",
"college_programming",
"college_physics",
"college_chemistry",
"advanced_mathematics",
"probability_and_statistics",
"discrete_mathematics",
"electrical_engineer",
"metrology_engineer",
"high_school_mathematics",
"high_school_physics",
"high_school_chemistry",
"high_school_biology",
"middle_school_mathematics",
"middle_school_biology",
"middle_school_physics",
"middle_school_chemistry",
"veterinary_medicine",
"college_economics",
"business_administration",
"marxism",
"mao_zedong_thought",
"education_science",
"teacher_qualification",
"high_school_politics",
"high_school_geography",
"middle_school_politics",
"middle_school_geography",
"modern_chinese_history",
"ideological_and_moral_cultivation",
"logic",
"law",
"chinese_language_and_literature",
"art_studies",
"professional_tour_guide",
"legal_professional",
"high_school_chinese",
"high_school_history",
"middle_school_history",
"civil_servant",
"sports_science",
"plant_protection",
"basic_medicine",
"clinical_medicine",
"urban_and_rural_planner",
"accountant",
"fire_engineer",
"environmental_impact_assessment_engineer",
"tax_accountant",
"physician",
]
class CevalConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
class Ceval(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
CevalConfig(
name=task_name,
)
for task_name in task_list
]
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("int32"),
"question": datasets.Value("string"),
"A": datasets.Value("string"),
"B": datasets.Value("string"),
"C": datasets.Value("string"),
"D": datasets.Value("string"),
"answer": datasets.Value("string"),
"explanation": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URL)
task_name = self.config.name
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, "test", f"{task_name}_test.csv"),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir, "val", f"{task_name}_val.csv"),
},
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "dev", f"{task_name}_dev.csv"),
},
),
]
def _generate_examples(self, filepath):
df = pd.read_csv(filepath, encoding="utf-8")
for i, instance in enumerate(df.to_dict(orient="records")):
if "answer" not in instance.keys():
instance["answer"] = ""
if "explanation" not in instance.keys():
instance["explanation"] = ""
yield i, instance

View File

@@ -1,168 +0,0 @@
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import datasets
import pandas as pd
_CITATION = """\
@article{li2023cmmlu,
title={CMMLU: Measuring massive multitask language understanding in Chinese},
author={Haonan Li and Yixuan Zhang and Fajri Koto and Yifei Yang and Hai Zhao and Yeyun Gong and Nan Duan and Timothy Baldwin},
journal={arXiv preprint arXiv:2306.09212},
year={2023}
}
"""
_DESCRIPTION = """\
CMMLU is a comprehensive Chinese assessment suite specifically designed to evaluate the advanced knowledge and reasoning abilities of LLMs within the Chinese language and cultural context.
"""
_HOMEPAGE = "https://github.com/haonan-li/CMMLU"
_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License"
_URL = "cmmlu.zip"
task_list = [
"agronomy",
"anatomy",
"ancient_chinese",
"arts",
"astronomy",
"business_ethics",
"chinese_civil_service_exam",
"chinese_driving_rule",
"chinese_food_culture",
"chinese_foreign_policy",
"chinese_history",
"chinese_literature",
"chinese_teacher_qualification",
"clinical_knowledge",
"college_actuarial_science",
"college_education",
"college_engineering_hydrology",
"college_law",
"college_mathematics",
"college_medical_statistics",
"college_medicine",
"computer_science",
"computer_security",
"conceptual_physics",
"construction_project_management",
"economics",
"education",
"electrical_engineering",
"elementary_chinese",
"elementary_commonsense",
"elementary_information_and_technology",
"elementary_mathematics",
"ethnology",
"food_science",
"genetics",
"global_facts",
"high_school_biology",
"high_school_chemistry",
"high_school_geography",
"high_school_mathematics",
"high_school_physics",
"high_school_politics",
"human_sexuality",
"international_law",
"journalism",
"jurisprudence",
"legal_and_moral_basis",
"logical",
"machine_learning",
"management",
"marketing",
"marxist_theory",
"modern_chinese",
"nutrition",
"philosophy",
"professional_accounting",
"professional_law",
"professional_medicine",
"professional_psychology",
"public_relations",
"security_study",
"sociology",
"sports_science",
"traditional_chinese_medicine",
"virology",
"world_history",
"world_religions",
]
class CMMLUConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super().__init__(version=datasets.Version("1.0.1"), **kwargs)
class CMMLU(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
CMMLUConfig(
name=task_name,
)
for task_name in task_list
]
def _info(self):
features = datasets.Features(
{
"question": datasets.Value("string"),
"A": datasets.Value("string"),
"B": datasets.Value("string"),
"C": datasets.Value("string"),
"D": datasets.Value("string"),
"answer": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URL)
task_name = self.config.name
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, f"test/{task_name}.csv"),
},
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, f"dev/{task_name}.csv"),
},
),
]
def _generate_examples(self, filepath):
df = pd.read_csv(filepath, header=0, index_col=0, encoding="utf-8")
for i, instance in enumerate(df.to_dict(orient="records")):
question = instance.pop("Question", "")
answer = instance.pop("Answer", "")
instance["question"] = question
instance["answer"] = answer
yield i, instance

View File

@@ -1,161 +0,0 @@
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import datasets
import pandas as pd
_CITATION = """\
@article{hendryckstest2021,
title={Measuring Massive Multitask Language Understanding},
author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt},
journal={Proceedings of the International Conference on Learning Representations (ICLR)},
year={2021}
}
"""
_DESCRIPTION = """\
Measuring Massive Multitask Language Understanding by Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt (ICLR 2021).
"""
_HOMEPAGE = "https://github.com/hendrycks/test"
_LICENSE = "MIT"
_URL = "mmlu.zip"
task_list = [
"high_school_european_history",
"business_ethics",
"clinical_knowledge",
"medical_genetics",
"high_school_us_history",
"high_school_physics",
"high_school_world_history",
"virology",
"high_school_microeconomics",
"econometrics",
"college_computer_science",
"high_school_biology",
"abstract_algebra",
"professional_accounting",
"philosophy",
"professional_medicine",
"nutrition",
"global_facts",
"machine_learning",
"security_studies",
"public_relations",
"professional_psychology",
"prehistory",
"anatomy",
"human_sexuality",
"college_medicine",
"high_school_government_and_politics",
"college_chemistry",
"logical_fallacies",
"high_school_geography",
"elementary_mathematics",
"human_aging",
"college_mathematics",
"high_school_psychology",
"formal_logic",
"high_school_statistics",
"international_law",
"high_school_mathematics",
"high_school_computer_science",
"conceptual_physics",
"miscellaneous",
"high_school_chemistry",
"marketing",
"professional_law",
"management",
"college_physics",
"jurisprudence",
"world_religions",
"sociology",
"us_foreign_policy",
"high_school_macroeconomics",
"computer_security",
"moral_scenarios",
"moral_disputes",
"electrical_engineering",
"astronomy",
"college_biology",
]
class MMLUConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
class MMLU(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
MMLUConfig(
name=task_name,
)
for task_name in task_list
]
def _info(self):
features = datasets.Features(
{
"question": datasets.Value("string"),
"A": datasets.Value("string"),
"B": datasets.Value("string"),
"C": datasets.Value("string"),
"D": datasets.Value("string"),
"answer": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URL)
task_name = self.config.name
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, "data", "test", f"{task_name}_test.csv"),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir, "data", "val", f"{task_name}_val.csv"),
},
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "data", "dev", f"{task_name}_dev.csv"),
},
),
]
def _generate_examples(self, filepath):
df = pd.read_csv(filepath, header=None)
df.columns = ["question", "A", "B", "C", "D", "answer"]
yield from enumerate(df.to_dict(orient="records"))

View File

@@ -13,6 +13,26 @@ Make sure to execute these commands in the `LLaMA-Factory` directory.
Use `CUDA_VISIBLE_DEVICES` (GPU) or `ASCEND_RT_VISIBLE_DEVICES` (NPU) to choose computing devices.
By default, LLaMA-Factory uses all visible computing devices.
Basic usage:
```bash
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
```
Advanced usage:
```bash
CUDA_VISIBLE_DEVICES=0,1 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml \
learning_rate=1e-5 \
logging_steps=1
```
```bash
bash examples/train_lora/llama3_lora_sft.sh
```
## Examples
### LoRA Fine-Tuning
@@ -32,8 +52,7 @@ llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
#### Multimodal Supervised Fine-Tuning
```bash
llamafactory-cli train examples/train_lora/llava1_5_lora_sft.yaml
llamafactory-cli train examples/train_lora/qwen2vl_lora_sft.yaml
llamafactory-cli train examples/train_lora/qwen2_5vl_lora_sft.yaml
```
#### DPO/ORPO/SimPO Training
@@ -45,7 +64,7 @@ llamafactory-cli train examples/train_lora/llama3_lora_dpo.yaml
#### Multimodal DPO/ORPO/SimPO Training
```bash
llamafactory-cli train examples/train_lora/qwen2vl_lora_dpo.yaml
llamafactory-cli train examples/train_lora/qwen2_5vl_lora_dpo.yaml
```
#### Reward Modeling
@@ -80,12 +99,6 @@ llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml
```
#### Batch Predicting and Computing BLEU and ROUGE Scores
```bash
llamafactory-cli train examples/train_lora/llama3_lora_predict.yaml
```
#### Supervised Fine-Tuning on Multiple Nodes
```bash
@@ -99,6 +112,12 @@ FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml
```
#### Supervised Fine-Tuning with Ray on 4 GPUs
```bash
USE_RAY=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ray.yaml
```
### QLoRA Fine-Tuning
#### Supervised Fine-Tuning with 4/8-bit Bitsandbytes/HQQ/EETQ Quantization (Recommended)
@@ -107,6 +126,12 @@ FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.
llamafactory-cli train examples/train_qlora/llama3_lora_sft_otfq.yaml
```
#### Supervised Fine-Tuning with 4-bit Bitsandbytes Quantization on Ascend NPU
```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_bnb_npu.yaml
```
#### Supervised Fine-Tuning with 4/8-bit GPTQ Quantization
```bash
@@ -130,26 +155,28 @@ llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml
#### Supervised Fine-Tuning on Single Node
```bash
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
```
#### Supervised Fine-Tuning on Multiple Nodes
```bash
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
```
### Elastic and Fault-Tolerant Supervised Fine-Tuning on Multiple Nodes
To launch an elastic job with `MAX_RESTARTS` failures retries, run the following on at least `MIN_NNODES` nodes and at most `MAX_NNODES` nodes. `RDZV_ID` should be set as a unique job id (shared by all nodes participating in the job). See also [torchrun](https://docs.pytorch.org/docs/stable/elastic/run.html).
```bash
FORCE_TORCHRUN=1 MIN_NNODES=1 MAX_NNODES=3 MAX_RESTARTS=3 RDZV_ID=llamafactory MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
```
#### Multimodal Supervised Fine-Tuning
```bash
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/qwen2vl_full_sft.yaml
```
#### Batch Predicting and Computing BLEU and ROUGE Scores
```bash
llamafactory-cli train examples/train_full/llama3_full_predict.yaml
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/qwen2_5vl_full_sft.yaml
```
### Merging LoRA Adapters and Quantization
@@ -168,15 +195,28 @@ llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
```
### Save Ollama modelfile
```bash
llamafactory-cli export examples/merge_lora/llama3_full_sft.yaml
```
### Inferring LoRA Fine-Tuned Models
#### Use CLI
#### Evaluation using vLLM's Multi-GPU Inference
```
python scripts/vllm_infer.py --model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct --template llama3 --dataset alpaca_en_demo
python scripts/eval_bleu_rouge.py generated_predictions.jsonl
```
#### Use CLI ChatBox
```bash
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
```
#### Use Web UI
#### Use Web UI ChatBox
```bash
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
@@ -196,6 +236,12 @@ llamafactory-cli api examples/inference/llama3_lora_sft.yaml
llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
```
#### Full-Parameter Fine-Tuning using APOLLO
```bash
llamafactory-cli train examples/extras/apollo/llama3_full_sft.yaml
```
#### Full-Parameter Fine-Tuning using BAdam
```bash
@@ -208,6 +254,12 @@ llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
llamafactory-cli train examples/extras/adam_mini/qwen2_full_sft.yaml
```
#### Full-Parameter Fine-Tuning using Muon
```bash
llamafactory-cli train examples/extras/muon/qwen2_full_sft.yaml
```
#### LoRA+ Fine-Tuning
```bash
@@ -238,3 +290,15 @@ llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
```bash
bash examples/extras/fsdp_qlora/train.sh
```
#### OFT Fine-Tuning
```bash
llamafactory-cli train examples/extras/oft/llama3_oft_sft.yaml
```
#### QOFT Fine-Tuning
```bash
llamafactory-cli train examples/extras/qoft/llama3_oft_sft_bnb_npu.yaml
```

View File

@@ -13,6 +13,26 @@
使用 `CUDA_VISIBLE_DEVICES`GPU`ASCEND_RT_VISIBLE_DEVICES`NPU选择计算设备。
LLaMA-Factory 默认使用所有可见的计算设备。
基础用法:
```bash
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
```
高级用法:
```bash
CUDA_VISIBLE_DEVICES=0,1 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml \
learning_rate=1e-5 \
logging_steps=1
```
```bash
bash examples/train_lora/llama3_lora_sft.sh
```
## 示例
### LoRA 微调
@@ -32,8 +52,7 @@ llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
#### 多模态指令监督微调
```bash
llamafactory-cli train examples/train_lora/llava1_5_lora_sft.yaml
llamafactory-cli train examples/train_lora/qwen2vl_lora_sft.yaml
llamafactory-cli train examples/train_lora/qwen2_5vl_lora_sft.yaml
```
#### DPO/ORPO/SimPO 训练
@@ -45,7 +64,7 @@ llamafactory-cli train examples/train_lora/llama3_lora_dpo.yaml
#### 多模态 DPO/ORPO/SimPO 训练
```bash
llamafactory-cli train examples/train_lora/qwen2vl_lora_dpo.yaml
llamafactory-cli train examples/train_lora/qwen2_5vl_lora_dpo.yaml
```
#### 奖励模型训练
@@ -80,12 +99,6 @@ llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml
```
#### 批量预测并计算 BLEU 和 ROUGE 分数
```bash
llamafactory-cli train examples/train_lora/llama3_lora_predict.yaml
```
#### 多机指令监督微调
```bash
@@ -93,12 +106,26 @@ FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
```
### 支持弹性和容错的多机指令监督微调
要启动一个支持弹性节点和容错的多机指令微调,在每个节点上执行以下命令。弹性节点数量范围为 `MIN_NNODES:MAX_NNODES`,每个节点最多允许因为错误重启 `MAX_RESTARTS` 次。`RDZV_ID` 应设置为一个唯一的作业 ID由参与该作业的所有节点共享。更多新可以参考官方文档 [torchrun](https://docs.pytorch.org/docs/stable/elastic/run.html)。
```bash
FORCE_TORCHRUN=1 MIN_NNODES=1 MAX_NNODES=3 MAX_RESTARTS=3 RDZV_ID=llamafactory MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
```
#### 使用 DeepSpeed ZeRO-3 平均分配显存
```bash
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml
```
#### 使用 Ray 在 4 张 GPU 上微调
```bash
USE_RAY=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ray.yaml
```
### QLoRA 微调
#### 基于 4/8 比特 Bitsandbytes/HQQ/EETQ 量化进行指令监督微调(推荐)
@@ -107,6 +134,12 @@ FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.
llamafactory-cli train examples/train_qlora/llama3_lora_sft_otfq.yaml
```
#### 在 NPU 上基于 4 比特 Bitsandbytes 量化进行指令监督微调
```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_bnb_npu.yaml
```
#### 基于 4/8 比特 GPTQ 量化进行指令监督微调
```bash
@@ -130,26 +163,20 @@ llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml
#### 在单机上进行指令监督微调
```bash
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
```
#### 在多机上进行指令监督微调
```bash
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
```
#### 多模态指令监督微调
```bash
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/qwen2vl_full_sft.yaml
```
#### 批量预测并计算 BLEU 和 ROUGE 分数
```bash
llamafactory-cli train examples/train_full/llama3_full_predict.yaml
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/qwen2_5vl_full_sft.yaml
```
### 合并 LoRA 适配器与模型量化
@@ -168,15 +195,28 @@ llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
```
### 保存 Ollama 配置文件
```bash
llamafactory-cli export examples/merge_lora/llama3_full_sft.yaml
```
### 推理 LoRA 模型
#### 使用命令行接口
#### 使用 vLLM 多卡推理评估
```
python scripts/vllm_infer.py --model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct --template llama3 --dataset alpaca_en_demo
python scripts/eval_bleu_rouge.py generated_predictions.jsonl
```
#### 使用命令行对话框
```bash
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
```
#### 使用浏览器界面
#### 使用浏览器对话框
```bash
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
@@ -196,6 +236,12 @@ llamafactory-cli api examples/inference/llama3_lora_sft.yaml
llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
```
#### 使用 APOLLO 进行全参数训练
```bash
llamafactory-cli train examples/extras/apollo/llama3_full_sft.yaml
```
#### 使用 BAdam 进行全参数训练
```bash
@@ -208,6 +254,12 @@ llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
llamafactory-cli train examples/extras/adam_mini/qwen2_full_sft.yaml
```
#### 使用 Muon 进行全参数训练
```bash
llamafactory-cli train examples/extras/muon/qwen2_full_sft.yaml
```
#### LoRA+ 微调
```bash
@@ -238,3 +290,15 @@ llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
```bash
bash examples/extras/fsdp_qlora/train.sh
```
#### OFT 微调
```bash
llamafactory-cli train examples/extras/oft/llama3_oft_sft.yaml
```
#### QOFT 微调
```bash
llamafactory-cli train examples/extras/qoft/llama3_oft_sft_bnb_npu.yaml
```

View File

@@ -7,16 +7,16 @@ fsdp_config:
fsdp_backward_prefetch: BACKWARD_PRE
fsdp_forward_prefetch: false
fsdp_cpu_ram_efficient_loading: true
fsdp_offload_params: true # offload may affect training speed
fsdp_offload_params: false
fsdp_sharding_strategy: FULL_SHARD
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sync_module_states: true
fsdp_use_orig_params: true
machine_rank: 0
main_training_function: main
mixed_precision: fp16 # or bf16
num_machines: 1 # the number of nodes
num_processes: 2 # the number of GPUs in all nodes
mixed_precision: bf16 # or fp16
num_machines: 1 # the number of nodes
num_processes: 2 # the number of GPUs in all nodes
rdzv_backend: static
same_network: true
tpu_env: []

View File

@@ -0,0 +1,25 @@
compute_environment: LOCAL_MACHINE
debug: false
distributed_type: FSDP
downcast_bf16: 'no'
fsdp_config:
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_backward_prefetch: BACKWARD_PRE
fsdp_forward_prefetch: false
fsdp_cpu_ram_efficient_loading: true
fsdp_offload_params: true # offload may affect training speed
fsdp_sharding_strategy: FULL_SHARD
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sync_module_states: true
fsdp_use_orig_params: true
machine_rank: 0
main_training_function: main
mixed_precision: bf16 # or fp16
num_machines: 1 # the number of nodes
num_processes: 2 # the number of GPUs in all nodes
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false

View File

@@ -0,0 +1,28 @@
{
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"zero_allow_untested_optimizer": true,
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"zero_optimization": {
"stage": 0,
"allgather_partitions": true,
"allgather_bucket_size": 5e8,
"overlap_comm": false,
"reduce_scatter": true,
"reduce_bucket_size": 5e8,
"contiguous_gradients": true,
"round_robin_gradients": true
}
}

View File

@@ -0,0 +1,28 @@
{
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"zero_allow_untested_optimizer": true,
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"zero_optimization": {
"stage": 2,
"allgather_partitions": true,
"allgather_bucket_size": 5e8,
"overlap_comm": false,
"reduce_scatter": true,
"reduce_bucket_size": 5e8,
"contiguous_gradients": true,
"round_robin_gradients": true
}
}

View File

@@ -0,0 +1,32 @@
{
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"zero_allow_untested_optimizer": true,
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"zero_optimization": {
"stage": 2,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"allgather_partitions": true,
"allgather_bucket_size": 5e8,
"overlap_comm": false,
"reduce_scatter": true,
"reduce_bucket_size": 5e8,
"contiguous_gradients": true,
"round_robin_gradients": true
}
}

View File

@@ -0,0 +1,30 @@
{
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"zero_allow_untested_optimizer": true,
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"zero_optimization": {
"stage": 3,
"overlap_comm": false,
"contiguous_gradients": true,
"sub_group_size": 1e9,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_gather_16bit_weights_on_model_save": true
}
}

View File

@@ -0,0 +1,45 @@
{
"train_micro_batch_size_per_gpu": "auto",
"gradient_clipping": "auto",
"zero_allow_untested_optimizer": true,
"zero_force_ds_cpu_optimizer": true,
"fp16": {
"enabled": false,
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "cpu",
"pin_memory": false
},
"overlap_comm": false,
"contiguous_gradients": true,
"sub_group_size": 1000000000,
"reduce_bucket_size": 12845056,
"stage3_prefetch_bucket_size": 11560550,
"stage3_param_persistence_threshold": 35840,
"stage3_max_live_parameters": 1000000000,
"stage3_max_reuse_distance": 1000000000,
"stage3_gather_16bit_weights_on_model_save": true
},
"steps_per_print": 10000000,
"gradient_accumulation_steps": "auto",
"comms_config": {
"verbose": false
},
"monitor_config": {
"enabled": true,
"tag": "DeepSpeedMonitor",
"csv_monitor": {
"enabled": false
}
}
}

View File

@@ -0,0 +1,38 @@
{
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"zero_allow_untested_optimizer": true,
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"offload_param": {
"device": "cpu",
"pin_memory": true
},
"overlap_comm": false,
"contiguous_gradients": true,
"sub_group_size": 1e9,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_gather_16bit_weights_on_model_save": true
}
}

View File

@@ -1,5 +1,6 @@
### model
model_name_or_path: Qwen/Qwen2-1.5B-Instruct
trust_remote_code: true
### method
stage: sft
@@ -14,6 +15,7 @@ cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/qwen2-1_5b/full/sft
@@ -21,6 +23,8 @@ logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
@@ -33,7 +37,7 @@ bf16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

View File

@@ -0,0 +1,48 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: full
use_apollo: true
apollo_layerwise: true # choices: [true, false], use false for DDP training
apollo_target: all
apollo_rank: 128
apollo_scale: 32.0
apollo_scale_type: channel
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 1 # use 1 for layerwise apollo
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
pure_bf16: true
ddp_timeout: 180000000
### eval
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

View File

@@ -1,5 +1,6 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code: true
### method
stage: sft
@@ -19,6 +20,7 @@ cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/full/sft
@@ -26,6 +28,8 @@ logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
@@ -36,7 +40,7 @@ lr_scheduler_type: cosine
warmup_ratio: 0.1
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

View File

@@ -0,0 +1,43 @@
### model
model_name_or_path: Qwen/Qwen2-1.5B-Instruct
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: full
use_dft_loss: true
### dataset
dataset: identity,alpaca_en_demo
template: qwen
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/qwen2-1_5b/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
### eval
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

View File

@@ -0,0 +1,48 @@
# FP8 training example with DeepSpeed ZeRO-3
# This config demonstrates FP8 mixed precision training using HuggingFace Accelerate
# with DeepSpeed providing memory optimization (not FP8 handling)
### Model configuration
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code: true
### Method configuration
stage: sft
do_train: true
finetuning_type: full
### Dataset configuration
dataset: identity
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### Output configuration
output_dir: saves/llama3-8b/fp8-deepspeed/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### Training configuration
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 5.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
### FP8 configuration
fp8: true
fp8_backend: torchao # Use TorchAO backend for FP8
fp8_enable_fsdp_float8_all_gather: false # Not used with DeepSpeed
### DeepSpeed configuration
deepspeed: examples/deepspeed/ds_z3_fp8_config.json
### Logging configuration
report_to: wandb
run_name: llama3_fp8_deepspeed_sft

View File

@@ -0,0 +1,51 @@
# FP8 training example with FSDP
# This config demonstrates FP8 mixed precision training using HuggingFace Accelerate
# with FSDP for distributed training and float8 all-gather optimization
### Model configuration
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code: true
### Method configuration
stage: sft
do_train: true
finetuning_type: full
### Dataset configuration
dataset: identity
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### Output configuration
output_dir: saves/llama3-8b/fp8-fsdp/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### Training configuration
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 5.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
### FP8 configuration
fp8: true
fp8_backend: torchao # Use TorchAO backend for FP8
fp8_enable_fsdp_float8_all_gather: true # Enable FSDP2 float8 all-gather optimization
### FSDP configuration (using training arguments - no separate FSDP config file)
fsdp:
- full_shard
- auto_wrap
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
### Logging configuration
report_to: wandb
run_name: llama3_fp8_fsdp_sft

View File

@@ -1,11 +1,13 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
quantization_bit: 4
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: lora
lora_rank: 8
lora_target: all
### dataset
@@ -15,6 +17,7 @@ cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/lora/sft
@@ -22,6 +25,8 @@ logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
@@ -34,7 +39,7 @@ bf16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

View File

@@ -1,13 +1,14 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: full
use_galore: true
galore_layerwise: true
galore_target: mlp,self_attn
galore_layerwise: true # choices: [true, false], use false for DDP training
galore_target: all
galore_rank: 128
galore_scale: 2.0
@@ -18,6 +19,7 @@ cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/full/sft
@@ -25,10 +27,12 @@ logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 1
gradient_accumulation_steps: 1 # use 1 for layerwise galore
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
@@ -37,7 +41,7 @@ pure_bf16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

View File

@@ -1,5 +1,6 @@
### model
model_name_or_path: models/llama3-8b-pro
trust_remote_code: true
### method
stage: sft
@@ -16,6 +17,7 @@ cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b-pro/freeze/sft
@@ -23,6 +25,8 @@ logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
@@ -35,7 +39,7 @@ bf16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

View File

@@ -1,10 +1,12 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: lora
lora_rank: 8
lora_target: all
loraplus_lr_ratio: 16.0
@@ -15,6 +17,7 @@ cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/lora/sft
@@ -22,6 +25,8 @@ logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
@@ -34,7 +39,7 @@ bf16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

View File

@@ -1,5 +1,6 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code: true
### method
stage: sft
@@ -14,6 +15,7 @@ cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b-mod/full/sft
@@ -21,6 +23,8 @@ logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
@@ -34,7 +38,7 @@ pure_bf16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

View File

@@ -1,30 +1,34 @@
### model
model_name_or_path: Qwen/Qwen2-VL-7B-Instruct
model_name_or_path: Qwen/Qwen2-1.5B-Instruct
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: full
deepspeed: examples/deepspeed/ds_z3_config.json
use_muon: true
### dataset
dataset: mllm_demo,identity
template: qwen2_vl
dataset: identity,alpaca_en_demo
template: qwen
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/qwen2_vl-7b/full/sft
output_dir: saves/qwen2-1_5b/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 2
gradient_accumulation_steps: 8
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
@@ -33,7 +37,7 @@ bf16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

View File

@@ -1,6 +1,10 @@
# The batch generation can be SLOW using this config.
# For faster inference, we recommend to use `scripts/vllm_infer.py`.
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
adapter_name_or_path: saves/llama3-8b/lora/sft
trust_remote_code: true
### method
stage: sft
@@ -14,10 +18,12 @@ cutoff_len: 2048
max_samples: 50
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/lora/predict
overwrite_output_dir: true
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### eval
per_device_eval_batch_size: 1

View File

@@ -0,0 +1,46 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: oft
oft_block_size: 32
oft_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/oft/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null
### eval
# eval_dataset: alpaca_en_demo
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

View File

@@ -0,0 +1,47 @@
### model
model_name_or_path: Qwen/Qwen2.5-VL-7B-Instruct
image_max_pixels: 262144
video_max_pixels: 16384
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: oft
oft_block_size: 32
oft_target: all
### dataset
dataset: mllm_demo,identity,alpaca_en_demo # video: mllm_video_demo
template: qwen2_vl
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/qwen2_5vl-7b/oft/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null
### eval
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

View File

@@ -1,10 +1,12 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: lora
lora_rank: 8
lora_target: all
pissa_init: true
pissa_iter: 16
@@ -17,6 +19,7 @@ cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/lora/sft
@@ -24,6 +27,8 @@ logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
@@ -36,7 +41,7 @@ bf16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

View File

@@ -1,26 +1,31 @@
### model
model_name_or_path: llava-hf/llava-1.5-7b-hf
model_name_or_path: TechxGenus/Meta-Llama-3-8B-Instruct-AWQ
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
finetuning_type: oft
oft_block_size: 32
oft_target: all
### dataset
dataset: mllm_demo
template: llava
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llava1_5-7b/lora/sft
output_dir: saves/llama3-8b/oft/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
@@ -33,7 +38,7 @@ bf16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

View File

@@ -0,0 +1,47 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
quantization_bit: 4
quantization_method: bnb
double_quantization: false
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: oft
oft_block_size: 32
oft_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/oft/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
### eval
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

View File

@@ -0,0 +1,44 @@
### model
model_name_or_path: TechxGenus/Meta-Llama-3-8B-Instruct-GPTQ
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: oft
oft_block_size: 32
oft_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/oft/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
### eval
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

View File

@@ -1,2 +1,4 @@
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
template: llama3
infer_backend: huggingface # choices: [huggingface, vllm, sglang]
trust_remote_code: true

View File

@@ -0,0 +1,4 @@
model_name_or_path: saves/llama3-8b/full/sft
template: llama3
infer_backend: huggingface # choices: [huggingface, vllm, sglang]
trust_remote_code: true

View File

@@ -1,4 +1,5 @@
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
adapter_name_or_path: saves/llama3-8b/lora/sft
template: llama3
finetuning_type: lora
infer_backend: huggingface # choices: [huggingface, vllm, sglang]
trust_remote_code: true

View File

@@ -1,4 +0,0 @@
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
template: llama3
infer_backend: vllm
vllm_enforce_eager: true

View File

@@ -1,2 +0,0 @@
model_name_or_path: llava-hf/llava-1.5-7b-hf
template: llava

View File

@@ -0,0 +1,4 @@
model_name_or_path: Qwen/Qwen2.5-VL-7B-Instruct
template: qwen2_vl
infer_backend: huggingface # choices: [huggingface, vllm, sglang]
trust_remote_code: true

View File

@@ -1,2 +0,0 @@
model_name_or_path: Qwen/Qwen2-VL-7B-Instruct
template: qwen2_vl

View File

@@ -0,0 +1,10 @@
### model
model_name_or_path: saves/llama3-8b/full/sft
template: llama3
trust_remote_code: true
### export
export_dir: output/llama3_full_sft
export_size: 5
export_device: cpu # choices: [cpu, auto]
export_legacy_format: false

View File

@@ -1,11 +1,12 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
template: llama3
trust_remote_code: true
### export
export_dir: models/llama3_gptq
export_dir: output/llama3_gptq
export_quantization_bit: 4
export_quantization_dataset: data/c4_demo.json
export_size: 2
export_device: cpu
export_quantization_dataset: data/c4_demo.jsonl
export_size: 5
export_device: cpu # choices: [cpu, auto]
export_legacy_format: false

Some files were not shown because too many files have changed in this diff Show More