mirror of
				https://github.com/hiyouga/LLaMA-Factory.git
				synced 2025-11-04 09:52:14 +08:00 
			
		
		
		
	[misc] fix packing and eval plot (#7623)
This commit is contained in:
		
							parent
							
								
									5115dc8c7f
								
							
						
					
					
						commit
						c3c0efbaa0
					
				@ -5,7 +5,7 @@
 | 
			
		||||
[](https://github.com/hiyouga/LLaMA-Factory/graphs/contributors)
 | 
			
		||||
[](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml)
 | 
			
		||||
[](https://pypi.org/project/llamafactory/)
 | 
			
		||||
[](https://scholar.google.com/scholar?cites=12620864006390196564)
 | 
			
		||||
[](https://scholar.google.com/scholar?cites=12620864006390196564)
 | 
			
		||||
[](https://github.com/hiyouga/LLaMA-Factory/pulls)
 | 
			
		||||
 | 
			
		||||
[](https://twitter.com/llamafactory_ai)
 | 
			
		||||
@ -112,7 +112,7 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
 | 
			
		||||
 | 
			
		||||
[25/03/15] We supported **[SGLang](https://github.com/sgl-project/sglang)** as inference backend. Try `infer_backend: sglang` to accelerate inference.
 | 
			
		||||
 | 
			
		||||
[25/03/12] We supported fine-tuning the **[Gemma-3](https://huggingface.co/blog/gemma3)** model.
 | 
			
		||||
[25/03/12] We supported fine-tuning the **[Gemma 3](https://huggingface.co/blog/gemma3)** model.
 | 
			
		||||
 | 
			
		||||
[25/02/24] Announcing **[EasyR1](https://github.com/hiyouga/EasyR1)**, an efficient, scalable and multi-modality RL training framework for efficient GRPO training.
 | 
			
		||||
 | 
			
		||||
@ -873,7 +873,7 @@ If you have a project that should be incorporated, please contact via email or c
 | 
			
		||||
 | 
			
		||||
This repository is licensed under the [Apache-2.0 License](LICENSE).
 | 
			
		||||
 | 
			
		||||
Please follow the model licenses to use the corresponding model weights: [Baichuan 2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM-4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [GPT-2](https://github.com/openai/gpt-2/blob/master/LICENSE) / [Granite](LICENSE) / [Index](https://huggingface.co/IndexTeam/Index-1.9B/blob/main/LICENSE) / [InternLM](https://github.com/InternLM/InternLM#license) / [Llama](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [Llama 2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [Llama 3](https://llama.meta.com/llama3/license/) / [MiniCPM](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md) / [Mistral/Mixtral/Pixtral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/Phi-2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3/Phi-4](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [Skywork](https://huggingface.co/Skywork/Skywork-13B-base/blob/main/Skywork%20Community%20License.pdf) / [StarCoder 2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [TeleChat2](https://huggingface.co/Tele-AI/telechat-7B/blob/main/TeleChat%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan 2](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
 | 
			
		||||
Please follow the model licenses to use the corresponding model weights: [Baichuan 2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM-4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [GPT-2](https://github.com/openai/gpt-2/blob/master/LICENSE) / [Granite](LICENSE) / [Index](https://huggingface.co/IndexTeam/Index-1.9B/blob/main/LICENSE) / [InternLM](https://github.com/InternLM/InternLM#license) / [Llama](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [Llama 2](https://ai.meta.com/llama/license/) / [Llama 3](https://llama.meta.com/llama3/license/) / [Llama 4](https://github.com/meta-llama/llama-models/blob/main/models/llama4/LICENSE) / [MiniCPM](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md) / [Mistral/Mixtral/Pixtral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/Phi-2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3/Phi-4](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [Skywork](https://huggingface.co/Skywork/Skywork-13B-base/blob/main/Skywork%20Community%20License.pdf) / [StarCoder 2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [TeleChat2](https://huggingface.co/Tele-AI/telechat-7B/blob/main/TeleChat%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan 2](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
 | 
			
		||||
 | 
			
		||||
## Citation
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -5,7 +5,7 @@
 | 
			
		||||
[](https://github.com/hiyouga/LLaMA-Factory/graphs/contributors)
 | 
			
		||||
[](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml)
 | 
			
		||||
[](https://pypi.org/project/llamafactory/)
 | 
			
		||||
[](https://scholar.google.com/scholar?cites=12620864006390196564)
 | 
			
		||||
[](https://scholar.google.com/scholar?cites=12620864006390196564)
 | 
			
		||||
[](https://github.com/hiyouga/LLaMA-Factory/pulls)
 | 
			
		||||
 | 
			
		||||
[](https://twitter.com/llamafactory_ai)
 | 
			
		||||
@ -114,7 +114,7 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
 | 
			
		||||
 | 
			
		||||
[25/03/15] 我们支持了 **[SGLang](https://github.com/sgl-project/sglang)** 推理后端,请使用 `infer_backend: sglang` 启用。
 | 
			
		||||
 | 
			
		||||
[25/03/12] 我们支持了 **[Gemma-3](https://huggingface.co/blog/gemma3)** 模型的微调。
 | 
			
		||||
[25/03/12] 我们支持了 **[Gemma 3](https://huggingface.co/blog/gemma3)** 模型的微调。
 | 
			
		||||
 | 
			
		||||
[25/02/24] 我们宣布开源 **[EasyR1](https://github.com/hiyouga/EasyR1)**,一个高效可扩展的多模态强化学习框架,支持高效的 GRPO 训练。
 | 
			
		||||
 | 
			
		||||
@ -876,7 +876,7 @@ swanlab_run_name: test_run # 可选
 | 
			
		||||
 | 
			
		||||
本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源。
 | 
			
		||||
 | 
			
		||||
使用模型权重时,请遵循对应的模型协议:[Baichuan 2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM-4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [GPT-2](https://github.com/openai/gpt-2/blob/master/LICENSE) / [Granite](LICENSE) / [Index](https://huggingface.co/IndexTeam/Index-1.9B/blob/main/LICENSE) / [InternLM](https://github.com/InternLM/InternLM#license) / [Llama](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [Llama 2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [Llama 3](https://llama.meta.com/llama3/license/) / [MiniCPM](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md) / [Mistral/Mixtral/Pixtral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/Phi-2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3/Phi-4](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [Skywork](https://huggingface.co/Skywork/Skywork-13B-base/blob/main/Skywork%20Community%20License.pdf) / [StarCoder 2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [TeleChat2](https://huggingface.co/Tele-AI/telechat-7B/blob/main/TeleChat%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan 2](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
 | 
			
		||||
使用模型权重时,请遵循对应的模型协议:[Baichuan 2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM-4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [GPT-2](https://github.com/openai/gpt-2/blob/master/LICENSE) / [Granite](LICENSE) / [Index](https://huggingface.co/IndexTeam/Index-1.9B/blob/main/LICENSE) / [InternLM](https://github.com/InternLM/InternLM#license) / [Llama](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [Llama 2](https://ai.meta.com/llama/license/) / [Llama 3](https://llama.meta.com/llama3/license/) / [Llama 4](https://github.com/meta-llama/llama-models/blob/main/models/llama4/LICENSE) / [MiniCPM](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md) / [Mistral/Mixtral/Pixtral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/Phi-2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3/Phi-4](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [Skywork](https://huggingface.co/Skywork/Skywork-13B-base/blob/main/Skywork%20Community%20License.pdf) / [StarCoder 2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [TeleChat2](https://huggingface.co/Tele-AI/telechat-7B/blob/main/TeleChat%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan 2](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
 | 
			
		||||
 | 
			
		||||
## 引用
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -15,6 +15,7 @@ cutoff_len: 2048
 | 
			
		||||
max_samples: 1000
 | 
			
		||||
overwrite_cache: true
 | 
			
		||||
preprocessing_num_workers: 16
 | 
			
		||||
dataloader_num_workers: 4
 | 
			
		||||
 | 
			
		||||
### output
 | 
			
		||||
output_dir: saves/qwen2-1_5b/full/sft
 | 
			
		||||
@ -22,6 +23,8 @@ logging_steps: 10
 | 
			
		||||
save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
save_only_model: false
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
 | 
			
		||||
@ -20,6 +20,7 @@ cutoff_len: 2048
 | 
			
		||||
max_samples: 1000
 | 
			
		||||
overwrite_cache: true
 | 
			
		||||
preprocessing_num_workers: 16
 | 
			
		||||
dataloader_num_workers: 4
 | 
			
		||||
 | 
			
		||||
### output
 | 
			
		||||
output_dir: saves/llama3-8b/full/sft
 | 
			
		||||
@ -27,6 +28,8 @@ logging_steps: 10
 | 
			
		||||
save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
save_only_model: false
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
 | 
			
		||||
@ -20,6 +20,7 @@ cutoff_len: 2048
 | 
			
		||||
max_samples: 1000
 | 
			
		||||
overwrite_cache: true
 | 
			
		||||
preprocessing_num_workers: 16
 | 
			
		||||
dataloader_num_workers: 4
 | 
			
		||||
 | 
			
		||||
### output
 | 
			
		||||
output_dir: saves/llama3-8b/full/sft
 | 
			
		||||
@ -27,6 +28,8 @@ logging_steps: 10
 | 
			
		||||
save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
save_only_model: false
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
 | 
			
		||||
@ -17,6 +17,7 @@ cutoff_len: 2048
 | 
			
		||||
max_samples: 1000
 | 
			
		||||
overwrite_cache: true
 | 
			
		||||
preprocessing_num_workers: 16
 | 
			
		||||
dataloader_num_workers: 4
 | 
			
		||||
 | 
			
		||||
### output
 | 
			
		||||
output_dir: saves/llama3-8b/lora/sft
 | 
			
		||||
@ -24,6 +25,8 @@ logging_steps: 10
 | 
			
		||||
save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
save_only_model: false
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
 | 
			
		||||
@ -19,6 +19,7 @@ cutoff_len: 2048
 | 
			
		||||
max_samples: 1000
 | 
			
		||||
overwrite_cache: true
 | 
			
		||||
preprocessing_num_workers: 16
 | 
			
		||||
dataloader_num_workers: 4
 | 
			
		||||
 | 
			
		||||
### output
 | 
			
		||||
output_dir: saves/llama3-8b/full/sft
 | 
			
		||||
@ -26,6 +27,8 @@ logging_steps: 10
 | 
			
		||||
save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
save_only_model: false
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
 | 
			
		||||
@ -17,6 +17,7 @@ cutoff_len: 2048
 | 
			
		||||
max_samples: 1000
 | 
			
		||||
overwrite_cache: true
 | 
			
		||||
preprocessing_num_workers: 16
 | 
			
		||||
dataloader_num_workers: 4
 | 
			
		||||
 | 
			
		||||
### output
 | 
			
		||||
output_dir: saves/llama3-8b-pro/freeze/sft
 | 
			
		||||
@ -24,6 +25,8 @@ logging_steps: 10
 | 
			
		||||
save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
save_only_model: false
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
 | 
			
		||||
@ -17,6 +17,7 @@ cutoff_len: 2048
 | 
			
		||||
max_samples: 1000
 | 
			
		||||
overwrite_cache: true
 | 
			
		||||
preprocessing_num_workers: 16
 | 
			
		||||
dataloader_num_workers: 4
 | 
			
		||||
 | 
			
		||||
### output
 | 
			
		||||
output_dir: saves/llama3-8b/lora/sft
 | 
			
		||||
@ -24,6 +25,8 @@ logging_steps: 10
 | 
			
		||||
save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
save_only_model: false
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
 | 
			
		||||
@ -15,6 +15,7 @@ cutoff_len: 2048
 | 
			
		||||
max_samples: 1000
 | 
			
		||||
overwrite_cache: true
 | 
			
		||||
preprocessing_num_workers: 16
 | 
			
		||||
dataloader_num_workers: 4
 | 
			
		||||
 | 
			
		||||
### output
 | 
			
		||||
output_dir: saves/llama3-8b-mod/full/sft
 | 
			
		||||
@ -22,6 +23,8 @@ logging_steps: 10
 | 
			
		||||
save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
save_only_model: false
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
 | 
			
		||||
@ -18,10 +18,12 @@ cutoff_len: 2048
 | 
			
		||||
max_samples: 50
 | 
			
		||||
overwrite_cache: true
 | 
			
		||||
preprocessing_num_workers: 16
 | 
			
		||||
dataloader_num_workers: 4
 | 
			
		||||
 | 
			
		||||
### output
 | 
			
		||||
output_dir: saves/llama3-8b/lora/predict
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### eval
 | 
			
		||||
per_device_eval_batch_size: 1
 | 
			
		||||
 | 
			
		||||
@ -19,6 +19,7 @@ cutoff_len: 2048
 | 
			
		||||
max_samples: 1000
 | 
			
		||||
overwrite_cache: true
 | 
			
		||||
preprocessing_num_workers: 16
 | 
			
		||||
dataloader_num_workers: 4
 | 
			
		||||
 | 
			
		||||
### output
 | 
			
		||||
output_dir: saves/llama3-8b/lora/sft
 | 
			
		||||
@ -26,6 +27,8 @@ logging_steps: 10
 | 
			
		||||
save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
save_only_model: false
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
 | 
			
		||||
@ -24,6 +24,7 @@ save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
save_only_model: false
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
 | 
			
		||||
@ -8,10 +8,10 @@ trust_remote_code: true
 | 
			
		||||
stage: sft
 | 
			
		||||
do_train: true
 | 
			
		||||
finetuning_type: full
 | 
			
		||||
freeze_vision_tower: true  # choices: [true, false]
 | 
			
		||||
freeze_multi_modal_projector: true  # choices: [true, false]
 | 
			
		||||
freeze_language_model: false  # choices: [true, false]
 | 
			
		||||
deepspeed: examples/deepspeed/ds_z3_config.json  # choices: [ds_z0_config.json, ds_z2_config.json, ds_z3_config.json]
 | 
			
		||||
freeze_vision_tower: true
 | 
			
		||||
freeze_multi_modal_projector: true
 | 
			
		||||
freeze_language_model: false
 | 
			
		||||
deepspeed: examples/deepspeed/ds_z3_config.json
 | 
			
		||||
 | 
			
		||||
### dataset
 | 
			
		||||
dataset: mllm_demo,identity,alpaca_en_demo
 | 
			
		||||
@ -29,6 +29,7 @@ save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
save_only_model: false
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
 | 
			
		||||
@ -27,6 +27,7 @@ save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
save_only_model: false
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
 | 
			
		||||
@ -17,6 +17,7 @@ cutoff_len: 2048
 | 
			
		||||
max_samples: 1000
 | 
			
		||||
overwrite_cache: true
 | 
			
		||||
preprocessing_num_workers: 16
 | 
			
		||||
dataloader_num_workers: 4
 | 
			
		||||
 | 
			
		||||
### output
 | 
			
		||||
output_dir: saves/llama3-8b/lora/kto
 | 
			
		||||
@ -24,6 +25,7 @@ logging_steps: 10
 | 
			
		||||
save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
 | 
			
		||||
@ -17,6 +17,7 @@ cutoff_len: 2048
 | 
			
		||||
max_samples: 1000
 | 
			
		||||
overwrite_cache: true
 | 
			
		||||
preprocessing_num_workers: 16
 | 
			
		||||
dataloader_num_workers: 4
 | 
			
		||||
 | 
			
		||||
### output
 | 
			
		||||
output_dir: saves/llama3-8b/lora/ppo
 | 
			
		||||
@ -24,6 +25,7 @@ logging_steps: 10
 | 
			
		||||
save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
 | 
			
		||||
@ -24,6 +24,7 @@ save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
save_only_model: false
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
 | 
			
		||||
@ -25,6 +25,7 @@ save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
save_only_model: false
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
 | 
			
		||||
@ -25,6 +25,7 @@ save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
save_only_model: false
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
 | 
			
		||||
@ -26,6 +26,7 @@ save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
save_only_model: false
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
 | 
			
		||||
@ -26,6 +26,7 @@ save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
save_only_model: false
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### ray
 | 
			
		||||
ray_run_name: llama3_8b_sft_lora
 | 
			
		||||
 | 
			
		||||
@ -28,10 +28,11 @@ save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
save_only_model: false
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
gradient_accumulation_steps: 8
 | 
			
		||||
gradient_accumulation_steps: 2
 | 
			
		||||
learning_rate: 1.0e-4
 | 
			
		||||
num_train_epochs: 3.0
 | 
			
		||||
lr_scheduler_type: cosine
 | 
			
		||||
@ -25,6 +25,7 @@ save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
save_only_model: false
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
 | 
			
		||||
@ -29,6 +29,7 @@ save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
save_only_model: false
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
 | 
			
		||||
@ -27,6 +27,7 @@ save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
save_only_model: false
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
 | 
			
		||||
@ -16,6 +16,7 @@ cutoff_len: 2048
 | 
			
		||||
max_samples: 1000
 | 
			
		||||
overwrite_cache: true
 | 
			
		||||
preprocessing_num_workers: 16
 | 
			
		||||
dataloader_num_workers: 4
 | 
			
		||||
 | 
			
		||||
### output
 | 
			
		||||
output_dir: saves/llama3-8b/lora/sft
 | 
			
		||||
@ -23,6 +24,8 @@ logging_steps: 10
 | 
			
		||||
save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
save_only_model: false
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
 | 
			
		||||
@ -16,6 +16,7 @@ cutoff_len: 2048
 | 
			
		||||
max_samples: 1000
 | 
			
		||||
overwrite_cache: true
 | 
			
		||||
preprocessing_num_workers: 16
 | 
			
		||||
dataloader_num_workers: 4
 | 
			
		||||
 | 
			
		||||
### output
 | 
			
		||||
output_dir: saves/llama3-8b/lora/sft
 | 
			
		||||
@ -23,6 +24,8 @@ logging_steps: 10
 | 
			
		||||
save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
save_only_model: false
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
 | 
			
		||||
@ -1,7 +1,7 @@
 | 
			
		||||
### model
 | 
			
		||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
 | 
			
		||||
quantization_bit: 4
 | 
			
		||||
quantization_method: bitsandbytes
 | 
			
		||||
quantization_method: bnb
 | 
			
		||||
double_quantization: false
 | 
			
		||||
trust_remote_code: true
 | 
			
		||||
 | 
			
		||||
@ -19,6 +19,7 @@ cutoff_len: 2048
 | 
			
		||||
max_samples: 1000
 | 
			
		||||
overwrite_cache: true
 | 
			
		||||
preprocessing_num_workers: 16
 | 
			
		||||
dataloader_num_workers: 4
 | 
			
		||||
 | 
			
		||||
### output
 | 
			
		||||
output_dir: saves/llama3-8b/lora/sft
 | 
			
		||||
@ -26,6 +27,8 @@ logging_steps: 10
 | 
			
		||||
save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
save_only_model: false
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
 | 
			
		||||
@ -16,6 +16,7 @@ cutoff_len: 2048
 | 
			
		||||
max_samples: 1000
 | 
			
		||||
overwrite_cache: true
 | 
			
		||||
preprocessing_num_workers: 16
 | 
			
		||||
dataloader_num_workers: 4
 | 
			
		||||
 | 
			
		||||
### output
 | 
			
		||||
output_dir: saves/llama3-8b/lora/sft
 | 
			
		||||
@ -23,6 +24,8 @@ logging_steps: 10
 | 
			
		||||
save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
save_only_model: false
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
 | 
			
		||||
@ -1,7 +1,7 @@
 | 
			
		||||
### model
 | 
			
		||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
 | 
			
		||||
quantization_bit: 4
 | 
			
		||||
quantization_method: bitsandbytes  # choices: [bitsandbytes (4/8), hqq (2/3/4/5/6/8), eetq (8)]
 | 
			
		||||
quantization_bit: 4  # choices: [8 (bnb/hqq/eetq), 4 (bnb/hqq), 3 (hqq), 2 (hqq)]
 | 
			
		||||
quantization_method: bnb  # choices: [bnb, hqq, eetq]
 | 
			
		||||
trust_remote_code: true
 | 
			
		||||
 | 
			
		||||
### method
 | 
			
		||||
@ -18,6 +18,7 @@ cutoff_len: 2048
 | 
			
		||||
max_samples: 1000
 | 
			
		||||
overwrite_cache: true
 | 
			
		||||
preprocessing_num_workers: 16
 | 
			
		||||
dataloader_num_workers: 4
 | 
			
		||||
 | 
			
		||||
### output
 | 
			
		||||
output_dir: saves/llama3-8b/lora/sft
 | 
			
		||||
@ -25,6 +26,8 @@ logging_steps: 10
 | 
			
		||||
save_steps: 500
 | 
			
		||||
plot_loss: true
 | 
			
		||||
overwrite_output_dir: true
 | 
			
		||||
save_only_model: false
 | 
			
		||||
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]
 | 
			
		||||
 | 
			
		||||
### train
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
 | 
			
		||||
@ -21,9 +21,9 @@ from datasets import load_dataset
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
try:
 | 
			
		||||
    import jieba
 | 
			
		||||
    from nltk.translate.bleu_score import SmoothingFunction, sentence_bleu
 | 
			
		||||
    from rouge_chinese import Rouge
 | 
			
		||||
    import jieba  # type: ignore
 | 
			
		||||
    from nltk.translate.bleu_score import SmoothingFunction, sentence_bleu  # type: ignore
 | 
			
		||||
    from rouge_chinese import Rouge  # type: ignore
 | 
			
		||||
 | 
			
		||||
    jieba.setLogLevel(logging.CRITICAL)
 | 
			
		||||
    jieba.initialize()
 | 
			
		||||
@ -52,6 +52,7 @@ def compute_metrics(sample):
 | 
			
		||||
    metric_result = {}
 | 
			
		||||
    for k, v in result.items():
 | 
			
		||||
        metric_result[k] = round(v["f"] * 100, 4)
 | 
			
		||||
 | 
			
		||||
    metric_result["bleu-4"] = round(bleu_score * 100, 4)
 | 
			
		||||
 | 
			
		||||
    return metric_result
 | 
			
		||||
 | 
			
		||||
@ -1,7 +1,4 @@
 | 
			
		||||
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
 | 
			
		||||
#
 | 
			
		||||
# This code is based on the HuggingFace's PEFT library.
 | 
			
		||||
# https://github.com/huggingface/peft/blob/v0.10.0/examples/loftq_finetuning/quantize_save_load.py
 | 
			
		||||
# Copyright 2025 the LlamaFactory team.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
@ -14,12 +11,13 @@
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
import shutil
 | 
			
		||||
 | 
			
		||||
import fire
 | 
			
		||||
from peft import PeftModel
 | 
			
		||||
from transformers import AutoModel, AutoProcessor, AutoTokenizer, Qwen2_5OmniThinkerForConditionalGeneration
 | 
			
		||||
from transformers import AutoModel, AutoProcessor, Qwen2_5OmniThinkerForConditionalGeneration  # type: ignore
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def merge_lora(
 | 
			
		||||
@ -41,20 +39,14 @@ def merge_lora(
 | 
			
		||||
        save_path (str): Directory where the merged model and configurations will be saved.
 | 
			
		||||
    """
 | 
			
		||||
    # 1. Load the original model, tokenizer, and processor
 | 
			
		||||
    model = AutoModel.from_pretrained(base_model_path)
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(base_model_path)
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
        processor = AutoProcessor.from_pretrained(base_model_path)
 | 
			
		||||
    except Exception:
 | 
			
		||||
        print("Processor configuration not found, skipping processor load.")
 | 
			
		||||
        processor = None
 | 
			
		||||
 | 
			
		||||
    print("Successfully loaded the original model, tokenizer, and processor (if available).")
 | 
			
		||||
    model = AutoModel.from_pretrained(base_model_path, torch_dtype="auto", device_map="cpu")
 | 
			
		||||
    processor = AutoProcessor.from_pretrained(base_model_path)
 | 
			
		||||
    print("Successfully loaded the original model and tokenizer.")
 | 
			
		||||
 | 
			
		||||
    # 2. Extract the submodule to be merged (e.g., model.thinker)
 | 
			
		||||
    if not hasattr(model, submodule_name):
 | 
			
		||||
        raise AttributeError(f"The model does not have a submodule named '{submodule_name}'.")
 | 
			
		||||
 | 
			
		||||
    base_submodule = getattr(model, submodule_name)
 | 
			
		||||
    print(f"Successfully extracted submodule: {submodule_name}.")
 | 
			
		||||
 | 
			
		||||
@ -71,11 +63,8 @@ def merge_lora(
 | 
			
		||||
 | 
			
		||||
    # 6. Save the final merged model along with the tokenizer and processor configuration
 | 
			
		||||
    model.save_pretrained(save_path)
 | 
			
		||||
    tokenizer.save_pretrained(save_path)
 | 
			
		||||
    if processor is not None:
 | 
			
		||||
        processor.save_pretrained(save_path)
 | 
			
		||||
 | 
			
		||||
    print(f"Merged model and configuration saved to {save_path}.")
 | 
			
		||||
    processor.save_pretrained(save_path)
 | 
			
		||||
    print(f"Merged model and tokenizer saved to {save_path}.")
 | 
			
		||||
 | 
			
		||||
    source_file = os.path.join(base_model_path, extra_file)
 | 
			
		||||
    target_file = os.path.join(save_path, extra_file)
 | 
			
		||||
@ -89,7 +78,7 @@ def merge_lora(
 | 
			
		||||
def save_full_model(
 | 
			
		||||
    saved_thinker_path: str,
 | 
			
		||||
    base_model_path: str,
 | 
			
		||||
    save_path: str,
 | 
			
		||||
    save_path: str = "./merged_model_checkpoint",
 | 
			
		||||
    extra_file: str = "spk_dict.pt",
 | 
			
		||||
):
 | 
			
		||||
    """Load the saved thinker module and the original model, replace the thinker in the original model.
 | 
			
		||||
@ -99,26 +88,23 @@ def save_full_model(
 | 
			
		||||
    Args:
 | 
			
		||||
        saved_thinker_path (str): Path to the saved thinker weights.
 | 
			
		||||
        base_model_path (str): Directory path of the original model.
 | 
			
		||||
        save_path (str): Directory where the final complete model will be saved.
 | 
			
		||||
        save_path (str): Directory where the merged model and configurations will be saved.
 | 
			
		||||
        extra_file (str): Name of the extra file to be copied (default: "spk_dict.pt").
 | 
			
		||||
    """
 | 
			
		||||
    # Load the thinker module
 | 
			
		||||
    thinker = Qwen2_5OmniThinkerForConditionalGeneration.from_pretrained(saved_thinker_path, device_map="cpu")
 | 
			
		||||
    # Load the original model
 | 
			
		||||
    base_model = AutoModel.from_pretrained(base_model_path, device_map="cpu")
 | 
			
		||||
    # Replace the thinker module in the original model
 | 
			
		||||
    # 1. Load the saved thinker module and the original model
 | 
			
		||||
    thinker = Qwen2_5OmniThinkerForConditionalGeneration.from_pretrained(
 | 
			
		||||
        saved_thinker_path, torch_dtype="auto", device_map="cpu"
 | 
			
		||||
    )
 | 
			
		||||
    base_model = AutoModel.from_pretrained(base_model_path, torch_dtype="auto", device_map="cpu")
 | 
			
		||||
    base_model.thinker = thinker
 | 
			
		||||
 | 
			
		||||
    # Load the processor and tokenizer
 | 
			
		||||
    processor = AutoProcessor.from_pretrained(base_model_path, trust_remote_code=True)
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(base_model_path, trust_remote_code=True)
 | 
			
		||||
 | 
			
		||||
    # Save the complete model along with its configurations
 | 
			
		||||
    # 2. Save the complete model along with its tokenizer and processor configuration
 | 
			
		||||
    processor = AutoProcessor.from_pretrained(base_model_path)
 | 
			
		||||
    base_model.save_pretrained(save_path)
 | 
			
		||||
    tokenizer.save_pretrained(save_path)
 | 
			
		||||
    processor.save_pretrained(save_path)
 | 
			
		||||
    print(f"Complete model, tokenizer, and processor configuration have been saved to {save_path}.")
 | 
			
		||||
    print(f"Merged model and tokenizer saved to {save_path}.")
 | 
			
		||||
 | 
			
		||||
    # 3. Copy the extra file from the base model directory to the save_path
 | 
			
		||||
    source_file = os.path.join(base_model_path, extra_file)
 | 
			
		||||
    target_file = os.path.join(save_path, extra_file)
 | 
			
		||||
    if os.path.exists(source_file):
 | 
			
		||||
 | 
			
		||||
@ -20,7 +20,7 @@ from transformers import Seq2SeqTrainingArguments
 | 
			
		||||
 | 
			
		||||
from llamafactory.data import get_dataset, get_template_and_fix_tokenizer
 | 
			
		||||
from llamafactory.extras.constants import IGNORE_INDEX
 | 
			
		||||
from llamafactory.extras.misc import check_version, get_device_count
 | 
			
		||||
from llamafactory.extras.misc import get_device_count
 | 
			
		||||
from llamafactory.extras.packages import is_vllm_available
 | 
			
		||||
from llamafactory.hparams import get_infer_args
 | 
			
		||||
from llamafactory.model import load_tokenizer
 | 
			
		||||
@ -56,7 +56,6 @@ def vllm_infer(
 | 
			
		||||
 | 
			
		||||
    Usage: python vllm_infer.py --model_name_or_path meta-llama/Llama-2-7b-hf --template llama --dataset alpaca_en_demo
 | 
			
		||||
    """
 | 
			
		||||
    check_version("vllm>=0.4.3,<=0.8.2")
 | 
			
		||||
    if pipeline_parallel_size > get_device_count():
 | 
			
		||||
        raise ValueError("Pipeline parallel size should be smaller than the number of gpus.")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										4
									
								
								setup.py
									
									
									
									
									
								
							
							
						
						
									
										4
									
								
								setup.py
									
									
									
									
									
								
							@ -45,7 +45,7 @@ extra_require = {
 | 
			
		||||
    "torch": ["torch>=1.13.1"],
 | 
			
		||||
    "torch-npu": ["torch==2.4.0", "torch-npu==2.4.0.post2", "decorator"],
 | 
			
		||||
    "metrics": ["nltk", "jieba", "rouge-chinese"],
 | 
			
		||||
    "deepspeed": ["deepspeed>=0.10.0,<=0.16.4"],
 | 
			
		||||
    "deepspeed": ["deepspeed>=0.10.0,<=0.16.5"],
 | 
			
		||||
    "liger-kernel": ["liger-kernel>=0.5.5"],
 | 
			
		||||
    "bitsandbytes": ["bitsandbytes>=0.39.0"],
 | 
			
		||||
    "hqq": ["hqq"],
 | 
			
		||||
@ -53,7 +53,7 @@ extra_require = {
 | 
			
		||||
    "gptq": ["optimum>=1.17.0", "auto-gptq>=0.5.0"],
 | 
			
		||||
    "awq": ["autoawq"],
 | 
			
		||||
    "aqlm": ["aqlm[gpu]>=1.1.0"],
 | 
			
		||||
    "vllm": ["vllm>=0.4.3,<=0.8.2"],
 | 
			
		||||
    "vllm": ["vllm>=0.4.3,<=0.8.3"],
 | 
			
		||||
    "sglang": ["sglang[srt]>=0.4.4", "transformers==4.48.3"],
 | 
			
		||||
    "galore": ["galore-torch"],
 | 
			
		||||
    "apollo": ["apollo-torch"],
 | 
			
		||||
 | 
			
		||||
@ -24,7 +24,6 @@ import torch.nn.functional as F
 | 
			
		||||
from transformers import DataCollatorForSeq2Seq
 | 
			
		||||
 | 
			
		||||
from ..extras.constants import AUDIO_PLACEHOLDER, IGNORE_INDEX, IMAGE_PLACEHOLDER
 | 
			
		||||
from ..extras.misc import get_current_device
 | 
			
		||||
from ..extras.packages import is_pillow_available
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -65,30 +64,19 @@ def prepare_4d_attention_mask(attention_mask_with_indices: "torch.Tensor", dtype
 | 
			
		||||
    where `o` equals to `0.0`, `x` equals to `min_dtype`.
 | 
			
		||||
    """
 | 
			
		||||
    _, seq_len = attention_mask_with_indices.size()
 | 
			
		||||
 | 
			
		||||
    # Move to compute device if the source is CPU.
 | 
			
		||||
    source_device = attention_mask_with_indices.device
 | 
			
		||||
    compute_device = get_current_device() if source_device.type == "cpu" else source_device
 | 
			
		||||
    if compute_device != source_device:
 | 
			
		||||
        attention_mask_with_indices = attention_mask_with_indices.to(compute_device)
 | 
			
		||||
 | 
			
		||||
    min_dtype = torch.finfo(dtype).min
 | 
			
		||||
    zero_tensor = torch.tensor(0, dtype=dtype, device=compute_device)
 | 
			
		||||
    zero_tensor = torch.tensor(0, dtype=dtype)
 | 
			
		||||
 | 
			
		||||
    # Create a non-padding mask.
 | 
			
		||||
    non_padding = (attention_mask_with_indices != 0).unsqueeze(1).unsqueeze(2)
 | 
			
		||||
    non_padding_mask = (attention_mask_with_indices != 0).unsqueeze(1).unsqueeze(2)
 | 
			
		||||
    # Create indices for comparison.
 | 
			
		||||
    indices = attention_mask_with_indices.unsqueeze(1).unsqueeze(2)  # [bsz, 1, 1, seq_len]
 | 
			
		||||
    indices_t = attention_mask_with_indices.unsqueeze(1).unsqueeze(3)  # [bsz, 1, seq_len, 1]
 | 
			
		||||
    # Create a lower triangular mask.
 | 
			
		||||
    tril_mask = torch.tril(torch.ones((seq_len, seq_len), dtype=torch.bool, device=compute_device))
 | 
			
		||||
    attention_mask_4d = (indices == indices_t) & non_padding & tril_mask
 | 
			
		||||
    tril_mask = torch.tril(torch.ones((seq_len, seq_len), dtype=torch.bool))
 | 
			
		||||
    attention_mask_4d = (indices == indices_t) & non_padding_mask & tril_mask
 | 
			
		||||
    # Invert the attention mask.
 | 
			
		||||
    attention_mask_4d = torch.where(attention_mask_4d, zero_tensor, min_dtype)
 | 
			
		||||
 | 
			
		||||
    # Move back to original device if needed.
 | 
			
		||||
    if compute_device != source_device:
 | 
			
		||||
        attention_mask_4d = attention_mask_4d.to(source_device)
 | 
			
		||||
    return attention_mask_4d
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -493,8 +493,8 @@ class Llama4Plugin(BasePlugin):
 | 
			
		||||
        messages = deepcopy(messages)
 | 
			
		||||
        for message in messages:
 | 
			
		||||
            content = message["content"]
 | 
			
		||||
            placeholder_count = content.count(IMAGE_PLACEHOLDER)
 | 
			
		||||
            if self.expand_mm_tokens:
 | 
			
		||||
                placeholder_count = content.count(IMAGE_PLACEHOLDER)
 | 
			
		||||
                prompt_splits = content.split(IMAGE_PLACEHOLDER)
 | 
			
		||||
                new_content = []
 | 
			
		||||
                for local_image_index, split_part in enumerate(prompt_splits):
 | 
			
		||||
@ -507,6 +507,8 @@ class Llama4Plugin(BasePlugin):
 | 
			
		||||
                        new_content.append(tokens_for_this_image)
 | 
			
		||||
 | 
			
		||||
                content = "".join(new_content)
 | 
			
		||||
            else:
 | 
			
		||||
                content = content.replace(IMAGE_PLACEHOLDER, self.image_token)
 | 
			
		||||
 | 
			
		||||
            message["content"] = content
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -164,28 +164,28 @@ class PackedSupervisedDatasetProcessor(SupervisedDatasetProcessor):
 | 
			
		||||
        model_inputs = defaultdict(list)
 | 
			
		||||
        knapsacks = greedy_knapsack(lengths, self.data_args.cutoff_len)
 | 
			
		||||
        for knapsack in knapsacks:
 | 
			
		||||
            packed_input_ids, packed_attention_masks, packed_labels = [], [], []
 | 
			
		||||
            packed_images, packed_videos, packed_audios, packed_position_ids = [], [], [], []
 | 
			
		||||
            packed_input_ids, packed_attention_masks, packed_position_ids, packed_labels = [], [], [], []
 | 
			
		||||
            packed_images, packed_videos, packed_audios = [], [], []
 | 
			
		||||
            for i, length in enumerate(knapsack):
 | 
			
		||||
                index = length2indexes[length].pop()
 | 
			
		||||
                packed_input_ids += batch_input_ids[index]
 | 
			
		||||
                packed_position_ids += list(range(len(batch_input_ids[index])))  # NOTE: pad_to_multiple_of ignore this
 | 
			
		||||
                packed_labels += batch_labels[index]
 | 
			
		||||
                packed_images += batch_images[index]
 | 
			
		||||
                packed_videos += batch_videos[index]
 | 
			
		||||
                packed_audios += batch_audios[index]
 | 
			
		||||
                if self.data_args.neat_packing:
 | 
			
		||||
                    packed_attention_masks += [i + 1] * len(batch_input_ids[index])  # start from 1
 | 
			
		||||
                    packed_position_ids += list(range(len(batch_input_ids[index])))
 | 
			
		||||
                else:
 | 
			
		||||
                    packed_attention_masks += [1] * len(batch_input_ids[index])
 | 
			
		||||
 | 
			
		||||
            if len(packed_input_ids) < self.data_args.cutoff_len + 1:  # avoid flash_attn drops attn mask
 | 
			
		||||
                pad_length = self.data_args.cutoff_len - len(packed_input_ids) + 1
 | 
			
		||||
                packed_input_ids += [self.tokenizer.pad_token_id] * pad_length
 | 
			
		||||
                packed_position_ids += [0] * pad_length
 | 
			
		||||
                packed_labels += [IGNORE_INDEX] * pad_length
 | 
			
		||||
                if self.data_args.neat_packing:
 | 
			
		||||
                    packed_attention_masks += [0] * pad_length
 | 
			
		||||
                    packed_position_ids += [0] * pad_length
 | 
			
		||||
                else:
 | 
			
		||||
                    packed_attention_masks += [1] * pad_length  # more efficient flash_attn
 | 
			
		||||
 | 
			
		||||
@ -194,10 +194,10 @@ class PackedSupervisedDatasetProcessor(SupervisedDatasetProcessor):
 | 
			
		||||
 | 
			
		||||
            model_inputs["input_ids"].append(packed_input_ids)
 | 
			
		||||
            model_inputs["attention_mask"].append(packed_attention_masks)
 | 
			
		||||
            model_inputs["position_ids"].append(packed_position_ids)
 | 
			
		||||
            model_inputs["labels"].append(packed_labels)
 | 
			
		||||
            model_inputs["images"].append(packed_images or None)
 | 
			
		||||
            model_inputs["videos"].append(packed_videos or None)
 | 
			
		||||
            model_inputs["audios"].append(packed_audios or None)
 | 
			
		||||
            model_inputs["position_ids"].append(packed_position_ids or None)
 | 
			
		||||
 | 
			
		||||
        return model_inputs
 | 
			
		||||
 | 
			
		||||
@ -1370,7 +1370,7 @@ register_template(
 | 
			
		||||
        slots=["<|im_start|>user\n<tool_response>\n{{content}}\n</tool_response><|im_end|>\n<|im_start|>assistant\n"]
 | 
			
		||||
    ),
 | 
			
		||||
    format_tools=ToolFormatter(tool_format="qwen"),
 | 
			
		||||
    default_system="You are a helpful assistant.",
 | 
			
		||||
    default_system="You are Qwen, created by Alibaba Cloud. You are a helpful assistant.",
 | 
			
		||||
    stop_words=["<|im_end|>"],
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -14,7 +14,7 @@
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
from collections import OrderedDict, defaultdict
 | 
			
		||||
from enum import Enum
 | 
			
		||||
from enum import Enum, unique
 | 
			
		||||
from typing import Optional
 | 
			
		||||
 | 
			
		||||
from peft.utils import SAFETENSORS_WEIGHTS_NAME as SAFE_ADAPTER_WEIGHTS_NAME
 | 
			
		||||
@ -115,6 +115,19 @@ class DownloadSource(str, Enum):
 | 
			
		||||
    OPENMIND = "om"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@unique
 | 
			
		||||
class QuantizationMethod(str, Enum):
 | 
			
		||||
    r"""Borrowed from `transformers.utils.quantization_config.QuantizationMethod`."""
 | 
			
		||||
 | 
			
		||||
    BNB = "bnb"
 | 
			
		||||
    GPTQ = "gptq"
 | 
			
		||||
    AWQ = "awq"
 | 
			
		||||
    AQLM = "aqlm"
 | 
			
		||||
    QUANTO = "quanto"
 | 
			
		||||
    EETQ = "eetq"
 | 
			
		||||
    HQQ = "hqq"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class RopeScaling(str, Enum):
 | 
			
		||||
    LINEAR = "linear"
 | 
			
		||||
    DYNAMIC = "dynamic"
 | 
			
		||||
 | 
			
		||||
@ -160,5 +160,11 @@ class DataArguments:
 | 
			
		||||
        if self.mask_history and self.train_on_prompt:
 | 
			
		||||
            raise ValueError("`mask_history` is incompatible with `train_on_prompt`.")
 | 
			
		||||
 | 
			
		||||
        if self.neat_packing:
 | 
			
		||||
            self.packing = True
 | 
			
		||||
 | 
			
		||||
        if self.packing:
 | 
			
		||||
            self.cutoff_len -= 1  # avoid pad_to_multiple_of, needs improve
 | 
			
		||||
 | 
			
		||||
    def to_dict(self) -> dict[str, Any]:
 | 
			
		||||
        return asdict(self)
 | 
			
		||||
 | 
			
		||||
@ -23,7 +23,7 @@ import torch
 | 
			
		||||
from transformers.training_args import _convert_str_dict
 | 
			
		||||
from typing_extensions import Self
 | 
			
		||||
 | 
			
		||||
from ..extras.constants import AttentionFunction, EngineName, RopeScaling
 | 
			
		||||
from ..extras.constants import AttentionFunction, EngineName, QuantizationMethod, RopeScaling
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@dataclass
 | 
			
		||||
@ -184,8 +184,8 @@ class BaseModelArguments:
 | 
			
		||||
class QuantizationArguments:
 | 
			
		||||
    r"""Arguments pertaining to the quantization method."""
 | 
			
		||||
 | 
			
		||||
    quantization_method: Literal["bitsandbytes", "hqq", "eetq"] = field(
 | 
			
		||||
        default="bitsandbytes",
 | 
			
		||||
    quantization_method: QuantizationMethod = field(
 | 
			
		||||
        default=QuantizationMethod.BNB,
 | 
			
		||||
        metadata={"help": "Quantization method to use for on-the-fly quantization."},
 | 
			
		||||
    )
 | 
			
		||||
    quantization_bit: Optional[int] = field(
 | 
			
		||||
 | 
			
		||||
@ -135,7 +135,7 @@ def _check_extra_dependencies(
 | 
			
		||||
        check_version("mixture-of-depth>=1.1.6", mandatory=True)
 | 
			
		||||
 | 
			
		||||
    if model_args.infer_backend == EngineName.VLLM:
 | 
			
		||||
        check_version("vllm>=0.4.3,<=0.8.2")
 | 
			
		||||
        check_version("vllm>=0.4.3,<=0.8.3")
 | 
			
		||||
        check_version("vllm", mandatory=True)
 | 
			
		||||
    elif model_args.infer_backend == EngineName.SGLANG:
 | 
			
		||||
        check_version("sglang>=0.4.4")
 | 
			
		||||
@ -285,10 +285,6 @@ def get_train_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _
 | 
			
		||||
    if model_args.use_unsloth and is_deepspeed_zero3_enabled():
 | 
			
		||||
        raise ValueError("Unsloth is incompatible with DeepSpeed ZeRO-3.")
 | 
			
		||||
 | 
			
		||||
    if data_args.neat_packing and not data_args.packing:
 | 
			
		||||
        logger.warning_rank0("`neat_packing` requires `packing` is True. Change `packing` to True.")
 | 
			
		||||
        data_args.packing = True
 | 
			
		||||
 | 
			
		||||
    _verify_model_args(model_args, data_args, finetuning_args)
 | 
			
		||||
    _check_extra_dependencies(model_args, finetuning_args, training_args)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -97,12 +97,13 @@ def load_tokenizer(model_args: "ModelArguments") -> "TokenizerModule":
 | 
			
		||||
        processor = AutoProcessor.from_pretrained(model_args.model_name_or_path, **init_kwargs)
 | 
			
		||||
        patch_processor(processor, tokenizer, model_args)
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logger.debug(f"Processor was not found: {e}.")
 | 
			
		||||
        logger.debug(f"Failed to load processor: {e}.")
 | 
			
		||||
        processor = None
 | 
			
		||||
 | 
			
		||||
    # Avoid load tokenizer, see:
 | 
			
		||||
    # https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/auto/processing_auto.py#L324
 | 
			
		||||
    if processor is not None and "Processor" not in processor.__class__.__name__:
 | 
			
		||||
        logger.debug("The loaded processor is not an instance of Processor. Dropping it.")
 | 
			
		||||
        processor = None
 | 
			
		||||
 | 
			
		||||
    return {"tokenizer": tokenizer, "processor": processor}
 | 
			
		||||
 | 
			
		||||
@ -18,7 +18,6 @@
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
import random
 | 
			
		||||
from enum import Enum, unique
 | 
			
		||||
from typing import TYPE_CHECKING, Any
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
@ -28,7 +27,7 @@ from transformers.integrations import is_deepspeed_zero3_enabled
 | 
			
		||||
from transformers.modeling_utils import is_fsdp_enabled
 | 
			
		||||
 | 
			
		||||
from ...extras import logging
 | 
			
		||||
from ...extras.constants import FILEEXT2TYPE
 | 
			
		||||
from ...extras.constants import FILEEXT2TYPE, QuantizationMethod
 | 
			
		||||
from ...extras.misc import check_version, get_current_device
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -41,19 +40,6 @@ if TYPE_CHECKING:
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@unique
 | 
			
		||||
class QuantizationMethod(str, Enum):
 | 
			
		||||
    r"""Borrowed from `transformers.utils.quantization_config.QuantizationMethod`."""
 | 
			
		||||
 | 
			
		||||
    BITS_AND_BYTES = "bitsandbytes"
 | 
			
		||||
    GPTQ = "gptq"
 | 
			
		||||
    AWQ = "awq"
 | 
			
		||||
    AQLM = "aqlm"
 | 
			
		||||
    QUANTO = "quanto"
 | 
			
		||||
    EETQ = "eetq"
 | 
			
		||||
    HQQ = "hqq"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _get_quantization_dataset(tokenizer: "PreTrainedTokenizer", model_args: "ModelArguments") -> list[dict[str, Any]]:
 | 
			
		||||
    r"""Prepare the tokenized dataset to perform AutoGPTQ. Do not use tensor output for JSON serialization."""
 | 
			
		||||
    if os.path.isfile(model_args.export_quantization_dataset):
 | 
			
		||||
@ -145,7 +131,7 @@ def configure_quantization(
 | 
			
		||||
        logger.info_rank0(f"Quantizing model to {model_args.export_quantization_bit} bit with AutoGPTQ.")
 | 
			
		||||
 | 
			
		||||
    elif model_args.quantization_bit is not None:  # on-the-fly
 | 
			
		||||
        if model_args.quantization_method == QuantizationMethod.BITS_AND_BYTES.value:
 | 
			
		||||
        if model_args.quantization_method == QuantizationMethod.BNB:
 | 
			
		||||
            if model_args.quantization_bit == 8:
 | 
			
		||||
                check_version("bitsandbytes>=0.37.0", mandatory=True)
 | 
			
		||||
                init_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
 | 
			
		||||
@ -173,7 +159,7 @@ def configure_quantization(
 | 
			
		||||
                init_kwargs["device_map"] = {"": get_current_device()}  # change auto device map for inference
 | 
			
		||||
 | 
			
		||||
            logger.info_rank0(f"Quantizing model to {model_args.quantization_bit} bit with bitsandbytes.")
 | 
			
		||||
        elif model_args.quantization_method == QuantizationMethod.HQQ.value:
 | 
			
		||||
        elif model_args.quantization_method == QuantizationMethod.HQQ:
 | 
			
		||||
            if model_args.quantization_bit not in [8, 6, 5, 4, 3, 2, 1]:
 | 
			
		||||
                raise ValueError("HQQ only accepts 1/2/3/4/5/6/8-bit quantization.")
 | 
			
		||||
 | 
			
		||||
@ -185,7 +171,7 @@ def configure_quantization(
 | 
			
		||||
                nbits=model_args.quantization_bit, quant_zero=False, quant_scale=False, axis=0
 | 
			
		||||
            )  # use ATEN kernel (axis=0) for performance
 | 
			
		||||
            logger.info_rank0(f"Quantizing model to {model_args.quantization_bit} bit with HQQ.")
 | 
			
		||||
        elif model_args.quantization_method == QuantizationMethod.EETQ.value:
 | 
			
		||||
        elif model_args.quantization_method == QuantizationMethod.EETQ:
 | 
			
		||||
            if model_args.quantization_bit != 8:
 | 
			
		||||
                raise ValueError("EETQ only accepts 8-bit quantization.")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -91,7 +91,13 @@ def run_dpo(
 | 
			
		||||
        trainer.save_metrics("train", train_result.metrics)
 | 
			
		||||
        trainer.save_state()
 | 
			
		||||
        if trainer.is_world_process_zero() and finetuning_args.plot_loss:
 | 
			
		||||
            plot_loss(training_args.output_dir, keys=["loss", "eval_loss", "rewards/accuracies"])
 | 
			
		||||
            keys = ["loss", "rewards/accuracies"]
 | 
			
		||||
            if isinstance(dataset_module["eval_dataset"], dict):
 | 
			
		||||
                keys += [f"eval_{key}_loss" for key in dataset_module["eval_dataset"].keys()]
 | 
			
		||||
            else:
 | 
			
		||||
                keys += ["eval_loss"]
 | 
			
		||||
 | 
			
		||||
            plot_loss(training_args.output_dir, keys=keys)
 | 
			
		||||
 | 
			
		||||
    # Evaluation
 | 
			
		||||
    if training_args.do_eval:
 | 
			
		||||
 | 
			
		||||
@ -82,7 +82,13 @@ def run_kto(
 | 
			
		||||
        trainer.save_metrics("train", train_result.metrics)
 | 
			
		||||
        trainer.save_state()
 | 
			
		||||
        if trainer.is_world_process_zero() and finetuning_args.plot_loss:
 | 
			
		||||
            plot_loss(training_args.output_dir, keys=["loss", "eval_loss", "rewards/chosen"])
 | 
			
		||||
            keys = ["loss", "rewards/chosen"]
 | 
			
		||||
            if isinstance(dataset_module["eval_dataset"], dict):
 | 
			
		||||
                keys += [f"eval_{key}_loss" for key in dataset_module["eval_dataset"].keys()]
 | 
			
		||||
            else:
 | 
			
		||||
                keys += ["eval_loss"]
 | 
			
		||||
 | 
			
		||||
            plot_loss(training_args.output_dir, keys=keys)
 | 
			
		||||
 | 
			
		||||
    # Evaluation
 | 
			
		||||
    if training_args.do_eval:
 | 
			
		||||
 | 
			
		||||
@ -66,7 +66,13 @@ def run_pt(
 | 
			
		||||
        trainer.save_metrics("train", train_result.metrics)
 | 
			
		||||
        trainer.save_state()
 | 
			
		||||
        if trainer.is_world_process_zero() and finetuning_args.plot_loss:
 | 
			
		||||
            plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
 | 
			
		||||
            keys = ["loss"]
 | 
			
		||||
            if isinstance(dataset_module["eval_dataset"], dict):
 | 
			
		||||
                keys += [f"eval_{key}_loss" for key in dataset_module["eval_dataset"].keys()]
 | 
			
		||||
            else:
 | 
			
		||||
                keys += ["eval_loss"]
 | 
			
		||||
 | 
			
		||||
            plot_loss(training_args.output_dir, keys=keys)
 | 
			
		||||
 | 
			
		||||
    # Evaluation
 | 
			
		||||
    if training_args.do_eval:
 | 
			
		||||
 | 
			
		||||
@ -74,7 +74,15 @@ def run_rm(
 | 
			
		||||
        trainer.save_metrics("train", train_result.metrics)
 | 
			
		||||
        trainer.save_state()
 | 
			
		||||
        if trainer.is_world_process_zero() and finetuning_args.plot_loss:
 | 
			
		||||
            plot_loss(training_args.output_dir, keys=["loss", "eval_loss", "eval_accuracy"])
 | 
			
		||||
            keys = ["loss"]
 | 
			
		||||
            if isinstance(dataset_module["eval_dataset"], dict):
 | 
			
		||||
                keys += sum(
 | 
			
		||||
                    [[f"eval_{key}_loss", f"eval_{key}_accuracy"] for key in dataset_module["eval_dataset"].keys()], []
 | 
			
		||||
                )
 | 
			
		||||
            else:
 | 
			
		||||
                keys += ["eval_loss", "eval_accuracy"]
 | 
			
		||||
 | 
			
		||||
            plot_loss(training_args.output_dir, keys=keys)
 | 
			
		||||
 | 
			
		||||
    # Evaluation
 | 
			
		||||
    if training_args.do_eval:
 | 
			
		||||
 | 
			
		||||
@ -110,7 +110,15 @@ def run_sft(
 | 
			
		||||
        trainer.save_metrics("train", train_result.metrics)
 | 
			
		||||
        trainer.save_state()
 | 
			
		||||
        if trainer.is_world_process_zero() and finetuning_args.plot_loss:
 | 
			
		||||
            plot_loss(training_args.output_dir, keys=["loss", "eval_loss", "eval_accuracy"])
 | 
			
		||||
            keys = ["loss"]
 | 
			
		||||
            if isinstance(dataset_module["eval_dataset"], dict):
 | 
			
		||||
                keys += sum(
 | 
			
		||||
                    [[f"eval_{key}_loss", f"eval_{key}_accuracy"] for key in dataset_module["eval_dataset"].keys()], []
 | 
			
		||||
                )
 | 
			
		||||
            else:
 | 
			
		||||
                keys += ["eval_loss", "eval_accuracy"]
 | 
			
		||||
 | 
			
		||||
            plot_loss(training_args.output_dir, keys=keys)
 | 
			
		||||
 | 
			
		||||
    if training_args.predict_with_generate:
 | 
			
		||||
        tokenizer.padding_side = "left"  # use left-padding in generation
 | 
			
		||||
 | 
			
		||||
@ -42,7 +42,7 @@ def create_top() -> dict[str, "Component"]:
 | 
			
		||||
 | 
			
		||||
    with gr.Row():
 | 
			
		||||
        quantization_bit = gr.Dropdown(choices=["none", "8", "4"], value="none", allow_custom_value=True)
 | 
			
		||||
        quantization_method = gr.Dropdown(choices=["bitsandbytes", "hqq", "eetq"], value="bitsandbytes")
 | 
			
		||||
        quantization_method = gr.Dropdown(choices=["bnb", "hqq", "eetq"], value="bnb")
 | 
			
		||||
        template = gr.Dropdown(choices=list(TEMPLATES.keys()), value="default")
 | 
			
		||||
        rope_scaling = gr.Dropdown(choices=["none", "linear", "dynamic", "yarn", "llama3"], value="none")
 | 
			
		||||
        booster = gr.Dropdown(choices=["auto", "flashattn2", "unsloth", "liger_kernel"], value="auto")
 | 
			
		||||
 | 
			
		||||
@ -25,10 +25,10 @@ from llamafactory.train.test_utils import load_dataset_module
 | 
			
		||||
 | 
			
		||||
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
 | 
			
		||||
 | 
			
		||||
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
 | 
			
		||||
TRAIN_ARGS = {
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA,
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA3,
 | 
			
		||||
    "stage": "kto",
 | 
			
		||||
    "do_train": True,
 | 
			
		||||
    "finetuning_type": "full",
 | 
			
		||||
@ -45,7 +45,7 @@ TRAIN_ARGS = {
 | 
			
		||||
@pytest.mark.parametrize("num_samples", [16])
 | 
			
		||||
def test_feedback_data(num_samples: int):
 | 
			
		||||
    train_dataset = load_dataset_module(**TRAIN_ARGS)["train_dataset"]
 | 
			
		||||
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
 | 
			
		||||
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3)
 | 
			
		||||
    original_data = load_dataset(DEMO_DATA, name="kto_en_demo", split="train")
 | 
			
		||||
    indexes = random.choices(range(len(original_data)), k=num_samples)
 | 
			
		||||
    for index in indexes:
 | 
			
		||||
 | 
			
		||||
@ -25,10 +25,10 @@ from llamafactory.train.test_utils import load_dataset_module
 | 
			
		||||
 | 
			
		||||
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
 | 
			
		||||
 | 
			
		||||
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
 | 
			
		||||
TRAIN_ARGS = {
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA,
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA3,
 | 
			
		||||
    "stage": "rm",
 | 
			
		||||
    "do_train": True,
 | 
			
		||||
    "finetuning_type": "full",
 | 
			
		||||
@ -54,7 +54,7 @@ def _convert_sharegpt_to_openai(messages: list[dict[str, str]]) -> list[dict[str
 | 
			
		||||
@pytest.mark.parametrize("num_samples", [16])
 | 
			
		||||
def test_pairwise_data(num_samples: int):
 | 
			
		||||
    train_dataset = load_dataset_module(**TRAIN_ARGS)["train_dataset"]
 | 
			
		||||
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
 | 
			
		||||
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3)
 | 
			
		||||
    original_data = load_dataset(DEMO_DATA, name="dpo_en_demo", split="train")
 | 
			
		||||
    indexes = random.choices(range(len(original_data)), k=num_samples)
 | 
			
		||||
    for index in indexes:
 | 
			
		||||
 | 
			
		||||
@ -25,12 +25,12 @@ from llamafactory.train.test_utils import load_dataset_module
 | 
			
		||||
 | 
			
		||||
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
 | 
			
		||||
 | 
			
		||||
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
 | 
			
		||||
TINY_DATA = os.getenv("TINY_DATA", "llamafactory/tiny-supervised-dataset")
 | 
			
		||||
 | 
			
		||||
TRAIN_ARGS = {
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA,
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA3,
 | 
			
		||||
    "stage": "sft",
 | 
			
		||||
    "do_train": True,
 | 
			
		||||
    "finetuning_type": "full",
 | 
			
		||||
@ -45,7 +45,7 @@ TRAIN_ARGS = {
 | 
			
		||||
@pytest.mark.parametrize("num_samples", [16])
 | 
			
		||||
def test_supervised_single_turn(num_samples: int):
 | 
			
		||||
    train_dataset = load_dataset_module(dataset_dir="ONLINE", dataset=TINY_DATA, **TRAIN_ARGS)["train_dataset"]
 | 
			
		||||
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
 | 
			
		||||
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3)
 | 
			
		||||
    original_data = load_dataset(TINY_DATA, split="train")
 | 
			
		||||
    indexes = random.choices(range(len(original_data)), k=num_samples)
 | 
			
		||||
    for index in indexes:
 | 
			
		||||
@ -66,7 +66,7 @@ def test_supervised_multi_turn(num_samples: int):
 | 
			
		||||
    train_dataset = load_dataset_module(dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", **TRAIN_ARGS)[
 | 
			
		||||
        "train_dataset"
 | 
			
		||||
    ]
 | 
			
		||||
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
 | 
			
		||||
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3)
 | 
			
		||||
    original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
 | 
			
		||||
    indexes = random.choices(range(len(original_data)), k=num_samples)
 | 
			
		||||
    for index in indexes:
 | 
			
		||||
@ -79,7 +79,7 @@ def test_supervised_train_on_prompt(num_samples: int):
 | 
			
		||||
    train_dataset = load_dataset_module(
 | 
			
		||||
        dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", train_on_prompt=True, **TRAIN_ARGS
 | 
			
		||||
    )["train_dataset"]
 | 
			
		||||
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
 | 
			
		||||
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3)
 | 
			
		||||
    original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
 | 
			
		||||
    indexes = random.choices(range(len(original_data)), k=num_samples)
 | 
			
		||||
    for index in indexes:
 | 
			
		||||
@ -93,7 +93,7 @@ def test_supervised_mask_history(num_samples: int):
 | 
			
		||||
    train_dataset = load_dataset_module(
 | 
			
		||||
        dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", mask_history=True, **TRAIN_ARGS
 | 
			
		||||
    )["train_dataset"]
 | 
			
		||||
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
 | 
			
		||||
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3)
 | 
			
		||||
    original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
 | 
			
		||||
    indexes = random.choices(range(len(original_data)), k=num_samples)
 | 
			
		||||
    for index in indexes:
 | 
			
		||||
 | 
			
		||||
@ -24,12 +24,12 @@ from llamafactory.train.test_utils import load_dataset_module
 | 
			
		||||
 | 
			
		||||
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
 | 
			
		||||
 | 
			
		||||
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
 | 
			
		||||
TINY_DATA = os.getenv("TINY_DATA", "llamafactory/tiny-supervised-dataset")
 | 
			
		||||
 | 
			
		||||
TRAIN_ARGS = {
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA,
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA3,
 | 
			
		||||
    "stage": "ppo",
 | 
			
		||||
    "do_train": True,
 | 
			
		||||
    "finetuning_type": "full",
 | 
			
		||||
@ -48,7 +48,7 @@ TRAIN_ARGS = {
 | 
			
		||||
@pytest.mark.parametrize("num_samples", [16])
 | 
			
		||||
def test_unsupervised_data(num_samples: int):
 | 
			
		||||
    train_dataset = load_dataset_module(**TRAIN_ARGS)["train_dataset"]
 | 
			
		||||
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
 | 
			
		||||
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3)
 | 
			
		||||
    original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
 | 
			
		||||
    indexes = random.choices(range(len(original_data)), k=num_samples)
 | 
			
		||||
    for index in indexes:
 | 
			
		||||
 | 
			
		||||
@ -24,11 +24,11 @@ from llamafactory.hparams import get_infer_args
 | 
			
		||||
from llamafactory.model import load_tokenizer
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_base_collator():
 | 
			
		||||
    model_args, data_args, *_ = get_infer_args({"model_name_or_path": TINY_LLAMA, "template": "default"})
 | 
			
		||||
    model_args, data_args, *_ = get_infer_args({"model_name_or_path": TINY_LLAMA3, "template": "default"})
 | 
			
		||||
    tokenizer_module = load_tokenizer(model_args)
 | 
			
		||||
    template = get_template_and_fix_tokenizer(tokenizer_module["tokenizer"], data_args)
 | 
			
		||||
    data_collator = MultiModalDataCollatorForSeq2Seq(
 | 
			
		||||
 | 
			
		||||
@ -19,12 +19,12 @@ from llamafactory.train.test_utils import load_dataset_module
 | 
			
		||||
 | 
			
		||||
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
 | 
			
		||||
 | 
			
		||||
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
 | 
			
		||||
TINY_DATA = os.getenv("TINY_DATA", "llamafactory/tiny-supervised-dataset")
 | 
			
		||||
 | 
			
		||||
TRAIN_ARGS = {
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA,
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA3,
 | 
			
		||||
    "stage": "sft",
 | 
			
		||||
    "do_train": True,
 | 
			
		||||
    "finetuning_type": "full",
 | 
			
		||||
 | 
			
		||||
@ -20,7 +20,6 @@ import torch
 | 
			
		||||
from PIL import Image
 | 
			
		||||
 | 
			
		||||
from llamafactory.data.mm_plugin import get_mm_plugin
 | 
			
		||||
from llamafactory.extras.packages import is_transformers_version_greater_than
 | 
			
		||||
from llamafactory.hparams import get_infer_args
 | 
			
		||||
from llamafactory.model import load_tokenizer
 | 
			
		||||
 | 
			
		||||
@ -35,7 +34,8 @@ if TYPE_CHECKING:
 | 
			
		||||
 | 
			
		||||
HF_TOKEN = os.getenv("HF_TOKEN")
 | 
			
		||||
 | 
			
		||||
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
TINY_LLAMA4 = os.getenv("TINY_LLAMA4", "llamafactory/tiny-random-Llama-4")
 | 
			
		||||
 | 
			
		||||
MM_MESSAGES = [
 | 
			
		||||
    {"role": "user", "content": "<image>What is in this image?"},
 | 
			
		||||
@ -130,13 +130,13 @@ def _check_plugin(
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_base_plugin():
 | 
			
		||||
    tokenizer_module = _load_tokenizer_module(model_name_or_path=TINY_LLAMA)
 | 
			
		||||
    tokenizer_module = _load_tokenizer_module(model_name_or_path=TINY_LLAMA3)
 | 
			
		||||
    base_plugin = get_mm_plugin(name="base")
 | 
			
		||||
    check_inputs = {"plugin": base_plugin, **tokenizer_module}
 | 
			
		||||
    _check_plugin(**check_inputs)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.mark.skipif(not HF_TOKEN or not is_transformers_version_greater_than("4.50.0"), reason="Gated model.")
 | 
			
		||||
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
 | 
			
		||||
def test_gemma3_plugin():
 | 
			
		||||
    image_seqlen = 256
 | 
			
		||||
    tokenizer_module = _load_tokenizer_module(model_name_or_path="google/gemma-3-4b-it")
 | 
			
		||||
@ -157,6 +157,27 @@ def test_gemma3_plugin():
 | 
			
		||||
    _check_plugin(**check_inputs)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.mark.xfail(reason="Unknown error.")
 | 
			
		||||
def test_llama4_plugin():
 | 
			
		||||
    tokenizer_module = _load_tokenizer_module(model_name_or_path=TINY_LLAMA4)
 | 
			
		||||
    processor = tokenizer_module["processor"]
 | 
			
		||||
    llama4_plugin = get_mm_plugin(name="llama4", image_token="<|image|>")
 | 
			
		||||
    check_inputs = {"plugin": llama4_plugin, **tokenizer_module}
 | 
			
		||||
    mm_inputs = _get_mm_inputs(tokenizer_module["processor"])
 | 
			
		||||
    image_height, image_width = mm_inputs["pixel_values"][0].shape[-2:]
 | 
			
		||||
    num_patches_per_chunk = int(
 | 
			
		||||
        (image_height // processor.patch_size) * (image_width // processor.patch_size) // processor.downsample_ratio
 | 
			
		||||
    )
 | 
			
		||||
    aspect_ratios = mm_inputs.pop("aspect_ratios")
 | 
			
		||||
    tokens_for_this_image = processor._prompt_split_image(aspect_ratios[0], num_patches_per_chunk)
 | 
			
		||||
    check_inputs["expected_mm_messages"] = [
 | 
			
		||||
        {key: value.replace("<image>", tokens_for_this_image) for key, value in message.items()}
 | 
			
		||||
        for message in MM_MESSAGES
 | 
			
		||||
    ]
 | 
			
		||||
    check_inputs["expected_mm_inputs"] = mm_inputs
 | 
			
		||||
    _check_plugin(**check_inputs)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_llava_plugin():
 | 
			
		||||
    image_seqlen = 576
 | 
			
		||||
    tokenizer_module = _load_tokenizer_module(model_name_or_path="llava-hf/llava-1.5-7b-hf")
 | 
			
		||||
 | 
			
		||||
@ -29,7 +29,8 @@ if TYPE_CHECKING:
 | 
			
		||||
 | 
			
		||||
HF_TOKEN = os.getenv("HF_TOKEN")
 | 
			
		||||
 | 
			
		||||
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
TINY_LLAMA4 = os.getenv("TINY_LLAMA4", "llamafactory/tiny-random-Llama-4")
 | 
			
		||||
 | 
			
		||||
MESSAGES = [
 | 
			
		||||
    {"role": "user", "content": "How are you"},
 | 
			
		||||
@ -75,7 +76,7 @@ def _check_template(model_id: str, template_name: str, prompt_str: str, answer_s
 | 
			
		||||
 | 
			
		||||
@pytest.mark.parametrize("use_fast", [True, False])
 | 
			
		||||
def test_encode_oneturn(use_fast: bool):
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast)
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3, use_fast=use_fast)
 | 
			
		||||
    template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
 | 
			
		||||
    prompt_ids, answer_ids = template.encode_oneturn(tokenizer, MESSAGES)
 | 
			
		||||
    prompt_str = (
 | 
			
		||||
@ -90,7 +91,7 @@ def test_encode_oneturn(use_fast: bool):
 | 
			
		||||
 | 
			
		||||
@pytest.mark.parametrize("use_fast", [True, False])
 | 
			
		||||
def test_encode_multiturn(use_fast: bool):
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast)
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3, use_fast=use_fast)
 | 
			
		||||
    template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
 | 
			
		||||
    encoded_pairs = template.encode_multiturn(tokenizer, MESSAGES)
 | 
			
		||||
    prompt_str_1 = (
 | 
			
		||||
@ -111,8 +112,8 @@ def test_encode_multiturn(use_fast: bool):
 | 
			
		||||
 | 
			
		||||
@pytest.mark.parametrize("use_fast", [True, False])
 | 
			
		||||
def test_jinja_template(use_fast: bool):
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast)
 | 
			
		||||
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast)
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3, use_fast=use_fast)
 | 
			
		||||
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3, use_fast=use_fast)
 | 
			
		||||
    template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
 | 
			
		||||
    tokenizer.chat_template = template._get_jinja_template(tokenizer)  # llama3 template no replace
 | 
			
		||||
    assert tokenizer.chat_template != ref_tokenizer.chat_template
 | 
			
		||||
@ -120,7 +121,7 @@ def test_jinja_template(use_fast: bool):
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_ollama_modelfile():
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3)
 | 
			
		||||
    template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
 | 
			
		||||
    assert template.get_ollama_modelfile(tokenizer) == (
 | 
			
		||||
        "# ollama modelfile auto-generated by llamafactory\n\n"
 | 
			
		||||
@ -137,7 +138,7 @@ def test_ollama_modelfile():
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_get_stop_token_ids():
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3)
 | 
			
		||||
    template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
 | 
			
		||||
    assert set(template.get_stop_token_ids(tokenizer)) == {128008, 128009}
 | 
			
		||||
 | 
			
		||||
@ -152,7 +153,7 @@ def test_gemma_template(use_fast: bool):
 | 
			
		||||
        "<start_of_turn>model\n"
 | 
			
		||||
    )
 | 
			
		||||
    answer_str = "很高兴认识你!<end_of_turn>\n"
 | 
			
		||||
    _check_template("google/gemma-2-9b-it", "gemma", prompt_str, answer_str, use_fast)
 | 
			
		||||
    _check_template("google/gemma-3-4b-it", "gemma", prompt_str, answer_str, use_fast)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
 | 
			
		||||
@ -168,7 +169,20 @@ def test_llama3_template(use_fast: bool):
 | 
			
		||||
    _check_template("meta-llama/Meta-Llama-3-8B-Instruct", "llama3", prompt_str, answer_str, use_fast)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
 | 
			
		||||
@pytest.mark.parametrize(
 | 
			
		||||
    "use_fast", [True, pytest.param(False, marks=pytest.mark.xfail(reason="Llama 4 has no slow tokenizer."))]
 | 
			
		||||
)
 | 
			
		||||
def test_llama4_template(use_fast: bool):
 | 
			
		||||
    prompt_str = (
 | 
			
		||||
        "<|begin_of_text|><|header_start|>user<|header_end|>\n\nHow are you<|eot|>"
 | 
			
		||||
        "<|header_start|>assistant<|header_end|>\n\nI am fine!<|eot|>"
 | 
			
		||||
        "<|header_start|>user<|header_end|>\n\n你好<|eot|>"
 | 
			
		||||
        "<|header_start|>assistant<|header_end|>\n\n"
 | 
			
		||||
    )
 | 
			
		||||
    answer_str = "很高兴认识你!<|eot|>"
 | 
			
		||||
    _check_template(TINY_LLAMA4, "llama4", prompt_str, answer_str, use_fast)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.mark.parametrize(
 | 
			
		||||
    "use_fast", [True, pytest.param(False, marks=pytest.mark.xfail(reason="Phi-4 slow tokenizer is broken."))]
 | 
			
		||||
)
 | 
			
		||||
@ -183,35 +197,21 @@ def test_phi4_template(use_fast: bool):
 | 
			
		||||
    _check_template("microsoft/phi-4", "phi4", prompt_str, answer_str, use_fast)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")  # TODO: why it is gated?
 | 
			
		||||
@pytest.mark.parametrize("use_fast", [True, False])
 | 
			
		||||
def test_qwen_template(use_fast: bool):
 | 
			
		||||
    prompt_str = (
 | 
			
		||||
        "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
 | 
			
		||||
        "<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n"
 | 
			
		||||
        "<|im_start|>user\nHow are you<|im_end|>\n"
 | 
			
		||||
        "<|im_start|>assistant\nI am fine!<|im_end|>\n"
 | 
			
		||||
        "<|im_start|>user\n你好<|im_end|>\n"
 | 
			
		||||
        "<|im_start|>assistant\n"
 | 
			
		||||
    )
 | 
			
		||||
    answer_str = "很高兴认识你!<|im_end|>\n"
 | 
			
		||||
    _check_template("Qwen/Qwen2-7B-Instruct", "qwen", prompt_str, answer_str, use_fast)
 | 
			
		||||
    _check_template("Qwen/Qwen2.5-7B-Instruct", "qwen", prompt_str, answer_str, use_fast)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.mark.parametrize("use_fast", [True, False])
 | 
			
		||||
@pytest.mark.xfail(reason="Yi tokenizer is broken.")
 | 
			
		||||
def test_yi_template(use_fast: bool):
 | 
			
		||||
    prompt_str = (
 | 
			
		||||
        "<|im_start|>user\nHow are you<|im_end|>\n"
 | 
			
		||||
        "<|im_start|>assistant\nI am fine!<|im_end|>\n"
 | 
			
		||||
        "<|im_start|>user\n你好<|im_end|>\n"
 | 
			
		||||
        "<|im_start|>assistant\n"
 | 
			
		||||
    )
 | 
			
		||||
    answer_str = "很高兴认识你!<|im_end|>\n"
 | 
			
		||||
    _check_template("01-ai/Yi-1.5-6B-Chat", "yi", prompt_str, answer_str, use_fast)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_parse_template():
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, token=HF_TOKEN)
 | 
			
		||||
def test_parse_llama3_template():
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3, token=HF_TOKEN)
 | 
			
		||||
    template = parse_template(tokenizer)
 | 
			
		||||
    assert template.format_user.slots == [
 | 
			
		||||
        "<|start_header_id|>user<|end_header_id|>\n\n{{content}}<|eot_id|>"
 | 
			
		||||
@ -223,12 +223,11 @@ def test_parse_template():
 | 
			
		||||
    assert template.default_system == ""
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
 | 
			
		||||
def test_parse_qwen_template():
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-7B-Instruct", token=HF_TOKEN)
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-7B-Instruct", token=HF_TOKEN)
 | 
			
		||||
    template = parse_template(tokenizer)
 | 
			
		||||
    assert template.format_user.slots == ["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]
 | 
			
		||||
    assert template.format_assistant.slots == ["{{content}}<|im_end|>\n"]
 | 
			
		||||
    assert template.format_system.slots == ["<|im_start|>system\n{{content}}<|im_end|>\n"]
 | 
			
		||||
    assert template.format_prefix.slots == []
 | 
			
		||||
    assert template.default_system == "You are a helpful assistant."
 | 
			
		||||
    assert template.default_system == "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."
 | 
			
		||||
 | 
			
		||||
@ -17,10 +17,10 @@ import os
 | 
			
		||||
from llamafactory.chat import ChatModel
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
 | 
			
		||||
INFER_ARGS = {
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA,
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA3,
 | 
			
		||||
    "finetuning_type": "lora",
 | 
			
		||||
    "template": "llama3",
 | 
			
		||||
    "infer_dtype": "float16",
 | 
			
		||||
 | 
			
		||||
@ -21,12 +21,12 @@ from llamafactory.train.tuner import export_model, run_exp
 | 
			
		||||
 | 
			
		||||
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
 | 
			
		||||
 | 
			
		||||
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
 | 
			
		||||
TINY_LLAMA_ADAPTER = os.getenv("TINY_LLAMA_ADAPTER", "llamafactory/tiny-random-Llama-3-lora")
 | 
			
		||||
 | 
			
		||||
TRAIN_ARGS = {
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA,
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA3,
 | 
			
		||||
    "do_train": True,
 | 
			
		||||
    "finetuning_type": "lora",
 | 
			
		||||
    "dataset_dir": "REMOTE:" + DEMO_DATA,
 | 
			
		||||
@ -35,10 +35,11 @@ TRAIN_ARGS = {
 | 
			
		||||
    "overwrite_output_dir": True,
 | 
			
		||||
    "per_device_train_batch_size": 1,
 | 
			
		||||
    "max_steps": 1,
 | 
			
		||||
    "report_to": "none",
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
INFER_ARGS = {
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA,
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA3,
 | 
			
		||||
    "adapter_name_or_path": TINY_LLAMA_ADAPTER,
 | 
			
		||||
    "finetuning_type": "lora",
 | 
			
		||||
    "template": "llama3",
 | 
			
		||||
 | 
			
		||||
@ -21,10 +21,10 @@ from llamafactory.extras.packages import is_transformers_version_greater_than
 | 
			
		||||
from llamafactory.train.test_utils import load_infer_model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
 | 
			
		||||
INFER_ARGS = {
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA,
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA3,
 | 
			
		||||
    "template": "llama3",
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -21,10 +21,10 @@ from llamafactory.extras.misc import get_current_device
 | 
			
		||||
from llamafactory.train.test_utils import load_train_model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
 | 
			
		||||
TRAIN_ARGS = {
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA,
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA3,
 | 
			
		||||
    "stage": "sft",
 | 
			
		||||
    "do_train": True,
 | 
			
		||||
    "finetuning_type": "lora",
 | 
			
		||||
 | 
			
		||||
@ -19,12 +19,12 @@ import pytest
 | 
			
		||||
from llamafactory.train.test_utils import compare_model, load_infer_model, load_reference_model, patch_valuehead_model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
 | 
			
		||||
TINY_LLAMA_VALUEHEAD = os.getenv("TINY_LLAMA_VALUEHEAD", "llamafactory/tiny-random-Llama-3-valuehead")
 | 
			
		||||
 | 
			
		||||
INFER_ARGS = {
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA,
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA3,
 | 
			
		||||
    "template": "llama3",
 | 
			
		||||
    "infer_dtype": "float16",
 | 
			
		||||
}
 | 
			
		||||
@ -37,7 +37,7 @@ def fix_valuehead_cpu_loading():
 | 
			
		||||
 | 
			
		||||
def test_base():
 | 
			
		||||
    model = load_infer_model(**INFER_ARGS)
 | 
			
		||||
    ref_model = load_reference_model(TINY_LLAMA)
 | 
			
		||||
    ref_model = load_reference_model(TINY_LLAMA3)
 | 
			
		||||
    compare_model(model, ref_model)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -19,10 +19,10 @@ import torch
 | 
			
		||||
from llamafactory.train.test_utils import load_infer_model, load_train_model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
 | 
			
		||||
TRAIN_ARGS = {
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA,
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA3,
 | 
			
		||||
    "stage": "sft",
 | 
			
		||||
    "do_train": True,
 | 
			
		||||
    "finetuning_type": "freeze",
 | 
			
		||||
@ -36,7 +36,7 @@ TRAIN_ARGS = {
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
INFER_ARGS = {
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA,
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA3,
 | 
			
		||||
    "finetuning_type": "freeze",
 | 
			
		||||
    "template": "llama3",
 | 
			
		||||
    "infer_dtype": "float16",
 | 
			
		||||
 | 
			
		||||
@ -19,10 +19,10 @@ import torch
 | 
			
		||||
from llamafactory.train.test_utils import load_infer_model, load_train_model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
 | 
			
		||||
TRAIN_ARGS = {
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA,
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA3,
 | 
			
		||||
    "stage": "sft",
 | 
			
		||||
    "do_train": True,
 | 
			
		||||
    "finetuning_type": "full",
 | 
			
		||||
@ -36,7 +36,7 @@ TRAIN_ARGS = {
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
INFER_ARGS = {
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA,
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA3,
 | 
			
		||||
    "finetuning_type": "full",
 | 
			
		||||
    "template": "llama3",
 | 
			
		||||
    "infer_dtype": "float16",
 | 
			
		||||
 | 
			
		||||
@ -27,14 +27,14 @@ from llamafactory.train.test_utils import (
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
 | 
			
		||||
TINY_LLAMA_ADAPTER = os.getenv("TINY_LLAMA_ADAPTER", "llamafactory/tiny-random-Llama-3-lora")
 | 
			
		||||
 | 
			
		||||
TINY_LLAMA_VALUEHEAD = os.getenv("TINY_LLAMA_VALUEHEAD", "llamafactory/tiny-random-Llama-3-valuehead")
 | 
			
		||||
 | 
			
		||||
TRAIN_ARGS = {
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA,
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA3,
 | 
			
		||||
    "stage": "sft",
 | 
			
		||||
    "do_train": True,
 | 
			
		||||
    "finetuning_type": "lora",
 | 
			
		||||
@ -48,7 +48,7 @@ TRAIN_ARGS = {
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
INFER_ARGS = {
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA,
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA3,
 | 
			
		||||
    "adapter_name_or_path": TINY_LLAMA_ADAPTER,
 | 
			
		||||
    "finetuning_type": "lora",
 | 
			
		||||
    "template": "llama3",
 | 
			
		||||
@ -81,13 +81,13 @@ def test_lora_train_extra_modules():
 | 
			
		||||
 | 
			
		||||
def test_lora_train_old_adapters():
 | 
			
		||||
    model = load_train_model(adapter_name_or_path=TINY_LLAMA_ADAPTER, create_new_adapter=False, **TRAIN_ARGS)
 | 
			
		||||
    ref_model = load_reference_model(TINY_LLAMA, TINY_LLAMA_ADAPTER, use_lora=True, is_trainable=True)
 | 
			
		||||
    ref_model = load_reference_model(TINY_LLAMA3, TINY_LLAMA_ADAPTER, use_lora=True, is_trainable=True)
 | 
			
		||||
    compare_model(model, ref_model)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_lora_train_new_adapters():
 | 
			
		||||
    model = load_train_model(adapter_name_or_path=TINY_LLAMA_ADAPTER, create_new_adapter=True, **TRAIN_ARGS)
 | 
			
		||||
    ref_model = load_reference_model(TINY_LLAMA, TINY_LLAMA_ADAPTER, use_lora=True, is_trainable=True)
 | 
			
		||||
    ref_model = load_reference_model(TINY_LLAMA3, TINY_LLAMA_ADAPTER, use_lora=True, is_trainable=True)
 | 
			
		||||
    compare_model(
 | 
			
		||||
        model, ref_model, diff_keys=["q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "gate_proj", "down_proj"]
 | 
			
		||||
    )
 | 
			
		||||
@ -105,5 +105,5 @@ def test_lora_train_valuehead():
 | 
			
		||||
 | 
			
		||||
def test_lora_inference():
 | 
			
		||||
    model = load_infer_model(**INFER_ARGS)
 | 
			
		||||
    ref_model = load_reference_model(TINY_LLAMA, TINY_LLAMA_ADAPTER, use_lora=True).merge_and_unload()
 | 
			
		||||
    ref_model = load_reference_model(TINY_LLAMA3, TINY_LLAMA_ADAPTER, use_lora=True).merge_and_unload()
 | 
			
		||||
    compare_model(model, ref_model)
 | 
			
		||||
 | 
			
		||||
@ -19,12 +19,12 @@ import pytest
 | 
			
		||||
from llamafactory.train.test_utils import compare_model, load_infer_model, load_reference_model, load_train_model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
 | 
			
		||||
TINY_LLAMA_PISSA = os.getenv("TINY_LLAMA_ADAPTER", "llamafactory/tiny-random-Llama-3-pissa")
 | 
			
		||||
 | 
			
		||||
TRAIN_ARGS = {
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA,
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA3,
 | 
			
		||||
    "stage": "sft",
 | 
			
		||||
    "do_train": True,
 | 
			
		||||
    "finetuning_type": "lora",
 | 
			
		||||
 | 
			
		||||
@ -27,10 +27,10 @@ from llamafactory.train.sft.trainer import CustomSeq2SeqTrainer
 | 
			
		||||
 | 
			
		||||
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
 | 
			
		||||
 | 
			
		||||
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
 | 
			
		||||
TRAIN_ARGS = {
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA,
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA3,
 | 
			
		||||
    "stage": "sft",
 | 
			
		||||
    "do_train": True,
 | 
			
		||||
    "finetuning_type": "lora",
 | 
			
		||||
@ -41,6 +41,7 @@ TRAIN_ARGS = {
 | 
			
		||||
    "overwrite_output_dir": True,
 | 
			
		||||
    "per_device_train_batch_size": 1,
 | 
			
		||||
    "max_steps": 1,
 | 
			
		||||
    "report_to": "none",
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -1,2 +1,2 @@
 | 
			
		||||
# change if test fails
 | 
			
		||||
0.9.3.101
 | 
			
		||||
0.9.3.102
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user