mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-10-14 07:42:49 +08:00
[model] add qwen3-vl/qwen3-omni (#9196)
Co-authored-by: kingsley <kingsleydodonow@gmail.com>
This commit is contained in:
parent
abc3b1e1c4
commit
0761a4448f
@ -134,7 +134,7 @@ def _make_batched_images(images: list["ImageObject"], imglens: list[int]) -> lis
|
||||
|
||||
def _check_video_is_nested_images(video: "VideoInput") -> bool:
|
||||
r"""Check if the video is nested images."""
|
||||
return isinstance(video, list) and all(isinstance(frame, (str, BinaryIO, dict)) for frame in video)
|
||||
return isinstance(video, list) and all(isinstance(frame, (str, BinaryIO, dict, ImageObject)) for frame in video)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -1531,6 +1531,119 @@ class Qwen2VLPlugin(BasePlugin):
|
||||
return messages
|
||||
|
||||
|
||||
@dataclass
|
||||
class Qwen3VLPlugin(Qwen2VLPlugin):
|
||||
@override
|
||||
def _get_mm_inputs(
|
||||
self,
|
||||
images: list["ImageInput"],
|
||||
videos: list["VideoInput"],
|
||||
audios: list["AudioInput"],
|
||||
processor: "MMProcessor",
|
||||
) -> dict[str, "torch.Tensor"]:
|
||||
image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
|
||||
video_processor: BaseImageProcessor = getattr(processor, "video_processor", None)
|
||||
mm_inputs = {}
|
||||
if len(images) != 0:
|
||||
images = self._regularize_images(
|
||||
images,
|
||||
image_max_pixels=getattr(processor, "image_max_pixels", 768 * 768),
|
||||
image_min_pixels=getattr(processor, "image_min_pixels", 32 * 32),
|
||||
)["images"]
|
||||
mm_inputs.update(image_processor(images, return_tensors="pt"))
|
||||
|
||||
if len(videos) != 0:
|
||||
videos = self._regularize_videos(
|
||||
videos,
|
||||
image_max_pixels=getattr(processor, "video_max_pixels", 256 * 256),
|
||||
image_min_pixels=getattr(processor, "video_min_pixels", 16 * 16),
|
||||
video_fps=getattr(processor, "video_fps", 2.0),
|
||||
video_maxlen=getattr(processor, "video_maxlen", 128),
|
||||
)
|
||||
video_metadata = [
|
||||
{"fps": getattr(processor, "video_fps", 24.0), "duration": len(video), "total_num_frames": len(video)}
|
||||
for video in videos["videos"]
|
||||
]
|
||||
mm_inputs.update(
|
||||
video_processor(videos=videos["videos"], video_metadata=video_metadata, return_metadata=True)
|
||||
)
|
||||
temporal_patch_size: int = getattr(image_processor, "temporal_patch_size", 2)
|
||||
if "second_per_grid_ts" in processor.model_input_names:
|
||||
mm_inputs["second_per_grid_ts"] = [temporal_patch_size / fps for fps in videos["fps_per_video"]]
|
||||
|
||||
return mm_inputs
|
||||
|
||||
@override
|
||||
def process_messages(
|
||||
self,
|
||||
messages: list[dict[str, str]],
|
||||
images: list["ImageInput"],
|
||||
videos: list["VideoInput"],
|
||||
audios: list["AudioInput"],
|
||||
processor: Optional["MMProcessor"],
|
||||
) -> list[dict[str, str]]:
|
||||
self._validate_input(processor, images, videos, audios)
|
||||
self._validate_messages(messages, images, videos, audios)
|
||||
num_image_tokens, num_video_tokens = 0, 0
|
||||
messages = deepcopy(messages)
|
||||
image_processor: BaseImageProcessor = getattr(processor, "image_processor")
|
||||
video_processor: BaseImageProcessor = getattr(processor, "video_processor")
|
||||
|
||||
image_merge_length: int = getattr(image_processor, "merge_size") ** 2
|
||||
video_merge_length: int = getattr(video_processor, "merge_size") ** 2
|
||||
if self.expand_mm_tokens:
|
||||
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
|
||||
image_grid_thw = mm_inputs.get("image_grid_thw", [])
|
||||
video_grid_thw = mm_inputs.get("video_grid_thw", [])
|
||||
num_frames = video_grid_thw[0][0] if len(video_grid_thw) > 0 else 0 # hard code for now
|
||||
video_metadata = mm_inputs.get("video_metadata", {})
|
||||
|
||||
else:
|
||||
image_grid_thw = [None] * len(images)
|
||||
video_grid_thw = [None] * len(videos)
|
||||
num_frames = 0
|
||||
timestamps = [0]
|
||||
|
||||
for idx, message in enumerate(messages):
|
||||
content = message["content"]
|
||||
while IMAGE_PLACEHOLDER in content:
|
||||
image_seqlen = (
|
||||
image_grid_thw[num_image_tokens].prod() // image_merge_length if self.expand_mm_tokens else 1
|
||||
)
|
||||
content = content.replace(
|
||||
IMAGE_PLACEHOLDER, f"{self.start_token}{self.image_token * image_seqlen}{self.end_token}", 1
|
||||
)
|
||||
num_image_tokens += 1
|
||||
|
||||
while VIDEO_PLACEHOLDER in content:
|
||||
metadata = video_metadata[idx]
|
||||
timestamps = processor._calculate_timestamps(
|
||||
metadata.frames_indices,
|
||||
metadata.fps,
|
||||
video_processor.merge_size,
|
||||
)
|
||||
video_structure = ""
|
||||
for frame_index in range(num_frames):
|
||||
video_seqlen = (
|
||||
video_grid_thw[num_video_tokens][1:].prod() // video_merge_length
|
||||
if self.expand_mm_tokens
|
||||
else 1
|
||||
)
|
||||
timestamp_sec = timestamps[frame_index]
|
||||
frame_structure = f"<{timestamp_sec:.1f} seconds>{self.start_token}{self.video_token * video_seqlen}{self.end_token}"
|
||||
video_structure += frame_structure
|
||||
|
||||
if not self.expand_mm_tokens:
|
||||
video_structure = f"{self.start_token}{self.video_token}{self.end_token}"
|
||||
|
||||
content = content.replace(VIDEO_PLACEHOLDER, video_structure, 1)
|
||||
num_video_tokens += 1
|
||||
|
||||
message["content"] = content
|
||||
|
||||
return messages
|
||||
|
||||
|
||||
@dataclass
|
||||
class GLM4VPlugin(Qwen2VLPlugin):
|
||||
@override
|
||||
@ -1893,6 +2006,7 @@ PLUGINS = {
|
||||
"qwen2_audio": Qwen2AudioPlugin,
|
||||
"qwen2_omni": Qwen2OmniPlugin,
|
||||
"qwen2_vl": Qwen2VLPlugin,
|
||||
"qwen3_vl": Qwen3VLPlugin,
|
||||
"video_llava": VideoLlavaPlugin,
|
||||
}
|
||||
|
||||
|
@ -1866,6 +1866,44 @@ register_template(
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
name="qwen3_omni",
|
||||
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
|
||||
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
|
||||
format_function=FunctionFormatter(slots=["{{content}}<|im_end|>\n"], tool_format="qwen"),
|
||||
format_observation=StringFormatter(
|
||||
slots=["<|im_start|>user\n<tool_response>\n{{content}}\n</tool_response><|im_end|>\n<|im_start|>assistant\n"]
|
||||
),
|
||||
format_tools=ToolFormatter(tool_format="qwen"),
|
||||
stop_words=["<|im_end|>"],
|
||||
replace_eos=True,
|
||||
mm_plugin=get_mm_plugin(
|
||||
name="qwen2_omni", audio_token="<|AUDIO|>", image_token="<|IMAGE|>", video_token="<|VIDEO|>"
|
||||
),
|
||||
template_class=ReasoningTemplate,
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
name="qwen3_omni_nothink",
|
||||
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
|
||||
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
|
||||
format_function=FunctionFormatter(slots=["{{content}}<|im_end|>\n"], tool_format="qwen"),
|
||||
format_observation=StringFormatter(
|
||||
slots=["<|im_start|>user\n<tool_response>\n{{content}}\n</tool_response><|im_end|>\n<|im_start|>assistant\n"]
|
||||
),
|
||||
format_tools=ToolFormatter(tool_format="qwen"),
|
||||
stop_words=["<|im_end|>"],
|
||||
replace_eos=True,
|
||||
mm_plugin=get_mm_plugin(
|
||||
name="qwen2_omni", audio_token="<|AUDIO|>", image_token="<|IMAGE|>", video_token="<|VIDEO|>"
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
# copied from qwen template
|
||||
register_template(
|
||||
name="qwen2_vl",
|
||||
@ -1884,6 +1922,41 @@ register_template(
|
||||
)
|
||||
|
||||
|
||||
# copied from qwen template
|
||||
register_template(
|
||||
name="qwen3_vl",
|
||||
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
|
||||
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
|
||||
format_function=FunctionFormatter(slots=["{{content}}<|im_end|>\n"], tool_format="qwen"),
|
||||
format_observation=StringFormatter(
|
||||
slots=["<|im_start|>user\n<tool_response>\n{{content}}\n</tool_response><|im_end|>\n<|im_start|>assistant\n"]
|
||||
),
|
||||
format_tools=ToolFormatter(tool_format="qwen"),
|
||||
stop_words=["<|im_end|>"],
|
||||
replace_eos=True,
|
||||
mm_plugin=get_mm_plugin(name="qwen3_vl", image_token="<|image_pad|>", video_token="<|video_pad|>"),
|
||||
template_class=ReasoningTemplate,
|
||||
)
|
||||
|
||||
|
||||
# copied from qwen template
|
||||
register_template(
|
||||
name="qwen3_vl_nothink",
|
||||
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
|
||||
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
|
||||
format_function=FunctionFormatter(slots=["{{content}}<|im_end|>\n"], tool_format="qwen"),
|
||||
format_observation=StringFormatter(
|
||||
slots=["<|im_start|>user\n<tool_response>\n{{content}}\n</tool_response><|im_end|>\n<|im_start|>assistant\n"]
|
||||
),
|
||||
format_tools=ToolFormatter(tool_format="qwen"),
|
||||
stop_words=["<|im_end|>"],
|
||||
replace_eos=True,
|
||||
mm_plugin=get_mm_plugin(name="qwen3_vl", image_token="<|image_pad|>", video_token="<|video_pad|>"),
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
name="sailor",
|
||||
format_user=StringFormatter(slots=["<|im_start|>question\n{{content}}<|im_end|>\n<|im_start|>answer\n"]),
|
||||
|
@ -3060,6 +3060,31 @@ register_model_group(
|
||||
multimodal=True,
|
||||
)
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Qwen/Qwen3-Omni-30B-A3B-Captioner": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen3-Omni-30B-A3B-Captioner",
|
||||
DownloadSource.MODELSCOPE: "Qwen/Qwen3-Omni-30B-A3B-Captioner",
|
||||
},
|
||||
"Qwen/Qwen3-Omni-30B-A3B-Instruct": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen3-Omni-30B-A3B-Instruct",
|
||||
DownloadSource.MODELSCOPE: "Qwen/Qwen3-Omni-30B-A3B-Instruct",
|
||||
},
|
||||
},
|
||||
template="qwen3_omni_nothink",
|
||||
multimodal=True,
|
||||
)
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Qwen/Qwen3-Omni-30B-A3B-Thinking": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen3-Omni-30B-A3B-Thinking",
|
||||
DownloadSource.MODELSCOPE: "Qwen/Qwen3-Omni-30B-A3B-Thinking",
|
||||
},
|
||||
},
|
||||
template="qwen3_omni",
|
||||
multimodal=True,
|
||||
)
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
@ -3163,6 +3188,30 @@ register_model_group(
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Qwen/Qwen3-VL-235B-A22B-Thinking": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen3-VL-235B-A22B-Thinking",
|
||||
DownloadSource.MODELSCOPE: "Qwen/Qwen3-VL-235B-A22B-Thinking",
|
||||
},
|
||||
},
|
||||
template="qwen3_vl",
|
||||
multimodal=True,
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Qwen/Qwen3-VL-235B-A22B-Instruct": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen3-VL-235B-A22B-Instruct",
|
||||
DownloadSource.MODELSCOPE: "Qwen/Qwen3-VL-235B-A22B-Instruct",
|
||||
},
|
||||
},
|
||||
template="qwen3_vl_nothink",
|
||||
multimodal=True,
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Seed-Coder-8B-Base": {
|
||||
|
@ -105,7 +105,7 @@ def add_z3_leaf_module(model: "PreTrainedModel") -> None:
|
||||
|
||||
_set_z3_leaf_modules(model, [Qwen2MoeSparseMoeBlock])
|
||||
|
||||
if model_type == "qwen3_moe" or text_architectures == "Qwen3MoeForCausalLM": # for internvl_3_5
|
||||
if model_type == "qwen3_moe" or text_architectures == "Qwen3MoeForCausalLM":
|
||||
from transformers.models.qwen3_moe.modeling_qwen3_moe import Qwen3MoeSparseMoeBlock
|
||||
|
||||
_set_z3_leaf_modules(model, [Qwen3MoeSparseMoeBlock])
|
||||
|
@ -56,10 +56,17 @@ TEXT_MESSAGES = [
|
||||
{"role": "assistant", "content": "I am fine!"},
|
||||
]
|
||||
|
||||
VIDEO_MESSAGES = [
|
||||
{"role": "user", "content": "<video>What is in this viode?"},
|
||||
{"role": "assistant", "content": "A cat."},
|
||||
]
|
||||
|
||||
AUDIOS = [np.zeros(1600)]
|
||||
|
||||
IMAGES = [Image.new("RGB", (32, 32), (255, 255, 255))]
|
||||
|
||||
VIDEOS = [[Image.new("RGB", (32, 32), (255, 255, 255))] * 4]
|
||||
|
||||
NO_IMAGES = []
|
||||
|
||||
NO_VIDEOS = []
|
||||
@ -145,6 +152,8 @@ def _check_plugin(
|
||||
plugin.get_mm_inputs(IMAGES, NO_VIDEOS, AUDIOS, IMGLENS, NO_VIDLENS, AUDLENS, BATCH_IDS, processor),
|
||||
expected_mm_inputs,
|
||||
)
|
||||
elif plugin.__class__.__name__ == "Qwen3VLPlugin": # only check replacement
|
||||
assert plugin.process_messages(VIDEO_MESSAGES, NO_IMAGES, VIDEOS, NO_AUDIOS, processor) == expected_mm_messages
|
||||
elif plugin.__class__.__name__ != "BasePlugin": # test mm_messages
|
||||
assert plugin.process_messages(MM_MESSAGES, IMAGES, NO_VIDEOS, NO_AUDIOS, processor) == expected_mm_messages
|
||||
assert plugin.process_token_ids(INPUT_IDS, LABELS, IMAGES, NO_VIDEOS, NO_AUDIOS, tokenizer, processor) == (
|
||||
@ -357,6 +366,27 @@ def test_qwen2_vl_plugin():
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
@pytest.mark.skipif(not is_transformers_version_greater_than("4.57.0"), reason="Requires transformers>=4.57.0")
|
||||
def test_qwen3_vl_plugin():
|
||||
frame_seqlen = 1
|
||||
tokenizer_module = _load_tokenizer_module(model_name_or_path="Qwen/Qwen3-VL-235B-A22B-Instruct")
|
||||
qwen3_vl_plugin = get_mm_plugin(name="qwen3_vl", video_token="<|video_pad|>")
|
||||
check_inputs = {"plugin": qwen3_vl_plugin, **tokenizer_module}
|
||||
check_inputs["expected_mm_messages"] = [
|
||||
{
|
||||
key: value.replace(
|
||||
"<video>", # little different with original processor for default `fps=2` in our repo
|
||||
"<0.2 seconds><|vision_start|>{}<|vision_end|><1.2 seconds><|vision_start|>{}<|vision_end|>".format(
|
||||
"<|video_pad|>" * frame_seqlen, "<|video_pad|>" * frame_seqlen
|
||||
),
|
||||
)
|
||||
for key, value in message.items()
|
||||
}
|
||||
for message in VIDEO_MESSAGES
|
||||
]
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
@pytest.mark.skipif(not is_transformers_version_greater_than("4.47.0"), reason="Requires transformers>=4.47.0")
|
||||
def test_video_llava_plugin():
|
||||
image_seqlen = 256
|
||||
|
Loading…
x
Reference in New Issue
Block a user