mirror of
				https://github.com/hiyouga/LLaMA-Factory.git
				synced 2025-11-04 18:02:19 +08:00 
			
		
		
		
	[data] fix loader (#7207)
* fix dataloader * add test case * fix type * fix ci * fix ci * fix ci * disable overwrite cache in ci Former-commit-id: e84af0e140b1aafd1a6d6fe185a8e41c8fc5f831
This commit is contained in:
		
							parent
							
								
									82a2bac866
								
							
						
					
					
						commit
						16419b2834
					
				@ -43,7 +43,7 @@ class Role(str, Enum):
 | 
			
		||||
 | 
			
		||||
class DatasetModule(TypedDict):
 | 
			
		||||
    train_dataset: Optional[Union["Dataset", "IterableDataset"]]
 | 
			
		||||
    eval_dataset: Optional[Union["Dataset", "IterableDataset"]]
 | 
			
		||||
    eval_dataset: Optional[Union["Dataset", "IterableDataset", Dict[str, "Dataset"]]]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def merge_dataset(
 | 
			
		||||
@ -54,11 +54,13 @@ def merge_dataset(
 | 
			
		||||
    """
 | 
			
		||||
    if len(all_datasets) == 1:
 | 
			
		||||
        return all_datasets[0]
 | 
			
		||||
 | 
			
		||||
    elif data_args.mix_strategy == "concat":
 | 
			
		||||
        if data_args.streaming:
 | 
			
		||||
            logger.warning_rank0_once("The samples between different datasets will not be mixed in streaming mode.")
 | 
			
		||||
 | 
			
		||||
        return concatenate_datasets(all_datasets)
 | 
			
		||||
 | 
			
		||||
    elif data_args.mix_strategy.startswith("interleave"):
 | 
			
		||||
        if not data_args.streaming:
 | 
			
		||||
            logger.warning_rank0_once("We recommend using `mix_strategy=concat` in non-streaming mode.")
 | 
			
		||||
@ -69,24 +71,75 @@ def merge_dataset(
 | 
			
		||||
            seed=seed,
 | 
			
		||||
            stopping_strategy="first_exhausted" if data_args.mix_strategy.endswith("under") else "all_exhausted",
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    else:
 | 
			
		||||
        raise ValueError(f"Unknown mixing strategy: {data_args.mix_strategy}.")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def split_dataset(
 | 
			
		||||
    dataset: Union["Dataset", "IterableDataset"], data_args: "DataArguments", seed: int
 | 
			
		||||
    dataset: Optional[Union["Dataset", "IterableDataset"]],
 | 
			
		||||
    eval_dataset: Optional[Union["Dataset", "IterableDataset", Dict[str, "Dataset"]]],
 | 
			
		||||
    data_args: "DataArguments",
 | 
			
		||||
    seed: int,
 | 
			
		||||
) -> "DatasetDict":
 | 
			
		||||
    r"""
 | 
			
		||||
    Splits the dataset and returns a dataset dict containing train set and validation set.
 | 
			
		||||
 | 
			
		||||
    Supports both map dataset and iterable dataset.
 | 
			
		||||
    """
 | 
			
		||||
    if data_args.streaming:
 | 
			
		||||
        dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed)
 | 
			
		||||
        val_set = dataset.take(int(data_args.val_size))
 | 
			
		||||
        train_set = dataset.skip(int(data_args.val_size))
 | 
			
		||||
        return DatasetDict({"train": train_set, "validation": val_set})
 | 
			
		||||
    else:
 | 
			
		||||
        val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size
 | 
			
		||||
        dataset = dataset.train_test_split(test_size=val_size, seed=seed)
 | 
			
		||||
        return DatasetDict({"train": dataset["train"], "validation": dataset["test"]})
 | 
			
		||||
    if eval_dataset is not None and data_args.val_size > 1e-6:
 | 
			
		||||
        raise ValueError("Cannot specify `val_size` if `eval_dataset` is not None.")
 | 
			
		||||
 | 
			
		||||
    dataset_dict = {}
 | 
			
		||||
    if dataset is not None:
 | 
			
		||||
        if data_args.streaming:
 | 
			
		||||
            dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed)
 | 
			
		||||
 | 
			
		||||
        if data_args.val_size > 1e-6:
 | 
			
		||||
            if data_args.streaming:
 | 
			
		||||
                dataset_dict["validation"] = dataset.take(int(data_args.val_size))
 | 
			
		||||
                dataset_dict["train"] = dataset.skip(int(data_args.val_size))
 | 
			
		||||
            else:
 | 
			
		||||
                val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size
 | 
			
		||||
                dataset_dict = dataset.train_test_split(test_size=val_size, seed=seed)
 | 
			
		||||
                dataset = dataset.train_test_split(test_size=val_size, seed=seed)
 | 
			
		||||
                dataset_dict = {"train": dataset["train"], "validation": dataset["test"]}
 | 
			
		||||
        else:
 | 
			
		||||
            dataset_dict["train"] = dataset
 | 
			
		||||
 | 
			
		||||
    if eval_dataset is not None:
 | 
			
		||||
        if isinstance(eval_dataset, dict):
 | 
			
		||||
            dataset_dict.update({f"validation_{name}": data for name, data in eval_dataset.items()})
 | 
			
		||||
        else:
 | 
			
		||||
            if data_args.streaming:
 | 
			
		||||
                eval_dataset = eval_dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed)
 | 
			
		||||
 | 
			
		||||
            dataset_dict["validation"] = eval_dataset
 | 
			
		||||
 | 
			
		||||
    return DatasetDict(dataset_dict)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_dataset_module(dataset: Union["Dataset", "DatasetDict"]) -> "DatasetModule":
 | 
			
		||||
    r"""
 | 
			
		||||
    Converts dataset or dataset dict to dataset module.
 | 
			
		||||
    """
 | 
			
		||||
    dataset_module: "DatasetModule" = {}
 | 
			
		||||
    if isinstance(dataset, DatasetDict):  # dataset dict
 | 
			
		||||
        if "train" in dataset:
 | 
			
		||||
            dataset_module["train_dataset"] = dataset["train"]
 | 
			
		||||
 | 
			
		||||
        if "validation" in dataset:
 | 
			
		||||
            dataset_module["eval_dataset"] = dataset["validation"]
 | 
			
		||||
        else:
 | 
			
		||||
            eval_dataset = {}
 | 
			
		||||
            for key in dataset.keys():
 | 
			
		||||
                if key.startswith("validation_"):
 | 
			
		||||
                    eval_dataset[key[len("validation_") :]] = dataset[key]
 | 
			
		||||
 | 
			
		||||
            if len(eval_dataset):
 | 
			
		||||
                dataset_module["eval_dataset"] = eval_dataset
 | 
			
		||||
 | 
			
		||||
    else:  # single dataset
 | 
			
		||||
        dataset_module["train_dataset"] = dataset
 | 
			
		||||
 | 
			
		||||
    return dataset_module
 | 
			
		||||
 | 
			
		||||
@ -17,13 +17,13 @@ import sys
 | 
			
		||||
from typing import TYPE_CHECKING, Dict, Literal, Optional, Sequence, Union
 | 
			
		||||
 | 
			
		||||
import numpy as np
 | 
			
		||||
from datasets import DatasetDict, load_dataset, load_from_disk
 | 
			
		||||
from datasets import load_dataset, load_from_disk
 | 
			
		||||
 | 
			
		||||
from ..extras import logging
 | 
			
		||||
from ..extras.constants import FILEEXT2TYPE
 | 
			
		||||
from ..extras.misc import check_version, has_tokenized_data
 | 
			
		||||
from .converter import align_dataset
 | 
			
		||||
from .data_utils import merge_dataset, split_dataset
 | 
			
		||||
from .data_utils import get_dataset_module, merge_dataset, split_dataset
 | 
			
		||||
from .parser import get_dataset_list
 | 
			
		||||
from .processor import (
 | 
			
		||||
    FeedbackDatasetProcessor,
 | 
			
		||||
@ -292,23 +292,12 @@ def get_dataset(
 | 
			
		||||
    if data_args.tokenized_path is not None:
 | 
			
		||||
        if has_tokenized_data(data_args.tokenized_path):
 | 
			
		||||
            logger.warning_rank0("Loading dataset from disk will ignore other data arguments.")
 | 
			
		||||
            tokenized_data: Union["Dataset", "DatasetDict"] = load_from_disk(data_args.tokenized_path)
 | 
			
		||||
            logger.info_rank0(f"Loaded tokenized dataset from {data_args.tokenized_path}.")
 | 
			
		||||
 | 
			
		||||
            dataset_module: Dict[str, "Dataset"] = {}
 | 
			
		||||
            if isinstance(tokenized_data, DatasetDict):
 | 
			
		||||
                if "train" in tokenized_data:
 | 
			
		||||
                    dataset_module["train_dataset"] = tokenized_data["train"]
 | 
			
		||||
 | 
			
		||||
                if "validation" in tokenized_data:
 | 
			
		||||
                    dataset_module["eval_dataset"] = tokenized_data["validation"]
 | 
			
		||||
 | 
			
		||||
            else:  # single dataset
 | 
			
		||||
                dataset_module["train_dataset"] = tokenized_data
 | 
			
		||||
 | 
			
		||||
            tokenized_data = load_from_disk(data_args.tokenized_path)
 | 
			
		||||
            dataset_module = get_dataset_module(tokenized_data)
 | 
			
		||||
            if data_args.streaming:
 | 
			
		||||
                dataset_module = {k: v.to_iterable_dataset() for k, v in dataset_module.items()}
 | 
			
		||||
                dataset_module["train_dataset"] = dataset_module["train_dataset"].to_iterable_dataset()
 | 
			
		||||
 | 
			
		||||
            logger.info_rank0(f"Loaded tokenized dataset from {data_args.tokenized_path}.")
 | 
			
		||||
            return dataset_module
 | 
			
		||||
 | 
			
		||||
        if data_args.streaming:
 | 
			
		||||
@ -335,27 +324,7 @@ def get_dataset(
 | 
			
		||||
                eval_dataset, data_args, training_args, stage, template, tokenizer, processor, is_eval=True
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        if data_args.val_size > 1e-6:
 | 
			
		||||
            dataset_dict = split_dataset(dataset, data_args, seed=training_args.seed)
 | 
			
		||||
        else:
 | 
			
		||||
            dataset_dict = {}
 | 
			
		||||
            if dataset is not None:
 | 
			
		||||
                if data_args.streaming:
 | 
			
		||||
                    dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
 | 
			
		||||
 | 
			
		||||
                dataset_dict["train"] = dataset
 | 
			
		||||
 | 
			
		||||
            if eval_dataset is not None:
 | 
			
		||||
                if isinstance(eval_dataset, dict):
 | 
			
		||||
                    dataset_dict.update({f"validation_{name}": data for name, data in eval_dataset.items()})
 | 
			
		||||
                else:
 | 
			
		||||
                    if data_args.streaming:
 | 
			
		||||
                        eval_dataset = eval_dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
 | 
			
		||||
 | 
			
		||||
                    dataset_dict["validation"] = eval_dataset
 | 
			
		||||
 | 
			
		||||
            dataset_dict = DatasetDict(dataset_dict)
 | 
			
		||||
 | 
			
		||||
        dataset_dict = split_dataset(dataset, eval_dataset, data_args, seed=training_args.seed)
 | 
			
		||||
        if data_args.tokenized_path is not None:  # save tokenized dataset to disk and exit
 | 
			
		||||
            if training_args.should_save:
 | 
			
		||||
                dataset_dict.save_to_disk(data_args.tokenized_path)
 | 
			
		||||
@ -364,19 +333,4 @@ def get_dataset(
 | 
			
		||||
 | 
			
		||||
            sys.exit(0)
 | 
			
		||||
 | 
			
		||||
        dataset_module = {}
 | 
			
		||||
        if "train" in dataset_dict:
 | 
			
		||||
            dataset_module["train_dataset"] = dataset_dict["train"]
 | 
			
		||||
 | 
			
		||||
        if "validation" in dataset_dict:
 | 
			
		||||
            dataset_module["eval_dataset"] = dataset_dict["validation"]
 | 
			
		||||
        else:
 | 
			
		||||
            eval_dataset = {}
 | 
			
		||||
            for key in dataset_dict.keys():
 | 
			
		||||
                if key.startswith("validation_"):
 | 
			
		||||
                    eval_dataset[key[len("validation_") :]] = dataset_dict[key]
 | 
			
		||||
 | 
			
		||||
            if len(eval_dataset):
 | 
			
		||||
                dataset_module["eval_dataset"] = eval_dataset
 | 
			
		||||
 | 
			
		||||
        return dataset_module
 | 
			
		||||
        return get_dataset_module(dataset_dict)
 | 
			
		||||
 | 
			
		||||
@ -26,10 +26,11 @@ from ..model import load_model, load_tokenizer
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if TYPE_CHECKING:
 | 
			
		||||
    from datasets import Dataset
 | 
			
		||||
    from peft import LoraModel
 | 
			
		||||
    from transformers import PreTrainedModel
 | 
			
		||||
 | 
			
		||||
    from ..data.data_utils import DatasetModule
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def compare_model(model_a: "torch.nn.Module", model_b: "torch.nn.Module", diff_keys: Sequence[str] = []) -> None:
 | 
			
		||||
    state_dict_a = model_a.state_dict()
 | 
			
		||||
@ -101,12 +102,12 @@ def load_reference_model(
 | 
			
		||||
    return model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def load_train_dataset(**kwargs) -> "Dataset":
 | 
			
		||||
def load_dataset_module(**kwargs) -> "DatasetModule":
 | 
			
		||||
    model_args, data_args, training_args, _, _ = get_train_args(kwargs)
 | 
			
		||||
    tokenizer_module = load_tokenizer(model_args)
 | 
			
		||||
    template = get_template_and_fix_tokenizer(tokenizer_module["tokenizer"], data_args)
 | 
			
		||||
    dataset_module = get_dataset(template, model_args, data_args, training_args, kwargs["stage"], **tokenizer_module)
 | 
			
		||||
    return dataset_module["train_dataset"]
 | 
			
		||||
    return dataset_module
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def patch_valuehead_model() -> None:
 | 
			
		||||
 | 
			
		||||
@ -20,7 +20,7 @@ from datasets import load_dataset
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
 | 
			
		||||
from llamafactory.extras.constants import IGNORE_INDEX
 | 
			
		||||
from llamafactory.train.test_utils import load_train_dataset
 | 
			
		||||
from llamafactory.train.test_utils import load_dataset_module
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
 | 
			
		||||
@ -36,7 +36,6 @@ TRAIN_ARGS = {
 | 
			
		||||
    "dataset_dir": "REMOTE:" + DEMO_DATA,
 | 
			
		||||
    "template": "llama3",
 | 
			
		||||
    "cutoff_len": 8192,
 | 
			
		||||
    "overwrite_cache": True,
 | 
			
		||||
    "output_dir": "dummy_dir",
 | 
			
		||||
    "overwrite_output_dir": True,
 | 
			
		||||
    "fp16": True,
 | 
			
		||||
@ -45,7 +44,7 @@ TRAIN_ARGS = {
 | 
			
		||||
 | 
			
		||||
@pytest.mark.parametrize("num_samples", [16])
 | 
			
		||||
def test_feedback_data(num_samples: int):
 | 
			
		||||
    train_dataset = load_train_dataset(**TRAIN_ARGS)
 | 
			
		||||
    train_dataset = load_dataset_module(**TRAIN_ARGS)["train_dataset"]
 | 
			
		||||
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
 | 
			
		||||
    original_data = load_dataset(DEMO_DATA, name="kto_en_demo", split="train")
 | 
			
		||||
    indexes = random.choices(range(len(original_data)), k=num_samples)
 | 
			
		||||
 | 
			
		||||
@ -21,7 +21,7 @@ from datasets import load_dataset
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
 | 
			
		||||
from llamafactory.extras.constants import IGNORE_INDEX
 | 
			
		||||
from llamafactory.train.test_utils import load_train_dataset
 | 
			
		||||
from llamafactory.train.test_utils import load_dataset_module
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
 | 
			
		||||
@ -37,7 +37,6 @@ TRAIN_ARGS = {
 | 
			
		||||
    "dataset_dir": "REMOTE:" + DEMO_DATA,
 | 
			
		||||
    "template": "llama3",
 | 
			
		||||
    "cutoff_len": 8192,
 | 
			
		||||
    "overwrite_cache": True,
 | 
			
		||||
    "output_dir": "dummy_dir",
 | 
			
		||||
    "overwrite_output_dir": True,
 | 
			
		||||
    "fp16": True,
 | 
			
		||||
@ -55,7 +54,7 @@ def _convert_sharegpt_to_openai(messages: List[Dict[str, str]]) -> List[Dict[str
 | 
			
		||||
 | 
			
		||||
@pytest.mark.parametrize("num_samples", [16])
 | 
			
		||||
def test_pairwise_data(num_samples: int):
 | 
			
		||||
    train_dataset = load_train_dataset(**TRAIN_ARGS)
 | 
			
		||||
    train_dataset = load_dataset_module(**TRAIN_ARGS)["train_dataset"]
 | 
			
		||||
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
 | 
			
		||||
    original_data = load_dataset(DEMO_DATA, name="dpo_en_demo", split="train")
 | 
			
		||||
    indexes = random.choices(range(len(original_data)), k=num_samples)
 | 
			
		||||
 | 
			
		||||
@ -20,7 +20,7 @@ from datasets import load_dataset
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
 | 
			
		||||
from llamafactory.extras.constants import IGNORE_INDEX
 | 
			
		||||
from llamafactory.train.test_utils import load_train_dataset
 | 
			
		||||
from llamafactory.train.test_utils import load_dataset_module
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
 | 
			
		||||
@ -36,7 +36,6 @@ TRAIN_ARGS = {
 | 
			
		||||
    "finetuning_type": "full",
 | 
			
		||||
    "template": "llama3",
 | 
			
		||||
    "cutoff_len": 8192,
 | 
			
		||||
    "overwrite_cache": True,
 | 
			
		||||
    "output_dir": "dummy_dir",
 | 
			
		||||
    "overwrite_output_dir": True,
 | 
			
		||||
    "fp16": True,
 | 
			
		||||
@ -45,7 +44,7 @@ TRAIN_ARGS = {
 | 
			
		||||
 | 
			
		||||
@pytest.mark.parametrize("num_samples", [16])
 | 
			
		||||
def test_supervised_single_turn(num_samples: int):
 | 
			
		||||
    train_dataset = load_train_dataset(dataset_dir="ONLINE", dataset=TINY_DATA, **TRAIN_ARGS)
 | 
			
		||||
    train_dataset = load_dataset_module(dataset_dir="ONLINE", dataset=TINY_DATA, **TRAIN_ARGS)["train_dataset"]
 | 
			
		||||
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
 | 
			
		||||
    original_data = load_dataset(TINY_DATA, split="train")
 | 
			
		||||
    indexes = random.choices(range(len(original_data)), k=num_samples)
 | 
			
		||||
@ -64,7 +63,9 @@ def test_supervised_single_turn(num_samples: int):
 | 
			
		||||
 | 
			
		||||
@pytest.mark.parametrize("num_samples", [8])
 | 
			
		||||
def test_supervised_multi_turn(num_samples: int):
 | 
			
		||||
    train_dataset = load_train_dataset(dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", **TRAIN_ARGS)
 | 
			
		||||
    train_dataset = load_dataset_module(dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", **TRAIN_ARGS)[
 | 
			
		||||
        "train_dataset"
 | 
			
		||||
    ]
 | 
			
		||||
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
 | 
			
		||||
    original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
 | 
			
		||||
    indexes = random.choices(range(len(original_data)), k=num_samples)
 | 
			
		||||
@ -75,9 +76,9 @@ def test_supervised_multi_turn(num_samples: int):
 | 
			
		||||
 | 
			
		||||
@pytest.mark.parametrize("num_samples", [4])
 | 
			
		||||
def test_supervised_train_on_prompt(num_samples: int):
 | 
			
		||||
    train_dataset = load_train_dataset(
 | 
			
		||||
    train_dataset = load_dataset_module(
 | 
			
		||||
        dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", train_on_prompt=True, **TRAIN_ARGS
 | 
			
		||||
    )
 | 
			
		||||
    )["train_dataset"]
 | 
			
		||||
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
 | 
			
		||||
    original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
 | 
			
		||||
    indexes = random.choices(range(len(original_data)), k=num_samples)
 | 
			
		||||
@ -89,9 +90,9 @@ def test_supervised_train_on_prompt(num_samples: int):
 | 
			
		||||
 | 
			
		||||
@pytest.mark.parametrize("num_samples", [4])
 | 
			
		||||
def test_supervised_mask_history(num_samples: int):
 | 
			
		||||
    train_dataset = load_train_dataset(
 | 
			
		||||
    train_dataset = load_dataset_module(
 | 
			
		||||
        dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", mask_history=True, **TRAIN_ARGS
 | 
			
		||||
    )
 | 
			
		||||
    )["train_dataset"]
 | 
			
		||||
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
 | 
			
		||||
    original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
 | 
			
		||||
    indexes = random.choices(range(len(original_data)), k=num_samples)
 | 
			
		||||
 | 
			
		||||
@ -19,7 +19,7 @@ import pytest
 | 
			
		||||
from datasets import load_dataset
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
 | 
			
		||||
from llamafactory.train.test_utils import load_train_dataset
 | 
			
		||||
from llamafactory.train.test_utils import load_dataset_module
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
 | 
			
		||||
@ -39,7 +39,6 @@ TRAIN_ARGS = {
 | 
			
		||||
    "dataset_dir": "REMOTE:" + DEMO_DATA,
 | 
			
		||||
    "template": "llama3",
 | 
			
		||||
    "cutoff_len": 8192,
 | 
			
		||||
    "overwrite_cache": True,
 | 
			
		||||
    "output_dir": "dummy_dir",
 | 
			
		||||
    "overwrite_output_dir": True,
 | 
			
		||||
    "fp16": True,
 | 
			
		||||
@ -48,7 +47,7 @@ TRAIN_ARGS = {
 | 
			
		||||
 | 
			
		||||
@pytest.mark.parametrize("num_samples", [16])
 | 
			
		||||
def test_unsupervised_data(num_samples: int):
 | 
			
		||||
    train_dataset = load_train_dataset(**TRAIN_ARGS)
 | 
			
		||||
    train_dataset = load_dataset_module(**TRAIN_ARGS)["train_dataset"]
 | 
			
		||||
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
 | 
			
		||||
    original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
 | 
			
		||||
    indexes = random.choices(range(len(original_data)), k=num_samples)
 | 
			
		||||
 | 
			
		||||
@ -1,3 +1,17 @@
 | 
			
		||||
# Copyright 2025 the LlamaFactory team.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
 | 
			
		||||
from llamafactory.data import Role
 | 
			
		||||
from llamafactory.data.converter import get_dataset_converter
 | 
			
		||||
from llamafactory.data.parser import DatasetAttr
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										56
									
								
								tests/data/test_loader.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										56
									
								
								tests/data/test_loader.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,56 @@
 | 
			
		||||
# Copyright 2025 the LlamaFactory team.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
 | 
			
		||||
from llamafactory.train.test_utils import load_dataset_module
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
 | 
			
		||||
 | 
			
		||||
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
 | 
			
		||||
 | 
			
		||||
TINY_DATA = os.getenv("TINY_DATA", "llamafactory/tiny-supervised-dataset")
 | 
			
		||||
 | 
			
		||||
TRAIN_ARGS = {
 | 
			
		||||
    "model_name_or_path": TINY_LLAMA,
 | 
			
		||||
    "stage": "sft",
 | 
			
		||||
    "do_train": True,
 | 
			
		||||
    "finetuning_type": "full",
 | 
			
		||||
    "template": "llama3",
 | 
			
		||||
    "dataset": TINY_DATA,
 | 
			
		||||
    "dataset_dir": "ONLINE",
 | 
			
		||||
    "cutoff_len": 8192,
 | 
			
		||||
    "output_dir": "dummy_dir",
 | 
			
		||||
    "overwrite_output_dir": True,
 | 
			
		||||
    "fp16": True,
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_load_train_only():
 | 
			
		||||
    dataset_module = load_dataset_module(**TRAIN_ARGS)
 | 
			
		||||
    assert dataset_module.get("train_dataset") is not None
 | 
			
		||||
    assert dataset_module.get("eval_dataset") is None
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_load_val_size():
 | 
			
		||||
    dataset_module = load_dataset_module(val_size=0.1, **TRAIN_ARGS)
 | 
			
		||||
    assert dataset_module.get("train_dataset") is not None
 | 
			
		||||
    assert dataset_module.get("eval_dataset") is not None
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_load_eval_data():
 | 
			
		||||
    dataset_module = load_dataset_module(eval_dataset=TINY_DATA, **TRAIN_ARGS)
 | 
			
		||||
    assert dataset_module.get("train_dataset") is not None
 | 
			
		||||
    assert dataset_module.get("eval_dataset") is not None
 | 
			
		||||
@ -32,7 +32,6 @@ TRAIN_ARGS = {
 | 
			
		||||
    "dataset_dir": "REMOTE:" + DEMO_DATA,
 | 
			
		||||
    "template": "llama3",
 | 
			
		||||
    "cutoff_len": 1,
 | 
			
		||||
    "overwrite_cache": False,
 | 
			
		||||
    "overwrite_output_dir": True,
 | 
			
		||||
    "per_device_train_batch_size": 1,
 | 
			
		||||
    "max_steps": 1,
 | 
			
		||||
 | 
			
		||||
@ -33,7 +33,6 @@ TRAIN_ARGS = {
 | 
			
		||||
    "dataset_dir": "ONLINE",
 | 
			
		||||
    "template": "llama3",
 | 
			
		||||
    "cutoff_len": 1024,
 | 
			
		||||
    "overwrite_cache": True,
 | 
			
		||||
    "output_dir": "dummy_dir",
 | 
			
		||||
    "overwrite_output_dir": True,
 | 
			
		||||
    "fp16": True,
 | 
			
		||||
 | 
			
		||||
@ -30,7 +30,6 @@ TRAIN_ARGS = {
 | 
			
		||||
    "dataset_dir": "ONLINE",
 | 
			
		||||
    "template": "llama3",
 | 
			
		||||
    "cutoff_len": 1024,
 | 
			
		||||
    "overwrite_cache": True,
 | 
			
		||||
    "output_dir": "dummy_dir",
 | 
			
		||||
    "overwrite_output_dir": True,
 | 
			
		||||
    "fp16": True,
 | 
			
		||||
 | 
			
		||||
@ -30,7 +30,6 @@ TRAIN_ARGS = {
 | 
			
		||||
    "dataset_dir": "ONLINE",
 | 
			
		||||
    "template": "llama3",
 | 
			
		||||
    "cutoff_len": 1024,
 | 
			
		||||
    "overwrite_cache": True,
 | 
			
		||||
    "output_dir": "dummy_dir",
 | 
			
		||||
    "overwrite_output_dir": True,
 | 
			
		||||
    "fp16": True,
 | 
			
		||||
 | 
			
		||||
@ -42,7 +42,6 @@ TRAIN_ARGS = {
 | 
			
		||||
    "dataset_dir": "ONLINE",
 | 
			
		||||
    "template": "llama3",
 | 
			
		||||
    "cutoff_len": 1024,
 | 
			
		||||
    "overwrite_cache": True,
 | 
			
		||||
    "output_dir": "dummy_dir",
 | 
			
		||||
    "overwrite_output_dir": True,
 | 
			
		||||
    "fp16": True,
 | 
			
		||||
 | 
			
		||||
@ -34,7 +34,6 @@ TRAIN_ARGS = {
 | 
			
		||||
    "dataset_dir": "ONLINE",
 | 
			
		||||
    "template": "llama3",
 | 
			
		||||
    "cutoff_len": 1024,
 | 
			
		||||
    "overwrite_cache": True,
 | 
			
		||||
    "output_dir": "dummy_dir",
 | 
			
		||||
    "overwrite_output_dir": True,
 | 
			
		||||
    "fp16": True,
 | 
			
		||||
 | 
			
		||||
@ -38,7 +38,6 @@ TRAIN_ARGS = {
 | 
			
		||||
    "dataset_dir": "ONLINE",
 | 
			
		||||
    "template": "llama3",
 | 
			
		||||
    "cutoff_len": 1024,
 | 
			
		||||
    "overwrite_cache": False,
 | 
			
		||||
    "overwrite_output_dir": True,
 | 
			
		||||
    "per_device_train_batch_size": 1,
 | 
			
		||||
    "max_steps": 1,
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user