mirror of
				https://github.com/hiyouga/LLaMA-Factory.git
				synced 2025-11-04 09:52:14 +08:00 
			
		
		
		
	[breaking] bump transformers to 4.45.0 & improve ci (#7746)
* update ci * fix * fix * fix * fix * fix
This commit is contained in:
		
							parent
							
								
									d222f63cb7
								
							
						
					
					
						commit
						86ebb219d6
					
				
							
								
								
									
										20
									
								
								.github/workflows/tests.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										20
									
								
								.github/workflows/tests.yml
									
									
									
									
										vendored
									
									
								
							@ -31,11 +31,20 @@ jobs:
 | 
			
		||||
          - "ubuntu-latest"
 | 
			
		||||
          - "windows-latest"
 | 
			
		||||
          - "macos-13"
 | 
			
		||||
        transformers:
 | 
			
		||||
          - null
 | 
			
		||||
        include:  # test backward compatibility
 | 
			
		||||
          - python: "3.9"
 | 
			
		||||
            os: "ubuntu-latest"
 | 
			
		||||
            transformers: "4.45.0"
 | 
			
		||||
          - python: "3.9"
 | 
			
		||||
            os: "ubuntu-latest"
 | 
			
		||||
            transformers: "4.49.0"
 | 
			
		||||
 | 
			
		||||
    runs-on: ${{ matrix.os }}
 | 
			
		||||
 | 
			
		||||
    concurrency:
 | 
			
		||||
      group: ${{ github.workflow }}-${{ github.ref }}-${{ matrix.os }}-${{ matrix.python }}
 | 
			
		||||
      group: ${{ github.workflow }}-${{ github.ref }}-${{ matrix.os }}-${{ matrix.python }}-${{ matrix.transformers }}
 | 
			
		||||
      cancel-in-progress: ${{ github.ref != 'refs/heads/main' }}
 | 
			
		||||
 | 
			
		||||
    env:
 | 
			
		||||
@ -51,19 +60,24 @@ jobs:
 | 
			
		||||
        with:
 | 
			
		||||
          python-version: ${{ matrix.python }}
 | 
			
		||||
          cache: "pip"
 | 
			
		||||
          cache-dependency-path: "setup.py"
 | 
			
		||||
          cache-dependency-path: "**/requirements*.txt"
 | 
			
		||||
 | 
			
		||||
      - name: Install dependencies
 | 
			
		||||
        run: |
 | 
			
		||||
          python -m pip install --upgrade pip
 | 
			
		||||
          python -m pip install ".[torch,dev]"
 | 
			
		||||
 | 
			
		||||
      - name: Install transformers
 | 
			
		||||
        if: ${{ matrix.transformers }}
 | 
			
		||||
        run: |
 | 
			
		||||
          python -m pip install "transformers==${{ matrix.transformers }}"
 | 
			
		||||
 | 
			
		||||
      - name: Cache files
 | 
			
		||||
        id: hf-hub-cache
 | 
			
		||||
        uses: actions/cache@v4
 | 
			
		||||
        with:
 | 
			
		||||
          path: ${{ runner.temp }}/huggingface
 | 
			
		||||
          key: huggingface-${{ matrix.os }}-${{ matrix.python }}-${{ hashFiles('tests/version.txt') }}
 | 
			
		||||
          key: huggingface-${{ matrix.os }}-${{ matrix.python }}-${{ matrix.transformers }}-${{ hashFiles('tests/version.txt') }}
 | 
			
		||||
 | 
			
		||||
      - name: Check quality
 | 
			
		||||
        run: |
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										13
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										13
									
								
								README.md
									
									
									
									
									
								
							@ -243,11 +243,11 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
 | 
			
		||||
| [Gemma 3](https://huggingface.co/google)                          | 1B/4B/12B/27B                    | gemma3/gemma (1B)   |
 | 
			
		||||
| [GLM-4/GLM-4-0414/GLM-Z1](https://huggingface.co/THUDM)           | 9B/32B                           | glm4                |
 | 
			
		||||
| [GPT-2](https://huggingface.co/openai-community)                  | 0.1B/0.4B/0.8B/1.5B              | -                   |
 | 
			
		||||
| [Granite 3.0-3.1](https://huggingface.co/ibm-granite)             | 1B/2B/3B/8B                      | granite3            |
 | 
			
		||||
| [Granite 3.0-3.3](https://huggingface.co/ibm-granite)             | 1B/2B/3B/8B                      | granite3            |
 | 
			
		||||
| [Hunyuan](https://huggingface.co/tencent/)                        | 7B                               | hunyuan             |
 | 
			
		||||
| [Index](https://huggingface.co/IndexTeam)                         | 1.9B                             | index               |
 | 
			
		||||
| [InternLM 2-3](https://huggingface.co/internlm)                   | 7B/8B/20B                        | intern2             |
 | 
			
		||||
| [InternVL2_5-3](https://huggingface.co/OpenGVLab/InternVL)        | 1B/2B/4B/8B/9B/14B/26B/38B/78B   | intern_vl           |
 | 
			
		||||
| [InternVL2.5-3](https://huggingface.co/OpenGVLab/InternVL)\*\*    | 1B/2B/4B/8B/9B/14B/26B/38B/78B   | intern_vl           |
 | 
			
		||||
| [Kimi-VL](https://huggingface.co/moonshotai)                      | 16B                              | kimi_vl             |
 | 
			
		||||
| [Llama](https://github.com/facebookresearch/llama)                | 7B/13B/33B/65B                   | -                   |
 | 
			
		||||
| [Llama 2](https://huggingface.co/meta-llama)                      | 7B/13B/70B                       | llama2              |
 | 
			
		||||
@ -415,11 +415,11 @@ huggingface-cli login
 | 
			
		||||
| Mandatory    | Minimum | Recommend |
 | 
			
		||||
| ------------ | ------- | --------- |
 | 
			
		||||
| python       | 3.9     | 3.10      |
 | 
			
		||||
| torch        | 1.13.1  | 2.6.0     |
 | 
			
		||||
| transformers | 4.41.2  | 4.50.0    |
 | 
			
		||||
| torch        | 2.0.0   | 2.6.0     |
 | 
			
		||||
| transformers | 4.45.0  | 4.50.0    |
 | 
			
		||||
| datasets     | 2.16.0  | 3.2.0     |
 | 
			
		||||
| accelerate   | 0.34.0  | 1.2.1     |
 | 
			
		||||
| peft         | 0.14.0  | 0.15.0    |
 | 
			
		||||
| peft         | 0.14.0  | 0.15.1    |
 | 
			
		||||
| trl          | 0.8.6   | 0.9.6     |
 | 
			
		||||
 | 
			
		||||
| Optional     | Minimum | Recommend |
 | 
			
		||||
@ -428,7 +428,7 @@ huggingface-cli login
 | 
			
		||||
| deepspeed    | 0.10.0  | 0.16.4    |
 | 
			
		||||
| bitsandbytes | 0.39.0  | 0.43.1    |
 | 
			
		||||
| vllm         | 0.4.3   | 0.8.2     |
 | 
			
		||||
| flash-attn   | 2.3.0   | 2.7.2     |
 | 
			
		||||
| flash-attn   | 2.5.6   | 2.7.2     |
 | 
			
		||||
 | 
			
		||||
### Hardware Requirement
 | 
			
		||||
 | 
			
		||||
@ -517,6 +517,7 @@ source /usr/local/Ascend/ascend-toolkit/set_env.sh
 | 
			
		||||
| torch        | 2.1.0   | 2.4.0          |
 | 
			
		||||
| torch-npu    | 2.1.0   | 2.4.0.post2    |
 | 
			
		||||
| deepspeed    | 0.13.2  | 0.13.2         |
 | 
			
		||||
| vllm-ascend  | -       | 0.7.3          |
 | 
			
		||||
 | 
			
		||||
Remember to use `ASCEND_RT_VISIBLE_DEVICES` instead of `CUDA_VISIBLE_DEVICES` to specify the device to use.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										13
									
								
								README_zh.md
									
									
									
									
									
								
							
							
						
						
									
										13
									
								
								README_zh.md
									
									
									
									
									
								
							@ -246,11 +246,11 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
 | 
			
		||||
| [Gemma 3](https://huggingface.co/google)                          | 1B/4B/12B/27B                    | gemma3/gemma (1B)   |
 | 
			
		||||
| [GLM-4/GLM-4-0414/GLM-Z1](https://huggingface.co/THUDM)           | 9B/32B                           | glm4                |
 | 
			
		||||
| [GPT-2](https://huggingface.co/openai-community)                  | 0.1B/0.4B/0.8B/1.5B              | -                   |
 | 
			
		||||
| [Granite 3.0-3.1](https://huggingface.co/ibm-granite)             | 1B/2B/3B/8B                      | granite3            |
 | 
			
		||||
| [Granite 3.0-3.3](https://huggingface.co/ibm-granite)             | 1B/2B/3B/8B                      | granite3            |
 | 
			
		||||
| [Hunyuan](https://huggingface.co/tencent/)                        | 7B                               | hunyuan             |
 | 
			
		||||
| [Index](https://huggingface.co/IndexTeam)                         | 1.9B                             | index               |
 | 
			
		||||
| [InternLM 2-3](https://huggingface.co/internlm)                   | 7B/8B/20B                        | intern2             |
 | 
			
		||||
| [InternVL2_5-3](https://huggingface.co/OpenGVLab/InternVL)        | 1B/2B/4B/8B/9B/14B/26B/38B/78B   | intern_vl           |
 | 
			
		||||
| [InternVL2.5-3](https://huggingface.co/OpenGVLab/InternVL)\*\*    | 1B/2B/4B/8B/9B/14B/26B/38B/78B   | intern_vl           |
 | 
			
		||||
| [Kimi-VL](https://huggingface.co/moonshotai)                      | 16B                              | kimi_vl             |
 | 
			
		||||
| [Llama](https://github.com/facebookresearch/llama)                | 7B/13B/33B/65B                   | -                   |
 | 
			
		||||
| [Llama 2](https://huggingface.co/meta-llama)                      | 7B/13B/70B                       | llama2              |
 | 
			
		||||
@ -418,11 +418,11 @@ huggingface-cli login
 | 
			
		||||
| 必需项        | 至少     | 推荐      |
 | 
			
		||||
| ------------ | ------- | --------- |
 | 
			
		||||
| python       | 3.9     | 3.10      |
 | 
			
		||||
| torch        | 1.13.1  | 2.6.0     |
 | 
			
		||||
| transformers | 4.41.2  | 4.50.0    |
 | 
			
		||||
| torch        | 2.0.0   | 2.6.0     |
 | 
			
		||||
| transformers | 4.45.0  | 4.50.0    |
 | 
			
		||||
| datasets     | 2.16.0  | 3.2.0     |
 | 
			
		||||
| accelerate   | 0.34.0  | 1.2.1     |
 | 
			
		||||
| peft         | 0.14.0  | 0.15.0    |
 | 
			
		||||
| peft         | 0.14.0  | 0.15.1    |
 | 
			
		||||
| trl          | 0.8.6   | 0.9.6     |
 | 
			
		||||
 | 
			
		||||
| 可选项        | 至少     | 推荐      |
 | 
			
		||||
@ -431,7 +431,7 @@ huggingface-cli login
 | 
			
		||||
| deepspeed    | 0.10.0  | 0.16.4    |
 | 
			
		||||
| bitsandbytes | 0.39.0  | 0.43.1    |
 | 
			
		||||
| vllm         | 0.4.3   | 0.8.2     |
 | 
			
		||||
| flash-attn   | 2.3.0   | 2.7.2     |
 | 
			
		||||
| flash-attn   | 2.5.6   | 2.7.2     |
 | 
			
		||||
 | 
			
		||||
### 硬件依赖
 | 
			
		||||
 | 
			
		||||
@ -521,6 +521,7 @@ source /usr/local/Ascend/ascend-toolkit/set_env.sh
 | 
			
		||||
| torch        | 2.1.0   | 2.4.0          |
 | 
			
		||||
| torch-npu    | 2.1.0   | 2.4.0.post2    |
 | 
			
		||||
| deepspeed    | 0.13.2  | 0.13.2         |
 | 
			
		||||
| vllm-ascend  | -       | 0.7.3          |
 | 
			
		||||
 | 
			
		||||
请使用 `ASCEND_RT_VISIBLE_DEVICES` 而非 `CUDA_VISIBLE_DEVICES` 来指定运算设备。
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -1,4 +1,4 @@
 | 
			
		||||
transformers>=4.41.2,<=4.51.3,!=4.46.*,!=4.47.*,!=4.48.0
 | 
			
		||||
transformers>=4.45.0,<=4.51.3,!=4.46.*,!=4.47.*,!=4.48.0
 | 
			
		||||
datasets>=2.16.0,<=3.5.0
 | 
			
		||||
accelerate>=0.34.0,<=1.6.0
 | 
			
		||||
peft>=0.14.0,<=0.15.1
 | 
			
		||||
 | 
			
		||||
@ -23,8 +23,8 @@ require_version("openai>=1.5.0", "To fix: pip install openai>=1.5.0")
 | 
			
		||||
 | 
			
		||||
def main():
 | 
			
		||||
    client = OpenAI(
 | 
			
		||||
        api_key="{}".format(os.environ.get("API_KEY", "0")),
 | 
			
		||||
        base_url="http://localhost:{}/v1".format(os.environ.get("API_PORT", 8000)),
 | 
			
		||||
        api_key="{}".format(os.getenv("API_KEY", "0")),
 | 
			
		||||
        base_url="http://localhost:{}/v1".format(os.getenv("API_PORT", 8000)),
 | 
			
		||||
    )
 | 
			
		||||
    messages = []
 | 
			
		||||
    messages.append(
 | 
			
		||||
 | 
			
		||||
@ -33,8 +33,8 @@ def calculate_gpa(grades: list[str], hours: list[int]) -> float:
 | 
			
		||||
 | 
			
		||||
def main():
 | 
			
		||||
    client = OpenAI(
 | 
			
		||||
        api_key="{}".format(os.environ.get("API_KEY", "0")),
 | 
			
		||||
        base_url="http://localhost:{}/v1".format(os.environ.get("API_PORT", 8000)),
 | 
			
		||||
        api_key="{}".format(os.getenv("API_KEY", "0")),
 | 
			
		||||
        base_url="http://localhost:{}/v1".format(os.getenv("API_PORT", 8000)),
 | 
			
		||||
    )
 | 
			
		||||
    tools = [
 | 
			
		||||
        {
 | 
			
		||||
 | 
			
		||||
@ -18,18 +18,11 @@ Level:
 | 
			
		||||
  api, webui > chat, eval, train > data, model > hparams > extras
 | 
			
		||||
 | 
			
		||||
Dependency graph:
 | 
			
		||||
  main:
 | 
			
		||||
    transformers>=4.41.2,<=4.51.3,!=4.46.*,!=4.47.*,!=4.48.0
 | 
			
		||||
    datasets>=2.16.0,<=3.5.0
 | 
			
		||||
    accelerate>=0.34.0,<=1.6.0
 | 
			
		||||
    peft>=0.14.0,<=0.15.1
 | 
			
		||||
    trl>=0.8.6,<=0.9.6
 | 
			
		||||
  attention:
 | 
			
		||||
    transformers>=4.42.4 (gemma+fa2)
 | 
			
		||||
  longlora:
 | 
			
		||||
    transformers>=4.41.2,<4.48.0
 | 
			
		||||
  packing:
 | 
			
		||||
    transformers>=4.43.0
 | 
			
		||||
  transformers>=4.41.2,<=4.43.0,!=4.46.*,!=4.47.*,!=4.48.0
 | 
			
		||||
  datasets>=2.16.0,<=3.5.0
 | 
			
		||||
  accelerate>=0.34.0,<=1.6.0
 | 
			
		||||
  peft>=0.14.0,<=0.15.1
 | 
			
		||||
  trl>=0.8.6,<=0.9.6
 | 
			
		||||
 | 
			
		||||
Disable version checking: DISABLE_VERSION_CHECK=1
 | 
			
		||||
Enable VRAM recording: RECORD_VRAM=1
 | 
			
		||||
 | 
			
		||||
@ -25,7 +25,6 @@ from typing_extensions import override
 | 
			
		||||
from ..data import get_template_and_fix_tokenizer
 | 
			
		||||
from ..extras import logging
 | 
			
		||||
from ..extras.constants import AUDIO_PLACEHOLDER, IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER, EngineName
 | 
			
		||||
from ..extras.misc import get_logits_processor
 | 
			
		||||
from ..model import load_model, load_tokenizer
 | 
			
		||||
from .base_engine import BaseEngine, Response
 | 
			
		||||
 | 
			
		||||
@ -178,7 +177,6 @@ class HuggingfaceEngine(BaseEngine):
 | 
			
		||||
            inputs=inputs,
 | 
			
		||||
            attention_mask=attention_mask,
 | 
			
		||||
            generation_config=GenerationConfig(**generating_args),
 | 
			
		||||
            logits_processor=get_logits_processor(),
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        mm_inputs = template.mm_plugin.get_mm_inputs(**mm_input_dict, batch_ids=[prompt_ids], processor=processor)
 | 
			
		||||
 | 
			
		||||
@ -19,7 +19,6 @@ from copy import deepcopy
 | 
			
		||||
from functools import partial
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
USAGE = (
 | 
			
		||||
    "-" * 70
 | 
			
		||||
    + "\n"
 | 
			
		||||
 | 
			
		||||
@ -25,12 +25,7 @@ from typing import TYPE_CHECKING, BinaryIO, Literal, Optional, TypedDict, Union
 | 
			
		||||
 | 
			
		||||
import numpy as np
 | 
			
		||||
import torch
 | 
			
		||||
from transformers.image_utils import (
 | 
			
		||||
    get_image_size,
 | 
			
		||||
    make_batched_videos,
 | 
			
		||||
    make_flat_list_of_images,
 | 
			
		||||
    to_numpy_array,
 | 
			
		||||
)
 | 
			
		||||
from transformers.image_utils import get_image_size, to_numpy_array
 | 
			
		||||
from typing_extensions import override
 | 
			
		||||
 | 
			
		||||
from ..extras.constants import AUDIO_PLACEHOLDER, IGNORE_INDEX, IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER
 | 
			
		||||
@ -62,6 +57,10 @@ if is_transformers_version_greater_than("4.45.0"):
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if is_transformers_version_greater_than("4.49.0"):
 | 
			
		||||
    from transformers.image_utils import make_batched_videos, make_flat_list_of_images
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if TYPE_CHECKING:
 | 
			
		||||
    from av.stream import Stream
 | 
			
		||||
    from numpy.typing import NDArray
 | 
			
		||||
@ -487,61 +486,6 @@ class Gemma3Plugin(BasePlugin):
 | 
			
		||||
 | 
			
		||||
@dataclass
 | 
			
		||||
class InternVLPlugin(BasePlugin):
 | 
			
		||||
    @override
 | 
			
		||||
    def process_messages(
 | 
			
		||||
        self,
 | 
			
		||||
        messages: list[dict[str, str]],
 | 
			
		||||
        images: list["ImageInput"],
 | 
			
		||||
        videos: list["VideoInput"],
 | 
			
		||||
        audios: list["AudioInput"],
 | 
			
		||||
        processor: Optional["ProcessorMixin"],
 | 
			
		||||
    ) -> list[dict[str, str]]:
 | 
			
		||||
        self._validate_input(processor, images, videos, audios)
 | 
			
		||||
        num_image_tokens = 0
 | 
			
		||||
        num_video_tokens = 0
 | 
			
		||||
        image_seqlen = getattr(processor, "image_seq_length") if self.expand_mm_tokens else 1
 | 
			
		||||
        messages = deepcopy(messages)
 | 
			
		||||
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
 | 
			
		||||
 | 
			
		||||
        image_pixel_patch_list = mm_inputs.get("image_num_patches", None)  # pathes of images
 | 
			
		||||
        video_num_patches = mm_inputs.get("video_num_patches", None)  # all patches for frames of videos
 | 
			
		||||
        video_patch_indices = mm_inputs.get("video_patch_indices", None)  # num frames of per video
 | 
			
		||||
 | 
			
		||||
        for message in messages:
 | 
			
		||||
            content = message["content"]
 | 
			
		||||
            while IMAGE_PLACEHOLDER in content:
 | 
			
		||||
                if num_image_tokens >= len(image_pixel_patch_list):
 | 
			
		||||
                    raise ValueError(f"`len(images)` is less than the number of {IMAGE_PLACEHOLDER} tokens.")
 | 
			
		||||
                content = content.replace(
 | 
			
		||||
                    IMAGE_PLACEHOLDER,
 | 
			
		||||
                    f"<img>{'<IMG_CONTEXT>' * image_seqlen * image_pixel_patch_list[num_image_tokens]}</img>",
 | 
			
		||||
                    1,
 | 
			
		||||
                )
 | 
			
		||||
                num_image_tokens += 1
 | 
			
		||||
            message["content"] = content
 | 
			
		||||
 | 
			
		||||
            while VIDEO_PLACEHOLDER in content:
 | 
			
		||||
                if num_video_tokens >= len(video_patch_indices):
 | 
			
		||||
                    raise ValueError(f"`len(videos)` is less than the number of {VIDEO_PLACEHOLDER} tokens.")
 | 
			
		||||
                current_patch_index = video_patch_indices[num_video_tokens - 1] if num_video_tokens > 0 else 0
 | 
			
		||||
                end_patch_index = video_patch_indices[num_video_tokens]
 | 
			
		||||
                num_patches = list(video_num_patches[current_patch_index:end_patch_index])
 | 
			
		||||
                video_replaced_prompt = "\n".join(
 | 
			
		||||
                    f"Frame{i + 1}: <img>{'<IMG_CONTEXT>' * image_seqlen * num_patches[i]}</img>"
 | 
			
		||||
                    for i in range(len(num_patches))
 | 
			
		||||
                )
 | 
			
		||||
                content = content.replace(VIDEO_PLACEHOLDER, video_replaced_prompt, 1)
 | 
			
		||||
                num_video_tokens += 1
 | 
			
		||||
            message["content"] = content
 | 
			
		||||
 | 
			
		||||
        if len(images) != num_image_tokens:
 | 
			
		||||
            raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.")
 | 
			
		||||
 | 
			
		||||
        if len(videos) != num_video_tokens:
 | 
			
		||||
            raise ValueError(f"The number of videos does not match the number of {VIDEO_PLACEHOLDER} tokens.")
 | 
			
		||||
 | 
			
		||||
        return messages
 | 
			
		||||
 | 
			
		||||
    @override
 | 
			
		||||
    def _get_mm_inputs(
 | 
			
		||||
        self,
 | 
			
		||||
@ -621,6 +565,63 @@ class InternVLPlugin(BasePlugin):
 | 
			
		||||
 | 
			
		||||
        return mm_inputs
 | 
			
		||||
 | 
			
		||||
    @override
 | 
			
		||||
    def process_messages(
 | 
			
		||||
        self,
 | 
			
		||||
        messages: list[dict[str, str]],
 | 
			
		||||
        images: list["ImageInput"],
 | 
			
		||||
        videos: list["VideoInput"],
 | 
			
		||||
        audios: list["AudioInput"],
 | 
			
		||||
        processor: Optional["ProcessorMixin"],
 | 
			
		||||
    ) -> list[dict[str, str]]:
 | 
			
		||||
        self._validate_input(processor, images, videos, audios)
 | 
			
		||||
        num_image_tokens = 0
 | 
			
		||||
        num_video_tokens = 0
 | 
			
		||||
        image_seqlen = getattr(processor, "image_seq_length") if self.expand_mm_tokens else 1
 | 
			
		||||
        messages = deepcopy(messages)
 | 
			
		||||
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
 | 
			
		||||
 | 
			
		||||
        image_pixel_patch_list = mm_inputs.get("image_num_patches")  # pathes of images
 | 
			
		||||
        video_num_patches = mm_inputs.get("video_num_patches")  # all patches for frames of videos
 | 
			
		||||
        video_patch_indices = mm_inputs.get("video_patch_indices")  # num frames of per video
 | 
			
		||||
 | 
			
		||||
        for message in messages:
 | 
			
		||||
            content = message["content"]
 | 
			
		||||
            while IMAGE_PLACEHOLDER in content:
 | 
			
		||||
                if num_image_tokens >= len(image_pixel_patch_list):
 | 
			
		||||
                    raise ValueError(f"`len(images)` is less than the number of {IMAGE_PLACEHOLDER} tokens.")
 | 
			
		||||
 | 
			
		||||
                content = content.replace(
 | 
			
		||||
                    IMAGE_PLACEHOLDER,
 | 
			
		||||
                    f"<img>{'<IMG_CONTEXT>' * image_seqlen * image_pixel_patch_list[num_image_tokens]}</img>",
 | 
			
		||||
                    1,
 | 
			
		||||
                )
 | 
			
		||||
                num_image_tokens += 1
 | 
			
		||||
 | 
			
		||||
            while VIDEO_PLACEHOLDER in content:
 | 
			
		||||
                if num_video_tokens >= len(video_patch_indices):
 | 
			
		||||
                    raise ValueError(f"`len(videos)` is less than the number of {VIDEO_PLACEHOLDER} tokens.")
 | 
			
		||||
 | 
			
		||||
                current_patch_index = video_patch_indices[num_video_tokens - 1] if num_video_tokens > 0 else 0
 | 
			
		||||
                end_patch_index = video_patch_indices[num_video_tokens]
 | 
			
		||||
                num_patches = list(video_num_patches[current_patch_index:end_patch_index])
 | 
			
		||||
                video_replaced_prompt = "\n".join(
 | 
			
		||||
                    f"Frame{i + 1}: <img>{'<IMG_CONTEXT>' * image_seqlen * num_patches[i]}</img>"
 | 
			
		||||
                    for i in range(len(num_patches))
 | 
			
		||||
                )
 | 
			
		||||
                content = content.replace(VIDEO_PLACEHOLDER, video_replaced_prompt, 1)
 | 
			
		||||
                num_video_tokens += 1
 | 
			
		||||
 | 
			
		||||
            message["content"] = content
 | 
			
		||||
 | 
			
		||||
        if len(images) != num_image_tokens:
 | 
			
		||||
            raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.")
 | 
			
		||||
 | 
			
		||||
        if len(videos) != num_video_tokens:
 | 
			
		||||
            raise ValueError(f"The number of videos does not match the number of {VIDEO_PLACEHOLDER} tokens.")
 | 
			
		||||
 | 
			
		||||
        return messages
 | 
			
		||||
 | 
			
		||||
    @override
 | 
			
		||||
    def get_mm_inputs(
 | 
			
		||||
        self,
 | 
			
		||||
@ -634,12 +635,10 @@ class InternVLPlugin(BasePlugin):
 | 
			
		||||
        processor: Optional["ProcessorMixin"],
 | 
			
		||||
    ) -> dict[str, Union[list[int], "torch.Tensor"]]:
 | 
			
		||||
        self._validate_input(processor, images, videos, audios)
 | 
			
		||||
 | 
			
		||||
        mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
 | 
			
		||||
        mm_inputs.pop("image_num_patches", None)
 | 
			
		||||
        mm_inputs.pop("video_patch_indices", None)
 | 
			
		||||
        mm_inputs.pop("video_num_patches", None)
 | 
			
		||||
 | 
			
		||||
        return mm_inputs
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -871,6 +871,18 @@ register_template(
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
register_template(
 | 
			
		||||
    name="granite3_vision",
 | 
			
		||||
    format_user=StringFormatter(slots=["<|user|>\n{{content}}\n<|assistant|>\n"]),
 | 
			
		||||
    format_system=StringFormatter(slots=["<|system|>\n{{content}}\n"]),
 | 
			
		||||
    default_system=(
 | 
			
		||||
        "A chat between a curious user and an artificial intelligence assistant. "
 | 
			
		||||
        "The assistant gives helpful, detailed, and polite answers to the user's questions."
 | 
			
		||||
    ),
 | 
			
		||||
    mm_plugin=get_mm_plugin(name="llava_next", image_token="<image>"),
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
register_template(
 | 
			
		||||
    name="index",
 | 
			
		||||
    format_user=StringFormatter(slots=["reserved_0{{content}}reserved_1"]),
 | 
			
		||||
 | 
			
		||||
@ -22,7 +22,7 @@ from peft.utils import WEIGHTS_NAME as ADAPTER_WEIGHTS_NAME
 | 
			
		||||
from transformers.utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
AUDIO_PLACEHOLDER = os.environ.get("AUDIO_PLACEHOLDER", "<audio>")
 | 
			
		||||
AUDIO_PLACEHOLDER = os.getenv("AUDIO_PLACEHOLDER", "<audio>")
 | 
			
		||||
 | 
			
		||||
CHECKPOINT_NAMES = {
 | 
			
		||||
    SAFE_ADAPTER_WEIGHTS_NAME,
 | 
			
		||||
@ -50,7 +50,7 @@ FILEEXT2TYPE = {
 | 
			
		||||
 | 
			
		||||
IGNORE_INDEX = -100
 | 
			
		||||
 | 
			
		||||
IMAGE_PLACEHOLDER = os.environ.get("IMAGE_PLACEHOLDER", "<image>")
 | 
			
		||||
IMAGE_PLACEHOLDER = os.getenv("IMAGE_PLACEHOLDER", "<image>")
 | 
			
		||||
 | 
			
		||||
LAYERNORM_NAMES = {"norm", "ln"}
 | 
			
		||||
 | 
			
		||||
@ -89,7 +89,7 @@ SUPPORTED_CLASS_FOR_S2ATTN = {"llama"}
 | 
			
		||||
 | 
			
		||||
SWANLAB_CONFIG = "swanlab_public_config.json"
 | 
			
		||||
 | 
			
		||||
VIDEO_PLACEHOLDER = os.environ.get("VIDEO_PLACEHOLDER", "<video>")
 | 
			
		||||
VIDEO_PLACEHOLDER = os.getenv("VIDEO_PLACEHOLDER", "<video>")
 | 
			
		||||
 | 
			
		||||
V_HEAD_WEIGHTS_NAME = "value_head.bin"
 | 
			
		||||
 | 
			
		||||
@ -838,11 +838,46 @@ register_model_group(
 | 
			
		||||
            DownloadSource.DEFAULT: "ibm-granite/granite-3.1-8b-instruct",
 | 
			
		||||
            DownloadSource.MODELSCOPE: "AI-ModelScope/granite-3.1-8b-instruct",
 | 
			
		||||
        },
 | 
			
		||||
        "Granite-3.2-2B-Instruct": {
 | 
			
		||||
            DownloadSource.DEFAULT: "ibm-granite/granite-3.2-2b-instruct",
 | 
			
		||||
            DownloadSource.MODELSCOPE: "AI-ModelScope/granite-3.2-2b-instruct",
 | 
			
		||||
        },
 | 
			
		||||
        "Granite-3.2-8B-Instruct": {
 | 
			
		||||
            DownloadSource.DEFAULT: "ibm-granite/granite-3.2-8b-instruct",
 | 
			
		||||
            DownloadSource.MODELSCOPE: "AI-ModelScope/granite-3.2-8b-instruct",
 | 
			
		||||
        },
 | 
			
		||||
        "Granite-3.3-2B-Base": {
 | 
			
		||||
            DownloadSource.DEFAULT: "ibm-granite/granite-3.3-2b-base",
 | 
			
		||||
            DownloadSource.MODELSCOPE: "AI-ModelScope/granite-3.3-2b-base",
 | 
			
		||||
        },
 | 
			
		||||
        "Granite-3.3-8B-Base": {
 | 
			
		||||
            DownloadSource.DEFAULT: "ibm-granite/granite-3.3-8b-base",
 | 
			
		||||
            DownloadSource.MODELSCOPE: "AI-ModelScope/granite-3.3-8b-base",
 | 
			
		||||
        },
 | 
			
		||||
        "Granite-3.3-2B-Instruct": {
 | 
			
		||||
            DownloadSource.DEFAULT: "ibm-granite/granite-3.3-2b-instruct",
 | 
			
		||||
            DownloadSource.MODELSCOPE: "AI-ModelScope/granite-3.3-2b-instruct",
 | 
			
		||||
        },
 | 
			
		||||
        "Granite-3.3-8B-Instruct": {
 | 
			
		||||
            DownloadSource.DEFAULT: "ibm-granite/granite-3.3-8b-instruct",
 | 
			
		||||
            DownloadSource.MODELSCOPE: "AI-ModelScope/granite-3.3-8b-instruct",
 | 
			
		||||
        },
 | 
			
		||||
    },
 | 
			
		||||
    template="granite3",
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
register_model_group(
 | 
			
		||||
    models={
 | 
			
		||||
        "Granite-3.2-1B-A400M-Base": {
 | 
			
		||||
            DownloadSource.DEFAULT: "ibm-granite/granite-vision-3.2-2b",
 | 
			
		||||
            DownloadSource.MODELSCOPE: "AI-ModelScope/granite-vision-3.2-2b",
 | 
			
		||||
        },
 | 
			
		||||
    },
 | 
			
		||||
    template="granite3_vision",
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
register_model_group(
 | 
			
		||||
    models={
 | 
			
		||||
        "Hunyuan-7B-Instruct": {
 | 
			
		||||
@ -967,26 +1002,33 @@ register_model_group(
 | 
			
		||||
 | 
			
		||||
register_model_group(
 | 
			
		||||
    models={
 | 
			
		||||
        "InternVL2_5-1B-MPO": {
 | 
			
		||||
        "InternVL2.5-1B-MPO": {
 | 
			
		||||
            DownloadSource.DEFAULT: "kingsley01/InternVL2_5-1B-MPO-hf",
 | 
			
		||||
            DownloadSource.MODELSCOPE: "llamafactory/InternVL2_5-1B-MPO-hf",
 | 
			
		||||
        },
 | 
			
		||||
        "InternVL2_5-2B-MPO": {
 | 
			
		||||
        "InternVL2.5-2B-MPO": {
 | 
			
		||||
            DownloadSource.DEFAULT: "kingsley01/InternVL2_5-2B-MPO-hf",
 | 
			
		||||
            DownloadSource.MODELSCOPE: "llamafactory/InternVL2_5-2B-MPO-hf",
 | 
			
		||||
        },
 | 
			
		||||
        "InternVL2_5-4B-MPO": {
 | 
			
		||||
        "InternVL2.5-4B-MPO": {
 | 
			
		||||
            DownloadSource.DEFAULT: "kingsley01/InternVL2_5-4B-MPO-hf",
 | 
			
		||||
            DownloadSource.MODELSCOPE: "llamafactory/InternVL2_5-4B-MPO-hf",
 | 
			
		||||
        },
 | 
			
		||||
        "InternVL2_5-8B-MPO": {
 | 
			
		||||
        "InternVL2.5-8B-MPO": {
 | 
			
		||||
            DownloadSource.DEFAULT: "kingsley01/InternVL2_5-8B-MPO-hf",
 | 
			
		||||
            DownloadSource.MODELSCOPE: "llamafactory/InternVL2_5-8B-MPO-hf",
 | 
			
		||||
        },
 | 
			
		||||
        "InternVL3-1B-hf": {
 | 
			
		||||
            DownloadSource.DEFAULT: "kingsley01/InternVL3-1B-hf",
 | 
			
		||||
            DownloadSource.MODELSCOPE: "llamafactory/InternVL3-1B-hf",
 | 
			
		||||
        },
 | 
			
		||||
        "InternVL3-2B-hf": {
 | 
			
		||||
            DownloadSource.DEFAULT: "kingsley01/InternVL3-2B-hf",
 | 
			
		||||
            DownloadSource.MODELSCOPE: "llamafactory/InternVL3-2B-hf",
 | 
			
		||||
        },
 | 
			
		||||
        "InternVL3-8B-hf": {
 | 
			
		||||
            DownloadSource.DEFAULT: "kingsley01/InternVL3-8B-hf",
 | 
			
		||||
            DownloadSource.MODELSCOPE: "llamafactory/InternVL3-8B-hf",
 | 
			
		||||
        },
 | 
			
		||||
    },
 | 
			
		||||
    template="intern_vl",
 | 
			
		||||
 | 
			
		||||
@ -79,7 +79,7 @@ class _Logger(logging.Logger):
 | 
			
		||||
 | 
			
		||||
def _get_default_logging_level() -> "logging._Level":
 | 
			
		||||
    r"""Return the default logging level."""
 | 
			
		||||
    env_level_str = os.environ.get("LLAMAFACTORY_VERBOSITY", None)
 | 
			
		||||
    env_level_str = os.getenv("LLAMAFACTORY_VERBOSITY", None)
 | 
			
		||||
    if env_level_str:
 | 
			
		||||
        if env_level_str.upper() in logging._nameToLevel:
 | 
			
		||||
            return logging._nameToLevel[env_level_str.upper()]
 | 
			
		||||
 | 
			
		||||
@ -89,7 +89,7 @@ def check_version(requirement: str, mandatory: bool = False) -> None:
 | 
			
		||||
 | 
			
		||||
def check_dependencies() -> None:
 | 
			
		||||
    r"""Check the version of the required packages."""
 | 
			
		||||
    check_version("transformers>=4.41.2,<=4.51.3,!=4.46.0,!=4.46.1,!=4.46.2,!=4.46.3,!=4.47.0,!=4.47.1,!=4.48.0")
 | 
			
		||||
    check_version("transformers>=4.43.0,<=4.51.3,!=4.46.0,!=4.46.1,!=4.46.2,!=4.46.3,!=4.47.0,!=4.47.1,!=4.48.0")
 | 
			
		||||
    check_version("datasets>=2.16.0,<=3.5.0")
 | 
			
		||||
    check_version("accelerate>=0.34.0,<=1.6.0")
 | 
			
		||||
    check_version("peft>=0.14.0,<=0.15.1")
 | 
			
		||||
@ -141,13 +141,13 @@ def count_parameters(model: "torch.nn.Module") -> tuple[int, int]:
 | 
			
		||||
def get_current_device() -> "torch.device":
 | 
			
		||||
    r"""Get the current available device."""
 | 
			
		||||
    if is_torch_xpu_available():
 | 
			
		||||
        device = "xpu:{}".format(os.environ.get("LOCAL_RANK", "0"))
 | 
			
		||||
        device = "xpu:{}".format(os.getenv("LOCAL_RANK", "0"))
 | 
			
		||||
    elif is_torch_npu_available():
 | 
			
		||||
        device = "npu:{}".format(os.environ.get("LOCAL_RANK", "0"))
 | 
			
		||||
        device = "npu:{}".format(os.getenv("LOCAL_RANK", "0"))
 | 
			
		||||
    elif is_torch_mps_available():
 | 
			
		||||
        device = "mps:{}".format(os.environ.get("LOCAL_RANK", "0"))
 | 
			
		||||
        device = "mps:{}".format(os.getenv("LOCAL_RANK", "0"))
 | 
			
		||||
    elif is_torch_cuda_available():
 | 
			
		||||
        device = "cuda:{}".format(os.environ.get("LOCAL_RANK", "0"))
 | 
			
		||||
        device = "cuda:{}".format(os.getenv("LOCAL_RANK", "0"))
 | 
			
		||||
    else:
 | 
			
		||||
        device = "cpu"
 | 
			
		||||
 | 
			
		||||
@ -155,11 +155,13 @@ def get_current_device() -> "torch.device":
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_device_count() -> int:
 | 
			
		||||
    r"""Get the number of available GPU or NPU devices."""
 | 
			
		||||
    r"""Get the number of available devices."""
 | 
			
		||||
    if is_torch_xpu_available():
 | 
			
		||||
        return torch.xpu.device_count()
 | 
			
		||||
    elif is_torch_npu_available():
 | 
			
		||||
        return torch.npu.device_count()
 | 
			
		||||
    elif is_torch_mps_available():
 | 
			
		||||
        return torch.mps.device_count()
 | 
			
		||||
    elif is_torch_cuda_available():
 | 
			
		||||
        return torch.cuda.device_count()
 | 
			
		||||
    else:
 | 
			
		||||
@ -175,10 +177,12 @@ def get_logits_processor() -> "LogitsProcessorList":
 | 
			
		||||
 | 
			
		||||
def get_peak_memory() -> tuple[int, int]:
 | 
			
		||||
    r"""Get the peak memory usage for the current device (in Bytes)."""
 | 
			
		||||
    if is_torch_npu_available():
 | 
			
		||||
        return torch.npu.max_memory_allocated(), torch.npu.max_memory_reserved()
 | 
			
		||||
    elif is_torch_xpu_available():
 | 
			
		||||
    if is_torch_xpu_available():
 | 
			
		||||
        return torch.xpu.max_memory_allocated(), torch.xpu.max_memory_reserved()
 | 
			
		||||
    elif is_torch_npu_available():
 | 
			
		||||
        return torch.npu.max_memory_allocated(), torch.npu.max_memory_reserved()
 | 
			
		||||
    elif is_torch_mps_available():
 | 
			
		||||
        return torch.mps.current_allocated_memory(), -1
 | 
			
		||||
    elif is_torch_cuda_available():
 | 
			
		||||
        return torch.cuda.max_memory_allocated(), torch.cuda.max_memory_reserved()
 | 
			
		||||
    else:
 | 
			
		||||
@ -200,9 +204,11 @@ def infer_optim_dtype(model_dtype: "torch.dtype") -> "torch.dtype":
 | 
			
		||||
        return torch.float32
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def is_gpu_or_npu_available() -> bool:
 | 
			
		||||
    r"""Check if the GPU or NPU is available."""
 | 
			
		||||
    return is_torch_npu_available() or is_torch_cuda_available() or is_torch_xpu_available()
 | 
			
		||||
def is_accelerator_available() -> bool:
 | 
			
		||||
    r"""Check if the accelerator is available."""
 | 
			
		||||
    return (
 | 
			
		||||
        is_torch_xpu_available() or is_torch_npu_available() or is_torch_mps_available() or is_torch_cuda_available()
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def is_env_enabled(env_var: str, default: str = "0") -> bool:
 | 
			
		||||
@ -229,7 +235,7 @@ def skip_check_imports() -> None:
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def torch_gc() -> None:
 | 
			
		||||
    r"""Collect GPU or NPU memory."""
 | 
			
		||||
    r"""Collect the device memory."""
 | 
			
		||||
    gc.collect()
 | 
			
		||||
    if is_torch_xpu_available():
 | 
			
		||||
        torch.xpu.empty_cache()
 | 
			
		||||
@ -280,7 +286,7 @@ def use_ray() -> bool:
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def find_available_port() -> int:
 | 
			
		||||
    """Find an available port on the local machine."""
 | 
			
		||||
    r"""Find an available port on the local machine."""
 | 
			
		||||
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 | 
			
		||||
    sock.bind(("", 0))
 | 
			
		||||
    port = sock.getsockname()[1]
 | 
			
		||||
@ -288,8 +294,8 @@ def find_available_port() -> int:
 | 
			
		||||
    return port
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def fix_proxy(ipv6_enabled: bool) -> None:
 | 
			
		||||
    """Fix proxy settings for gradio ui."""
 | 
			
		||||
def fix_proxy(ipv6_enabled: bool = False) -> None:
 | 
			
		||||
    r"""Fix proxy settings for gradio ui."""
 | 
			
		||||
    os.environ["no_proxy"] = "localhost,127.0.0.1,0.0.0.0"
 | 
			
		||||
    if ipv6_enabled:
 | 
			
		||||
        for name in ("http_proxy", "https_proxy", "HTTP_PROXY", "HTTPS_PROXY"):
 | 
			
		||||
 | 
			
		||||
@ -19,7 +19,6 @@ import torch
 | 
			
		||||
from transformers import (
 | 
			
		||||
    AutoConfig,
 | 
			
		||||
    AutoModelForCausalLM,
 | 
			
		||||
    AutoModelForImageTextToText,
 | 
			
		||||
    AutoModelForSeq2SeqLM,
 | 
			
		||||
    AutoModelForTextToWaveform,
 | 
			
		||||
    AutoModelForVision2Seq,
 | 
			
		||||
@ -30,6 +29,7 @@ from trl import AutoModelForCausalLMWithValueHead
 | 
			
		||||
 | 
			
		||||
from ..extras import logging
 | 
			
		||||
from ..extras.misc import count_parameters, skip_check_imports, try_download_model_from_other_hub
 | 
			
		||||
from ..extras.packages import is_transformers_version_greater_than
 | 
			
		||||
from .adapter import init_adapter
 | 
			
		||||
from .model_utils.liger_kernel import apply_liger_kernel
 | 
			
		||||
from .model_utils.misc import register_autoclass
 | 
			
		||||
@ -39,6 +39,10 @@ from .model_utils.valuehead import load_valuehead_params
 | 
			
		||||
from .patcher import patch_config, patch_model, patch_processor, patch_tokenizer, patch_valuehead_model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if is_transformers_version_greater_than("4.46.0"):
 | 
			
		||||
    from transformers import AutoModelForImageTextToText
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if TYPE_CHECKING:
 | 
			
		||||
    from transformers import PretrainedConfig, PreTrainedModel, PreTrainedTokenizer, ProcessorMixin
 | 
			
		||||
 | 
			
		||||
@ -145,7 +149,10 @@ def load_model(
 | 
			
		||||
        else:
 | 
			
		||||
            if type(config) in AutoModelForVision2Seq._model_mapping.keys():  # image-text
 | 
			
		||||
                load_class = AutoModelForVision2Seq
 | 
			
		||||
            elif type(config) in AutoModelForImageTextToText._model_mapping.keys():  # image-text
 | 
			
		||||
            elif (
 | 
			
		||||
                is_transformers_version_greater_than("4.46.0")
 | 
			
		||||
                and type(config) in AutoModelForImageTextToText._model_mapping.keys()
 | 
			
		||||
            ):  # image-text
 | 
			
		||||
                load_class = AutoModelForImageTextToText
 | 
			
		||||
            elif type(config) in AutoModelForSeq2SeqLM._model_mapping.keys():  # audio-text
 | 
			
		||||
                load_class = AutoModelForSeq2SeqLM
 | 
			
		||||
 | 
			
		||||
@ -18,7 +18,6 @@ from transformers.utils import is_flash_attn_2_available, is_torch_sdpa_availabl
 | 
			
		||||
 | 
			
		||||
from ...extras import logging
 | 
			
		||||
from ...extras.constants import AttentionFunction
 | 
			
		||||
from ...extras.misc import check_version
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if TYPE_CHECKING:
 | 
			
		||||
@ -36,8 +35,6 @@ def configure_attn_implementation(
 | 
			
		||||
    if getattr(config, "model_type", None) == "gemma2" and is_trainable:
 | 
			
		||||
        if model_args.flash_attn == AttentionFunction.AUTO or model_args.flash_attn == AttentionFunction.FA2:
 | 
			
		||||
            if is_flash_attn_2_available():
 | 
			
		||||
                check_version("transformers>=4.42.4")
 | 
			
		||||
                check_version("flash_attn>=2.6.3")
 | 
			
		||||
                if model_args.flash_attn != AttentionFunction.FA2:
 | 
			
		||||
                    logger.warning_rank0("Gemma 2 should use flash attention 2, change `flash_attn` to fa2.")
 | 
			
		||||
                    model_args.flash_attn = AttentionFunction.FA2
 | 
			
		||||
 | 
			
		||||
@ -350,7 +350,7 @@ def llama_sdpa_attention_forward(
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _apply_llama_patch() -> None:
 | 
			
		||||
    check_version("transformers>=4.41.2,<4.48.0")
 | 
			
		||||
    check_version("transformers>=4.43.0,<4.48.0", mandatory=True)
 | 
			
		||||
    LlamaAttention.forward = llama_attention_forward
 | 
			
		||||
    LlamaFlashAttention2.forward = llama_flash_attention_2_forward
 | 
			
		||||
    LlamaSdpaAttention.forward = llama_sdpa_attention_forward
 | 
			
		||||
 | 
			
		||||
@ -43,7 +43,6 @@ import torch
 | 
			
		||||
import torch.nn.functional as F
 | 
			
		||||
 | 
			
		||||
from ...extras import logging
 | 
			
		||||
from ...extras.misc import check_version
 | 
			
		||||
from ...extras.packages import is_transformers_version_greater_than
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -117,6 +116,5 @@ def configure_packing(model_args: "ModelArguments", is_trainable: bool) -> None:
 | 
			
		||||
    if not is_trainable or not model_args.block_diag_attn:
 | 
			
		||||
        return
 | 
			
		||||
 | 
			
		||||
    check_version("transformers>=4.43.0")
 | 
			
		||||
    transformers.modeling_flash_attention_utils._get_unpad_data = get_unpad_data
 | 
			
		||||
    logger.info_rank0("Using block diagonal attention for sequence packing without cross-attention.")
 | 
			
		||||
 | 
			
		||||
@ -188,7 +188,7 @@ class LogCallback(TrainerCallback):
 | 
			
		||||
        self.webui_mode = is_env_enabled("LLAMABOARD_ENABLED")
 | 
			
		||||
        if self.webui_mode and not use_ray():
 | 
			
		||||
            signal.signal(signal.SIGABRT, self._set_abort)
 | 
			
		||||
            self.logger_handler = logging.LoggerHandler(os.environ.get("LLAMABOARD_WORKDIR"))
 | 
			
		||||
            self.logger_handler = logging.LoggerHandler(os.getenv("LLAMABOARD_WORKDIR"))
 | 
			
		||||
            logging.add_handler(self.logger_handler)
 | 
			
		||||
            transformers.logging.add_handler(self.logger_handler)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -20,7 +20,7 @@ from typing import TYPE_CHECKING, Optional
 | 
			
		||||
from ...data import SFTDataCollatorWith4DAttentionMask, get_dataset, get_template_and_fix_tokenizer
 | 
			
		||||
from ...extras.constants import IGNORE_INDEX
 | 
			
		||||
from ...extras.logging import get_logger
 | 
			
		||||
from ...extras.misc import calculate_tps, get_logits_processor
 | 
			
		||||
from ...extras.misc import calculate_tps
 | 
			
		||||
from ...extras.ploting import plot_loss
 | 
			
		||||
from ...model import load_model, load_tokenizer
 | 
			
		||||
from ..trainer_utils import create_modelcard_and_push
 | 
			
		||||
@ -82,7 +82,6 @@ def run_sft(
 | 
			
		||||
    gen_kwargs = generating_args.to_dict(obey_generation_config=True)
 | 
			
		||||
    gen_kwargs["eos_token_id"] = [tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids
 | 
			
		||||
    gen_kwargs["pad_token_id"] = tokenizer.pad_token_id
 | 
			
		||||
    gen_kwargs["logits_processor"] = get_logits_processor()
 | 
			
		||||
 | 
			
		||||
    # Initialize our Trainer
 | 
			
		||||
    trainer = CustomSeq2SeqTrainer(
 | 
			
		||||
 | 
			
		||||
@ -77,10 +77,10 @@ class WebChatModel(ChatModel):
 | 
			
		||||
        if not lazy_init:  # read arguments from command line
 | 
			
		||||
            super().__init__()
 | 
			
		||||
 | 
			
		||||
        if demo_mode and os.environ.get("DEMO_MODEL") and os.environ.get("DEMO_TEMPLATE"):  # load demo model
 | 
			
		||||
            model_name_or_path = os.environ.get("DEMO_MODEL")
 | 
			
		||||
            template = os.environ.get("DEMO_TEMPLATE")
 | 
			
		||||
            infer_backend = os.environ.get("DEMO_BACKEND", "huggingface")
 | 
			
		||||
        if demo_mode and os.getenv("DEMO_MODEL") and os.getenv("DEMO_TEMPLATE"):  # load demo model
 | 
			
		||||
            model_name_or_path = os.getenv("DEMO_MODEL")
 | 
			
		||||
            template = os.getenv("DEMO_TEMPLATE")
 | 
			
		||||
            infer_backend = os.getenv("DEMO_BACKEND", "huggingface")
 | 
			
		||||
            super().__init__(
 | 
			
		||||
                dict(model_name_or_path=model_name_or_path, template=template, infer_backend=infer_backend)
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
@ -23,7 +23,7 @@ from transformers.trainer import TRAINING_ARGS_NAME
 | 
			
		||||
from transformers.utils import is_torch_npu_available
 | 
			
		||||
 | 
			
		||||
from ..extras.constants import LLAMABOARD_CONFIG, PEFT_METHODS, TRAINING_STAGES
 | 
			
		||||
from ..extras.misc import is_gpu_or_npu_available, torch_gc, use_ray
 | 
			
		||||
from ..extras.misc import is_accelerator_available, torch_gc, use_ray
 | 
			
		||||
from ..extras.packages import is_gradio_available
 | 
			
		||||
from .common import (
 | 
			
		||||
    DEFAULT_CACHE_DIR,
 | 
			
		||||
@ -108,7 +108,7 @@ class Runner:
 | 
			
		||||
            if not get("eval.output_dir"):
 | 
			
		||||
                return ALERTS["err_no_output_dir"][lang]
 | 
			
		||||
 | 
			
		||||
        if not from_preview and not is_gpu_or_npu_available():
 | 
			
		||||
        if not from_preview and not is_accelerator_available():
 | 
			
		||||
            gr.Warning(ALERTS["warn_no_cuda"][lang])
 | 
			
		||||
 | 
			
		||||
        return ""
 | 
			
		||||
 | 
			
		||||
@ -20,6 +20,7 @@ import torch
 | 
			
		||||
from PIL import Image
 | 
			
		||||
 | 
			
		||||
from llamafactory.data.mm_plugin import get_mm_plugin
 | 
			
		||||
from llamafactory.extras.packages import is_transformers_version_greater_than
 | 
			
		||||
from llamafactory.hparams import get_infer_args
 | 
			
		||||
from llamafactory.model import load_tokenizer
 | 
			
		||||
 | 
			
		||||
@ -137,6 +138,7 @@ def test_base_plugin():
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
 | 
			
		||||
@pytest.mark.skipif(not is_transformers_version_greater_than("4.50.0"), reason="Requires transformers>=4.50.0")
 | 
			
		||||
def test_gemma3_plugin():
 | 
			
		||||
    image_seqlen = 256
 | 
			
		||||
    tokenizer_module = _load_tokenizer_module(model_name_or_path="google/gemma-3-4b-it")
 | 
			
		||||
@ -157,7 +159,7 @@ def test_gemma3_plugin():
 | 
			
		||||
    _check_plugin(**check_inputs)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.mark.xfail(reason="cache failure.")
 | 
			
		||||
@pytest.mark.xfail(reason="Unknown error.")
 | 
			
		||||
def test_internvl_plugin():
 | 
			
		||||
    image_seqlen = 256
 | 
			
		||||
    tokenizer_module = _load_tokenizer_module(model_name_or_path="kingsley01/InternVL2_5-1B-MPO-hf")
 | 
			
		||||
@ -196,6 +198,7 @@ def test_llama4_plugin():
 | 
			
		||||
    _check_plugin(**check_inputs)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.mark.skipif(not is_transformers_version_greater_than("4.47.0"), reason="Requires transformers>=4.47.0")
 | 
			
		||||
def test_llava_plugin():
 | 
			
		||||
    image_seqlen = 576
 | 
			
		||||
    tokenizer_module = _load_tokenizer_module(model_name_or_path="llava-hf/llava-1.5-7b-hf")
 | 
			
		||||
@ -254,6 +257,7 @@ def test_paligemma_plugin():
 | 
			
		||||
    _check_plugin(**check_inputs)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.mark.skipif(not is_transformers_version_greater_than("4.50.0"), reason="Requires transformers>=4.50.0")
 | 
			
		||||
def test_pixtral_plugin():
 | 
			
		||||
    image_slice_height, image_slice_width = 2, 2
 | 
			
		||||
    tokenizer_module = _load_tokenizer_module(model_name_or_path="mistral-community/pixtral-12b")
 | 
			
		||||
@ -291,6 +295,7 @@ def test_qwen2_vl_plugin():
 | 
			
		||||
    _check_plugin(**check_inputs)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.mark.skipif(not is_transformers_version_greater_than("4.47.0"), reason="Requires transformers>=4.47.0")
 | 
			
		||||
def test_video_llava_plugin():
 | 
			
		||||
    image_seqlen = 256
 | 
			
		||||
    tokenizer_module = _load_tokenizer_module(model_name_or_path="LanguageBind/Video-LLaVA-7B-hf")
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user