mirror of
				https://github.com/hiyouga/LLaMA-Factory.git
				synced 2025-11-04 18:02:19 +08:00 
			
		
		
		
	[misc] fix cli (#7204)
Former-commit-id: 999f57133ca163c7108d2d5ee8194eca9b2109b4
This commit is contained in:
		
							parent
							
								
									f4ec4fa6ad
								
							
						
					
					
						commit
						a255c3a476
					
				@ -88,18 +88,24 @@ def main():
 | 
			
		||||
    elif command == Command.TRAIN:
 | 
			
		||||
        force_torchrun = is_env_enabled("FORCE_TORCHRUN")
 | 
			
		||||
        if force_torchrun or (get_device_count() > 1 and not use_ray()):
 | 
			
		||||
            nnodes = os.getenv("NNODES", "1")
 | 
			
		||||
            node_rank = os.getenv("NODE_RANK", "0")
 | 
			
		||||
            nproc_per_node = os.getenv("NPROC_PER_NODE", str(get_device_count()))
 | 
			
		||||
            master_addr = os.getenv("MASTER_ADDR", "127.0.0.1")
 | 
			
		||||
            master_port = os.getenv("MASTER_PORT", str(random.randint(20001, 29999)))
 | 
			
		||||
            logger.info_rank0(f"Initializing distributed tasks at: {master_addr}:{master_port}")
 | 
			
		||||
            logger.info_rank0(f"Initializing {nproc_per_node} distributed tasks at: {master_addr}:{master_port}")
 | 
			
		||||
            if int(nnodes) > 1:
 | 
			
		||||
                print(f"Multi-node training enabled: num nodes: {nnodes}, node rank: {node_rank}")
 | 
			
		||||
 | 
			
		||||
            process = subprocess.run(
 | 
			
		||||
                (
 | 
			
		||||
                    "torchrun --nnodes {nnodes} --node_rank {node_rank} --nproc_per_node {nproc_per_node} "
 | 
			
		||||
                    "--master_addr {master_addr} --master_port {master_port} {file_name} {args}"
 | 
			
		||||
                )
 | 
			
		||||
                .format(
 | 
			
		||||
                    nnodes=os.getenv("NNODES", "1"),
 | 
			
		||||
                    node_rank=os.getenv("NODE_RANK", "0"),
 | 
			
		||||
                    nproc_per_node=os.getenv("NPROC_PER_NODE", str(get_device_count())),
 | 
			
		||||
                    nnodes=nnodes,
 | 
			
		||||
                    node_rank=node_rank,
 | 
			
		||||
                    nproc_per_node=nproc_per_node,
 | 
			
		||||
                    master_addr=master_addr,
 | 
			
		||||
                    master_port=master_port,
 | 
			
		||||
                    file_name=launcher.__file__,
 | 
			
		||||
@ -119,7 +125,7 @@ def main():
 | 
			
		||||
    elif command == Command.HELP:
 | 
			
		||||
        print(USAGE)
 | 
			
		||||
    else:
 | 
			
		||||
        raise NotImplementedError(f"Unknown command: {command}.")
 | 
			
		||||
        print(f"Unknown command: {command}.\n{USAGE}")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
 | 
			
		||||
@ -387,7 +387,7 @@ class SwanLabArguments:
 | 
			
		||||
 | 
			
		||||
@dataclass
 | 
			
		||||
class FinetuningArguments(
 | 
			
		||||
    FreezeArguments, LoraArguments, RLHFArguments, GaloreArguments, ApolloArguments, BAdamArgument, SwanLabArguments
 | 
			
		||||
    SwanLabArguments, BAdamArgument, ApolloArguments, GaloreArguments, RLHFArguments, LoraArguments, FreezeArguments
 | 
			
		||||
):
 | 
			
		||||
    r"""
 | 
			
		||||
    Arguments pertaining to which techniques we are going to fine-tuning with.
 | 
			
		||||
 | 
			
		||||
@ -24,6 +24,162 @@ from transformers.training_args import _convert_str_dict
 | 
			
		||||
from typing_extensions import Self
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@dataclass
 | 
			
		||||
class BaseModelArguments:
 | 
			
		||||
    r"""
 | 
			
		||||
    Arguments pertaining to the model.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    model_name_or_path: Optional[str] = field(
 | 
			
		||||
        default=None,
 | 
			
		||||
        metadata={
 | 
			
		||||
            "help": "Path to the model weight or identifier from huggingface.co/models or modelscope.cn/models."
 | 
			
		||||
        },
 | 
			
		||||
    )
 | 
			
		||||
    adapter_name_or_path: Optional[str] = field(
 | 
			
		||||
        default=None,
 | 
			
		||||
        metadata={
 | 
			
		||||
            "help": (
 | 
			
		||||
                "Path to the adapter weight or identifier from huggingface.co/models. "
 | 
			
		||||
                "Use commas to separate multiple adapters."
 | 
			
		||||
            )
 | 
			
		||||
        },
 | 
			
		||||
    )
 | 
			
		||||
    adapter_folder: Optional[str] = field(
 | 
			
		||||
        default=None,
 | 
			
		||||
        metadata={"help": "The folder containing the adapter weights to load."},
 | 
			
		||||
    )
 | 
			
		||||
    cache_dir: Optional[str] = field(
 | 
			
		||||
        default=None,
 | 
			
		||||
        metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co or modelscope.cn."},
 | 
			
		||||
    )
 | 
			
		||||
    use_fast_tokenizer: bool = field(
 | 
			
		||||
        default=True,
 | 
			
		||||
        metadata={"help": "Whether or not to use one of the fast tokenizer (backed by the tokenizers library)."},
 | 
			
		||||
    )
 | 
			
		||||
    resize_vocab: bool = field(
 | 
			
		||||
        default=False,
 | 
			
		||||
        metadata={"help": "Whether or not to resize the tokenizer vocab and the embedding layers."},
 | 
			
		||||
    )
 | 
			
		||||
    split_special_tokens: bool = field(
 | 
			
		||||
        default=False,
 | 
			
		||||
        metadata={"help": "Whether or not the special tokens should be split during the tokenization process."},
 | 
			
		||||
    )
 | 
			
		||||
    new_special_tokens: Optional[str] = field(
 | 
			
		||||
        default=None,
 | 
			
		||||
        metadata={"help": "Special tokens to be added into the tokenizer. Use commas to separate multiple tokens."},
 | 
			
		||||
    )
 | 
			
		||||
    model_revision: str = field(
 | 
			
		||||
        default="main",
 | 
			
		||||
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
 | 
			
		||||
    )
 | 
			
		||||
    low_cpu_mem_usage: bool = field(
 | 
			
		||||
        default=True,
 | 
			
		||||
        metadata={"help": "Whether or not to use memory-efficient model loading."},
 | 
			
		||||
    )
 | 
			
		||||
    rope_scaling: Optional[Literal["linear", "dynamic", "yarn", "llama3"]] = field(
 | 
			
		||||
        default=None,
 | 
			
		||||
        metadata={"help": "Which scaling strategy should be adopted for the RoPE embeddings."},
 | 
			
		||||
    )
 | 
			
		||||
    flash_attn: Literal["auto", "disabled", "sdpa", "fa2"] = field(
 | 
			
		||||
        default="auto",
 | 
			
		||||
        metadata={"help": "Enable FlashAttention for faster training and inference."},
 | 
			
		||||
    )
 | 
			
		||||
    shift_attn: bool = field(
 | 
			
		||||
        default=False,
 | 
			
		||||
        metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."},
 | 
			
		||||
    )
 | 
			
		||||
    mixture_of_depths: Optional[Literal["convert", "load"]] = field(
 | 
			
		||||
        default=None,
 | 
			
		||||
        metadata={"help": "Convert the model to mixture-of-depths (MoD) or load the MoD model."},
 | 
			
		||||
    )
 | 
			
		||||
    use_unsloth: bool = field(
 | 
			
		||||
        default=False,
 | 
			
		||||
        metadata={"help": "Whether or not to use unsloth's optimization for the LoRA training."},
 | 
			
		||||
    )
 | 
			
		||||
    use_unsloth_gc: bool = field(
 | 
			
		||||
        default=False,
 | 
			
		||||
        metadata={"help": "Whether or not to use unsloth's gradient checkpointing (no need to install unsloth)."},
 | 
			
		||||
    )
 | 
			
		||||
    enable_liger_kernel: bool = field(
 | 
			
		||||
        default=False,
 | 
			
		||||
        metadata={"help": "Whether or not to enable liger kernel for faster training."},
 | 
			
		||||
    )
 | 
			
		||||
    moe_aux_loss_coef: Optional[float] = field(
 | 
			
		||||
        default=None,
 | 
			
		||||
        metadata={"help": "Coefficient of the auxiliary router loss in mixture-of-experts model."},
 | 
			
		||||
    )
 | 
			
		||||
    disable_gradient_checkpointing: bool = field(
 | 
			
		||||
        default=False,
 | 
			
		||||
        metadata={"help": "Whether or not to disable gradient checkpointing."},
 | 
			
		||||
    )
 | 
			
		||||
    use_reentrant_gc: bool = field(
 | 
			
		||||
        default=True,
 | 
			
		||||
        metadata={"help": "Whether or not to use reentrant gradient checkpointing."},
 | 
			
		||||
    )
 | 
			
		||||
    upcast_layernorm: bool = field(
 | 
			
		||||
        default=False,
 | 
			
		||||
        metadata={"help": "Whether or not to upcast the layernorm weights in fp32."},
 | 
			
		||||
    )
 | 
			
		||||
    upcast_lmhead_output: bool = field(
 | 
			
		||||
        default=False,
 | 
			
		||||
        metadata={"help": "Whether or not to upcast the output of lm_head in fp32."},
 | 
			
		||||
    )
 | 
			
		||||
    train_from_scratch: bool = field(
 | 
			
		||||
        default=False,
 | 
			
		||||
        metadata={"help": "Whether or not to randomly initialize the model weights."},
 | 
			
		||||
    )
 | 
			
		||||
    infer_backend: Literal["huggingface", "vllm"] = field(
 | 
			
		||||
        default="huggingface",
 | 
			
		||||
        metadata={"help": "Backend engine used at inference."},
 | 
			
		||||
    )
 | 
			
		||||
    offload_folder: str = field(
 | 
			
		||||
        default="offload",
 | 
			
		||||
        metadata={"help": "Path to offload model weights."},
 | 
			
		||||
    )
 | 
			
		||||
    use_cache: bool = field(
 | 
			
		||||
        default=True,
 | 
			
		||||
        metadata={"help": "Whether or not to use KV cache in generation."},
 | 
			
		||||
    )
 | 
			
		||||
    infer_dtype: Literal["auto", "float16", "bfloat16", "float32"] = field(
 | 
			
		||||
        default="auto",
 | 
			
		||||
        metadata={"help": "Data type for model weights and activations at inference."},
 | 
			
		||||
    )
 | 
			
		||||
    hf_hub_token: Optional[str] = field(
 | 
			
		||||
        default=None,
 | 
			
		||||
        metadata={"help": "Auth token to log in with Hugging Face Hub."},
 | 
			
		||||
    )
 | 
			
		||||
    ms_hub_token: Optional[str] = field(
 | 
			
		||||
        default=None,
 | 
			
		||||
        metadata={"help": "Auth token to log in with ModelScope Hub."},
 | 
			
		||||
    )
 | 
			
		||||
    om_hub_token: Optional[str] = field(
 | 
			
		||||
        default=None,
 | 
			
		||||
        metadata={"help": "Auth token to log in with Modelers Hub."},
 | 
			
		||||
    )
 | 
			
		||||
    print_param_status: bool = field(
 | 
			
		||||
        default=False,
 | 
			
		||||
        metadata={"help": "For debugging purposes, print the status of the parameters in the model."},
 | 
			
		||||
    )
 | 
			
		||||
    trust_remote_code: bool = field(
 | 
			
		||||
        default=False,
 | 
			
		||||
        metadata={"help": "Whether to trust the execution of code from datasets/models defined on the Hub or not."},
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    def __post_init__(self):
 | 
			
		||||
        if self.model_name_or_path is None:
 | 
			
		||||
            raise ValueError("Please provide `model_name_or_path`.")
 | 
			
		||||
 | 
			
		||||
        if self.split_special_tokens and self.use_fast_tokenizer:
 | 
			
		||||
            raise ValueError("`split_special_tokens` is only supported for slow tokenizers.")
 | 
			
		||||
 | 
			
		||||
        if self.adapter_name_or_path is not None:  # support merging multiple lora weights
 | 
			
		||||
            self.adapter_name_or_path = [path.strip() for path in self.adapter_name_or_path.split(",")]
 | 
			
		||||
 | 
			
		||||
        if self.new_special_tokens is not None:  # support multiple special tokens
 | 
			
		||||
            self.new_special_tokens = [token.strip() for token in self.new_special_tokens.split(",")]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@dataclass
 | 
			
		||||
class QuantizationArguments:
 | 
			
		||||
    r"""
 | 
			
		||||
@ -127,6 +283,10 @@ class ExportArguments:
 | 
			
		||||
        metadata={"help": "The name of the repository if push the model to the Hugging Face hub."},
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    def __post_init__(self):
 | 
			
		||||
        if self.export_quantization_bit is not None and self.export_quantization_dataset is None:
 | 
			
		||||
            raise ValueError("Quantization dataset is necessary for exporting.")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@dataclass
 | 
			
		||||
class VllmArguments:
 | 
			
		||||
@ -155,148 +315,19 @@ class VllmArguments:
 | 
			
		||||
        metadata={"help": "Config to initialize the vllm engine. Please use JSON strings."},
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    def __post_init__(self):
 | 
			
		||||
        if isinstance(self.vllm_config, str) and self.vllm_config.startswith("{"):
 | 
			
		||||
            self.vllm_config = _convert_str_dict(json.loads(self.vllm_config))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@dataclass
 | 
			
		||||
class ModelArguments(QuantizationArguments, ProcessorArguments, ExportArguments, VllmArguments):
 | 
			
		||||
class ModelArguments(VllmArguments, ExportArguments, ProcessorArguments, QuantizationArguments, BaseModelArguments):
 | 
			
		||||
    r"""
 | 
			
		||||
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune or infer.
 | 
			
		||||
 | 
			
		||||
    The class on the most right will be displayed first.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    model_name_or_path: Optional[str] = field(
 | 
			
		||||
        default=None,
 | 
			
		||||
        metadata={
 | 
			
		||||
            "help": "Path to the model weight or identifier from huggingface.co/models or modelscope.cn/models."
 | 
			
		||||
        },
 | 
			
		||||
    )
 | 
			
		||||
    adapter_name_or_path: Optional[str] = field(
 | 
			
		||||
        default=None,
 | 
			
		||||
        metadata={
 | 
			
		||||
            "help": (
 | 
			
		||||
                "Path to the adapter weight or identifier from huggingface.co/models. "
 | 
			
		||||
                "Use commas to separate multiple adapters."
 | 
			
		||||
            )
 | 
			
		||||
        },
 | 
			
		||||
    )
 | 
			
		||||
    adapter_folder: Optional[str] = field(
 | 
			
		||||
        default=None,
 | 
			
		||||
        metadata={"help": "The folder containing the adapter weights to load."},
 | 
			
		||||
    )
 | 
			
		||||
    cache_dir: Optional[str] = field(
 | 
			
		||||
        default=None,
 | 
			
		||||
        metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co or modelscope.cn."},
 | 
			
		||||
    )
 | 
			
		||||
    use_fast_tokenizer: bool = field(
 | 
			
		||||
        default=True,
 | 
			
		||||
        metadata={"help": "Whether or not to use one of the fast tokenizer (backed by the tokenizers library)."},
 | 
			
		||||
    )
 | 
			
		||||
    resize_vocab: bool = field(
 | 
			
		||||
        default=False,
 | 
			
		||||
        metadata={"help": "Whether or not to resize the tokenizer vocab and the embedding layers."},
 | 
			
		||||
    )
 | 
			
		||||
    split_special_tokens: bool = field(
 | 
			
		||||
        default=False,
 | 
			
		||||
        metadata={"help": "Whether or not the special tokens should be split during the tokenization process."},
 | 
			
		||||
    )
 | 
			
		||||
    new_special_tokens: Optional[str] = field(
 | 
			
		||||
        default=None,
 | 
			
		||||
        metadata={"help": "Special tokens to be added into the tokenizer. Use commas to separate multiple tokens."},
 | 
			
		||||
    )
 | 
			
		||||
    model_revision: str = field(
 | 
			
		||||
        default="main",
 | 
			
		||||
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
 | 
			
		||||
    )
 | 
			
		||||
    low_cpu_mem_usage: bool = field(
 | 
			
		||||
        default=True,
 | 
			
		||||
        metadata={"help": "Whether or not to use memory-efficient model loading."},
 | 
			
		||||
    )
 | 
			
		||||
    rope_scaling: Optional[Literal["linear", "dynamic", "yarn", "llama3"]] = field(
 | 
			
		||||
        default=None,
 | 
			
		||||
        metadata={"help": "Which scaling strategy should be adopted for the RoPE embeddings."},
 | 
			
		||||
    )
 | 
			
		||||
    flash_attn: Literal["auto", "disabled", "sdpa", "fa2"] = field(
 | 
			
		||||
        default="auto",
 | 
			
		||||
        metadata={"help": "Enable FlashAttention for faster training and inference."},
 | 
			
		||||
    )
 | 
			
		||||
    shift_attn: bool = field(
 | 
			
		||||
        default=False,
 | 
			
		||||
        metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."},
 | 
			
		||||
    )
 | 
			
		||||
    mixture_of_depths: Optional[Literal["convert", "load"]] = field(
 | 
			
		||||
        default=None,
 | 
			
		||||
        metadata={"help": "Convert the model to mixture-of-depths (MoD) or load the MoD model."},
 | 
			
		||||
    )
 | 
			
		||||
    use_unsloth: bool = field(
 | 
			
		||||
        default=False,
 | 
			
		||||
        metadata={"help": "Whether or not to use unsloth's optimization for the LoRA training."},
 | 
			
		||||
    )
 | 
			
		||||
    use_unsloth_gc: bool = field(
 | 
			
		||||
        default=False,
 | 
			
		||||
        metadata={"help": "Whether or not to use unsloth's gradient checkpointing."},
 | 
			
		||||
    )
 | 
			
		||||
    enable_liger_kernel: bool = field(
 | 
			
		||||
        default=False,
 | 
			
		||||
        metadata={"help": "Whether or not to enable liger kernel for faster training."},
 | 
			
		||||
    )
 | 
			
		||||
    moe_aux_loss_coef: Optional[float] = field(
 | 
			
		||||
        default=None,
 | 
			
		||||
        metadata={"help": "Coefficient of the auxiliary router loss in mixture-of-experts model."},
 | 
			
		||||
    )
 | 
			
		||||
    disable_gradient_checkpointing: bool = field(
 | 
			
		||||
        default=False,
 | 
			
		||||
        metadata={"help": "Whether or not to disable gradient checkpointing."},
 | 
			
		||||
    )
 | 
			
		||||
    use_reentrant_gc: bool = field(
 | 
			
		||||
        default=True,
 | 
			
		||||
        metadata={"help": "Whether or not to use reentrant gradient checkpointing."},
 | 
			
		||||
    )
 | 
			
		||||
    upcast_layernorm: bool = field(
 | 
			
		||||
        default=False,
 | 
			
		||||
        metadata={"help": "Whether or not to upcast the layernorm weights in fp32."},
 | 
			
		||||
    )
 | 
			
		||||
    upcast_lmhead_output: bool = field(
 | 
			
		||||
        default=False,
 | 
			
		||||
        metadata={"help": "Whether or not to upcast the output of lm_head in fp32."},
 | 
			
		||||
    )
 | 
			
		||||
    train_from_scratch: bool = field(
 | 
			
		||||
        default=False,
 | 
			
		||||
        metadata={"help": "Whether or not to randomly initialize the model weights."},
 | 
			
		||||
    )
 | 
			
		||||
    infer_backend: Literal["huggingface", "vllm"] = field(
 | 
			
		||||
        default="huggingface",
 | 
			
		||||
        metadata={"help": "Backend engine used at inference."},
 | 
			
		||||
    )
 | 
			
		||||
    offload_folder: str = field(
 | 
			
		||||
        default="offload",
 | 
			
		||||
        metadata={"help": "Path to offload model weights."},
 | 
			
		||||
    )
 | 
			
		||||
    use_cache: bool = field(
 | 
			
		||||
        default=True,
 | 
			
		||||
        metadata={"help": "Whether or not to use KV cache in generation."},
 | 
			
		||||
    )
 | 
			
		||||
    infer_dtype: Literal["auto", "float16", "bfloat16", "float32"] = field(
 | 
			
		||||
        default="auto",
 | 
			
		||||
        metadata={"help": "Data type for model weights and activations at inference."},
 | 
			
		||||
    )
 | 
			
		||||
    hf_hub_token: Optional[str] = field(
 | 
			
		||||
        default=None,
 | 
			
		||||
        metadata={"help": "Auth token to log in with Hugging Face Hub."},
 | 
			
		||||
    )
 | 
			
		||||
    ms_hub_token: Optional[str] = field(
 | 
			
		||||
        default=None,
 | 
			
		||||
        metadata={"help": "Auth token to log in with ModelScope Hub."},
 | 
			
		||||
    )
 | 
			
		||||
    om_hub_token: Optional[str] = field(
 | 
			
		||||
        default=None,
 | 
			
		||||
        metadata={"help": "Auth token to log in with Modelers Hub."},
 | 
			
		||||
    )
 | 
			
		||||
    print_param_status: bool = field(
 | 
			
		||||
        default=False,
 | 
			
		||||
        metadata={"help": "For debugging purposes, print the status of the parameters in the model."},
 | 
			
		||||
    )
 | 
			
		||||
    trust_remote_code: bool = field(
 | 
			
		||||
        default=False,
 | 
			
		||||
        metadata={"help": "Whether to trust the execution of code from datasets/models defined on the Hub or not."},
 | 
			
		||||
    )
 | 
			
		||||
    compute_dtype: Optional[torch.dtype] = field(
 | 
			
		||||
        default=None,
 | 
			
		||||
        init=False,
 | 
			
		||||
@ -319,23 +350,9 @@ class ModelArguments(QuantizationArguments, ProcessorArguments, ExportArguments,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    def __post_init__(self):
 | 
			
		||||
        if self.model_name_or_path is None:
 | 
			
		||||
            raise ValueError("Please provide `model_name_or_path`.")
 | 
			
		||||
 | 
			
		||||
        if self.split_special_tokens and self.use_fast_tokenizer:
 | 
			
		||||
            raise ValueError("`split_special_tokens` is only supported for slow tokenizers.")
 | 
			
		||||
 | 
			
		||||
        if self.adapter_name_or_path is not None:  # support merging multiple lora weights
 | 
			
		||||
            self.adapter_name_or_path = [path.strip() for path in self.adapter_name_or_path.split(",")]
 | 
			
		||||
 | 
			
		||||
        if self.new_special_tokens is not None:  # support multiple special tokens
 | 
			
		||||
            self.new_special_tokens = [token.strip() for token in self.new_special_tokens.split(",")]
 | 
			
		||||
 | 
			
		||||
        if self.export_quantization_bit is not None and self.export_quantization_dataset is None:
 | 
			
		||||
            raise ValueError("Quantization dataset is necessary for exporting.")
 | 
			
		||||
 | 
			
		||||
        if isinstance(self.vllm_config, str) and self.vllm_config.startswith("{"):
 | 
			
		||||
            self.vllm_config = _convert_str_dict(json.loads(self.vllm_config))
 | 
			
		||||
        BaseModelArguments.__post_init__(self)
 | 
			
		||||
        ExportArguments.__post_init__(self)
 | 
			
		||||
        VllmArguments.__post_init__(self)
 | 
			
		||||
 | 
			
		||||
    @classmethod
 | 
			
		||||
    def copyfrom(cls, source: "Self", **kwargs) -> "Self":
 | 
			
		||||
 | 
			
		||||
@ -382,10 +382,10 @@ def get_train_args(args: Optional[Union[Dict[str, Any], List[str]]] = None) -> _
 | 
			
		||||
 | 
			
		||||
    # Log on each process the small summary
 | 
			
		||||
    logger.info(
 | 
			
		||||
        "Process rank: {}, device: {}, n_gpu: {}, distributed training: {}, compute dtype: {}".format(
 | 
			
		||||
            training_args.local_rank,
 | 
			
		||||
        "Process rank: {}, world size: {}, device: {}, distributed training: {}, compute dtype: {}".format(
 | 
			
		||||
            training_args.process_index,
 | 
			
		||||
            training_args.world_size,
 | 
			
		||||
            training_args.device,
 | 
			
		||||
            training_args.n_gpu,
 | 
			
		||||
            training_args.parallel_mode == ParallelMode.DISTRIBUTED,
 | 
			
		||||
            str(model_args.compute_dtype),
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
@ -86,6 +86,9 @@ def _training_function(config: Dict[str, Any]) -> None:
 | 
			
		||||
 | 
			
		||||
def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: Optional[List["TrainerCallback"]] = None) -> None:
 | 
			
		||||
    args = read_args(args)
 | 
			
		||||
    if "-h" in args or "--help" in args:
 | 
			
		||||
        get_train_args(args)
 | 
			
		||||
 | 
			
		||||
    ray_args = get_ray_args(args)
 | 
			
		||||
    callbacks = callbacks or []
 | 
			
		||||
    if ray_args.use_ray:
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user