mirror of
				https://github.com/hiyouga/LLaMA-Factory.git
				synced 2025-11-04 18:02:19 +08:00 
			
		
		
		
	refactor mllm param logic
Former-commit-id: b895c190945cf5d991cb4e4dea2ae73cc9c8d246
This commit is contained in:
		
							parent
							
								
									1675712a4c
								
							
						
					
					
						commit
						dc65ecdf09
					
				@ -7,6 +7,7 @@ stage: sft
 | 
			
		||||
do_train: true
 | 
			
		||||
finetuning_type: full
 | 
			
		||||
freeze_vision_tower: true  # choices: [true, false]
 | 
			
		||||
freeze_multi_modal_projector: true  # choices: [true, false]
 | 
			
		||||
train_mm_proj_only: false  # choices: [true, false]
 | 
			
		||||
deepspeed: examples/deepspeed/ds_z3_config.json  # choices: [ds_z0_config.json, ds_z2_config.json, ds_z3_config.json]
 | 
			
		||||
 | 
			
		||||
@ -29,7 +30,7 @@ overwrite_output_dir: true
 | 
			
		||||
per_device_train_batch_size: 1
 | 
			
		||||
gradient_accumulation_steps: 2
 | 
			
		||||
learning_rate: 1.0e-5
 | 
			
		||||
num_train_epochs: 30.0
 | 
			
		||||
num_train_epochs: 3.0
 | 
			
		||||
lr_scheduler_type: cosine
 | 
			
		||||
warmup_ratio: 0.1
 | 
			
		||||
bf16: true
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										2
									
								
								setup.py
									
									
									
									
									
								
							
							
						
						
									
										2
									
								
								setup.py
									
									
									
									
									
								
							@ -71,7 +71,7 @@ def main():
 | 
			
		||||
        name="llamafactory",
 | 
			
		||||
        version=get_version(),
 | 
			
		||||
        author="hiyouga",
 | 
			
		||||
        author_email="hiyouga" "@" "buaa.edu.cn",
 | 
			
		||||
        author_email="hiyouga AT buaa.edu.cn",
 | 
			
		||||
        description="Easy-to-use LLM fine-tuning framework",
 | 
			
		||||
        long_description=open("README.md", encoding="utf-8").read(),
 | 
			
		||||
        long_description_content_type="text/markdown",
 | 
			
		||||
 | 
			
		||||
@ -396,8 +396,7 @@ _register_template(
 | 
			
		||||
    format_user=StringFormatter(slots=["### Instruction:\n{{content}}\n\n### Response:\n"]),
 | 
			
		||||
    format_assistant=StringFormatter(slots=["{{content}}", {"eos_token"}, "\n\n"]),
 | 
			
		||||
    default_system=(
 | 
			
		||||
        "Below is an instruction that describes a task. "
 | 
			
		||||
        "Write a response that appropriately completes the request.\n\n"
 | 
			
		||||
        "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n"
 | 
			
		||||
    ),
 | 
			
		||||
    replace_jinja_template=True,
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
@ -364,6 +364,10 @@ class FinetuningArguments(
 | 
			
		||||
        default=True,
 | 
			
		||||
        metadata={"help": "Whether ot not to freeze vision tower in MLLM training."},
 | 
			
		||||
    )
 | 
			
		||||
    freeze_multi_modal_projector: bool = field(
 | 
			
		||||
        default=True,
 | 
			
		||||
        metadata={"help": "Whether or not to freeze the multi modal projector in MLLM training."},
 | 
			
		||||
    )
 | 
			
		||||
    train_mm_proj_only: bool = field(
 | 
			
		||||
        default=False,
 | 
			
		||||
        metadata={"help": "Whether or not to train the multimodal projector for MLLM only."},
 | 
			
		||||
@ -398,6 +402,7 @@ class FinetuningArguments(
 | 
			
		||||
        self.additional_target: Optional[List[str]] = split_arg(self.additional_target)
 | 
			
		||||
        self.galore_target: List[str] = split_arg(self.galore_target)
 | 
			
		||||
        self.freeze_vision_tower = self.freeze_vision_tower or self.train_mm_proj_only
 | 
			
		||||
        self.freeze_multi_modal_projector = self.freeze_multi_modal_projector and not self.train_mm_proj_only
 | 
			
		||||
        self.use_ref_model = self.stage == "dpo" and self.pref_loss not in ["orpo", "simpo"]
 | 
			
		||||
 | 
			
		||||
        assert self.finetuning_type in ["lora", "freeze", "full"], "Invalid fine-tuning method."
 | 
			
		||||
 | 
			
		||||
@ -12,6 +12,7 @@
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
from typing import TYPE_CHECKING, Any, Dict, Optional, TypedDict
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
@ -202,12 +203,8 @@ def load_model(
 | 
			
		||||
 | 
			
		||||
    logger.info_rank0(param_stats)
 | 
			
		||||
 | 
			
		||||
    if model_args.print_param_status:
 | 
			
		||||
    if model_args.print_param_status and int(os.getenv("LOCAL_RANK", "0")) == 0:
 | 
			
		||||
        for name, param in model.named_parameters():
 | 
			
		||||
            print(
 | 
			
		||||
                "name: {}, dtype: {}, device: {}, trainable: {}".format(
 | 
			
		||||
                    name, param.dtype, param.device, param.requires_grad
 | 
			
		||||
                )
 | 
			
		||||
            )
 | 
			
		||||
            print(f"name: {name}, dtype: {param.dtype}, device: {param.device}, trainable: {param.requires_grad}")
 | 
			
		||||
 | 
			
		||||
    return model
 | 
			
		||||
 | 
			
		||||
@ -15,6 +15,7 @@
 | 
			
		||||
from typing import TYPE_CHECKING, List
 | 
			
		||||
 | 
			
		||||
from ...extras import logging
 | 
			
		||||
from .visual import COMPOSITE_MODELS
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if TYPE_CHECKING:
 | 
			
		||||
@ -34,18 +35,12 @@ def find_all_linear_modules(model: "PreTrainedModel", freeze_vision_tower: bool)
 | 
			
		||||
        forbidden_modules.add("output_layer")
 | 
			
		||||
    elif model_type == "internlm2":
 | 
			
		||||
        forbidden_modules.add("output")
 | 
			
		||||
    elif model_type in ["llava", "llava_next", "llava_next_video", "mllama", "paligemma", "video_llava"]:
 | 
			
		||||
        forbidden_modules.add("multi_modal_projector")
 | 
			
		||||
    elif model_type == "qwen2_vl":
 | 
			
		||||
        forbidden_modules.add("merger")
 | 
			
		||||
 | 
			
		||||
    if freeze_vision_tower:
 | 
			
		||||
        if model_type == "mllama":
 | 
			
		||||
            forbidden_modules.add("vision_model")
 | 
			
		||||
        elif model_type == "qwen2_vl":
 | 
			
		||||
            forbidden_modules.add("visual")
 | 
			
		||||
        else:
 | 
			
		||||
            forbidden_modules.add("vision_tower")
 | 
			
		||||
    if model_type in COMPOSITE_MODELS:
 | 
			
		||||
        forbidden_modules.add(COMPOSITE_MODELS[model_type].projector_key)
 | 
			
		||||
 | 
			
		||||
    if freeze_vision_tower and model_type in COMPOSITE_MODELS:
 | 
			
		||||
        forbidden_modules.update(COMPOSITE_MODELS[model_type].vision_model_keys)
 | 
			
		||||
 | 
			
		||||
    module_names = set()
 | 
			
		||||
    for name, module in model.named_modules():
 | 
			
		||||
 | 
			
		||||
@ -15,7 +15,8 @@
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
 | 
			
		||||
from typing import TYPE_CHECKING, List, Sequence, Set, Tuple, Union
 | 
			
		||||
from dataclasses import dataclass
 | 
			
		||||
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Set, Tuple, Union
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import transformers
 | 
			
		||||
@ -35,6 +36,40 @@ logger = logging.get_logger(__name__)
 | 
			
		||||
transformers_logger = transformers.utils.logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@dataclass
 | 
			
		||||
class CompositeModel:
 | 
			
		||||
    model_type: str
 | 
			
		||||
    projector_key: str
 | 
			
		||||
    vision_model_keys: List[str]
 | 
			
		||||
    language_model_keys: List[str]
 | 
			
		||||
 | 
			
		||||
    def get_projector(self, module: "torch.nn.Module") -> "torch.nn.Module":
 | 
			
		||||
        for key in self.projector_key.split("."):
 | 
			
		||||
            module = getattr(module, key)
 | 
			
		||||
 | 
			
		||||
        return module
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
COMPOSITE_MODELS: Dict[str, "CompositeModel"] = {}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _register_composite_model(
 | 
			
		||||
    model_type: str,
 | 
			
		||||
    projector_key: Optional[str] = None,
 | 
			
		||||
    vision_model_keys: Optional[List[str]] = None,
 | 
			
		||||
    language_model_keys: Optional[List[str]] = None,
 | 
			
		||||
):
 | 
			
		||||
    projector_key = projector_key or "multi_modal_projector"
 | 
			
		||||
    vision_model_keys = vision_model_keys or ["vision_tower"]
 | 
			
		||||
    language_model_keys = language_model_keys or ["language_model"]
 | 
			
		||||
    COMPOSITE_MODELS[model_type] = CompositeModel(
 | 
			
		||||
        model_type=model_type,
 | 
			
		||||
        projector_key=projector_key,
 | 
			
		||||
        vision_model_keys=vision_model_keys,
 | 
			
		||||
        language_model_keys=language_model_keys,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class LlavaMultiModalProjectorForYiVL(torch.nn.Module):
 | 
			
		||||
    def __init__(self, config: "LlavaConfig") -> None:
 | 
			
		||||
        super().__init__()
 | 
			
		||||
@ -92,10 +127,8 @@ def autocast_projector_dtype(model: "PreTrainedModel", model_args: "ModelArgumen
 | 
			
		||||
 | 
			
		||||
    if getattr(model, "quantization_method", None):
 | 
			
		||||
        model_type = getattr(model.config, "model_type", None)
 | 
			
		||||
        if model_type in ["llava", "llava_next", "llava_next_video", "mllama", "paligemma", "video_llava"]:
 | 
			
		||||
            mm_projector: "torch.nn.Module" = getattr(model, "multi_modal_projector")
 | 
			
		||||
        elif model_type == "qwen2_vl":
 | 
			
		||||
            mm_projector: "torch.nn.Module" = getattr(getattr(model, "visual"), "merger")
 | 
			
		||||
        if model_type in COMPOSITE_MODELS:
 | 
			
		||||
            mm_projector = COMPOSITE_MODELS[model_type].get_projector(model)
 | 
			
		||||
        else:
 | 
			
		||||
            return
 | 
			
		||||
 | 
			
		||||
@ -107,8 +140,7 @@ def configure_visual_model(config: "PretrainedConfig") -> None:
 | 
			
		||||
    r"""
 | 
			
		||||
    Patches VLMs before loading them.
 | 
			
		||||
    """
 | 
			
		||||
    model_type = getattr(config, "model_type", None)
 | 
			
		||||
    if model_type in ["llava", "llava_next", "llava_next_video", "mllama", "paligemma", "video_llava"]:
 | 
			
		||||
    if getattr(config, "text_config", None) and not getattr(config, "hidden_size", None):
 | 
			
		||||
        # required for ds zero3 and valuehead models
 | 
			
		||||
        setattr(config, "hidden_size", getattr(config.text_config, "hidden_size", None))
 | 
			
		||||
 | 
			
		||||
@ -123,25 +155,21 @@ def get_forbidden_modules(config: "PretrainedConfig", finetuning_args: "Finetuni
 | 
			
		||||
    """
 | 
			
		||||
    model_type = getattr(config, "model_type", None)
 | 
			
		||||
    forbidden_modules = set()
 | 
			
		||||
    if model_type in ["llava", "llava_next", "llava_next_video", "paligemma", "video_llava"]:
 | 
			
		||||
    if model_type in COMPOSITE_MODELS:
 | 
			
		||||
        if finetuning_args.freeze_vision_tower:
 | 
			
		||||
            forbidden_modules.add("vision_tower")
 | 
			
		||||
            vision_model_keys = COMPOSITE_MODELS[model_type].vision_model_keys
 | 
			
		||||
            logger.info_rank0(f"Set vision model not trainable: {vision_model_keys}.")
 | 
			
		||||
            forbidden_modules.update(vision_model_keys)
 | 
			
		||||
 | 
			
		||||
        if finetuning_args.freeze_multi_modal_projector:
 | 
			
		||||
            projector_key = COMPOSITE_MODELS[model_type].projector_key
 | 
			
		||||
            logger.info_rank0(f"Set multi model projector not trainable: {projector_key}.")
 | 
			
		||||
            forbidden_modules.add(projector_key)
 | 
			
		||||
 | 
			
		||||
        if finetuning_args.train_mm_proj_only:
 | 
			
		||||
            forbidden_modules.add("language_model")
 | 
			
		||||
 | 
			
		||||
    elif model_type == "mllama":
 | 
			
		||||
        if finetuning_args.freeze_vision_tower:
 | 
			
		||||
            forbidden_modules.add("vision_model")
 | 
			
		||||
 | 
			
		||||
        if finetuning_args.train_mm_proj_only:
 | 
			
		||||
            forbidden_modules.add("language_model")
 | 
			
		||||
 | 
			
		||||
    elif model_type == "qwen2_vl":
 | 
			
		||||
        if finetuning_args.train_mm_proj_only:
 | 
			
		||||
            forbidden_modules.update({"visual.patch_embed", "visual.blocks", "model", "lm_head"})
 | 
			
		||||
        elif finetuning_args.freeze_vision_tower:
 | 
			
		||||
            forbidden_modules.add("visual")
 | 
			
		||||
            language_model_keys = COMPOSITE_MODELS[model_type].language_model_keys
 | 
			
		||||
            logger.info_rank0(f"Set language model not trainable: {language_model_keys}.")
 | 
			
		||||
            forbidden_modules.update(language_model_keys)
 | 
			
		||||
 | 
			
		||||
    return forbidden_modules
 | 
			
		||||
 | 
			
		||||
@ -190,18 +218,57 @@ def patch_target_modules(
 | 
			
		||||
    model_type = getattr(config, "model_type", None)
 | 
			
		||||
    vit_model_type = getattr(getattr(config, "vision_config", None), "model_type", None)
 | 
			
		||||
    if finetuning_args.freeze_vision_tower:
 | 
			
		||||
        if model_type in ["llava", "llava_next", "llava_next_video", "paligemma", "video_llava"]:
 | 
			
		||||
            return "^(?!.*vision_tower).*(?:{}).*".format("|".join(target_modules))
 | 
			
		||||
        elif model_type == "mllama":
 | 
			
		||||
            return "^(?!.*vision_model).*(?:{}).*".format("|".join(target_modules))
 | 
			
		||||
        elif model_type == "qwen2_vl":
 | 
			
		||||
            return "^(?!.*visual).*(?:{}).*".format("|".join(target_modules))
 | 
			
		||||
        if model_type in COMPOSITE_MODELS:
 | 
			
		||||
            vision_model_keys = COMPOSITE_MODELS[model_type].vision_model_keys
 | 
			
		||||
            logger.info_rank0(f"Set vision model not trainable: {vision_model_keys}.")
 | 
			
		||||
            vision_model_keys = "|".join(vision_model_keys)
 | 
			
		||||
            target_modules = "|".join(target_modules)
 | 
			
		||||
            return f"^(?!.*{vision_model_keys}).*(?:{target_modules}).*"
 | 
			
		||||
        else:
 | 
			
		||||
            return target_modules
 | 
			
		||||
    else:
 | 
			
		||||
        if model_type == "qwen2_vl":
 | 
			
		||||
        if model_type == "qwen2_vl":  # avoid attaching lora to Conv3D layer
 | 
			
		||||
            return "^(?!.*patch_embed).*(?:{}).*".format("|".join(target_modules))
 | 
			
		||||
        elif vit_model_type == "pixtral":
 | 
			
		||||
            return "^(?!.*patch_conv).*(?:{}).*".format("|".join(target_modules))
 | 
			
		||||
        else:
 | 
			
		||||
            return target_modules
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
_register_composite_model(
 | 
			
		||||
    model_type="llava",
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
_register_composite_model(
 | 
			
		||||
    model_type="llava_next",
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
_register_composite_model(
 | 
			
		||||
    model_type="llava_next_video",
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
_register_composite_model(
 | 
			
		||||
    model_type="paligemma",
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
_register_composite_model(
 | 
			
		||||
    model_type="video_llava",
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
_register_composite_model(
 | 
			
		||||
    model_type="mllama",
 | 
			
		||||
    vision_model_keys=["vision_model"],
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
_register_composite_model(
 | 
			
		||||
    model_type="qwen2_vl",
 | 
			
		||||
    projector_key="visual.merger",
 | 
			
		||||
    vision_model_keys=["visual.patch_embed", "visual.blocks"],
 | 
			
		||||
    language_model_keys=["model", "lm_head"],
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
@ -100,8 +100,7 @@ def test_encode_multiturn(use_fast: bool):
 | 
			
		||||
    )
 | 
			
		||||
    answer_str_1 = "I am fine!<|eot_id|>"
 | 
			
		||||
    prompt_str_2 = (
 | 
			
		||||
        "<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>"
 | 
			
		||||
        "<|start_header_id|>assistant<|end_header_id|>\n\n"
 | 
			
		||||
        "<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
 | 
			
		||||
    )
 | 
			
		||||
    answer_str_2 = "很高兴认识你!<|eot_id|>"
 | 
			
		||||
    _check_tokenization(
 | 
			
		||||
 | 
			
		||||
@ -14,6 +14,7 @@
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
 | 
			
		||||
import pytest
 | 
			
		||||
import torch
 | 
			
		||||
 | 
			
		||||
from llamafactory.extras.misc import get_current_device
 | 
			
		||||
@ -39,16 +40,11 @@ TRAIN_ARGS = {
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_checkpointing_enable():
 | 
			
		||||
    model = load_train_model(disable_gradient_checkpointing=False, **TRAIN_ARGS)
 | 
			
		||||
@pytest.mark.parametrize("disable_gradient_checkpointing", [False, True])
 | 
			
		||||
def test_vanilla_checkpointing(disable_gradient_checkpointing: bool):
 | 
			
		||||
    model = load_train_model(disable_gradient_checkpointing=disable_gradient_checkpointing, **TRAIN_ARGS)
 | 
			
		||||
    for module in filter(lambda m: hasattr(m, "gradient_checkpointing"), model.modules()):
 | 
			
		||||
        assert getattr(module, "gradient_checkpointing") is True
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_checkpointing_disable():
 | 
			
		||||
    model = load_train_model(disable_gradient_checkpointing=True, **TRAIN_ARGS)
 | 
			
		||||
    for module in filter(lambda m: hasattr(m, "gradient_checkpointing"), model.modules()):
 | 
			
		||||
        assert getattr(module, "gradient_checkpointing") is False
 | 
			
		||||
        assert getattr(module, "gradient_checkpointing") != disable_gradient_checkpointing
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_unsloth_gradient_checkpointing():
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										77
									
								
								tests/model/model_utils/test_visual.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										77
									
								
								tests/model/model_utils/test_visual.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,77 @@
 | 
			
		||||
# Copyright 2024 the LlamaFactory team.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
 | 
			
		||||
import pytest
 | 
			
		||||
import torch
 | 
			
		||||
from transformers import AutoConfig, AutoModelForVision2Seq
 | 
			
		||||
 | 
			
		||||
from llamafactory.hparams import FinetuningArguments, ModelArguments
 | 
			
		||||
from llamafactory.model.adapter import init_adapter
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.mark.parametrize(
 | 
			
		||||
    "freeze_vision_tower,freeze_multi_modal_projector,train_mm_proj_only",
 | 
			
		||||
    [
 | 
			
		||||
        (False, False, False),
 | 
			
		||||
        (False, True, False),
 | 
			
		||||
        (True, False, False),
 | 
			
		||||
        (True, True, False),
 | 
			
		||||
        (True, False, True),
 | 
			
		||||
    ],
 | 
			
		||||
)
 | 
			
		||||
def test_visual_full(freeze_vision_tower: bool, freeze_multi_modal_projector: bool, train_mm_proj_only: bool):
 | 
			
		||||
    model_args = ModelArguments(model_name_or_path="Qwen/Qwen2-VL-2B-Instruct")
 | 
			
		||||
    finetuning_args = FinetuningArguments(
 | 
			
		||||
        finetuning_type="full",
 | 
			
		||||
        freeze_vision_tower=freeze_vision_tower,
 | 
			
		||||
        freeze_multi_modal_projector=freeze_multi_modal_projector,
 | 
			
		||||
        train_mm_proj_only=train_mm_proj_only,
 | 
			
		||||
    )
 | 
			
		||||
    config = AutoConfig.from_pretrained(model_args.model_name_or_path)
 | 
			
		||||
    with torch.device("meta"):
 | 
			
		||||
        model = AutoModelForVision2Seq.from_config(config)
 | 
			
		||||
 | 
			
		||||
    model = init_adapter(config, model, model_args, finetuning_args, is_trainable=True)
 | 
			
		||||
    for name, param in model.named_parameters():
 | 
			
		||||
        if any(key in name for key in ["visual.patch_embed", "visual.blocks"]):
 | 
			
		||||
            assert param.requires_grad != freeze_vision_tower
 | 
			
		||||
        elif "visual.merger" in name:
 | 
			
		||||
            assert param.requires_grad != freeze_multi_modal_projector
 | 
			
		||||
        else:
 | 
			
		||||
            assert param.requires_grad != train_mm_proj_only
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.mark.parametrize("freeze_vision_tower", [False, True])
 | 
			
		||||
def test_visual_lora(freeze_vision_tower: bool):
 | 
			
		||||
    model_args = ModelArguments(model_name_or_path="Qwen/Qwen2-VL-2B-Instruct")
 | 
			
		||||
    finetuning_args = FinetuningArguments(finetuning_type="lora", freeze_vision_tower=freeze_vision_tower)
 | 
			
		||||
    config = AutoConfig.from_pretrained(model_args.model_name_or_path)
 | 
			
		||||
    with torch.device("meta"):
 | 
			
		||||
        model = AutoModelForVision2Seq.from_config(config)
 | 
			
		||||
 | 
			
		||||
    model = init_adapter(config, model, model_args, finetuning_args, is_trainable=True)
 | 
			
		||||
    trainable_params, frozen_params = set(), set()
 | 
			
		||||
    for name, param in model.named_parameters():
 | 
			
		||||
        if param.requires_grad:
 | 
			
		||||
            trainable_params.add(name)
 | 
			
		||||
        else:
 | 
			
		||||
            frozen_params.add(name)
 | 
			
		||||
 | 
			
		||||
    if freeze_vision_tower:
 | 
			
		||||
        assert "base_model.model.visual.blocks.0.attn.qkv.lora_A.default.weight" not in trainable_params
 | 
			
		||||
    else:
 | 
			
		||||
        assert "base_model.model.visual.blocks.0.attn.qkv.lora_A.default.weight" in trainable_params
 | 
			
		||||
 | 
			
		||||
    assert "merger" not in trainable_params
 | 
			
		||||
    assert "base_model.model.model.layers.0.self_attn.q_proj.lora_A.default.weight" in trainable_params
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user