mirror of
				https://github.com/hiyouga/LLaMA-Factory.git
				synced 2025-11-04 18:02:19 +08:00 
			
		
		
		
	fix scripts
Former-commit-id: f94f55d20283298cb7d90d0573992a62df414a8f
This commit is contained in:
		
							parent
							
								
									ff3e40e4a5
								
							
						
					
					
						commit
						86e4fab0d5
					
				@ -22,9 +22,9 @@ import fire
 | 
			
		||||
import torch
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
from tqdm import tqdm
 | 
			
		||||
from transformers import DataCollatorForLanguageModeling, DataCollatorForSeq2Seq
 | 
			
		||||
from transformers import DataCollatorForLanguageModeling
 | 
			
		||||
 | 
			
		||||
from llamafactory.data import get_dataset, get_template_and_fix_tokenizer
 | 
			
		||||
from llamafactory.data import get_dataset, get_template_and_fix_tokenizer, MultiModalDataCollatorForSeq2Seq
 | 
			
		||||
from llamafactory.extras.constants import IGNORE_INDEX
 | 
			
		||||
from llamafactory.hparams import get_train_args
 | 
			
		||||
from llamafactory.model import load_tokenizer
 | 
			
		||||
@ -71,7 +71,7 @@ def calculate_lr(
 | 
			
		||||
    if stage == "pt":
 | 
			
		||||
        data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
 | 
			
		||||
    elif stage == "sft":
 | 
			
		||||
        data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX)
 | 
			
		||||
        data_collator = MultiModalDataCollatorForSeq2Seq(template=template, tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX)
 | 
			
		||||
    else:
 | 
			
		||||
        raise NotImplementedError(f"Stage does not supported: {stage}.")
 | 
			
		||||
 | 
			
		||||
@ -81,14 +81,13 @@ def calculate_lr(
 | 
			
		||||
        valid_tokens += torch.sum(batch["labels"] != IGNORE_INDEX).item()
 | 
			
		||||
        total_tokens += torch.numel(batch["labels"])
 | 
			
		||||
 | 
			
		||||
    batch_max_len = cutoff_len * batch_size  # max tokens in a batch
 | 
			
		||||
    valid_ratio = valid_tokens / total_tokens
 | 
			
		||||
    batch_valid_len = batch_max_len * valid_ratio
 | 
			
		||||
    lr = BASE_LR * math.sqrt(batch_valid_len / BASE_BS)  # lr ~ sqrt(batch_size)
 | 
			
		||||
    token_batch_size = cutoff_len * batch_size * valid_ratio
 | 
			
		||||
    lr = BASE_LR * math.sqrt(token_batch_size / BASE_BS)  # lr ~ sqrt(batch_size)
 | 
			
		||||
    lr = lr / 6.0 if is_mistral_or_gemma else lr
 | 
			
		||||
    print(
 | 
			
		||||
        "Optimal learning rate is {:.2e} for valid ratio% {:.2f} and effective batch size {:.2f}".format(
 | 
			
		||||
            lr, valid_ratio * 100, batch_valid_len
 | 
			
		||||
        "Optimal learning rate is {:.2e} for valid ratio% {:.2f} and effective token batch size {:.2f}".format(
 | 
			
		||||
            lr, valid_ratio * 100, token_batch_size
 | 
			
		||||
        )
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -20,16 +20,16 @@ import fire
 | 
			
		||||
import torch
 | 
			
		||||
from torch.utils.data import DataLoader
 | 
			
		||||
from tqdm import tqdm
 | 
			
		||||
from transformers import DataCollatorForLanguageModeling, DataCollatorForSeq2Seq
 | 
			
		||||
from transformers import DataCollatorForLanguageModeling
 | 
			
		||||
 | 
			
		||||
from llamafactory.data import get_dataset, get_template_and_fix_tokenizer
 | 
			
		||||
from llamafactory.data import MultiModalDataCollatorForSeq2Seq, get_dataset, get_template_and_fix_tokenizer
 | 
			
		||||
from llamafactory.extras.constants import IGNORE_INDEX
 | 
			
		||||
from llamafactory.hparams import get_train_args
 | 
			
		||||
from llamafactory.model import load_model, load_tokenizer
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@dataclass
 | 
			
		||||
class PairwiseDataCollatorWithPadding(DataCollatorForSeq2Seq):
 | 
			
		||||
class PairwiseDataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq):
 | 
			
		||||
    r"""
 | 
			
		||||
    Data collator for pairwise data.
 | 
			
		||||
    """
 | 
			
		||||
@ -39,24 +39,25 @@ class PairwiseDataCollatorWithPadding(DataCollatorForSeq2Seq):
 | 
			
		||||
    def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, torch.Tensor]:
 | 
			
		||||
        r"""
 | 
			
		||||
        Pads batched data to the longest sequence in the batch.
 | 
			
		||||
 | 
			
		||||
        We generate 2 * n examples where the first n examples represent chosen examples and
 | 
			
		||||
        the last n examples represent rejected examples.
 | 
			
		||||
        """
 | 
			
		||||
        chosen_features = []
 | 
			
		||||
        for feature in features:
 | 
			
		||||
            prompt_len, answer_len = len(feature["prompt_ids"]), len(feature["chosen_ids"])
 | 
			
		||||
            input_ids = feature["prompt_ids"] + feature["chosen_ids"]
 | 
			
		||||
            attention_mask = [1] * (prompt_len + answer_len)
 | 
			
		||||
            labels = input_ids if self.train_on_prompt else [IGNORE_INDEX] * prompt_len + feature["chosen_ids"]
 | 
			
		||||
            chosen_features.append({"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels})
 | 
			
		||||
            chosen_features.append(
 | 
			
		||||
                {
 | 
			
		||||
                    "input_ids": feature["chosen_input_ids"],
 | 
			
		||||
                    "attention_mask": feature["chosen_attention_mask"],
 | 
			
		||||
                    "labels": feature["chosen_input_ids"] if self.train_on_prompt else feature["chosen_labels"],
 | 
			
		||||
                    "images": feature["images"],
 | 
			
		||||
                    "videos": feature["videos"],
 | 
			
		||||
                }
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        return super().__call__(chosen_features)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def calculate_ppl(
 | 
			
		||||
    model_name_or_path: str,
 | 
			
		||||
    save_name: str,
 | 
			
		||||
    save_name: str = "ppl.json",
 | 
			
		||||
    batch_size: int = 4,
 | 
			
		||||
    stage: Literal["pt", "sft", "rm"] = "sft",
 | 
			
		||||
    dataset: str = "alpaca_en_demo",
 | 
			
		||||
@ -68,7 +69,8 @@ def calculate_ppl(
 | 
			
		||||
):
 | 
			
		||||
    r"""
 | 
			
		||||
    Calculates the ppl on the dataset of the pre-trained models.
 | 
			
		||||
    Usage: python cal_ppl.py --model_name_or_path path_to_model --dataset alpaca_en_demo --save_name ppl.json
 | 
			
		||||
    Usage: export CUDA_VISIBLE_DEVICES=0
 | 
			
		||||
    python cal_ppl.py --model_name_or_path path_to_model --dataset alpaca_en_demo --save_name ppl.json
 | 
			
		||||
    """
 | 
			
		||||
    model_args, data_args, training_args, finetuning_args, _ = get_train_args(
 | 
			
		||||
        dict(
 | 
			
		||||
@ -93,10 +95,12 @@ def calculate_ppl(
 | 
			
		||||
    if stage == "pt":
 | 
			
		||||
        data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
 | 
			
		||||
    elif stage == "sft":
 | 
			
		||||
        data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX)
 | 
			
		||||
        data_collator = MultiModalDataCollatorForSeq2Seq(
 | 
			
		||||
            template=template, tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX
 | 
			
		||||
        )
 | 
			
		||||
    elif stage == "rm":
 | 
			
		||||
        data_collator = PairwiseDataCollatorWithPadding(
 | 
			
		||||
            tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX, train_on_prompt=train_on_prompt
 | 
			
		||||
            template=template, tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX, train_on_prompt=train_on_prompt
 | 
			
		||||
        )
 | 
			
		||||
    else:
 | 
			
		||||
        raise NotImplementedError(f"Stage does not supported: {stage}.")
 | 
			
		||||
 | 
			
		||||
@ -31,7 +31,8 @@ def length_cdf(
 | 
			
		||||
):
 | 
			
		||||
    r"""
 | 
			
		||||
    Calculates the distribution of the input lengths in the dataset.
 | 
			
		||||
    Usage: python length_cdf.py --model_name_or_path path_to_model --dataset alpaca_en_demo --template default
 | 
			
		||||
    Usage: export CUDA_VISIBLE_DEVICES=0
 | 
			
		||||
    python length_cdf.py --model_name_or_path path_to_model --dataset alpaca_en_demo --template default
 | 
			
		||||
    """
 | 
			
		||||
    model_args, data_args, training_args, _, _ = get_train_args(
 | 
			
		||||
        dict(
 | 
			
		||||
 | 
			
		||||
@ -86,6 +86,10 @@ class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
 | 
			
		||||
    template: Optional["Template"] = None
 | 
			
		||||
    processor: Optional["ProcessorMixin"] = None
 | 
			
		||||
 | 
			
		||||
    def __post_init__(self):
 | 
			
		||||
        if self.template is None:
 | 
			
		||||
            raise ValueError("Template is required for MultiModalDataCollator.")
 | 
			
		||||
 | 
			
		||||
    def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, "torch.Tensor"]:
 | 
			
		||||
        batch_images, batch_videos, batch_imglens, batch_vidlens, batch_input_ids = [], [], [], [], []
 | 
			
		||||
        for feature in features:
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user