82 Commits

Author SHA1 Message Date
Yaowei Zheng
7ef1fba34a [version] fix gradio (#9685) 2025-12-28 05:00:51 +08:00
Copilot
eceec8ab69 [deps] goodbye python 3.9 (#9677)
Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: hiyouga <16256802+hiyouga@users.noreply.github.com>
Co-authored-by: hiyouga <hiyouga@buaa.edu.cn>
2025-12-27 02:50:44 +08:00
Yaowei Zheng
b44f651e09 [ci] fix docker (#9678) 2025-12-27 02:43:46 +08:00
Yaowei Zheng
55590f5ece [misc] fix ci with uv (#9676) 2025-12-27 01:39:13 +08:00
Copilot
a1b1931b4a [breaking] migrate from setuptools to uv (#9673)
Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: hiyouga <16256802+hiyouga@users.noreply.github.com>
2025-12-26 22:47:23 +08:00
Xunpeng Xiao
3c17f2722c [model] Update ernie_vl to adapt new version (#9665) 2025-12-26 19:57:49 +08:00
Copilot
a882e2d5fc [assets] Add GitHub Copilot instructions for repository (#9675)
Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: hiyouga <16256802+hiyouga@users.noreply.github.com>
2025-12-26 17:32:48 +08:00
Yaowei Zheng
a754604c11 [misc] fix accelerator (#9661)
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-12-25 02:11:04 +08:00
Xunpeng Xiao
6a2eafbae3 [feat] Models trained and inferred with Mxfp4 are dequantized by default (#9652)
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
2025-12-24 00:26:40 +08:00
Yaowei Zheng
84485406b7 [ci] disable pip cache for ci (#9654) 2025-12-23 18:37:40 +08:00
Kingsley
1c8a42d2f8 [v1&WIP] dataloader init (#9645) 2025-12-23 16:29:47 +08:00
thulyubh22
7901b2f32e [model] efficient tuning for gpt-oss (#9354)
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-12-23 16:28:38 +08:00
Yaowei Zheng
1f1f5a7d1b [ci] remove docker cache (#9640) 2025-12-22 01:03:10 +08:00
Yaowei Zheng
6ef9854713 [misc] fix cache & pin transformers to 4.57.1 (#9638) 2025-12-22 00:20:55 +08:00
Hertz
4923f52a28 [model] support MiMo-V2-Flash model (#9637) 2025-12-21 14:38:18 +08:00
Yaowei Zheng
0894b4f37e [misc] lint (#9636) 2025-12-20 16:19:39 +08:00
ZIYI ZENG
b0d49e137f [misc] Support split eval_dataset when explict set "predict_with_generate" (#9604)
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-12-20 01:46:00 +08:00
Xunpeng Xiao
ddd7dcc722 [data] Fix the video frame sampling issue #9620 (#9634) 2025-12-19 18:36:31 +08:00
浮梦
5204cd2bca [misc] add version check for moe (#9633) 2025-12-19 14:57:37 +08:00
Xunpeng Xiao
8c74dca76a [feat] Models trained and inferred with FP8 are dequantized by default (#9627) 2025-12-18 22:54:35 +08:00
xvxuopop
e8deda53a1 [example] add Qwen3 series examples (#9624)
Co-authored-by: UsernameFull <tohowtodoit@gmail.com>
2025-12-18 21:27:00 +08:00
mrhaoxx
a769fb94b9 [feat] support ktransformers for dpo (#9621)
Co-authored-by: poryfly <porykid@gmail.com>
2025-12-18 21:26:25 +08:00
mrhaoxx
964569751f [kt] refactor ktransformers integration (#9632) 2025-12-18 21:26:04 +08:00
Hertz
9fd4b094d4 [model] support VibeThinker models (#9616) 2025-12-16 21:50:46 +08:00
浮梦
18c21bce5a [test] add allreduce test on npu (#9619)
Co-authored-by: frozenleaves <frozen@Mac.local>
2025-12-16 21:33:30 +08:00
sunyi0505
a0179772ab [example] add deepspeed autotp config and example (#9602) 2025-12-15 15:15:26 +08:00
Yaowei Zheng
aeda079014 [v1] model loader (#9613) 2025-12-14 11:50:52 +08:00
Xunpeng Xiao
fdd24276ed [feat] support new function call value (#9610)
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
2025-12-14 00:20:33 +08:00
Yaowei Zheng
110d21713e [v1] add dp & mp mesh (#9611) 2025-12-13 01:44:28 +08:00
Yaowei Zheng
203069e11c [v1] add accelerator (#9607) 2025-12-12 19:22:06 +08:00
tangefly
4fd94141a4 [model] Add Ministral3 (#9582)
Co-authored-by: kingsley <kingsleydodonow@gmail.com>
2025-12-10 15:57:24 +08:00
Kingsley
22d6ac29d5 [model] Rename GLMV template (#9595) 2025-12-10 13:27:47 +08:00
DoubleWheat
cff4483392 [config] Fix RoPE scaling patch for resuming from a scaled model (#9588) 2025-12-09 20:37:37 +08:00
Yaowei Zheng
5d56817e2b [misc] lint (#9593)
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-12-09 18:00:35 +08:00
Yaowei Zheng
1bbb461f76 [assets] update readme (#9587) 2025-12-09 12:22:54 +08:00
Hertz
c1f5f8fff6 [model] support GLM4.6v (#9586) 2025-12-09 11:06:42 +08:00
Yaowei Zheng
5744f1ea94 [v1] add models & accelerator (#9579) 2025-12-08 02:30:25 +08:00
tangefly
739954910a [deps] Update for Transformers v5 (#9569) 2025-12-08 01:13:32 +08:00
xvxuopop
109162dc56 [fix] fix the issue when using fsdp2 with gradient checkpointing. (#9541)
Co-authored-by: jin-yongxu <jinyongxu@h-partners.com>
2025-12-06 16:04:51 +08:00
jiaqiw09
165f3f073a [examples] add fsdp config for mutiple nodes (#9575)
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
2025-12-05 23:22:48 +08:00
jiaqiw09
efb13b7483 [V1] Refactor ascend MoE kernel patch logic & Support Qwen3-MoE (#9557) 2025-12-02 00:22:03 +08:00
Username_Full
e43a972b25 [test] add npu test yaml and add ascend a3 docker file (#9547)
Co-authored-by: jiaqiw09 <jiaqiw960714@gmail.com>
2025-11-30 09:37:08 +08:00
Kingsley
22be45c78c [misc] fix omni thinker load (#9552)
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-11-30 09:36:36 +08:00
浮梦
d1f585f80a [test] update test cmd (#9544)
Co-authored-by: frozenleaves <frozen@Mac.local>
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
2025-11-27 17:59:42 +08:00
xvxuopop
955396e8a5 [example] correct the parameter errors in the examples file. (#9543) 2025-11-27 17:38:38 +08:00
xvxuopop
231756a5bf [chat] fix the error when the vLLM version is greater than 0.10.0 (#9539)
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
2025-11-27 02:14:53 +08:00
xvxuopop
2c4fb3c97e [v1] Support fused moe kernel for qwen3vlmoe model. (#9532) 2025-11-27 02:13:33 +08:00
浮梦
2b6f16f261 [model] temporarily support npu fused options on v0, powered by v1 kernels (#9520)
Co-authored-by: frozenleaves <frozen@Mac.local>
2025-11-27 02:08:36 +08:00
浮梦
f17efde693 [v1] support automatic discovery of registered kernels. (#9509)
Co-authored-by: frozenleaves <frozen@Mac.local>
2025-11-27 01:47:22 +08:00
Hertz
591fc9ed02 [model] support ERNIE-4.5-VL Models (#9521) 2025-11-24 16:48:06 +08:00
Peilin Li
3140c242f0 [assets] add README with KT+llamafactory (#9514) 2025-11-19 16:50:45 +08:00
Peilin Li
887c562d60 [example] Add KTransformers Qwen3MoE example (#9511)
Co-authored-by: unknown <xiongchenhui@hisense.ad>
Co-authored-by: Kingsley <kingsleydodonow@gmail.com>
2025-11-19 00:53:28 +08:00
Edge-Seven
9779b1f361 [misc] fix typos in some files (#9505)
Co-authored-by: khanhkhanhlele <namkhanh20xx@gmail.com>
2025-11-18 20:36:01 +08:00
Yinlei Sun
45f0437a14 [v1] Add support for ShareGPT format. (#9486) 2025-11-18 13:44:08 +08:00
浮梦
d4e120423d [data] fix qwen3omni moe model (#9501)
Co-authored-by: frozenleaves <frozen@Mac.local>
2025-11-18 13:43:22 +08:00
Pory
10a446e373 [model] ktransformers qwen3 support (#9485)
Co-authored-by: unknown <xiongchenhui@hisense.ad>
2025-11-13 20:09:44 +08:00
jiaqiw09
0aa4a051af [test] support slow skip and device skip in Uts (#9484) 2025-11-13 20:08:22 +08:00
Yaowei Zheng
8173a88a26 [assets] update readme (#9477) 2025-11-12 16:15:41 +08:00
Kingsley
fef86fa7fe [data] fix qwen3omni audio length calculation (#9467) 2025-11-12 10:37:15 +08:00
taohongsheng
5afa851f71 [misc] Modify pip install command for huggingface_hub (#9463) 2025-11-10 23:04:00 +08:00
MyungHa Kwon
a711bce664 [data] add openai format (#9449) 2025-11-06 20:10:20 +08:00
魅影
bd24350cbf [v1] add pair data converter (#9360)
Co-authored-by: frozenleaves <frozen@Mac.local>
2025-11-06 14:05:58 +08:00
Peilin Li
bd30c0003b [train] fix denominator of ga in ksft loss (#9409) 2025-11-05 20:53:23 +08:00
魅影
8edd2622ce [docker] update npu dockerfile (#9407)
Co-authored-by: frozenleaves <frozen@Mac.local>
2025-11-05 18:28:32 +08:00
Yaowei Zheng
eaf963f67f [model] update kt code (#9406) 2025-11-05 15:27:22 +08:00
Kingsley
56f45e826f [train] fix MPO re-weight (#9405) 2025-11-04 21:10:41 +08:00
魅影
14abb75126 [model] enable using FA in npu (#9397)
Co-authored-by: frozenleaves <frozen@Mac.local>
2025-11-04 19:32:30 +08:00
한송민
5a9939050e [model] add deepstack_merger_list to Qwen3-VL vision_model_keys (#9399) 2025-11-04 19:27:34 +08:00
Peilin Li
934b3084ee [train] KTransformers SFT as backend engine for LLaMA-Factory (#9400)
Co-authored-by: jimmy128 <jimmy128@noreply.gitcode.com>
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
2025-11-04 15:54:12 +08:00
Yaowei Zheng
3ae15da9c0 [misc] lint code (#9395) 2025-11-03 22:08:59 +08:00
魅影
215580c77d [data] fix mm pluigin for qwen omni video training (#9388)
Co-authored-by: frozenleaves <frozen@Mac.local>
2025-11-03 11:44:27 +08:00
魅影
767b344fb4 [model] remove npu sdpa patch (#9368)
Co-authored-by: frozenleaves <frozen@Mac.local>
2025-10-30 16:26:35 +08:00
Kingsley
3057db15c3 [readme] upd mcore readme (#9352) 2025-10-27 21:23:31 +08:00
Kingsley
13170577b2 [feat] support megatron-LM training by mcore_adapter (#9237)
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
2025-10-26 16:21:30 +08:00
Xiaosu Zhu
129e918106 [data] Fix Qwen3VL plugin (#9297)
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
Co-authored-by: kingsley <kingsleydodonow@gmail.com>
2025-10-26 16:07:04 +08:00
Yaowei Zheng
9c0d033a15 [model] add qwen3vl 2b & 32b (#9343) 2025-10-24 13:22:36 +08:00
Yaowei Zheng
2a822178de [deps] fix yanked packages (#9333) 2025-10-22 20:54:51 +08:00
Kingsley
b842457ef4 [ci] revert mac os ci setup (#9316) 2025-10-21 18:26:12 +08:00
魅影
2c6aded5d4 [v1] kernel plugin (#9274)
Co-authored-by: frozenleaves <frozen@Mac.local>
2025-10-18 18:02:14 +08:00
Yaowei Zheng
d9d67ba62d [misc] fix import error (#9299) 2025-10-17 17:46:27 +08:00
Yaowei Zheng
a442fa90ad [misc] fix import error (#9296) 2025-10-17 10:54:30 +08:00
wyfdgg
8c341cbaae [model] support hunyuan-mt model (#9284)
Co-authored-by: wyfdgg <liwenkun0812@163.com>
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
2025-10-17 10:33:09 +08:00
209 changed files with 8679 additions and 1150 deletions

View File

@@ -15,6 +15,7 @@ LLAMAFACTORY_VERBOSITY=
USE_MODELSCOPE_HUB=
USE_OPENMIND_HUB=
USE_RAY=
USE_KT=
RECORD_VRAM=
OPTIM_TORCH=
NPU_JIT_COMPILE=
@@ -35,6 +36,8 @@ GRADIO_SERVER_NAME=
GRADIO_SERVER_PORT=
GRADIO_ROOT_PATH=
GRADIO_IPV6=
# backend
USE_MCA=
# setup
ENABLE_SHORT_CONSOLE=
# reserved (do not use)

180
.github/copilot-instructions.md vendored Normal file
View File

@@ -0,0 +1,180 @@
# GitHub Copilot Instructions for LLaMA Factory
## Project Overview
LLaMA Factory is an efficient fine-tuning framework for 100+ large language models (LLMs). It provides:
- Support for various models: LLaMA, LLaVA, Mistral, Qwen, DeepSeek, Yi, Gemma, ChatGLM, Phi, etc.
- Multiple training methods: pre-training, supervised fine-tuning, reward modeling, PPO, DPO, KTO, ORPO
- Scalable resources: 16-bit full-tuning, freeze-tuning, LoRA and QLoRA variants
- Advanced algorithms: GaLore, BAdam, APOLLO, Adam-mini, Muon, OFT, DoRA, etc.
- Web UI (LLaMA Board) and CLI interfaces
### Architecture Versions
LLaMA Factory has two parallel architectures that can be switched via the `USE_V1` environment variable:
**v0 (default)** - File hierarchy:
- `api`, `webui``chat`, `eval`, `train``data`, `model``hparams``extras`
**v1** - File hierarchy:
- `trainers``core``accelerator`, `plugins`, `config``utils`
Set `USE_V1=1` to enable v1 architecture.
## Code Structure
### v0 Architecture (Default)
- `src/llamafactory/` - Main package directory
- `api/` - OpenAI-style API implementation
- `chat/` - Chat interface implementation
- `cli.py` - Command-line interface
- `data/` - Data processing and dataset handling
- `eval/` - Model evaluation utilities
- `extras/` - Additional utilities and helpers
- `hparams/` - Hyperparameter definitions
- `model/` - Model loading, patching, and utilities
- `train/` - Training pipeline implementation
- `webui/` - Gradio-based web interface
- `src/train.py` - Training entry script (delegates to `llamafactory.train.tuner`)
- `src/webui.py` - Web UI entry script (delegates to `llamafactory.webui.interface`)
- `src/api.py` - API server entry script (delegates to `llamafactory.api.app`)
- `tests/` - Test suite
- `examples/` - Example configurations for various training scenarios
- `data/` - Dataset definitions and examples
### v1 Architecture (USE_V1=1)
- `src/llamafactory/v1/` - Version 1 package directory
- `trainers/` - Training implementations
- `core/` - Core training utilities
- `accelerator/` - Acceleration and distributed training
- `plugins/` - Pluggable components (model, data, sampler, trainer)
- `config/` - Configuration management
- `utils/` - Utility functions
## Development Practices
### Code Style
- Follow the [Google Python Style Guide](https://google.github.io/styleguide/pyguide.html)
- Use ruff for linting and formatting
- Line length: 119 characters
- Indentation: 4 spaces
- Quote style: double quotes
- Use Google-style docstrings for documentation
### Import Organization
- Known first-party: `llamafactory`
- Known third-party: `accelerate`, `datasets`, `gradio`, `numpy`, `peft`, `torch`, `transformers`, `trl`
- Use 2 blank lines after imports
### Quality Checks
Before committing code, run:
```bash
make style # Auto-fix style issues
make quality # Check code quality
make test # Run test suite
```
Or use the combined command:
```bash
make commit # Run pre-commit hooks
```
### Testing
- Use pytest for testing
- Tests are located in `tests/` and `tests_v1/` directories
- Run tests with: `make test` (which runs `WANDB_DISABLED=true pytest -vv --import-mode=importlib tests/ tests_v1/`)
- Disable wandb during testing to avoid external dependencies
- **Note**: Training configurations require GPU machines, so training is typically not tested end-to-end. Use `make test` to validate file-level functionality.
### Building
Build the package with:
```bash
pip3 install build && python3 -m build
```
### License
- All source files must include the Apache 2.0 license header
- Check license headers with: `make license`
## Common Patterns
### Configuration Files
- Training configurations are typically YAML or JSON files in `examples/` directory
- Hyperparameters are defined using dataclasses in `src/llamafactory/hparams/`
### Model Support
- New model support is added through model patches in `src/llamafactory/model/`
- Visual models use the visual utilities in `src/llamafactory/model/model_utils/visual.py`
- Quantization support is in `src/llamafactory/model/model_utils/quantization.py`
### Data Processing
- Dataset definitions are in `data/dataset_info.json`
- Data templates and processors are in `src/llamafactory/data/`
### Training
- Training pipelines are in `src/llamafactory/train/`
- Support for different training methods: SFT, DPO, PPO, RM, PT, KTO, ORPO
## Key Dependencies
- Python >= 3.9.0
- PyTorch and transformers for model handling
- datasets for data processing
- peft for parameter-efficient fine-tuning
- accelerate for distributed training
- gradio for web UI
- trl for reinforcement learning
- Optional: vllm/sglang for inference, flash-attention-2, unsloth, liger-kernel
## Entry Points
- **CLI Training**: `llamafactory-cli train --config examples/train_lora/llama3_lora_sft.yaml`
- **Web UI**: `llamafactory-cli webui` or `python src/webui.py`
- **API Server**: `llamafactory-cli api` or `python src/api.py`
- **Chat Interface**: `llamafactory-cli chat --model_name_or_path MODEL_PATH`
## Environment Setup
For development:
```bash
pip install -e ".[dev]"
```
## Important Notes
- The project supports multiple backends: default PyTorch, vLLM, SGLang
- Megatron-core training is supported via mcore_adapter
- SwanLab and W&B are supported for experiment tracking
- Docker support is available with pre-built images
- Day-0/Day-1 support for latest cutting-edge models
- Multi-modal support for vision and audio understanding tasks
## Contribution Guidelines
1. Fork the repository
2. Create a development branch
3. Set up development environment with `pip install -e ".[dev]"`
4. Make changes following the style guide
5. Run quality checks: `make style && make quality`
6. Run tests: `make test`
7. Submit a pull request
## Common Commands
- `make style` - Format code
- `make quality` - Run linters
- `make test` - Run tests
- `make commit` - Install and run pre-commit hooks
- `make license` - Check license headers

View File

@@ -7,7 +7,7 @@ on:
- "main"
paths:
- "**/*.py"
- "requirements.txt"
- "pyproject.toml"
- "docker/**"
- ".github/workflows/*.yml"
pull_request:
@@ -15,7 +15,7 @@ on:
- "main"
paths:
- "**/*.py"
- "requirements.txt"
- "pyproject.toml"
- "docker/**"
- ".github/workflows/*.yml"
release:
@@ -27,9 +27,10 @@ jobs:
strategy:
fail-fast: false
matrix:
device:
- "cuda"
- "npu"
include:
- device: "cuda"
- device: "npu-a2"
- device: "npu-a3"
runs-on: ubuntu-latest
@@ -51,16 +52,11 @@ jobs:
- name: Checkout
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.10"
- name: Get llamafactory version
id: version
run: |
if [ "${{ github.event_name }}" = "release" ]; then
echo "tag=$(python setup.py --version)" >> "$GITHUB_OUTPUT"
echo "tag=$(grep -oP 'VERSION = "\K[^"]+' src/llamafactory/extras/env.py)" >> "$GITHUB_OUTPUT"
else
echo "tag=latest" >> "$GITHUB_OUTPUT"
fi
@@ -76,7 +72,7 @@ jobs:
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Login to Quay
if: ${{ github.event_name != 'pull_request' && matrix.device == 'npu' }}
if: ${{ github.event_name != 'pull_request' && matrix.device == 'npu'}}
uses: docker/login-action@v3
with:
registry: quay.io
@@ -89,16 +85,12 @@ jobs:
with:
context: .
file: ./docker/docker-cuda/Dockerfile
build-args: |
EXTRAS=metrics,deepspeed,liger-kernel
push: ${{ github.event_name != 'pull_request' }}
tags: |
docker.io/hiyouga/llamafactory:${{ steps.version.outputs.tag }}
cache-from: type=gha
cache-to: type=gha,mode=max
- name: Build and push Docker image (NPU)
if: ${{ matrix.device == 'npu' }}
- name: Build and push Docker image (NPU-A2)
if: ${{ matrix.device == 'npu-a2' }}
uses: docker/build-push-action@v6
with:
context: .
@@ -108,5 +100,17 @@ jobs:
tags: |
docker.io/hiyouga/llamafactory:${{ steps.version.outputs.tag }}-npu-a2
quay.io/ascend/llamafactory:${{ steps.version.outputs.tag }}-npu-a2
cache-from: type=gha
cache-to: type=gha,mode=max
- name: Build and push Docker image (NPU-A3)
if: ${{ matrix.device == 'npu-a3' }}
uses: docker/build-push-action@v6
with:
context: .
platforms: linux/amd64,linux/arm64
file: ./docker/docker-npu/Dockerfile
build-args: |
BASE_IMAGE=quay.io/ascend/cann:8.3.rc2-a3-ubuntu22.04-py3.11
push: ${{ github.event_name != 'pull_request' }}
tags: |
docker.io/hiyouga/llamafactory:${{ steps.version.outputs.tag }}-npu-a3
quay.io/ascend/llamafactory:${{ steps.version.outputs.tag }}-npu-a3

View File

@@ -23,10 +23,11 @@ jobs:
- name: Checkout
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
- name: Install uv
uses: astral-sh/setup-uv@v7
with:
python-version: "3.9"
python-version: "3.11"
github-token: ${{ github.token }}
- name: Build package
run: |

View File

@@ -7,14 +7,16 @@ on:
- "main"
paths:
- "**/*.py"
- "requirements.txt"
- "pyproject.toml"
- "Makefile"
- ".github/workflows/*.yml"
pull_request:
branches:
- "main"
paths:
- "**/*.py"
- "requirements.txt"
- "pyproject.toml"
- "Makefile"
- ".github/workflows/*.yml"
jobs:
@@ -23,10 +25,9 @@ jobs:
fail-fast: false
matrix:
python:
- "3.9"
- "3.10"
- "3.11"
- "3.12"
# - "3.13" # enable after trl is upgraded
os:
- "ubuntu-latest"
- "windows-latest"
@@ -34,18 +35,15 @@ jobs:
transformers:
- null
include: # test backward compatibility
- python: "3.9"
- python: "3.11"
os: "ubuntu-latest"
transformers: "4.49.0"
- python: "3.9"
- python: "3.11"
os: "ubuntu-latest"
transformers: "4.51.0"
- python: "3.9"
- python: "3.11"
os: "ubuntu-latest"
transformers: "4.53.0"
exclude: # exclude python 3.9 on macos
- python: "3.9"
os: "macos-latest"
runs-on: ${{ matrix.os }}
@@ -61,28 +59,23 @@ jobs:
- name: Checkout
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
- name: Install uv
uses: astral-sh/setup-uv@v7
with:
python-version: ${{ matrix.python }}
cache: "pip"
cache-dependency-path: "**/requirements*.txt"
github-token: ${{ github.token }}
enable-cache: false
- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip install ".[torch,dev]"
uv venv
uv pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
uv pip install -e ".[dev]"
- name: Install transformers
if: ${{ matrix.transformers }}
run: |
python -m pip install "transformers==${{ matrix.transformers }}"
- name: Update accelerate to avoid mac os ci errors (before accelerate 1.11.0)
if: ${{ matrix.os == 'macos-latest' }}
run: |
python -m pip uninstall -y accelerate
python -m pip install "git+https://github.com/huggingface/accelerate.git"
uv pip install "transformers==${{ matrix.transformers }}"
- name: Cache files
id: hf-hub-cache
@@ -94,18 +87,25 @@ jobs:
- name: Check quality
run: |
make style && make quality
env:
UV_NO_SYNC: 1
- name: Check license
run: |
make license
env:
UV_NO_SYNC: 1
- name: Check build
run: |
make build
env:
UV_NO_SYNC: 1
- name: Test with pytest
run: |
make test
env:
UV_NO_SYNC: 1
HF_HOME: ${{ runner.temp }}/huggingface
HF_HUB_OFFLINE: "${{ steps.hf-hub-cache.outputs.cache-hit == 'true' && '1' || '0' }}"

99
.github/workflows/tests_npu.yml vendored Normal file
View File

@@ -0,0 +1,99 @@
name: tests_npu
on:
workflow_dispatch:
push:
branches:
- "main"
paths:
- "**/*.py"
- "pyproject.toml"
- "Makefile"
- ".github/workflows/*.yml"
pull_request:
branches:
- "main"
paths:
- "**/*.py"
- "pyproject.toml"
- "Makefile"
- ".github/workflows/*.yml"
jobs:
tests:
strategy:
fail-fast: false
matrix:
python:
- "3.11"
os:
- "linux-aarch64-a2-4"
pytorch_npu:
- "2.7.1"
runs-on: ${{ matrix.os }}
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}-${{ matrix.os }}-${{ matrix.python }}
cancel-in-progress: ${{ github.ref != 'refs/heads/main' }}
container:
image: ascendai/cann:8.3.rc2-910b-ubuntu22.04-py3.11
env:
HF_ENDPOINT: https://hf-mirror.com
HF_TOKEN: ${{ secrets.HF_TOKEN }}
OS_NAME: ${{ matrix.os }}
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install uv
run: |
curl -LsSf https://astral.sh/uv/install.sh | sh
- name: Install dependencies
run: |
uv venv
uv pip install torch-npu==${{matrix.pytorch_npu}}
uv pip install -e ".[dev]"
- name: Install node
run: |
apt-get update || true
apt-get install -y curl
curl -fsSL https://deb.nodesource.com/setup_20.x | bash -
apt-get install -y nodejs
- name: Cache files
id: hf-hub-cache
uses: actions/cache@v4
with:
path: ${{ runner.temp }}/huggingface
key: huggingface-${{ matrix.os }}-${{ matrix.python }}-${{ hashFiles('tests/version.txt') }}
- name: Check quality
run: |
make style && make quality
env:
UV_NO_SYNC: 1
- name: Check license
run: |
make license
env:
UV_NO_SYNC: 1
- name: Check build
run: |
make build
env:
UV_NO_SYNC: 1
- name: Test with pytest
run: |
make test
env:
UV_NO_SYNC: 1
HF_HOME: /root/.cache/huggingface
HF_HUB_OFFLINE: "${{ steps.hf-hub-cache.outputs.cache-hit == 'true' && '1' || '0' }}"

5
.gitignore vendored
View File

@@ -85,7 +85,7 @@ ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
.python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
@@ -165,6 +165,9 @@ cython_debug/
# uv
uv.lock
# macOS
.DS_Store
# custom .gitignore
hf_cache/
ms_cache/

View File

@@ -1 +1 @@
include LICENSE requirements.txt
include LICENSE

View File

@@ -1,24 +1,28 @@
.PHONY: build commit license quality style test
check_dirs := scripts src tests tests_v1 setup.py
check_dirs := scripts src tests tests_v1
RUN := $(shell command -v uv >/dev/null 2>&1 && echo "uv run" || echo "")
BUILD := $(shell command -v uv >/dev/null 2>&1 && echo "uv build" || echo "python -m build")
TOOL := $(shell command -v uv >/dev/null 2>&1 && echo "uvx" || echo "")
build:
pip3 install build && python3 -m build
$(BUILD)
commit:
pre-commit install
pre-commit run --all-files
$(TOOL) pre-commit install
$(TOOL) pre-commit run --all-files
license:
python3 tests/check_license.py $(check_dirs)
$(RUN) python3 tests/check_license.py $(check_dirs)
quality:
ruff check $(check_dirs)
ruff format --check $(check_dirs)
$(TOOL) ruff check $(check_dirs)
$(TOOL) ruff format --check $(check_dirs)
style:
ruff check $(check_dirs) --fix
ruff format $(check_dirs)
$(TOOL) ruff check $(check_dirs) --fix
$(TOOL) ruff format $(check_dirs)
test:
CUDA_VISIBLE_DEVICES= WANDB_DISABLED=true pytest -vv tests/
WANDB_DISABLED=true $(RUN) pytest -vv --import-mode=importlib tests/ tests_v1/

View File

@@ -5,11 +5,13 @@
[![GitHub contributors](https://img.shields.io/github/contributors/hiyouga/LLaMA-Factory?color=orange)](https://github.com/hiyouga/LLaMA-Factory/graphs/contributors)
[![GitHub workflow](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml/badge.svg)](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml)
[![PyPI](https://img.shields.io/pypi/v/llamafactory)](https://pypi.org/project/llamafactory/)
[![Citation](https://img.shields.io/badge/citation-840-green)](https://scholar.google.com/scholar?cites=12620864006390196564)
[![Citation](https://img.shields.io/badge/citation-1000+-green)](https://scholar.google.com/scholar?cites=12620864006390196564)
[![Docker Pulls](https://img.shields.io/docker/pulls/hiyouga/llamafactory)](https://hub.docker.com/r/hiyouga/llamafactory/tags)
[![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai)
[![Discord](assets/thirdparty/discord.svg)](https://discord.gg/rKfvV9r9FK)
[![WeChat](https://img.shields.io/badge/WeChat-User%20Group-blue?logo=wechat)](https://github.com/hiyouga/llamafactory-community)
[![Blog](https://img.shields.io/badge/Hugo-Official%20Blog-blue?logo=hugo)](https://blog.llamafactory.net/en/)
[![Open in Colab](assets/thirdparty/colab.svg)](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)
[![Open in DSW](assets/thirdparty/dsw.svg)](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)
@@ -44,16 +46,20 @@
https://github.com/user-attachments/assets/3991a3a8-4276-4d30-9cab-4cb0c4b9b99e
Choose your path:
Start local training:
- Please refer to [usage](#getting-started)
Start cloud training:
- **Colab (free)**: https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing
- **PAI-DSW (free trial)**: https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory
- **LLaMA Factory Online**: https://www.llamafactory.com.cn/?utm_source=LLaMA-Factory
- **Alaya NeW (cloud GPU deal)**: https://docs.alayanew.com/docs/documents/useGuide/LLaMAFactory/mutiple/?utm_source=LLaMA-Factory
Read technical notes:
- **Documentation (WIP)**: https://llamafactory.readthedocs.io/en/latest/
- **Documentation (AMD GPU)**: https://rocm.docs.amd.com/projects/ai-developer-hub/en/latest/notebooks/fine_tune/llama_factory_llama3.html
- **Colab (free)**: https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing
- **Local machine**: Please refer to [usage](#getting-started)
- **PAI-DSW (free trial)**: https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory
- **Alaya NeW (cloud GPU deal)**: https://docs.alayanew.com/docs/documents/useGuide/LLaMAFactory/mutiple/?utm_source=LLaMA-Factory
- **Official Blog**: https://blog.llamafactory.net/en/
- **Official Course**: https://www.lab4ai.cn/course/detail?id=7c13e60f6137474eb40f6fd3983c0f46&utm_source=LLaMA-Factory
- **LLaMA Factory Online**: https://www.llamafactory.com.cn/?utm_source=LLaMA-Factory
> [!NOTE]
> Except for the above links, all other websites are unauthorized third-party websites. Please carefully use them.
@@ -90,7 +96,7 @@ Choose your path:
- **Integrated methods**: (Continuous) pre-training, (multimodal) supervised fine-tuning, reward modeling, PPO, DPO, KTO, ORPO, etc.
- **Scalable resources**: 16-bit full-tuning, freeze-tuning, LoRA and 2/3/4/5/6/8-bit QLoRA via AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ.
- **Advanced algorithms**: [GaLore](https://github.com/jiaweizzhao/GaLore), [BAdam](https://github.com/Ledzy/BAdam), [APOLLO](https://github.com/zhuhanqing/APOLLO), [Adam-mini](https://github.com/zyushun/Adam-mini), [Muon](https://github.com/KellerJordan/Muon), [OFT](https://github.com/huggingface/peft/tree/main/src/peft/tuners/oft), DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ and PiSSA.
- **Practical tricks**: [FlashAttention-2](https://github.com/Dao-AILab/flash-attention), [Unsloth](https://github.com/unslothai/unsloth), [Liger Kernel](https://github.com/linkedin/Liger-Kernel), RoPE scaling, NEFTune and rsLoRA.
- **Practical tricks**: [FlashAttention-2](https://github.com/Dao-AILab/flash-attention), [Unsloth](https://github.com/unslothai/unsloth), [Liger Kernel](https://github.com/linkedin/Liger-Kernel), [KTransformers](https://github.com/kvcache-ai/ktransformers/), RoPE scaling, NEFTune and rsLoRA.
- **Wide tasks**: Multi-turn dialogue, tool using, image understanding, visual grounding, video recognition, audio understanding, etc.
- **Experiment monitors**: LlamaBoard, TensorBoard, Wandb, MLflow, [SwanLab](https://github.com/SwanHubX/SwanLab), etc.
- **Faster inference**: OpenAI-style API, Gradio UI and CLI with [vLLM worker](https://github.com/vllm-project/vllm) or [SGLang worker](https://github.com/sgl-project/sglang).
@@ -104,6 +110,12 @@ Choose your path:
## Blogs
> [!TIP]
> Now we have a dedicated blog for LLaMA Factory!
>
> Website: https://blog.llamafactory.net/en/
- 💡 [KTransformers Fine-Tuning × LLaMA Factory: Fine-tuning 1000 Billion models with 2 4090-GPU + CPU](https://blog.llamafactory.net/en/posts/ktransformers/) (English)
- 💡 [Easy Dataset × LLaMA Factory: Enabling LLMs to Efficiently Learn Domain Knowledge](https://buaa-act.feishu.cn/wiki/GVzlwYcRFiR8OLkHbL6cQpYin7g) (English)
- [Fine-tune a mental health LLM using LLaMA-Factory](https://www.lab4ai.cn/project/detail?id=25cce32ec131497b9e06a93336a0817f&type=project&utm_source=LLaMA-Factory) (Chinese)
- [Fine-tune GPT-OSS for Role-Playing using LLaMA-Factory](https://docs.llamafactory.com.cn/docs/documents/best-practice/gptroleplay/?utm_source=LLaMA-Factory) (Chinese)
@@ -123,6 +135,8 @@ Choose your path:
## Changelog
[25/10/26] We support Megatron-core training backend with [**mcore_adapter**](https://github.com/alibaba/ROLL/tree/main/mcore_adapter). See [PR #9237](https://github.com/hiyouga/LLaMA-Factory/pull/9237) to get started.
[25/08/22] We supported **[OFT](https://arxiv.org/abs/2306.07280)** and **[OFTv2](https://arxiv.org/abs/2506.19847)**. See [examples](examples/README.md) for usage.
[25/08/20] We supported fine-tuning the **[Intern-S1-mini](https://huggingface.co/internlm/Intern-S1-mini)** models. See [PR #8976](https://github.com/hiyouga/LLaMA-Factory/pull/8976) to get started.
@@ -264,27 +278,21 @@ Choose your path:
| Model | Model size | Template |
| ----------------------------------------------------------------- | -------------------------------- | -------------------- |
| [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
| [BLOOM/BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
| [Command R](https://huggingface.co/CohereForAI) | 35B/104B | cohere |
| [DeepSeek (Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
| [DeepSeek 2.5/3](https://huggingface.co/deepseek-ai) | 236B/671B | deepseek3 |
| [DeepSeek (LLM/Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
| [DeepSeek 3-3.2](https://huggingface.co/deepseek-ai) | 236B/671B | deepseek3 |
| [DeepSeek R1 (Distill)](https://huggingface.co/deepseek-ai) | 1.5B/7B/8B/14B/32B/70B/671B | deepseekr1 |
| [ERNIE-4.5](https://huggingface.co/baidu) | 0.3B/21B/300B | ernie/ernie_nothink |
| [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
| [Falcon-H1](https://huggingface.co/tiiuae) | 0.5B/1.5B/3B/7B/34B | falcon_h1 |
| [Falcon/Falcon H1](https://huggingface.co/tiiuae) | 0.5B/1.5B/3B/7B/11B/34B/40B/180B | falcon/falcon_h1 |
| [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma/gemma2 |
| [Gemma 3/Gemma 3n](https://huggingface.co/google) | 270M/1B/4B/6B/8B/12B/27B | gemma3/gemma3n |
| [GLM-4/GLM-4-0414/GLM-Z1](https://huggingface.co/zai-org) | 9B/32B | glm4/glmz1 |
| [GLM-4.1V](https://huggingface.co/zai-org) | 9B | glm4v |
| [GLM-4.5/GLM-4.5V](https://huggingface.co/zai-org) | 106B/355B | glm4_moe/glm4v_moe |
| [GLM-4.5/GLM-4.5(6)V](https://huggingface.co/zai-org) | 9B/106B/355B | glm4_moe/glm4_5v |
| [GPT-2](https://huggingface.co/openai-community) | 0.1B/0.4B/0.8B/1.5B | - |
| [GPT-OSS](https://huggingface.co/openai) | 20B/120B | gpt |
| [Granite 3.0-3.3](https://huggingface.co/ibm-granite) | 1B/2B/3B/8B | granite3 |
| [Granite 4](https://huggingface.co/ibm-granite) | 7B | granite4 |
| [Hunyuan](https://huggingface.co/tencent/) | 7B | hunyuan |
| [Index](https://huggingface.co/IndexTeam) | 1.9B | index |
| [GPT-OSS](https://huggingface.co/openai) | 20B/120B | gpt_oss |
| [Granite 3-4](https://huggingface.co/ibm-granite) | 1B/2B/3B/7B/8B | granite3/granite4 |
| [Hunyuan (MT)](https://huggingface.co/tencent/) | 7B | hunyuan |
| [InternLM 2-3](https://huggingface.co/internlm) | 7B/8B/20B | intern2 |
| [InternVL 2.5-3.5](https://huggingface.co/OpenGVLab) | 1B/2B/4B/8B/14B/30B/38B/78B/241B | intern_vl |
| [InternLM/Intern-S1-mini](https://huggingface.co/internlm/) | 8B | intern_s1 |
@@ -298,15 +306,13 @@ Choose your path:
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | llava |
| [LLaVA-NeXT](https://huggingface.co/llava-hf) | 7B/8B/13B/34B/72B/110B | llava_next |
| [LLaVA-NeXT-Video](https://huggingface.co/llava-hf) | 7B/34B | llava_next_video |
| [MiMo](https://huggingface.co/XiaomiMiMo) | 7B | mimo |
| [MiMo](https://huggingface.co/XiaomiMiMo) | 7B/309B | mimo/mimo_v2 |
| [MiniCPM 1-4.1](https://huggingface.co/openbmb) | 0.5B/1B/2B/4B/8B | cpm/cpm3/cpm4 |
| [MiniCPM-o-2.6/MiniCPM-V-2.6](https://huggingface.co/openbmb) | 8B | minicpm_o/minicpm_v |
| [Ministral/Mistral-Nemo](https://huggingface.co/mistralai) | 8B/12B | ministral |
| [Ministral 3](https://huggingface.co/mistralai) | 3B/8B/14B | ministral3 |
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
| [Mistral Small](https://huggingface.co/mistralai) | 24B | mistral_small |
| [OLMo](https://huggingface.co/allenai) | 1B/7B | - |
| [PaliGemma/PaliGemma2](https://huggingface.co/google) | 3B/10B/28B | paligemma |
| [Phi-1.5/Phi-2](https://huggingface.co/microsoft) | 1.3B/2.7B | - |
| [Phi-3/Phi-3.5](https://huggingface.co/microsoft) | 4B/14B | phi |
| [Phi-3-small](https://huggingface.co/microsoft) | 7B | phi_small |
| [Phi-4](https://huggingface.co/microsoft) | 14B | phi4 |
@@ -317,19 +323,18 @@ Choose your path:
| [Qwen2.5-Omni](https://huggingface.co/Qwen) | 3B/7B | qwen2_omni |
| [Qwen3-Omni](https://huggingface.co/Qwen) | 30B | qwen3_omni |
| [Qwen2-VL/Qwen2.5-VL/QVQ](https://huggingface.co/Qwen) | 2B/3B/7B/32B/72B | qwen2_vl |
| [Qwen3-VL](https://huggingface.co/Qwen) | 235B | qwen3_vl |
| [Qwen3-VL](https://huggingface.co/Qwen) | 2B/4B/8B/30B/32B/235B | qwen3_vl |
| [Seed (OSS/Coder)](https://huggingface.co/ByteDance-Seed) | 8B/36B | seed_oss/seed_coder |
| [Skywork o1](https://huggingface.co/Skywork) | 8B | skywork_o1 |
| [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
| [TeleChat2](https://huggingface.co/Tele-AI) | 3B/7B/35B/115B | telechat2 |
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse |
| [VibeThinker-1.5B](https://huggingface.co/WeiboAI) | 1.5B | qwen3 |
| [Yi/Yi-1.5 (Code)](https://huggingface.co/01-ai) | 1.5B/6B/9B/34B | yi |
| [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl |
| [Yuan 2](https://huggingface.co/IEITYuan) | 2B/51B/102B | yuan |
> [!NOTE]
> For the "base" models, the `template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the **corresponding template** for the "instruct/chat" models.
>
> If the model has both reasoning and non-reasoning versions, please use the `_nothink` suffix to distinguish between them. For example, `qwen3` and `qwen3_nothink`.
>
> Remember to use the **SAME** template in training and inference.
>
> \*: You should install the `transformers` from main branch and use `DISABLE_VERSION_CHECK=1` to skip version check.
@@ -459,7 +464,7 @@ You also can add a custom chat template to [template.py](src/llamafactory/data/t
Some datasets require confirmation before using them, so we recommend logging in with your Hugging Face account using these commands.
```bash
pip install --upgrade huggingface_hub
pip install "huggingface_hub<1.0.0"
huggingface-cli login
```
@@ -509,10 +514,12 @@ huggingface-cli login
```bash
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics]" --no-build-isolation
pip install -e ".[metrics]" --no-build-isolation
```
Extra dependencies available: torch, torch-npu, metrics, deepspeed, liger-kernel, bitsandbytes, hqq, eetq, gptq, aqlm, vllm, sglang, galore, apollo, badam, adam-mini, qwen, minicpm_v, openmind, swanlab, dev
Optional dependencies available: `metrics`, `deepspeed`. Install with: `pip install -e ".[metrics,deepspeed]"`
Additional dependencies for specific features are available in `examples/requirements/`.
#### Install from Docker Image
@@ -531,13 +538,7 @@ Please refer to [build docker](#build-docker) to build the image yourself.
Create an isolated Python environment with [uv](https://github.com/astral-sh/uv):
```bash
uv sync --extra torch --extra metrics --prerelease=allow
```
Run LLaMA-Factory in the isolated environment:
```bash
uv run --prerelease=allow llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
uv run llamafactory-cli webui
```
</details>
@@ -574,7 +575,7 @@ To enable FlashAttention-2 on the Windows platform, please use the script from [
<details><summary>For Ascend NPU users</summary>
To install LLaMA Factory on Ascend NPU devices, please upgrade Python to version 3.10 or higher and specify extra dependencies: `pip install -e ".[torch-npu,metrics]"`. Additionally, you need to install the **[Ascend CANN Toolkit and Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**. Please follow the [installation tutorial](https://www.hiascend.com/document/detail/en/CANNCommunityEdition/600alphaX/softwareinstall/instg/atlasdeploy_03_0031.html) or use the following commands:
To install LLaMA Factory on Ascend NPU devices, please upgrade Python to version 3.10 or higher: `pip install -e . torch-npu==2.7.1`. Additionally, you need to install the **[Ascend CANN Toolkit and Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**. Please follow the [installation tutorial](https://www.hiascend.com/document/detail/en/CANNCommunityEdition/600alphaX/softwareinstall/instg/atlasdeploy_03_0031.html) or use the following commands:
```bash
# replace the url according to your CANN version and devices
@@ -593,8 +594,8 @@ source /usr/local/Ascend/ascend-toolkit/set_env.sh
| Requirement | Minimum | Recommend |
| ------------ | ------- | -------------- |
| CANN | 8.0.RC1 | 8.0.0.alpha002 |
| torch | 2.1.0 | 2.4.0 |
| torch-npu | 2.1.0 | 2.4.0.post2 |
| torch | 2.1.0 | 2.7.1 |
| torch-npu | 2.1.0 | 2.7.1 |
| deepspeed | 0.13.2 | 0.13.2 |
| vllm-ascend | - | 0.7.3 |
@@ -709,7 +710,6 @@ For CUDA users:
```bash
docker build -f ./docker/docker-cuda/Dockerfile \
--build-arg PIP_INDEX=https://pypi.org/simple \
--build-arg EXTRAS=metrics \
-t llamafactory:latest .
docker run -dit --ipc=host --gpus=all \
@@ -726,7 +726,6 @@ For Ascend NPU users:
```bash
docker build -f ./docker/docker-npu/Dockerfile \
--build-arg PIP_INDEX=https://pypi.org/simple \
--build-arg EXTRAS=torch-npu,metrics \
-t llamafactory:latest .
docker run -dit --ipc=host \
@@ -751,7 +750,6 @@ For AMD ROCm users:
```bash
docker build -f ./docker/docker-rocm/Dockerfile \
--build-arg PIP_INDEX=https://pypi.org/simple \
--build-arg EXTRAS=metrics \
-t llamafactory:latest .
docker run -dit --ipc=host \

View File

@@ -5,11 +5,13 @@
[![GitHub contributors](https://img.shields.io/github/contributors/hiyouga/LLaMA-Factory?color=orange)](https://github.com/hiyouga/LLaMA-Factory/graphs/contributors)
[![GitHub workflow](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml/badge.svg)](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml)
[![PyPI](https://img.shields.io/pypi/v/llamafactory)](https://pypi.org/project/llamafactory/)
[![Citation](https://img.shields.io/badge/citation-840-green)](https://scholar.google.com/scholar?cites=12620864006390196564)
[![Citation](https://img.shields.io/badge/citation-1000+-green)](https://scholar.google.com/scholar?cites=12620864006390196564)
[![Docker Pulls](https://img.shields.io/docker/pulls/hiyouga/llamafactory)](https://hub.docker.com/r/hiyouga/llamafactory/tags)
[![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai)
[![Discord](assets/thirdparty/discord.svg)](https://discord.gg/rKfvV9r9FK)
[![WeChat](https://img.shields.io/badge/WeChat-User%20Group-blue?logo=wechat)](https://github.com/hiyouga/llamafactory-community)
[![Blog](https://img.shields.io/badge/Hugo-Official%20Blog-blue?logo=hugo)](https://blog.llamafactory.net/)
[![Open in Colab](assets/thirdparty/colab.svg)](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)
[![Open in DSW](assets/thirdparty/dsw.svg)](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)
@@ -44,18 +46,22 @@
https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
选择你的打开方式
开始本地训练
- 请见[如何使用](#如何使用)
开始云端训练:
- **Colab免费**https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing
- **PAI-DSW免费试用**https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory
- **LLaMA Factory Online在线微调**https://www.llamafactory.com.cn/?utm_source=LLaMA-Factory
- **九章智算云(算力优惠活动)**https://docs.alayanew.com/docs/documents/useGuide/LLaMAFactory/mutiple/?utm_source=LLaMA-Factory
阅读技术文档:
- **入门教程**https://zhuanlan.zhihu.com/p/695287607
- **微调视频教程**https://www.bilibili.com/video/BV1djgRzxEts/
- **框架文档**https://llamafactory.readthedocs.io/zh-cn/latest/
- **框架文档(昇腾 NPU**https://ascend.github.io/docs/sources/llamafactory/
- **Colab免费**https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing
- **本地机器**:请见[如何使用](#如何使用)
- **PAI-DSW免费试用**https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory
- **九章智算云(算力优惠活动)**https://docs.alayanew.com/docs/documents/useGuide/LLaMAFactory/mutiple/?utm_source=LLaMA-Factory
- **官方博客**https://blog.llamafactory.net/
- **官方课程**https://www.lab4ai.cn/course/detail?id=7c13e60f6137474eb40f6fd3983c0f46&utm_source=LLaMA-Factory
- **LLaMA Factory Online在线微调**https://www.llamafactory.com.cn/?utm_source=LLaMA-Factory
> [!NOTE]
> 除上述链接以外的其他网站均为未经许可的第三方网站,请小心甄别。
@@ -92,7 +98,7 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
- **集成方法**增量预训练、多模态指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练、ORPO 训练等等。
- **多种精度**16 比特全参数微调、冻结微调、LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ 的 2/3/4/5/6/8 比特 QLoRA 微调。
- **先进算法**[GaLore](https://github.com/jiaweizzhao/GaLore)、[BAdam](https://github.com/Ledzy/BAdam)、[APOLLO](https://github.com/zhuhanqing/APOLLO)、[Adam-mini](https://github.com/zyushun/Adam-mini)、[Muon](https://github.com/KellerJordan/Muon)、[OFT](https://github.com/huggingface/peft/tree/main/src/peft/tuners/oft)、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ 和 PiSSA。
- **实用技巧**[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)、[Unsloth](https://github.com/unslothai/unsloth)、[Liger Kernel](https://github.com/linkedin/Liger-Kernel)、RoPE scaling、NEFTune 和 rsLoRA。
- **实用技巧**[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)、[Unsloth](https://github.com/unslothai/unsloth)、[Liger Kernel](https://github.com/linkedin/Liger-Kernel)、[KTransformers](https://github.com/kvcache-ai/ktransformers/)、RoPE scaling、NEFTune 和 rsLoRA。
- **广泛任务**:多轮对话、工具调用、图像理解、视觉定位、视频识别和语音理解等等。
- **实验监控**LlamaBoard、TensorBoard、Wandb、MLflow、[SwanLab](https://github.com/SwanHubX/SwanLab) 等等。
- **极速推理**:基于 [vLLM](https://github.com/vllm-project/vllm) 或 [SGLang](https://github.com/sgl-project/sglang) 的 OpenAI 风格 API、浏览器界面和命令行接口。
@@ -106,6 +112,12 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
## 官方博客
> [!TIP]
> 我们现在拥有了 LLaMA Factory 的专属博客!
>
> 网站地址https://blog.llamafactory.net/
- 💡 [KTransformers Fine-Tuning × LLaMA Factory: 用2张4090级的GPU+CPU 微调 1000B规模的超大模型](https://swcil84qspu.feishu.cn/wiki/Z1sSwb2poijybxkyPEkcDG6enVc) (中文)
- 💡 [Easy Dataset × LLaMA Factory: 让大模型高效学习领域知识](https://buaa-act.feishu.cn/wiki/KY9xwTGs1iqHrRkjXBwcZP9WnL9)(中文)
- [使用 LLaMA-Factory 微调心理健康大模型](https://www.lab4ai.cn/project/detail?id=25cce32ec131497b9e06a93336a0817f&type=project&utm_source=LLaMA-Factory)(中文)
- [使用 LLaMA-Factory 构建 GPT-OSS 角色扮演模型](https://docs.llamafactory.com.cn/docs/documents/best-practice/gptroleplay/?utm_source=LLaMA-Factory)(中文)
@@ -125,6 +137,8 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
## 更新日志
[25/10/26] 我们支持了Megatron-core作为训练后端和适配了[**mcore_adapter**](https://github.com/alibaba/ROLL/tree/main/mcore_adapter)。查看[PR #9237](https://github.com/hiyouga/LLaMA-Factory/pull/9237)以使用。
[25/08/22] 我们支持了 **[OFT](https://arxiv.org/abs/2306.07280)** 和 **[OFTv2](https://arxiv.org/abs/2506.19847)** 模型的微调。查看 [examples](examples/README.md) 以使用。
[25/08/20] 我们支持了 **[Intern-S1-mini](https://huggingface.co/internlm/Intern-S1-mini)** 模型的微调。查看 [PR #8976](https://github.com/hiyouga/LLaMA-Factory/pull/8976) 以使用。
@@ -266,27 +280,21 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
| 模型名 | 参数量 | Template |
| ----------------------------------------------------------------- | -------------------------------- | -------------------- |
| [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
| [BLOOM/BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
| [Command R](https://huggingface.co/CohereForAI) | 35B/104B | cohere |
| [DeepSeek (Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
| [DeepSeek 2.5/3](https://huggingface.co/deepseek-ai) | 236B/671B | deepseek3 |
| [DeepSeek (LLM/Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
| [DeepSeek 3-3.2](https://huggingface.co/deepseek-ai) | 236B/671B | deepseek3 |
| [DeepSeek R1 (Distill)](https://huggingface.co/deepseek-ai) | 1.5B/7B/8B/14B/32B/70B/671B | deepseekr1 |
| [ERNIE-4.5](https://huggingface.co/baidu) | 0.3B/21B/300B | ernie/ernie_nothink |
| [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
| [Falcon-H1](https://huggingface.co/tiiuae) | 0.5B/1.5B/3B/7B/34B | falcon_h1 |
| [Falcon/Falcon H1](https://huggingface.co/tiiuae) | 0.5B/1.5B/3B/7B/11B/34B/40B/180B | falcon/falcon_h1 |
| [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma/gemma2 |
| [Gemma 3/Gemma 3n](https://huggingface.co/google) | 270M/1B/4B/6B/8B/12B/27B | gemma3/gemma3n |
| [GLM-4/GLM-4-0414/GLM-Z1](https://huggingface.co/zai-org) | 9B/32B | glm4/glmz1 |
| [GLM-4.1V](https://huggingface.co/zai-org) | 9B | glm4v |
| [GLM-4.5/GLM-4.5V](https://huggingface.co/zai-org) | 106B/355B | glm4_moe/glm4v_moe |
| [GLM-4.5/GLM-4.5(6)V](https://huggingface.co/zai-org) | 9B/106B/355B | glm4_moe/glm4_5v |
| [GPT-2](https://huggingface.co/openai-community) | 0.1B/0.4B/0.8B/1.5B | - |
| [GPT-OSS](https://huggingface.co/openai) | 20B/120B | gpt |
| [Granite 3.0-3.3](https://huggingface.co/ibm-granite) | 1B/2B/3B/8B | granite3 |
| [Granite 4](https://huggingface.co/ibm-granite) | 7B | granite4 |
| [Hunyuan](https://huggingface.co/tencent/) | 7B | hunyuan |
| [Index](https://huggingface.co/IndexTeam) | 1.9B | index |
| [GPT-OSS](https://huggingface.co/openai) | 20B/120B | gpt_oss |
| [Granite 3-4](https://huggingface.co/ibm-granite) | 1B/2B/3B/7B/8B | granite3/granite4 |
| [Hunyuan (MT)](https://huggingface.co/tencent/) | 7B | hunyuan |
| [InternLM 2-3](https://huggingface.co/internlm) | 7B/8B/20B | intern2 |
| [InternVL 2.5-3.5](https://huggingface.co/OpenGVLab) | 1B/2B/4B/8B/14B/30B/38B/78B/241B | intern_vl |
| [InternLM/Intern-S1-mini](https://huggingface.co/internlm/) | 8B | intern_s1 |
@@ -300,15 +308,13 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | llava |
| [LLaVA-NeXT](https://huggingface.co/llava-hf) | 7B/8B/13B/34B/72B/110B | llava_next |
| [LLaVA-NeXT-Video](https://huggingface.co/llava-hf) | 7B/34B | llava_next_video |
| [MiMo](https://huggingface.co/XiaomiMiMo) | 7B | mimo |
| [MiMo](https://huggingface.co/XiaomiMiMo) | 7B/309B | mimo/mimo_v2 |
| [MiniCPM 1-4.1](https://huggingface.co/openbmb) | 0.5B/1B/2B/4B/8B | cpm/cpm3/cpm4 |
| [MiniCPM-o-2.6/MiniCPM-V-2.6](https://huggingface.co/openbmb) | 8B | minicpm_o/minicpm_v |
| [Ministral/Mistral-Nemo](https://huggingface.co/mistralai) | 8B/12B | ministral |
| [Ministral 3](https://huggingface.co/mistralai) | 3B/8B/14B | ministral3 |
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
| [Mistral Small](https://huggingface.co/mistralai) | 24B | mistral_small |
| [OLMo](https://huggingface.co/allenai) | 1B/7B | - |
| [PaliGemma/PaliGemma2](https://huggingface.co/google) | 3B/10B/28B | paligemma |
| [Phi-1.5/Phi-2](https://huggingface.co/microsoft) | 1.3B/2.7B | - |
| [Phi-3/Phi-3.5](https://huggingface.co/microsoft) | 4B/14B | phi |
| [Phi-3-small](https://huggingface.co/microsoft) | 7B | phi_small |
| [Phi-4](https://huggingface.co/microsoft) | 14B | phi4 |
@@ -319,19 +325,18 @@ https://github.com/user-attachments/assets/43b700c6-a178-41db-b1f8-8190a5d3fcfc
| [Qwen2.5-Omni](https://huggingface.co/Qwen) | 3B/7B | qwen2_omni |
| [Qwen3-Omni](https://huggingface.co/Qwen) | 30B | qwen3_omni |
| [Qwen2-VL/Qwen2.5-VL/QVQ](https://huggingface.co/Qwen) | 2B/3B/7B/32B/72B | qwen2_vl |
| [Qwen3-VL](https://huggingface.co/Qwen) | 235B | qwen3_vl |
| [Qwen3-VL](https://huggingface.co/Qwen) | 2B/4B/8B/30B/32B/235B | qwen3_vl |
| [Seed (OSS/Coder)](https://huggingface.co/ByteDance-Seed) | 8B/36B | seed_oss/seed_coder |
| [Skywork o1](https://huggingface.co/Skywork) | 8B | skywork_o1 |
| [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
| [TeleChat2](https://huggingface.co/Tele-AI) | 3B/7B/35B/115B | telechat2 |
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse |
| [VibeThinker-1.5B](https://huggingface.co/WeiboAI) | 1.5B | qwen3 |
| [Yi/Yi-1.5 (Code)](https://huggingface.co/01-ai) | 1.5B/6B/9B/34B | yi |
| [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl |
| [Yuan 2](https://huggingface.co/IEITYuan) | 2B/51B/102B | yuan |
> [!NOTE]
> 对于所有“基座”Base模型`template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”Instruct/Chat模型请务必使用**对应的模板**。
>
> 如果模型有推理 / 非推理两个版本,请使用 `_nothink` 后缀来区分不同的模板。例如 `qwen3` 和 `qwen3_nothink`。
>
> 请务必在训练和推理时采用**完全一致**的模板。
>
> \*:您需要从 main 分支安装 `transformers` 并使用 `DISABLE_VERSION_CHECK=1` 来跳过版本检查。
@@ -511,10 +516,12 @@ huggingface-cli login
```bash
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics]" --no-build-isolation
pip install -e ".[metrics]" --no-build-isolation
```
可选的额外依赖项:torch、torch-npu、metricsdeepspeed、liger-kernel、bitsandbytes、hqq、eetq、gptq、aqlm、vllm、sglang、galore、apollo、badam、adam-mini、qwen、minicpm_v、openmind、swanlab、dev
可选的额外依赖项:`metrics``deepspeed`。使用 `pip install -e ".[metrics,deepspeed]"` 安装。
其他可选依赖项请参考 `examples/requirements/` 目录下的文件。
#### 从镜像安装
@@ -533,13 +540,7 @@ docker run -it --rm --gpus=all --ipc=host hiyouga/llamafactory:latest
使用 [uv](https://github.com/astral-sh/uv) 创建隔离的 Python 环境:
```bash
uv sync --extra torch --extra metrics --prerelease=allow
```
在环境中运行 LLaMA-Factory
```bash
uv run --prerelease=allow llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
uv run llamafactory-cli webui
```
</details>
@@ -576,7 +577,7 @@ pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/downl
<details><summary>昇腾 NPU 用户指南</summary>
在昇腾 NPU 设备上安装 LLaMA Factory 时,请升级 Python 到 3.10 及以上,并需要指定额外依赖项,使用 `pip install -e ".[torch-npu,metrics]"` 命令安装。此外,还需要安装 **[Ascend CANN Toolkit 与 Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**,安装方法请参考[安装教程](https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/80RC2alpha002/quickstart/quickstart/quickstart_18_0004.html)或使用以下命令:
在昇腾 NPU 设备上安装 LLaMA Factory 时,请升级 Python 到 3.10 及以上,并需要指定额外依赖项,使用 `pip install -e . torch-npu==2.7.1` 命令安装。此外,还需要安装 **[Ascend CANN Toolkit 与 Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**,安装方法请参考[安装教程](https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/80RC2alpha002/quickstart/quickstart/quickstart_18_0004.html)或使用以下命令:
```bash
# 请替换 URL 为 CANN 版本和设备型号对应的 URL
@@ -595,8 +596,8 @@ source /usr/local/Ascend/ascend-toolkit/set_env.sh
| 依赖项 | 至少 | 推荐 |
| ------------ | ------- | -------------- |
| CANN | 8.0.RC1 | 8.0.0.alpha002 |
| torch | 2.1.0 | 2.4.0 |
| torch-npu | 2.1.0 | 2.4.0.post2 |
| torch | 2.1.0 | 2.7.1 |
| torch-npu | 2.1.0 | 2.7.1 |
| deepspeed | 0.13.2 | 0.13.2 |
| vllm-ascend | - | 0.7.3 |

10
data/v1_dpo_demo.jsonl Normal file

File diff suppressed because one or more lines are too long

4
data/v1_dpo_demo.yaml Normal file
View File

@@ -0,0 +1,4 @@
dpo_zh_demo:
path: HuggingFaceH4/orca_dpo_pairs
split: train_prefs
converter: pair

View File

@@ -1,8 +1,9 @@
identity:
file_name: identity.json
path: data/identity.json
source: local
converter: alpaca
alpaca_en_demo:
file_name: alpaca_en_demo.json
dataset_dir: ~/data
path: data/alpaca_en_demo.json
source: local
converter: alpaca
num_samples: 500
size: 500

View File

@@ -4,7 +4,6 @@ FROM ${BASE_IMAGE}
# Installation arguments
ARG PIP_INDEX=https://pypi.org/simple
ARG EXTRAS=metrics
ARG INSTALL_FLASHATTN=false
ARG HTTP_PROXY=""
@@ -27,17 +26,13 @@ WORKDIR /app
# Change pip source
RUN pip config set global.index-url "${PIP_INDEX}" && \
pip config set global.extra-index-url "${PIP_INDEX}" && \
pip install --no-cache-dir --upgrade pip packaging wheel setuptools
pip install --no-cache-dir --upgrade pip packaging wheel setuptools editables "hatchling>=1.18.0"
# Install the requirements
COPY requirements.txt /app
RUN pip install --no-cache-dir -r requirements.txt
# Copy the rest of the application into the image
# Copy the application into the image
COPY . /app
# Install LLaMA Factory
RUN pip install --no-cache-dir -e ".[${EXTRAS}]" --no-build-isolation
RUN pip install --no-cache-dir --no-build-isolation -e ".[metrics,deepspeed]"
# Rebuild flash attention
RUN if [ "${INSTALL_FLASHATTN}" == "true" ]; then \

View File

@@ -0,0 +1,77 @@
# NVIDIA official image (ubuntu-22.04 + cuda-12.4 + python-3.10)
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-24-08.html
FROM nvcr.io/nvidia/pytorch:24.05-py3
ENV DEBIAN_FRONTEND=noninteractive
ENV PIP_ROOT_USER_ACTION=ignore
ENV PYPI_MIRROR=https://mirrors.aliyun.com/pypi/simple/
ENV PYPI_TRUSTED_HOST=mirrors.aliyun.com
ENV APT_MIRROR=https://mirrors.tuna.tsinghua.edu.cn/ubuntu/
RUN pip install --upgrade pip setuptools wheel "hatchling>=1.18.0" editables --trusted-host ${PYPI_TRUSTED_HOST} --index-url ${PYPI_MIRROR}
RUN pip uninstall -y torch torchvision torch-tensorrt \
flash_attn transformer-engine \
cudf dask-cuda cugraph cugraph-service-server cuml raft-dask cugraph-dgl cugraph-pyg dask-cudf
RUN pip install torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0 --index-url https://download.pytorch.org/whl/cu124
RUN pip uninstall -y opencv opencv-python opencv-python-headless && \
rm -rf /usr/local/lib/python3.10/dist-packages/cv2/ && \
pip install opencv-python-headless==4.11.0.86 --trusted-host ${PYPI_TRUSTED_HOST} --index-url ${PYPI_MIRROR}
RUN pip install "numpy==1.26.4" "optree>=0.13.0" "spacy==3.7.5" "weasel==0.4.1" \
transformer-engine[pytorch]==2.2.0 megatron-core==0.13.0 deepspeed==0.16.4 \
--trusted-host ${PYPI_TRUSTED_HOST} --index-url ${PYPI_MIRROR}
RUN pip install https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.2.post1/flash_attn-2.7.2.post1+cu12torch2.6cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
# RUN pip install vllm==0.8.4 \
# --trusted-host ${PYPI_TRUSTED_HOST} --index-url ${PYPI_MIRROR}
WORKDIR /build
ARG apex_url=git+https://github.com/NVIDIA/apex.git@25.04
RUN pip uninstall -y apex && \
MAX_JOBS=32 NINJA_FLAGS="-j32" NVCC_APPEND_FLAGS="--threads 32" \
pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation \
--config-settings "--build-option=--cpp_ext --cuda_ext --parallel 32" ${apex_url}
RUN rm -rf /build
WORKDIR /workspace
RUN cp /etc/apt/sources.list /etc/apt/sources.list.bak && \
{ \
echo "deb ${APT_MIRROR} jammy main restricted universe multiverse"; \
echo "deb ${APT_MIRROR} jammy-security main restricted universe multiverse"; \
echo "deb ${APT_MIRROR} jammy-updates main restricted universe multiverse"; \
echo "deb ${APT_MIRROR} jammy-backports main restricted universe multiverse"; \
} > /etc/apt/sources.list
RUN apt-get update && apt-get install -y zip
RUN apt-get install -y openjdk-21-jdk
ENV JAVA_HOME /usr/lib/jvm/java-21-openjdk-amd64
# pip install LLaMA-Factory
WORKDIR /app
# Copy the application into the image
COPY . /app
# Install LLaMA Factory
RUN pip install --no-cache-dir -e ".[metrics]" --no-build-isolation
RUN pip install "git+https://github.com/alibaba/roll.git#subdirectory=mcore_adapter"
# Expose port 7860 for LLaMA Board
ENV GRADIO_SERVER_PORT=7860
EXPOSE 7860
# Expose port 8000 for API service
ENV API_PORT=8000
EXPOSE 8000
# unset proxy
ENV http_proxy=
ENV https_proxy=

View File

@@ -5,7 +5,6 @@ services:
context: ../..
args:
PIP_INDEX: https://pypi.org/simple
EXTRAS: metrics
container_name: llamafactory
ports:
- "7860:7860"

View File

@@ -1,10 +1,10 @@
# https://hub.docker.com/r/ascendai/cann/tags
ARG BASE_IMAGE=ascendai/cann:8.1.rc1-910b-ubuntu22.04-py3.11
ARG BASE_IMAGE=quay.io/ascend/cann:8.3.rc2-910b-ubuntu22.04-py3.11
FROM ${BASE_IMAGE}
# Installation arguments
ARG PIP_INDEX=https://pypi.org/simple
ARG EXTRAS=torch-npu,metrics
ARG HTTP_PROXY=""
ARG PYTORCH_INDEX=https://download.pytorch.org/whl/cpu
@@ -27,21 +27,15 @@ WORKDIR /app
# Change pip source
RUN pip config set global.index-url "${PIP_INDEX}" && \
pip config set global.extra-index-url "${PIP_INDEX}" && \
pip install --no-cache-dir --upgrade pip packaging wheel setuptools
pip install --no-cache-dir --upgrade pip packaging wheel setuptools editables "hatchling>=1.18.0"
# Copy the application into the image
COPY . /app
# Install torch-npu
RUN pip uninstall -y torch torchvision torchaudio && \
pip install --no-cache-dir "torch-npu==2.5.1" "torchvision==0.20.1" --index-url "${PYTORCH_INDEX}"
# Install the requirements
COPY requirements.txt /app
RUN pip install --no-cache-dir -r requirements.txt
# Copy the rest of the application into the image
COPY . /app
# Install LLaMA Factory
RUN pip install --no-cache-dir -e ".[${EXTRAS}]" --no-build-isolation
pip install --no-cache-dir "torch==2.7.1" "torch-npu==2.7.1" "torchvision==0.22.1" "torchaudio==2.7.1" --index-url "${PYTORCH_INDEX}" && \
pip install --no-cache-dir -e ".[metrics]" --no-build-isolation
# Set up volumes
# VOLUME [ "/root/.cache/huggingface", "/app/shared_data", "/app/output" ]

View File

@@ -1,12 +1,12 @@
services:
llamafactory:
llamafactory-a2:
build:
dockerfile: ./docker/docker-npu/Dockerfile
context: ../..
args:
PIP_INDEX: https://pypi.org/simple
EXTRAS: torch-npu,metrics
container_name: llamafactory
container_name: llamafactory-a2
image: llamafactory:npu-a2
volumes:
- /usr/local/dcmi:/usr/local/dcmi
- /usr/local/bin/npu-smi:/usr/local/bin/npu-smi
@@ -26,3 +26,33 @@ services:
- /dev/devmm_svm
- /dev/hisi_hdc
restart: unless-stopped
llamafactory-a3:
profiles: ["a3"]
build:
dockerfile: ./docker/docker-npu/Dockerfile
context: ../..
args:
BASE_IMAGE: quay.io/ascend/cann:8.3.rc2-a3-ubuntu22.04-py3.11
PIP_INDEX: https://pypi.org/simple
container_name: llamafactory-a3
image: llamafactory:npu-a3
volumes:
- /usr/local/dcmi:/usr/local/dcmi
- /usr/local/bin/npu-smi:/usr/local/bin/npu-smi
- /usr/local/Ascend/driver:/usr/local/Ascend/driver
- /etc/ascend_install.info:/etc/ascend_install.info
ports:
- "7861:7860"
- "8001:8000"
ipc: host
tty: true
# shm_size: "16gb" # ipc: host is set
stdin_open: true
command: bash
devices:
- /dev/davinci0
- /dev/davinci_manager
- /dev/devmm_svm
- /dev/hisi_hdc
restart: unless-stopped

View File

@@ -4,7 +4,6 @@ FROM ${BASE_IMAGE}
# Installation arguments
ARG PIP_INDEX=https://pypi.org/simple
ARG EXTRAS=metrics
ARG INSTALL_FLASHATTN=false
ARG HTTP_PROXY=""
ARG PYTORCH_INDEX=https://download.pytorch.org/whl/rocm6.3
@@ -28,21 +27,14 @@ WORKDIR /app
# Change pip source
RUN pip config set global.index-url "${PIP_INDEX}" && \
pip config set global.extra-index-url "${PIP_INDEX}" && \
pip install --no-cache-dir --upgrade pip packaging wheel setuptools
pip install --no-cache-dir --upgrade pip packaging wheel setuptools editables "hatchling>=1.18.0"
# Reinstall pytorch rocm
RUN pip uninstall -y torch torchvision torchaudio && \
pip install --no-cache-dir --pre torch torchvision torchaudio --index-url "${PYTORCH_INDEX}"
# Install the requirements
COPY requirements.txt /app
RUN pip install --no-cache-dir -r requirements.txt
# Copy the rest of the application into the image
# Copy the application into the image
COPY . /app
# Install LLaMA Factory
RUN pip install --no-cache-dir -e ".[${EXTRAS}]" --no-build-isolation
# Reinstall pytorch rocm and install LLaMA Factory
RUN pip uninstall -y torch torchvision torchaudio && \
pip install --no-cache-dir --no-build-isolation -e --pre ".[metrics,deepspeed]" --index-url "${PYTORCH_INDEX}"
# Rebuild flash attention
RUN if [ "${INSTALL_FLASHATTN}" == "true" ]; then \

View File

@@ -5,7 +5,6 @@ services:
context: ../..
args:
PIP_INDEX: https://pypi.org/simple
EXTRAS: metrics
container_name: llamafactory
ports:
- "7860:7860"

View File

@@ -0,0 +1,22 @@
compute_environment: LOCAL_MACHINE
debug: false
distributed_type: FSDP
downcast_bf16: 'no'
fsdp_config:
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_cpu_ram_efficient_loading: true
fsdp_offload_params: false
fsdp_reshard_after_forward: true
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_version: 2
machine_rank: 0
main_training_function: main
mixed_precision: bf16 # or fp16
num_machines: 1 # the number of nodes
num_processes: 2 # the number of GPUs in all nodes
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false

View File

@@ -0,0 +1,34 @@
# If you want to run this example on multiple nodes, you need to set the following parameters:
# - num_machines: the number of nodes
# - num_processes: the number of GPUs in all nodes, num_machines * num_processes_per_machine
# - main_process_ip: the IP address of the main process, please keep it the same across all nodes
# - main_process_port: the port of all nodes, please keep it the same across all nodes
# - machine_rank: the rank of the current machine, starting from 0, and it should be 0 for main_process_ip
compute_environment: LOCAL_MACHINE
debug: false
distributed_type: FSDP
downcast_bf16: 'no'
fsdp_config:
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_backward_prefetch: BACKWARD_PRE
fsdp_forward_prefetch: false
fsdp_cpu_ram_efficient_loading: true
fsdp_offload_params: false
fsdp_sharding_strategy: FULL_SHARD
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sync_module_states: true
fsdp_use_orig_params: true
machine_rank: 0
main_training_function: main
mixed_precision: bf16 # or fp16
main_process_ip: 192.168.0.1
main_process_port: 29500
num_machines: 2 # the number of nodes
num_processes: 16 # the number of GPUs in all nodes, num_machines * num_processes_per_machine
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false

View File

@@ -0,0 +1,45 @@
# Start FSDP2 fine-tuning
# accelerate launch \
# --config_file examples/accelerate/fsdp2_config.yaml \
# src/train.py examples/ascend/qwen3_full_sft_fsdp2.yaml
# Change `num_processes` in fsdp2_config.yaml to 16 in A3
### model
model_name_or_path: Qwen/Qwen3-8B
trust_remote_code: true
use_v1_kernels: true
flash_attn: fa2
### method
stage: sft
do_train: true
finetuning_type: full
### dataset
dataset: alpaca_en_demo
template: qwen3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/Qwen3-8B/full/sft
logging_steps: 1
save_steps: 500
max_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 8
gradient_accumulation_steps: 1
learning_rate: 1.0e-5
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 1800
resume_from_checkpoint: null

View File

@@ -0,0 +1,46 @@
# Start FSDP fine-tuning
# accelerate launch \
# --config_file examples/accelerate/fsdp_config.yaml \
# src/train.py examples/ascend/qwen3moe_full_sft_fsdp.yaml
# Change `num_processes` in fsdp_config.yaml to 16 in A3
### model
model_name_or_path: Qwen/Qwen3-30B-A3B-Instruct-2507
trust_remote_code: true
use_v1_kernels: true
flash_attn: fa2
### method
stage: sft
do_train: true
finetuning_type: full
disable_gradient_checkpointing: false
### dataset
dataset: alpaca_zh
template: qwen3
cutoff_len: 1024
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/Qwen3-30B-A3B-Instruct-2507/full/sft
logging_steps: 1
save_steps: 500
max_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: true
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 4
gradient_accumulation_steps: 1
learning_rate: 1.0e-4
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null
seed: 1234

View File

@@ -0,0 +1,48 @@
# Start FSDP2 fine-tuning
# accelerate launch \
# --config_file examples/accelerate/fsdp2_config.yaml \
# src/train.py examples/ascend/qwen3vlmoe_full_sft_fsdp2.yaml
# Change `num_processes` in fsdp2_config.yaml to 16 in A3
### model
model_name_or_path: Qwen/Qwen3-VL-30B-A3B-Instruct
image_max_pixels: 262144
video_max_pixels: 16384
trust_remote_code: true
use_v1_kernels: true
flash_attn: fa2
### method
stage: sft
do_train: true
finetuning_type: full
disable_gradient_checkpointing: false
### dataset
dataset: llava_1k_en, llava_1k_zh
template: qwen3_vl
cutoff_len: 1024
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/Qwen3-VL-30B-A3B-Instruct/full/sft
logging_steps: 1
save_steps: 500
max_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: true
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 2
gradient_accumulation_steps: 1
learning_rate: 1.0e-4
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null
seed: 1234

View File

@@ -0,0 +1,42 @@
### model
model_name_or_path: Qwen/Qwen3-VL-30B-A3B-Instruct
image_max_pixels: 262144
video_max_pixels: 16384
trust_remote_code: true
use_v1_kernels: true # replaced kernels: [NpuRMSNormKernel, NpuRoPEKernel, NpuQwen3VLMoEFusedMoEKernel]
### method
stage: sft
do_train: true
finetuning_type: lora
lora_rank: 8
lora_target: all
disable_gradient_checkpointing: false
flash_attn: disabled
### dataset
dataset: alpaca_zh_demo, alpaca_en_demo
template: qwen3_vl
cutoff_len: 1024
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/qwen3vlmoe/lora/sft
logging_steps: 1
plot_loss: true
overwrite_output_dir: true
save_only_model: true
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 8
gradient_accumulation_steps: 1
learning_rate: 1.0e-4
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null
seed: 1234

View File

@@ -0,0 +1,32 @@
{
"_comment": "suooprted model list: https://www.deepspeed.ai/tutorials/automatic-tensor-parallelism/#supported-models",
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"zero_allow_untested_optimizer": true,
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"zero_optimization": {
"stage": 2,
"allgather_partitions": true,
"allgather_bucket_size": 5e8,
"overlap_comm": false,
"reduce_scatter": true,
"reduce_bucket_size": 5e8,
"contiguous_gradients": true,
"round_robin_gradients": true
},
"tensor_parallel": {
"autotp_size": 2
}
}

View File

@@ -0,0 +1,10 @@
model_name_or_path: deepseek-ai/DeepSeek-V2-Lite
adapter_name_or_path: saves/Kllama_deepseekV2
template: deepseek
infer_backend: ktransformers # choices: [huggingface, vllm, sglang, ktransformers]
trust_remote_code: true
use_kt: true # use KTransformers as LoRA sft backend to inference
kt_optimize_rule: examples/kt_optimize_rules/DeepSeek-V2-Lite-Chat-sft-amx.yaml
cpu_infer: 32
chunk_size: 8192

View File

@@ -0,0 +1,9 @@
model_name_or_path: opensourcerelease/DeepSeek-V3-bf16
template: deepseek
infer_backend: ktransformers # choices: [huggingface, vllm, sglang, ktransformers]
trust_remote_code: true
use_kt: true # use KTransformers as LoRA sft backend to inference
kt_optimize_rule: examples/kt_optimize_rules/DeepSeek-V3-Chat-sft-amx-multi-gpu.yaml
cpu_infer: 32
chunk_size: 8192

View File

@@ -0,0 +1,10 @@
model_name_or_path: opensourcerelease/DeepSeek-V3-bf16
adapter_name_or_path: saves/Kllama_deepseekV3
template: deepseek
infer_backend: ktransformers # choices: [huggingface, vllm, sglang, ktransformers]
trust_remote_code: true
use_kt: true # use KTransformers as LoRA sft backend to inference
kt_optimize_rule: examples/kt_optimize_rules/DeepSeek-V3-Chat-sft-amx-multi-gpu.yaml
cpu_infer: 32
chunk_size: 8192

View File

@@ -1,4 +1,4 @@
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
template: llama3
infer_backend: huggingface # choices: [huggingface, vllm, sglang]
infer_backend: huggingface # choices: [huggingface, vllm, sglang, ktransformers]
trust_remote_code: true

View File

@@ -1,4 +1,4 @@
model_name_or_path: saves/llama3-8b/full/sft
template: llama3
infer_backend: huggingface # choices: [huggingface, vllm, sglang]
infer_backend: huggingface # choices: [huggingface, vllm, sglang, ktransformers]
trust_remote_code: true

View File

@@ -1,5 +1,5 @@
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
adapter_name_or_path: saves/llama3-8b/lora/sft
template: llama3
infer_backend: huggingface # choices: [huggingface, vllm, sglang]
infer_backend: huggingface # choices: [huggingface, vllm, sglang, ktransformers]
trust_remote_code: true

View File

@@ -1,4 +1,4 @@
model_name_or_path: Qwen/Qwen2.5-VL-7B-Instruct
template: qwen2_vl
infer_backend: huggingface # choices: [huggingface, vllm, sglang]
infer_backend: huggingface # choices: [huggingface, vllm, sglang, ktransformers]
trust_remote_code: true

View File

@@ -0,0 +1,10 @@
model_name_or_path: Qwen/Qwen3-235B-A22B-Instruct-2507
adapter_name_or_path: saves/Kllama_Qwen3MoE_235bA22b
template: qwen3_nothink
infer_backend: ktransformers # choices: [huggingface, vllm, sglang, ktransformers]
trust_remote_code: true
use_kt: true # use KTransformers as LoRA sft backend to inference
kt_optimize_rule: examples/kt_optimize_rules/Qwen3Moe-sft-amx.yaml
cpu_infer: 32
chunk_size: 8192

View File

@@ -0,0 +1,69 @@
- match:
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model\\.layers\\.(?!.*self_attn\\.kv_b_proj).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearTorch"
prefill_op: "KLinearTorch"
- match:
name: "^lm_head"
class: torch.nn.Linear
replace:
class: ktransformers.operators.linear.KTransformersLinear
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearTorch"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\..*\\.mlp$"
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
replace:
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model\\.layers\\..*\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KSFTExpertsCPU"
out_device: "cuda"
backend: "AMXInt8" # or "AMXBF16" or "llamafile" (default)
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\..*\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KDeepseekV2Model"
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"

View File

@@ -0,0 +1,68 @@
- match:
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model\\.layers\\.(?!.*self_attn\\.kv_b_proj).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^lm_head"
class: torch.nn.Linear
replace:
class: ktransformers.operators.linear.KTransformersLinear
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\..*\\.mlp$"
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
replace:
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model\\.layers\\..*\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "cuda"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\..*\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KDeepseekV2Model"
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"

View File

@@ -0,0 +1,139 @@
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"
- match:
name: "^model\\.layers\\.(0|[1-9])\\."
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\.([12][0-9])\\."
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
- match:
name: "^model\\.layers\\.(0|[1-9])\\.(?!.*self_attn\\.kv_b_proj).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
generate_op: "KLinearTorch"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.([12][0-9])\\.(?!.*self_attn\\.kv_b_proj).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
generate_op: "KLinearTorch"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.(0|[1-9])\\.mlp$"
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
replace:
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\.([12][0-9])\\.mlp$"
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
replace:
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
- match:
name: "^model\\.layers\\.(0|[1-9])\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda:0"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KSFTExpertsCPU"
out_device: "cuda:0"
backend: "AMXInt8" # or "AMXBF16" or "llamafile" (default)
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\.([12][0-9])\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda:1"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KSFTExpertsCPU"
out_device: "cuda:1"
backend: "AMXInt8" # or "AMXBF16" or "llamafile" (default)
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\.(0|[1-9])\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\.([12][0-9])\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KDeepseekV2Model"
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
transfer_map:
10: "cuda:1"
- match:
name: "^model\\.layers\\.(0|[1-9])\\."
replace:
class: "default"
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^lm_head"
class: torch.nn.Linear
replace:
class: ktransformers.operators.linear.KTransformersLinear
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
generate_op: "KLinearTorch"
prefill_op: "KLinearTorch"
- match:
name: "(^model\\.layers\\.([12][0-9])\\.)|(model.norm)"
replace:
class: "default"
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"

View File

@@ -0,0 +1,69 @@
- match:
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model\\.layers\\.(?!.*self_attn\\.kv_b_proj).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearTorch"
prefill_op: "KLinearTorch"
- match:
name: "^lm_head"
class: torch.nn.Linear
replace:
class: ktransformers.operators.linear.KTransformersLinear
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearTorch"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\..*\\.mlp$"
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
replace:
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model\\.layers\\..*\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cpu"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KSFTExpertsCPU"
out_device: "cuda"
backend: "AMXInt8" # or "AMXBF16" or "llamafile" (default)
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\..*\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KDeepseekV2Model"
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"

View File

@@ -0,0 +1,68 @@
- match:
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model\\.layers\\.(?!.*self_attn\\.kv_b_proj).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearTorch"
prefill_op: "KLinearTorch"
- match:
name: "^lm_head"
class: torch.nn.Linear
replace:
class: ktransformers.operators.linear.KTransformersLinear
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearTorch"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\..*\\.mlp$"
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
replace:
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model\\.layers\\..*\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cpu"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KSFTExpertsCPU"
out_device: "cuda"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\..*\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KDeepseekV2Model"
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"

View File

@@ -0,0 +1,68 @@
- match:
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model\\.layers\\.(?!.*self_attn\\.kv_b_proj).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^lm_head"
class: torch.nn.Linear
replace:
class: ktransformers.operators.linear.KTransformersLinear
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\..*\\.mlp$"
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
replace:
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model\\.layers\\..*\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "cuda"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\..*\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KDeepseekV2Model"
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"

View File

@@ -0,0 +1,77 @@
- match:
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^lm_head$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.(?!.*self_attn\\.kv_b_proj).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\..*\\.mlp$"
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
replace:
class: ktransformers.operators.experts.KDeepseekV3MoE # mlp module with custom forward function
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
class: ktransformers.models.modeling_deepseek_v3.MoEGate
replace:
class: ktransformers.operators.gate.KMoEGate
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\..*\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "cuda"
backend: "AMXInt8" # or "AMXBF16" or "llamafile" (default)
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\..*\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
absorb_for_prefill: False # change this to True to enable long context(prefill may slower).
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KDeepseekV2Model"
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"

View File

@@ -0,0 +1,392 @@
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"
# === Rotary Embedding Replacement ===
# GPU 0: layers 014
- match:
name: "^model\\.layers\\.([0-9]|1[0-4])\\."
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
# GPU 1: layers 1529
- match:
name: "^model\\.layers\\.(1[5-9]|2[0-9])\\."
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
# GPU 2: layers 3044
- match:
name: "^model\\.layers\\.(3[0-9]|4[0-4])\\."
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
kwargs:
generate_device: "cuda:2"
prefill_device: "cuda:2"
# GPU 3: layers 4560
- match:
name: "^model\\.layers\\.(4[5-9]|5[0-9]|60)\\."
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
kwargs:
generate_device: "cuda:3"
prefill_device: "cuda:3"
# === Linear Layers Replacement (excluding self_attn.kv_b_proj) ===
# GPU 0: layers 014
- match:
name: "^model\\.layers\\.([0-9]|1[0-4])\\.(?!self_attn\\.kv_b_proj).*$"
class: torch.nn.Linear
replace:
class: ktransformers.operators.linear.KTransformersLinear
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
generate_op: "KLinearTorch"
prefill_op: "KLinearTorch"
# GPU 1: layers 1529
- match:
name: "^model\\.layers\\.(1[5-9]|2[0-9])\\.(?!self_attn\\.kv_b_proj).*$"
class: torch.nn.Linear
replace:
class: ktransformers.operators.linear.KTransformersLinear
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
generate_op: "KLinearTorch"
prefill_op: "KLinearTorch"
# GPU 2: layers 3044
- match:
name: "^model\\.layers\\.(3[0-9]|4[0-4])\\.(?!self_attn\\.kv_b_proj).*$"
class: torch.nn.Linear
replace:
class: ktransformers.operators.linear.KTransformersLinear
kwargs:
generate_device: "cuda:2"
prefill_device: "cuda:2"
generate_op: "KLinearTorch"
prefill_op: "KLinearTorch"
# GPU 3: layers 4560
- match:
name: "^model\\.layers\\.(4[5-9]|5[0-9]|60)\\.(?!self_attn\\.kv_b_proj).*$"
class: torch.nn.Linear
replace:
class: ktransformers.operators.linear.KTransformersLinear
kwargs:
generate_device: "cuda:3"
prefill_device: "cuda:3"
generate_op: "KLinearTorch"
prefill_op: "KLinearTorch"
# === MLP (MoE) Replacement ===
# GPU 0: layers 014
- match:
name: "^model\\.layers\\.([0-9]|1[0-4])\\.mlp$"
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
replace:
class: ktransformers.operators.experts.KDeepseekV3MoE
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
# GPU 1: layers 1529
- match:
name: "^model\\.layers\\.(1[5-9]|2[0-9])\\.mlp$"
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
replace:
class: ktransformers.operators.experts.KDeepseekV3MoE
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
# GPU 2: layers 3044
- match:
name: "^model\\.layers\\.(3[0-9]|4[0-4])\\.mlp$"
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
replace:
class: ktransformers.operators.experts.KDeepseekV3MoE
kwargs:
generate_device: "cuda:2"
prefill_device: "cuda:2"
# GPU 3: layers 4560
- match:
name: "^model\\.layers\\.(4[5-9]|5[0-9]|60)\\.mlp$"
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
replace:
class: ktransformers.operators.experts.KDeepseekV3MoE
kwargs:
generate_device: "cuda:3"
prefill_device: "cuda:3"
# === MLP Gate Replacement ===
# GPU 0: layers 014
- match:
name: "^model\\.layers\\.([0-9]|1[0-4])\\.mlp\\.gate$"
class: ktransformers.models.modeling_deepseek_v3.MoEGate
replace:
class: ktransformers.operators.gate.KMoEGate
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
# GPU 1: layers 1529
- match:
name: "^model\\.layers\\.(1[5-9]|2[0-9])\\.mlp\\.gate$"
class: ktransformers.models.modeling_deepseek_v3.MoEGate
replace:
class: ktransformers.operators.gate.KMoEGate
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
# GPU 2: layers 3044
- match:
name: "^model\\.layers\\.(3[0-9]|4[0-4])\\.mlp\\.gate$"
class: ktransformers.models.modeling_deepseek_v3.MoEGate
replace:
class: ktransformers.operators.gate.KMoEGate
kwargs:
generate_device: "cuda:2"
prefill_device: "cuda:2"
# GPU 3: layers 4560
- match:
name: "^model\\.layers\\.(4[5-9]|5[0-9]|60)\\.mlp\\.gate$"
class: ktransformers.models.modeling_deepseek_v3.MoEGate
replace:
class: ktransformers.operators.gate.KMoEGate
kwargs:
generate_device: "cuda:3"
prefill_device: "cuda:3"
# === MLP Experts Replacement ===
# replace with marlin expert. Open and modify layer-num as needed.
# Each layer of malin experts takes about 6GB of GPU memory.
# !!!Do remember 'close' cuda graph if you are using marlin expert.!!!
# !!!KExpertsTorch is untested, we don't have enough VRAM.!!!
# GPU 0: layers 34
# - match:
# name: "^model\\.layers\\.([3-4])\\.mlp\\.experts$"
# replace:
# class: ktransformers.operators.experts.KTransformersExperts
# kwargs:
# generate_device: "cuda:0"
# generate_op: "KExpertsMarlin"
# recursive: False
# # GPU 1: layers 1517
# - match:
# name: "^model\\.layers\\.(1[5-7])\\.mlp\\.experts$"
# replace:
# class: ktransformers.operators.experts.KTransformersExperts
# kwargs:
# generate_device: "cuda:1"
# generate_op: "KExpertsMarlin"
# recursive: False
# # GPU 2: layers 3032
# - match:
# name: "^model\\.layers\\.(3[0-2])\\.mlp\\.experts$"
# replace:
# class: ktransformers.operators.experts.KTransformersExperts
# kwargs:
# generate_device: "cuda:2"
# generate_op: "KExpertsMarlin"
# recursive: False
# # GPU 3: layers 4546
# - match:
# name: "^model\\.layers\\.(4[5-6])\\.mlp\\.experts$"
# replace:
# class: ktransformers.operators.experts.KTransformersExperts
# kwargs:
# generate_device: "cuda:3"
# generate_op: "KExpertsMarlin"
# recursive: False
# === MLP Experts Replacement ===
# GPU 0: layers 014
- match:
name: "^model\\.layers\\.([0-9]|1[0-4])\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts
kwargs:
prefill_device: "cuda:0"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KSFTExpertsCPU"
out_device: "cuda:0"
backend: "AMXInt8" # or "AMXBF16" or "llamafile" (default)
recursive: False
# GPU 1: layers 1529
- match:
name: "^model\\.layers\\.(1[5-9]|2[0-9])\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts
kwargs:
prefill_device: "cuda:1"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KSFTExpertsCPU"
out_device: "cuda:1"
backend: "AMXInt8" # or "AMXBF16" or "llamafile" (default)
recursive: False
# GPU 2: layers 3044
- match:
name: "^model\\.layers\\.(3[0-9]|4[0-4])\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts
kwargs:
prefill_device: "cuda:2"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KSFTExpertsCPU"
out_device: "cuda:2"
backend: "AMXInt8" # or "AMXBF16" or "llamafile" (default)
recursive: False
# GPU 3: layers 4560
- match:
name: "^model\\.layers\\.(4[5-9]|5[0-9]|60)\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts
kwargs:
prefill_device: "cuda:3"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KSFTExpertsCPU"
out_device: "cuda:3"
backend: "AMXInt8" # or "AMXBF16" or "llamafile" (default)
recursive: False
# === Self-Attention Replacement ===
# GPU 0: layers 014
- match:
name: "^model\\.layers\\.([0-9]|1[0-4])\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
absorb_for_prefill: False
# GPU 1: layers 1529
- match:
name: "^model\\.layers\\.(1[5-9]|2[0-9])\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
absorb_for_prefill: False
# GPU 2: layers 3044
- match:
name: "^model\\.layers\\.(3[0-9]|4[0-4])\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention
kwargs:
generate_device: "cuda:2"
prefill_device: "cuda:2"
absorb_for_prefill: False
# GPU 3: layers 4560
- match:
name: "^model\\.layers\\.(4[5-9]|5[0-9]|60)\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention
kwargs:
generate_device: "cuda:3"
prefill_device: "cuda:3"
absorb_for_prefill: False
# === Overall Model Replacement with Transfer Map ===
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KDeepseekV2Model"
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 means close layerwise prefill
transfer_map:
15: "cuda:1" # Layers 15+ on GPU 1
30: "cuda:2" # Layers 30+ on GPU 2
45: "cuda:3" # Layers 45+ on GPU 3
# === Default Catch-All for Other Modules ===
# GPU 0: layers 014
- match:
name: "^model\\.layers\\.([0-9]|1[0-4])\\."
replace:
class: "default"
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
# GPU 1: layers 1529
- match:
name: "^model\\.layers\\.(1[5-9]|2[0-9])\\."
replace:
class: "default"
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
# GPU 2: layers 3044
- match:
name: "^model\\.layers\\.(3[0-9]|4[0-4])\\."
replace:
class: "default"
kwargs:
generate_device: "cuda:2"
prefill_device: "cuda:2"
- match:
name: "^lm_head"
class: torch.nn.Linear
replace:
class: ktransformers.operators.linear.KTransformersLinear
kwargs:
generate_device: "cuda:3"
prefill_device: "cuda:3"
generate_op: "KLinearTorch"
prefill_op: "KLinearTorch"
# For final modules (model.norm), ensure they are on GPU 3 (as in your original config)
- match:
name: "(^model\\.layers\\.(4[5-9]|5[0-9]|60)\\.)|(^model\\.norm)"
replace:
class: "default"
kwargs:
generate_device: "cuda:3"
prefill_device: "cuda:3"

View File

@@ -0,0 +1,156 @@
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"
- match:
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\."
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\.([3456][0-9])\\."
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
- match:
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.(?!self_attn\\.kv_b_proj).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
generate_op: "KLinearTorch"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.([3456][0-9])\\.(?!self_attn\\.kv_b_proj).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
generate_op: "KLinearTorch"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.mlp$"
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
replace:
class: ktransformers.operators.experts.KDeepseekV3MoE # mlp module with custom forward function
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\.([3456][0-9])\\.mlp$"
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
replace:
class: ktransformers.operators.experts.KDeepseekV3MoE # mlp module with custom forward function
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
- match:
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.mlp\\.gate$"
class: ktransformers.models.modeling_deepseek_v3.MoEGate
replace:
class: ktransformers.operators.gate.KMoEGate
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\.([3456][0-9])\\.mlp\\.gate$"
class: ktransformers.models.modeling_deepseek_v3.MoEGate
replace:
class: ktransformers.operators.gate.KMoEGate # mlp module with custom forward function
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
- match:
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda:0"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KSFTExpertsCPU"
out_device: "cuda:0"
backend: "AMXInt8" # or "AMXBF16" or "llamafile" (default)
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\.([3456][0-9])\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda:1"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KSFTExpertsCPU"
out_device: "cuda:1"
backend: "AMXInt8" # or "AMXBF16" or "llamafile" (default)
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\.([3456][0-9])\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KDeepseekV2Model"
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
transfer_map:
30: "cuda:1"
- match:
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\."
replace:
class: "default"
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^lm_head"
class: torch.nn.Linear
replace:
class: ktransformers.operators.linear.KTransformersLinear
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
generate_op: "KLinearTorch"
prefill_op: "KLinearTorch"
- match:
name: "(^model\\.layers\\.([3456][0-9])\\.)|(model.norm)"
replace:
class: "default"
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"

View File

@@ -0,0 +1,77 @@
- match:
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^lm_head$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearTorch"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.(?!.*self_attn\\.kv_b_proj).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearTorch"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\..*\\.mlp$"
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
replace:
class: ktransformers.operators.experts.KDeepseekV3MoE # mlp module with custom forward function
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
class: ktransformers.models.modeling_deepseek_v3.MoEGate
replace:
class: ktransformers.operators.gate.KMoEGate
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\..*\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KSFTExpertsCPU"
out_device: "cuda"
backend: "AMXInt8" # or "AMXBF16" or "llamafile" (default)
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\..*\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
absorb_for_prefill: False # change this to True to enable long context(prefill may slower).
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KDeepseekV2Model"
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"

View File

@@ -0,0 +1,80 @@
- match:
class: ktransformers.models.modeling_qwen2_moe.Qwen2MoeRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.RotaryEmbedding
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^lm_head$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearTorch"
prefill_op: "KLinearTorch"
# - match:
# name: "^model\\.layers\\..*$" # regular expression
# class: torch.nn.Linear # only match modules matching name and class simultaneously
# replace:
# class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
# kwargs:
# generate_device: "cuda"
# prefill_device: "cuda"
# generate_op: "KLinearTorch"
# prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.(?!.*mlp\\.shared_expert_gate).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearTorch"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\..*\\.mlp$"
replace:
class: ktransformers.operators.experts.KQwen3MoeSparseMoeBlock # mlp module with custom forward function
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model\\.layers\\..*\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KSFTExpertsCPU"
out_device: "cuda"
backend: "AMXInt8" # or "AMXBF16" or "AMXInt8"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\..*\\.self_attn$"
replace:
class: ktransformers.operators.attention.KQwen3MoeAttention # optimized MLA implementation
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KQwen3MoeModel"
kwargs:
per_layer_prefill_intput_threshold: 0

View File

@@ -0,0 +1,29 @@
model_name_or_path: Qwen/Qwen2-VL-7B-Instruct
image_max_pixels: 262144
video_max_pixels: 16384
do_train: true
stage: sft
finetuning_type: full # only support full for now
dataset: llava_1k_en
preprocessing_num_workers: 8
cutoff_len: 4096
template: qwen2_vl
output_dir: saves/mca/qwen2_vl_full
per_device_train_batch_size: 1
gradient_accumulation_steps: 2
num_train_epochs: 2
learning_rate: 2e-5
logging_steps: 1
save_steps: 100
lr_scheduler_type: cosine
bf16: true
# mcore speed up
tensor_model_parallel_size: 4
sequence_parallel: true
pipeline_model_parallel_size: 2
bias_activation_fusion: true
apply_rope_fusion: true
use_distributed_optimizer: true

View File

@@ -0,0 +1,35 @@
model_name_or_path: Qwen/Qwen3-30B-A3B-Instruct-2507
# GPU memory: 8 * 78GB
do_train: true
stage: sft
finetuning_type: full # only support full for now
dataset: alpaca_en_demo
preprocessing_num_workers: 8
cutoff_len: 4096
template: qwen3_nothink
# global batchsize = (8 // 2 // 4) * 8 = 8
output_dir: saves/mca/qwen3_moe_full
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
num_train_epochs: 2
learning_rate: 3e-6
logging_steps: 1
save_steps: 100
lr_scheduler_type: constant
bf16: true
# mcore speed up
tensor_model_parallel_size: 1
sequence_parallel: false
pipeline_model_parallel_size: 4
bias_activation_fusion: true
apply_rope_fusion: true
use_distributed_optimizer: true
overlap_param_gather: true
overlap_grad_reduce: true
moe_grouped_gemm: true
moe_token_dispatcher_type: alltoall
expert_model_parallel_size: 2
recompute_granularity: full

View File

@@ -0,0 +1 @@
adam-mini

View File

@@ -0,0 +1 @@
apollo-torch

View File

@@ -0,0 +1 @@
aqlm[gpu]>=1.1.0

View File

@@ -0,0 +1 @@
badam>=1.2.1

View File

@@ -0,0 +1 @@
bitsandbytes>=0.39.0

View File

@@ -0,0 +1 @@
eetq

View File

@@ -0,0 +1,2 @@
transformer_engine[pytorch]>=2.0.0
accelerate>=1.10.0

View File

@@ -0,0 +1,2 @@
torchao>=0.8.0
accelerate>=1.10.0

View File

@@ -0,0 +1 @@
galore-torch

View File

@@ -0,0 +1,2 @@
optimum>=1.24.0
gptqmodel>=2.0.0

View File

@@ -0,0 +1 @@
hqq

View File

@@ -0,0 +1 @@
liger-kernel>=0.5.5

View File

@@ -0,0 +1,8 @@
soundfile
torchvision
torchaudio
vector_quantize_pytorch
vocos
msgpack
referencing
jsonschema_specifications

View File

@@ -0,0 +1 @@
openmind

View File

@@ -0,0 +1,2 @@
sglang[srt]>=0.4.5
transformers==4.51.1

View File

@@ -0,0 +1 @@
swanlab

View File

@@ -0,0 +1 @@
vllm>=0.4.3,<=0.11.0

View File

@@ -0,0 +1,46 @@
### model
model_name_or_path: Qwen/Qwen3-32B
trust_remote_code: true
use_v1_kernels: true
### method
stage: sft
do_train: true
finetuning_type: full
deepspeed: examples/deepspeed/ds_z2_autotp_config.json
### dataset
dataset: identity,alpaca_en_demo
template: qwen3
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/qwen3-32b/full/sft_autotp
logging_steps: 1
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 4
gradient_accumulation_steps: 1
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null
### eval
# eval_dataset: alpaca_en_demo
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

View File

@@ -0,0 +1,52 @@
### model
model_name_or_path: deepseek-ai/DeepSeek-V2-Lite
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: lora
lora_rank: 8
lora_target: all
### dataset
dataset: identity
template: deepseek
cutoff_len: 2048
max_samples: 100000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/Kllama_deepseekV2
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null
### ktransformers
use_kt: true # use KTransformers as LoRA sft backend
kt_optimize_rule: examples/kt_optimize_rules/DeepSeek-V2-Lite-Chat-sft-amx.yaml
cpu_infer: 32
chunk_size: 8192
### eval
# eval_dataset: alpaca_en_demo
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

View File

@@ -0,0 +1,52 @@
### model
model_name_or_path: opensourcerelease/DeepSeek-V3-bf16
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: lora
lora_rank: 8
lora_target: all
### dataset
dataset: identity
template: deepseek
cutoff_len: 2048
max_samples: 100000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/Kllama_deepseekV3
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null
### ktransformers
use_kt: true # use KTransformers as LoRA sft backend
kt_optimize_rule: examples/kt_optimize_rules/DeepSeek-V3-Chat-sft-amx-multi-gpu.yaml
cpu_infer: 32
chunk_size: 8192
### eval
# eval_dataset: alpaca_en_demo
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

View File

@@ -0,0 +1,52 @@
### model
model_name_or_path: Qwen/Qwen3-235B-A22B-Instruct-2507
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: lora
lora_rank: 8
lora_target: all
### dataset
dataset: identity, alpaca_en_demo
template: qwen3_nothink
cutoff_len: 2048
max_samples: 100000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/Kllama_Qwen3MoE_235bA22b
logging_steps: 10
save_steps: 200
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null
### ktransformers
use_kt: true # use KTransformers as LoRA sft backend
kt_optimize_rule: examples/kt_optimize_rules/Qwen3Moe-sft-amx.yaml
cpu_infer: 32
chunk_size: 8192
### eval
# eval_dataset: alpaca_en_demo
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

View File

@@ -1,42 +1,123 @@
[build-system]
requires = ["setuptools>=61.0"]
build-backend = "setuptools.build_meta"
requires = ["hatchling"]
build-backend = "hatchling.build"
[project]
name = "llamafactory"
requires-python = ">=3.9.0"
dynamic = [
"version",
"dependencies",
"optional-dependencies",
"scripts",
"authors",
"description",
"readme",
"license",
"keywords",
"classifiers"
dynamic = ["version"]
description = "Unified Efficient Fine-Tuning of 100+ LLMs"
readme = "README.md"
license = "Apache-2.0"
requires-python = ">=3.11.0"
authors = [
{ name = "hiyouga", email = "hiyouga@buaa.edu.cn" }
]
keywords = [
"AI",
"LLM",
"GPT",
"ChatGPT",
"Llama",
"Transformer",
"DeepSeek",
"Pytorch"
]
classifiers = [
"Development Status :: 4 - Beta",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: Apache Software License",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
"Programming Language :: Python :: 3.13",
"Topic :: Scientific/Engineering :: Artificial Intelligence"
]
dependencies = [
# core deps
"torch>=2.4.0",
"torchvision>=0.19.0",
"torchaudio>=2.4.0",
"transformers>=4.49.0,<=4.56.2,!=4.52.0; python_version < '3.10'",
"transformers>=4.49.0,<=4.57.1,!=4.52.0,!=4.57.0; python_version >= '3.10'",
"datasets>=2.16.0,<=4.0.0",
"accelerate>=1.3.0,<=1.11.0",
"peft>=0.14.0,<=0.17.1",
"trl>=0.8.6,<=0.9.6",
"torchdata>=0.10.0,<=0.11.0",
# gui
"gradio>=4.38.0,<=5.50.0",
"matplotlib>=3.7.0",
"tyro<0.9.0",
# ops
"einops",
"numpy",
"pandas",
"scipy",
# model and tokenizer
"sentencepiece",
"tiktoken",
"modelscope",
"hf-transfer",
"safetensors",
# python
"av",
"fire",
"omegaconf",
"packaging",
"protobuf",
"pyyaml",
"pydantic",
# api
"uvicorn",
"fastapi",
"sse-starlette"
]
[project.optional-dependencies]
dev = ["pre-commit", "ruff", "pytest", "build"]
metrics = ["nltk", "jieba", "rouge-chinese"]
deepspeed = ["deepspeed>=0.10.0,<=0.16.9"]
[project.scripts]
llamafactory-cli = "llamafactory.cli:main"
lmf = "llamafactory.cli:main"
[project.urls]
Homepage = "https://github.com/hiyouga/LLaMA-Factory"
Repository = "https://github.com/hiyouga/LLaMA-Factory"
[tool.hatch.build.targets.wheel]
packages = ["src/llamafactory"]
[tool.hatch.version]
path = "src/llamafactory/extras/env.py"
pattern = "VERSION = \"(?P<version>[^\"]+)\""
[tool.ruff]
target-version = "py39"
target-version = "py311"
line-length = 119
indent-width = 4
[tool.ruff.lint]
ignore = [
"C408", # collection
"C901", # complex
"E501", # line too long
"E731", # lambda function
"E741", # ambiguous var name
"D100", # no doc public module
"D101", # no doc public class
"D102", # no doc public method
"D103", # no doc public function
"D104", # no doc public package
"D105", # no doc magic method
"D107", # no doc __init__
"C408", # collection
"C901", # complex
"E501", # line too long
"E731", # lambda function
"E741", # ambiguous var name
"UP007", # no upgrade union
"UP045", # no upgrade optional
"D100", # no doc public module
"D101", # no doc public class
"D102", # no doc public method
"D103", # no doc public function
"D104", # no doc public package
"D105", # no doc magic method
"D107", # no doc __init__
]
extend-select = [
"C", # complexity
@@ -73,23 +154,3 @@ indent-style = "space"
docstring-code-format = true
skip-magic-trailing-comma = false
line-ending = "auto"
[tool.uv]
conflicts = [
[
{ extra = "torch-npu" },
{ extra = "aqlm" },
],
[
{ extra = "torch-npu" },
{ extra = "vllm" },
],
[
{ extra = "torch-npu" },
{ extra = "sglang" },
],
[
{ extra = "vllm" },
{ extra = "sglang" },
],
]

View File

@@ -1,36 +0,0 @@
# core deps
transformers>=4.49.0,<=4.56.2,!=4.52.0; python_version < '3.10'
transformers>=4.49.0,<=4.57.1,!=4.52.0; python_version >= '3.10'
datasets>=2.16.0,<=4.0.0
accelerate>=1.3.0,<=1.11.0
peft>=0.14.0,<=0.17.1
trl>=0.8.6,<=0.9.6
# gui
gradio>=4.38.0,<=5.45.0
matplotlib>=3.7.0
tyro<0.9.0
# ops
einops
numpy<2.0.0
pandas>=2.0.0
scipy
# model and tokenizer
sentencepiece
tiktoken
modelscope>=1.14.0
hf-transfer
safetensors<=0.5.3
# python
fire
omegaconf
packaging
protobuf
pyyaml
pydantic<=2.10.6
# api
uvicorn
fastapi
sse-starlette
# media
av
librosa

124
scripts/megatron_merge.py Normal file
View File

@@ -0,0 +1,124 @@
# Copyright 2025 the ROLL team and the LlamaFactory team.
#
# This code is modified from the ROLL library.
# https://github.com/alibaba/ROLL/blob/main/mcore_adapter/tools/convert.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import fire
import torch
from mcore_adapter.models.converter.post_converter import convert_checkpoint_to_hf, convert_checkpoint_to_mca
from mcore_adapter.training_args import DistributingParallelArguments
from mcore_adapter.utils import get_logger
from transformers import AutoConfig
logger = get_logger(__name__)
def convert_mca_to_hf(
checkpoint_path: str,
output_path: str = "./output",
bf16: bool = False,
fp16: bool = False,
convert_model_max_length: int | None = None,
):
"""Convert megatron checkpoint to HuggingFace format.
Args:
checkpoint_path: Path to the checkpoint to convert
output_path: Path to save the converted checkpoint
bf16: Use bfloat16 precision
fp16: Use float16 precision
convert_model_max_length: Change the model_max_length in hf config.json
"""
if bf16 and fp16:
raise ValueError("bf16 and fp16 cannot be both True.")
torch_dtype = None
if bf16:
torch_dtype = torch.bfloat16
elif fp16:
torch_dtype = torch.float16
convert_checkpoint_to_hf(checkpoint_path, output_path, torch_dtype=torch_dtype)
if convert_model_max_length is not None:
config = AutoConfig.from_pretrained(output_path, trust_remote_code=True)
config.model_max_length = convert_model_max_length
config.save_pretrained(output_path)
def convert(
checkpoint_path: str,
output_path: str = "./output",
bf16: bool = False,
fp16: bool = False,
convert_model_max_length: int | None = None,
tensor_model_parallel_size: int = 1,
pipeline_model_parallel_size: int = 1,
expert_model_parallel_size: int = 1,
virtual_pipeline_model_parallel_size: int | None = None,
):
"""Convert checkpoint between MCA and HuggingFace formats.
Args:
checkpoint_path: Path to the checkpoint to convert
output_path: Path to save the converted checkpoint
bf16: Use bfloat16 precision
fp16: Use float16 precision
convert_model_max_length: Change the model_max_length in hf config.json
tensor_model_parallel_size: Tensor model parallel size
pipeline_model_parallel_size: Pipeline model parallel size
expert_model_parallel_size: Expert model parallel size
virtual_pipeline_model_parallel_size: Virtual pipeline model parallel size
"""
if bf16 and fp16:
raise ValueError("bf16 and fp16 cannot be both True.")
mca_config_path = os.path.join(checkpoint_path, "mca_config.json")
from_mca = os.path.exists(mca_config_path)
if not from_mca:
dist_args = DistributingParallelArguments(
tensor_model_parallel_size=tensor_model_parallel_size,
pipeline_model_parallel_size=pipeline_model_parallel_size,
expert_model_parallel_size=expert_model_parallel_size,
virtual_pipeline_model_parallel_size=virtual_pipeline_model_parallel_size,
)
convert_checkpoint_to_mca(
checkpoint_path,
output_path,
dist_args,
bf16=bf16,
fp16=fp16,
)
else:
convert_mca_to_hf(
checkpoint_path=checkpoint_path,
output_path=output_path,
bf16=bf16,
fp16=fp16,
convert_model_max_length=convert_model_max_length,
)
def main():
fire.Fire(convert)
if __name__ == "__main__":
main()

View File

@@ -14,7 +14,7 @@
import json
from dataclasses import dataclass
from typing import Any, Literal, Optional
from typing import Any, Literal
import fire
import torch
@@ -61,7 +61,7 @@ def calculate_ppl(
dataset_dir: str = "data",
template: str = "default",
cutoff_len: int = 2048,
max_samples: Optional[int] = None,
max_samples: int | None = None,
train_on_prompt: bool = False,
):
r"""Calculate the ppl on the dataset of the pre-trained models.

View File

@@ -14,8 +14,8 @@
import gc
import json
from typing import Optional
import av
import fire
from tqdm import tqdm
from transformers import Seq2SeqTrainingArguments
@@ -33,6 +33,14 @@ if is_vllm_available():
from vllm.lora.request import LoRARequest
def _need_video_kwargs(template):
NEEDED_TEMPLATE = ["qwen3_vl", "glm4v"]
if any(t in template for t in NEEDED_TEMPLATE):
return True
return False
def vllm_infer(
model_name_or_path: str,
adapter_name_or_path: str = None,
@@ -40,7 +48,7 @@ def vllm_infer(
dataset_dir: str = "data",
template: str = "default",
cutoff_len: int = 2048,
max_samples: Optional[int] = None,
max_samples: int | None = None,
vllm_config: str = "{}",
save_name: str = "generated_predictions.jsonl",
temperature: float = 0.95,
@@ -49,9 +57,9 @@ def vllm_infer(
max_new_tokens: int = 1024,
repetition_penalty: float = 1.0,
skip_special_tokens: bool = True,
default_system: Optional[str] = None,
default_system: str | None = None,
enable_thinking: bool = True,
seed: Optional[int] = None,
seed: int | None = None,
pipeline_parallel_size: int = 1,
image_max_pixels: int = 768 * 768,
image_min_pixels: int = 32 * 32,
@@ -132,6 +140,7 @@ def vllm_infer(
# Store all results in these lists
all_prompts, all_preds, all_labels = [], [], []
need_video_kwargs = _need_video_kwargs(template)
# Add batch process to avoid the issue of too many files opened
for i in tqdm(range(0, len(train_dataset), batch_size), desc="Processing batched inference"):
@@ -147,6 +156,7 @@ def vllm_infer(
)["images"]
}
elif batch["videos"][j] is not None:
video_metadata, video_metadata_kwargs = None, None
video = batch["videos"][j]
multi_modal_data = {
"video": template_obj.mm_plugin._regularize_videos(
@@ -157,6 +167,25 @@ def vllm_infer(
video_maxlen=video_maxlen,
)["videos"]
}
if need_video_kwargs:
container = av.open(video[0], "r")
video_stream = next(stream for stream in container.streams if stream.type == "video")
sampling_indices = template_obj.mm_plugin._get_video_sample_indices(
video_stream, video_fps, video_maxlen
)
total_frames = video_stream.frames
video_metadata_kwargs = {
"fps": getattr(tokenizer_module["processor"], "video_fps", 24.0),
"do_sample_frames": False,
"total_num_frames": total_frames,
}
video_metadata = dict(
fps=video_fps,
frames_indices=sampling_indices,
total_num_frames=total_frames,
video_backend="opencv",
)
multi_modal_data["video"] = (multi_modal_data["video"], video_metadata)
elif batch["audios"][j] is not None:
audio = batch["audios"][j]
audio_data = template_obj.mm_plugin._regularize_audios(
@@ -167,7 +196,11 @@ def vllm_infer(
else:
multi_modal_data = None
vllm_inputs.append({"prompt_token_ids": batch["input_ids"][j], "multi_modal_data": multi_modal_data})
vllm_input_data = {"prompt_token_ids": batch["input_ids"][j], "multi_modal_data": multi_modal_data}
if "video_metadata_kwargs" in locals() and video_metadata_kwargs is not None:
vllm_input_data["mm_processor_kwargs"] = video_metadata_kwargs
vllm_inputs.append(vllm_input_data)
prompts.append(tokenizer.decode(batch["input_ids"][j], skip_special_tokens=skip_special_tokens))
labels.append(
tokenizer.decode(

116
setup.py
View File

@@ -1,116 +0,0 @@
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
from setuptools import find_packages, setup
def get_version() -> str:
with open(os.path.join("src", "llamafactory", "extras", "env.py"), encoding="utf-8") as f:
file_content = f.read()
pattern = r"{}\W*=\W*\"([^\"]+)\"".format("VERSION")
(version,) = re.findall(pattern, file_content)
return version
def get_requires() -> list[str]:
with open("requirements.txt", encoding="utf-8") as f:
file_content = f.read()
lines = [line.strip() for line in file_content.strip().split("\n") if not line.startswith("#")]
return lines
def get_console_scripts() -> list[str]:
console_scripts = ["llamafactory-cli = llamafactory.cli:main"]
if os.getenv("ENABLE_SHORT_CONSOLE", "1").lower() in ["true", "y", "1"]:
console_scripts.append("lmf = llamafactory.cli:main")
return console_scripts
extra_require = {
"torch": ["torch>=2.0.0", "torchvision>=0.15.0"],
"torch-npu": ["torch-npu==2.5.1", "torchvision==0.20.1", "decorator"],
"metrics": ["nltk", "jieba", "rouge-chinese"],
"deepspeed": ["deepspeed>=0.10.0,<=0.16.9"],
"liger-kernel": ["liger-kernel>=0.5.5"],
"bitsandbytes": ["bitsandbytes>=0.39.0"],
"hqq": ["hqq"],
"eetq": ["eetq"],
"gptq": ["optimum>=1.24.0", "gptqmodel>=2.0.0"],
"aqlm": ["aqlm[gpu]>=1.1.0"],
"vllm": ["vllm>=0.4.3,<=0.11.0"],
"sglang": ["sglang[srt]>=0.4.5", "transformers==4.51.1"],
"galore": ["galore-torch"],
"apollo": ["apollo-torch"],
"badam": ["badam>=1.2.1"],
"adam-mini": ["adam-mini"],
"minicpm_v": [
"soundfile",
"torchvision",
"torchaudio",
"vector_quantize_pytorch",
"vocos",
"msgpack",
"referencing",
"jsonschema_specifications",
],
"openmind": ["openmind"],
"swanlab": ["swanlab"],
"fp8": ["torchao>=0.8.0", "accelerate>=1.10.0"],
"fp8-te": ["transformer_engine[pytorch]>=2.0.0", "accelerate>=1.10.0"],
"fp8-all": ["torchao>=0.8.0", "transformer_engine[pytorch]>=2.0.0", "accelerate>=1.10.0"],
"dev": ["pre-commit", "ruff", "pytest", "build"],
}
def main():
setup(
name="llamafactory",
version=get_version(),
author="hiyouga",
author_email="hiyouga@buaa.edu.cn",
description="Unified Efficient Fine-Tuning of 100+ LLMs",
long_description=open("README.md", encoding="utf-8").read(),
long_description_content_type="text/markdown",
keywords=["AI", "LLM", "GPT", "ChatGPT", "Llama", "Transformer", "DeepSeek", "Pytorch"],
license="Apache 2.0 License",
url="https://github.com/hiyouga/LLaMA-Factory",
package_dir={"": "src"},
packages=find_packages("src"),
python_requires=">=3.9.0",
install_requires=get_requires(),
extras_require=extra_require,
entry_points={"console_scripts": get_console_scripts()},
classifiers=[
"Development Status :: 4 - Beta",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: Apache Software License",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
)
if __name__ == "__main__":
main()

View File

@@ -16,7 +16,7 @@ import asyncio
import os
from contextlib import asynccontextmanager
from functools import partial
from typing import Annotated, Optional
from typing import Annotated
from ..chat import ChatModel
from ..extras.constants import EngineName
@@ -79,7 +79,7 @@ def create_app(chat_model: "ChatModel") -> "FastAPI":
api_key = os.getenv("API_KEY")
security = HTTPBearer(auto_error=False)
async def verify_api_key(auth: Annotated[Optional[HTTPAuthorizationCredentials], Depends(security)]):
async def verify_api_key(auth: Annotated[HTTPAuthorizationCredentials | None, Depends(security)]):
if api_key and (auth is None or auth.credentials != api_key):
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid API key.")

View File

@@ -14,10 +14,9 @@
import time
from enum import Enum, unique
from typing import Any, Optional, Union
from typing import Any, Literal
from pydantic import BaseModel, Field
from typing_extensions import Literal
@unique
@@ -61,7 +60,7 @@ class FunctionDefinition(BaseModel):
class FunctionAvailable(BaseModel):
type: Literal["function", "code_interpreter"] = "function"
function: Optional[FunctionDefinition] = None
function: FunctionDefinition | None = None
class FunctionCall(BaseModel):
@@ -77,35 +76,35 @@ class URL(BaseModel):
class MultimodalInputItem(BaseModel):
type: Literal["text", "image_url", "video_url", "audio_url"]
text: Optional[str] = None
image_url: Optional[URL] = None
video_url: Optional[URL] = None
audio_url: Optional[URL] = None
text: str | None = None
image_url: URL | None = None
video_url: URL | None = None
audio_url: URL | None = None
class ChatMessage(BaseModel):
role: Role
content: Optional[Union[str, list[MultimodalInputItem]]] = None
tool_calls: Optional[list[FunctionCall]] = None
content: str | list[MultimodalInputItem] | None = None
tool_calls: list[FunctionCall] | None = None
class ChatCompletionMessage(BaseModel):
role: Optional[Role] = None
content: Optional[str] = None
tool_calls: Optional[list[FunctionCall]] = None
role: Role | None = None
content: str | None = None
tool_calls: list[FunctionCall] | None = None
class ChatCompletionRequest(BaseModel):
model: str
messages: list[ChatMessage]
tools: Optional[list[FunctionAvailable]] = None
do_sample: Optional[bool] = None
temperature: Optional[float] = None
top_p: Optional[float] = None
tools: list[FunctionAvailable] | None = None
do_sample: bool | None = None
temperature: float | None = None
top_p: float | None = None
n: int = 1
presence_penalty: Optional[float] = None
max_tokens: Optional[int] = None
stop: Optional[Union[str, list[str]]] = None
presence_penalty: float | None = None
max_tokens: int | None = None
stop: str | list[str] | None = None
stream: bool = False
@@ -118,7 +117,7 @@ class ChatCompletionResponseChoice(BaseModel):
class ChatCompletionStreamResponseChoice(BaseModel):
index: int
delta: ChatCompletionMessage
finish_reason: Optional[Finish] = None
finish_reason: Finish | None = None
class ChatCompletionResponseUsage(BaseModel):
@@ -147,7 +146,7 @@ class ChatCompletionStreamResponse(BaseModel):
class ScoreEvaluationRequest(BaseModel):
model: str
messages: list[str]
max_length: Optional[int] = None
max_length: int | None = None
class ScoreEvaluationResponse(BaseModel):

View File

@@ -71,6 +71,16 @@ class ChatModel:
"SGLang not install, you may need to run `pip install sglang[all]`\n"
"or try to use HuggingFace backend: --infer_backend huggingface"
) from e
elif model_args.infer_backend == EngineName.KT:
try:
from .kt_engine import KTransformersEngine
self.engine: BaseEngine = KTransformersEngine(model_args, data_args, finetuning_args, generating_args)
except ImportError as e:
raise ImportError(
"KTransformers not install, you may need to run `pip install ktransformers`\n"
"or try to use HuggingFace backend: --infer_backend huggingface"
) from e
else:
raise NotImplementedError(f"Unknown backend: {model_args.infer_backend}")

View File

@@ -14,9 +14,9 @@
import asyncio
import os
from collections.abc import AsyncGenerator
from collections.abc import AsyncGenerator, Callable
from threading import Thread
from typing import TYPE_CHECKING, Any, Callable, Optional, Union
from typing import TYPE_CHECKING, Any, Optional, Union
import torch
from transformers import GenerationConfig, TextIteratorStreamer

View File

@@ -0,0 +1,284 @@
# Copyright 2025 the KVCache.AI team, Approaching AI, and the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import asyncio
import os
import platform
from collections.abc import AsyncGenerator
from threading import Thread
from typing import TYPE_CHECKING, Any, Optional
import torch
from typing_extensions import override
from ..data import get_template_and_fix_tokenizer
from ..extras import logging
from ..extras.constants import EngineName
from ..model import load_model, load_tokenizer
from .base_engine import BaseEngine, Response
if TYPE_CHECKING:
from transformers import PreTrainedTokenizer
from trl import PreTrainedModelWrapper
from ..data.mm_plugin import AudioInput, ImageInput, VideoInput
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
from ktransformers.operators.flashinfer_wrapper import flashinfer_enabled
from ktransformers.server.config.config import Config
from ktransformers.util.utils import (
get_compute_capability,
prefill_and_generate_capture,
)
from ktransformers.util.vendors import GPUVendor, device_manager
logger = logging.get_logger(__name__)
class KTransformersEngine(BaseEngine):
def __init__(
self,
model_args: "ModelArguments",
data_args: "DataArguments",
finetuning_args: "FinetuningArguments",
generating_args: "GeneratingArguments",
) -> None:
self.name = EngineName.KT
self.can_generate = finetuning_args.stage == "sft"
tok_mod = load_tokenizer(model_args)
self.tokenizer = tok_mod["tokenizer"]
self.tokenizer.padding_side = "left" if self.can_generate else "right"
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args)
self.model = load_model(
self.tokenizer, model_args, finetuning_args, is_trainable=False, add_valuehead=(not self.can_generate)
)
self.generating_args = generating_args.to_dict()
self.max_new_tokens = model_args.kt_maxlen
self.use_cuda_graph = model_args.kt_use_cuda_graph
self.mode = model_args.kt_mode
self.force_think = model_args.kt_force_think
self.chunk_size = model_args.chunk_size
try:
asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
self.semaphore = asyncio.Semaphore(int(os.getenv("MAX_CONCURRENT", "1")))
@staticmethod
@torch.inference_mode()
def _get_scores(
model: "PreTrainedModelWrapper",
tokenizer: "PreTrainedTokenizer",
batch_input: list[str],
input_kwargs: Optional[dict[str, Any]] = {},
) -> list[float]:
max_length: Optional[int] = input_kwargs.pop("max_length", None)
device = getattr(model.pretrained_model, "device", "cuda")
inputs = tokenizer(
batch_input,
padding=True,
truncation=True,
max_length=max_length or getattr(model.config, "max_position_embeddings", 1024),
return_tensors="pt",
add_special_tokens=False,
).to(device)
values: torch.Tensor = model(**inputs, return_dict=True, use_cache=False)[-1]
scores = values.gather(dim=-1, index=(inputs["attention_mask"].sum(dim=-1, keepdim=True) - 1))
return scores
async def _generate(
self,
messages: list[dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
**input_kwargs,
) -> AsyncGenerator[str, None]:
paired = messages + [{"role": "assistant", "content": ""}]
prompt_ids, _ = self.template.encode_oneturn(self.tokenizer, paired, system, tools)
prompt_len = len(prompt_ids)
max_length: Optional[int] = input_kwargs.pop("max_length", None)
max_new_tokens: Optional[int] = input_kwargs.pop("max_new_tokens", None)
if "max_new_tokens" in self.generating_args:
max_tokens = int(self.generating_args["max_new_tokens"])
elif "max_length" in self.generating_args:
gl = int(self.generating_args["max_length"])
max_tokens = gl - prompt_len if gl > prompt_len else 1
else:
max_tokens = self.max_new_tokens or 256
if max_length is not None:
max_tokens = max(max_length - prompt_len, 1)
if max_new_tokens is not None:
max_tokens = int(max_new_tokens)
max_tokens = max(1, int(max_tokens))
if self.mode == "long_context":
max_len_cfg = Config().long_context_config["max_seq_len"]
need = prompt_len + max_tokens
assert max_len_cfg > need, f"please set max_seq_len > {need} in ~/.ktransformers/config.yaml"
device = next(self.model.parameters()).device
input_tensor = torch.tensor([prompt_ids], dtype=torch.long, device=device)
if self.force_think:
think = torch.tensor(
[self.tokenizer.encode("<think>\n", add_special_tokens=False)], dtype=torch.long, device=device
)
input_tensor = torch.cat([input_tensor, think], dim=1)
use_flashinfer = (
platform.system() != "Windows"
and getattr(self.model.config, "architectures", [""])[0]
in {"DeepseekV2ForCausalLM", "DeepseekV3ForCausalLM"}
and flashinfer_enabled
and get_compute_capability() >= 8
and device_manager.gpu_vendor == GPUVendor.NVIDIA
)
def make_gen():
if use_flashinfer:
return prefill_and_generate_capture(
self.model,
self.tokenizer,
input_tensor,
max_tokens,
self.use_cuda_graph,
mode=self.mode,
force_think=self.force_think,
chunk_size=self.chunk_size,
use_flashinfer_mla=True,
num_heads=self.model.config.num_attention_heads,
head_dim_ckv=getattr(self.model.config, "kv_lora_rank", 0),
head_dim_kpe=getattr(self.model.config, "qk_rope_head_dim", 0),
q_head_dim=getattr(self.model.config, "qk_rope_head_dim", 0)
+ getattr(self.model.config, "qk_nope_head_dim", 0),
echo_stream=False,
)
else:
return prefill_and_generate_capture(
self.model,
self.tokenizer,
input_tensor,
max_tokens,
self.use_cuda_graph,
mode=self.mode,
force_think=self.force_think,
chunk_size=self.chunk_size,
echo_stream=False,
)
loop = asyncio.get_running_loop()
q: asyncio.Queue[Optional[str]] = asyncio.Queue()
def producer():
try:
gen = make_gen()
if hasattr(gen, "__aiter__"):
async def drain_async():
async for t in gen:
loop.call_soon_threadsafe(q.put_nowait, t if isinstance(t, str) else str(t))
asyncio.run(drain_async())
elif hasattr(gen, "__iter__"):
for t in gen:
loop.call_soon_threadsafe(q.put_nowait, t if isinstance(t, str) else str(t))
else:
loop.call_soon_threadsafe(q.put_nowait, gen if isinstance(gen, str) else str(gen))
finally:
loop.call_soon_threadsafe(q.put_nowait, None)
Thread(target=producer, daemon=True).start()
while True:
item = await q.get()
if item is None:
break
yield item
@override
async def chat(
self,
messages: list[dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
images: Optional[list["ImageInput"]] = None,
videos: Optional[list["VideoInput"]] = None,
audios: Optional[list["AudioInput"]] = None,
**input_kwargs,
) -> list["Response"]:
if not self.can_generate:
raise ValueError("The current model does not support `chat`.")
async with self.semaphore:
produced = ""
final_text = ""
async for t in self._generate(messages, system, tools, **input_kwargs):
delta = t
produced = produced + delta
if delta:
final_text += delta
prompt_ids, _ = self.template.encode_oneturn(
self.tokenizer, messages + [{"role": "assistant", "content": ""}], system, tools
)
return [
Response(
response_text=final_text,
response_length=len(self.tokenizer.encode(final_text, add_special_tokens=False)),
prompt_length=len(prompt_ids),
finish_reason="stop",
)
]
@override
async def stream_chat(
self,
messages: list[dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
images: Optional[list["ImageInput"]] = None,
videos: Optional[list["VideoInput"]] = None,
audios: Optional[list["AudioInput"]] = None,
**input_kwargs,
) -> AsyncGenerator[str, None]:
if not self.can_generate:
raise ValueError("The current model does not support `stream_chat`.")
async with self.semaphore:
produced = ""
async for t in self._generate(messages, system, tools, **input_kwargs):
delta = t[len(produced) :] if t.startswith(produced) else t
produced = t
if delta:
yield delta
@override
async def get_scores(
self,
batch_input: list[str],
**input_kwargs,
) -> list[float]:
if self.can_generate:
raise ValueError("Cannot get scores using an auto-regressive model.")
args = (self.model, self.tokenizer, batch_input, input_kwargs)
async with self.semaphore:
return await asyncio.to_thread(self._get_scores, *args)

View File

@@ -16,6 +16,7 @@ import uuid
from collections.abc import AsyncGenerator, AsyncIterator
from typing import TYPE_CHECKING, Any, Optional, Union
from packaging import version
from typing_extensions import override
from ..data import get_template_and_fix_tokenizer
@@ -77,11 +78,18 @@ class VllmEngine(BaseEngine):
"tensor_parallel_size": get_device_count() or 1,
"gpu_memory_utilization": model_args.vllm_gpu_util,
"disable_log_stats": True,
"disable_log_requests": True,
"enforce_eager": model_args.vllm_enforce_eager,
"enable_lora": model_args.adapter_name_or_path is not None,
"max_lora_rank": model_args.vllm_max_lora_rank,
}
import vllm
if version.parse(vllm.__version__) <= version.parse("0.10.0"):
engine_args["disable_log_requests"] = True
else:
engine_args["enable_log_requests"] = False
if self.template.mm_plugin.__class__.__name__ != "BasePlugin":
engine_args["limit_mm_per_prompt"] = {"image": 4, "video": 2, "audio": 2}

View File

@@ -15,7 +15,7 @@ import json
import os
from abc import abstractmethod
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Optional, Union
from typing import TYPE_CHECKING, Any, Union
from ..extras import logging
from .data_utils import Role
@@ -40,7 +40,7 @@ class DatasetConverter:
dataset_attr: "DatasetAttr"
data_args: "DataArguments"
def _find_medias(self, medias: Union["MediaType", list["MediaType"], None]) -> Optional[list["MediaType"]]:
def _find_medias(self, medias: Union["MediaType", list["MediaType"], None]) -> list["MediaType"] | None:
r"""Optionally concatenate media path to media dir when loading from local disk."""
if medias is None:
return None

View File

@@ -81,41 +81,48 @@ def split_dataset(
eval_dataset: Optional[Union["Dataset", "IterableDataset", dict[str, "Dataset"]]],
data_args: "DataArguments",
seed: int,
) -> "DatasetDict":
r"""Split the dataset and returns a dataset dict containing train set and validation set.
) -> tuple[dict, dict]:
r"""Split the dataset and returns two dicts containing train set and validation set.
Support both map dataset and iterable dataset.
Returns:
train_dict: Dictionary containing training data with key "train"
eval_dict: Dictionary containing evaluation data with keys "validation" or "validation_{name}"
"""
if eval_dataset is not None and data_args.val_size > 1e-6:
raise ValueError("Cannot specify `val_size` if `eval_dataset` is not None.")
dataset_dict = {}
# the train and eval better to in dict dtype and separately return for cpode clearly and good handle outside
train_dict, eval_dict = {}, {}
if dataset is not None:
if data_args.streaming:
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed)
if data_args.val_size > 1e-6:
if data_args.streaming:
dataset_dict["validation"] = dataset.take(int(data_args.val_size))
dataset_dict["train"] = dataset.skip(int(data_args.val_size))
eval_dict["validation"] = dataset.take(int(data_args.val_size))
train_dict["train"] = dataset.skip(int(data_args.val_size))
else:
val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size
dataset_dict = dataset.train_test_split(test_size=val_size, seed=seed)
dataset = dataset.train_test_split(test_size=val_size, seed=seed)
dataset_dict = {"train": dataset["train"], "validation": dataset["test"]}
split_result = dataset.train_test_split(test_size=val_size, seed=seed)
train_dict["train"] = split_result["train"]
eval_dict["validation"] = split_result["test"]
else:
dataset_dict["train"] = dataset
train_dict["train"] = dataset
if eval_dataset is not None:
if isinstance(eval_dataset, dict):
dataset_dict.update({f"validation_{name}": data for name, data in eval_dataset.items()})
for name, data in eval_dataset.items():
eval_dict[f"validation_{name}"] = data
else:
if data_args.streaming:
eval_dataset = eval_dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed)
dataset_dict["validation"] = eval_dataset
eval_dict["validation"] = eval_dataset
return DatasetDict(dataset_dict)
return train_dict, eval_dict
def get_dataset_module(dataset: Union["Dataset", "DatasetDict"]) -> "DatasetModule":

View File

@@ -16,7 +16,6 @@ import json
import re
from abc import ABC, abstractmethod
from dataclasses import dataclass, field
from typing import Optional, Union
from typing_extensions import override
@@ -27,14 +26,14 @@ from .tool_utils import FunctionCall, get_tool_utils
@dataclass
class Formatter(ABC):
slots: SLOTS = field(default_factory=list)
tool_format: Optional[str] = None
tool_format: str | None = None
@abstractmethod
def apply(self, **kwargs) -> SLOTS:
r"""Forms a list of slots according to the inputs to encode."""
...
def extract(self, content: str) -> Union[str, list["FunctionCall"]]:
def extract(self, content: str) -> str | list["FunctionCall"]:
r"""Extract a list of tuples from the response message if using tools.
Each tuple consists of function name and function arguments.
@@ -97,31 +96,46 @@ class FunctionFormatter(StringFormatter):
@override
def apply(self, **kwargs) -> SLOTS:
content: str = kwargs.pop("content")
thought_words, thought = kwargs.pop("thought_words", None), None
if thought_words and len(thought_words) == 2:
regex = re.compile(rf"{re.escape(thought_words[0])}(.*?){re.escape(thought_words[1])}", re.DOTALL)
thought = re.search(regex, content)
thought_words = kwargs.pop("thought_words", None)
tool_call_words = kwargs.pop("tool_call_words", None)
if thought:
content = content.replace(thought.group(0), "")
def _parse_functions(json_content: str) -> list["FunctionCall"]:
try:
tool_calls = json.loads(json_content)
if not isinstance(tool_calls, list): # parallel function call
tool_calls = [tool_calls]
functions: list[FunctionCall] = []
try:
tool_calls = json.loads(content)
if not isinstance(tool_calls, list): # parallel function call
tool_calls = [tool_calls]
return [FunctionCall(tc["name"], json.dumps(tc["arguments"], ensure_ascii=False)) for tc in tool_calls]
except json.JSONDecodeError:
raise RuntimeError(f"Invalid JSON format in function message: {str([content])}.")
for tool_call in tool_calls:
functions.append(
FunctionCall(tool_call["name"], json.dumps(tool_call["arguments"], ensure_ascii=False))
)
tool_call_match = None
if tool_call_words and len(tool_call_words) == 2:
tool_call_regex = re.compile(
rf"{re.escape(tool_call_words[0])}(.*?){re.escape(tool_call_words[1])}", re.DOTALL
)
tool_call_match = re.search(tool_call_regex, content)
except json.JSONDecodeError:
raise RuntimeError(f"Invalid JSON format in function message: {str([content])}.") # flat string
if tool_call_match is None:
thought_match = None
if thought_words and len(thought_words) == 2:
regex = re.compile(rf"{re.escape(thought_words[0])}(.*?){re.escape(thought_words[1])}", re.DOTALL)
thought_match = re.search(regex, content)
function_str = self.tool_utils.function_formatter(functions)
if thought:
function_str = thought.group(0) + function_str
if thought_match:
json_part = content.replace(thought_match.group(0), "")
else:
json_part = content
functions = _parse_functions(json_part)
function_str = self.tool_utils.function_formatter(functions)
if thought_match:
function_str = thought_match.group(0) + function_str
else:
thought_content = content.replace(tool_call_match.group(0), "")
functions = _parse_functions(tool_call_match.group(1))
function_str = self.tool_utils.function_formatter(functions)
function_str = thought_content + function_str
return super().apply(content=function_str)
@@ -141,5 +155,5 @@ class ToolFormatter(Formatter):
raise RuntimeError(f"Invalid JSON format in tool description: {str([content])}.") # flat string
@override
def extract(self, content: str) -> Union[str, list["FunctionCall"]]:
def extract(self, content: str) -> str | list["FunctionCall"]:
return self.tool_utils.tool_extractor(content)

View File

@@ -16,7 +16,7 @@ import os
from typing import TYPE_CHECKING, Literal, Optional, Union
import numpy as np
from datasets import Dataset, load_dataset, load_from_disk
from datasets import Dataset, DatasetDict, load_dataset, load_from_disk
from ..extras import logging
from ..extras.constants import FILEEXT2TYPE
@@ -137,7 +137,6 @@ def _load_single_dataset(
cache_dir=model_args.cache_dir,
token=model_args.hf_hub_token,
num_proc=data_args.preprocessing_num_workers,
trust_remote_code=model_args.trust_remote_code,
streaming=data_args.streaming and dataset_attr.load_from != "file",
)
if data_args.streaming and dataset_attr.load_from == "file":
@@ -163,13 +162,13 @@ def _load_single_dataset(
def _get_merged_dataset(
dataset_names: Optional[list[str]],
dataset_names: list[str] | None,
model_args: "ModelArguments",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
stage: Literal["pt", "sft", "rm", "ppo", "kto"],
return_dict: bool = False,
) -> Optional[Union["Dataset", "IterableDataset", dict[str, "Dataset"]]]:
) -> Union["Dataset", "IterableDataset", dict[str, "Dataset"]] | None:
r"""Return the merged datasets in the standard format."""
if dataset_names is None:
return None
@@ -228,7 +227,7 @@ def _get_dataset_processor(
def _get_preprocessed_dataset(
dataset: Optional[Union["Dataset", "IterableDataset"]],
dataset: Union["Dataset", "IterableDataset"] | None,
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
stage: Literal["pt", "sft", "rm", "ppo", "kto"],
@@ -236,7 +235,7 @@ def _get_preprocessed_dataset(
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"] = None,
is_eval: bool = False,
) -> Optional[Union["Dataset", "IterableDataset"]]:
) -> Union["Dataset", "IterableDataset"] | None:
r"""Preprocesses the dataset, including format checking and tokenization."""
if dataset is None:
return None
@@ -312,20 +311,22 @@ def get_dataset(
)
with training_args.main_process_first(desc="pre-process dataset", local=(not data_args.data_shared_file_system)):
dataset = _get_preprocessed_dataset(
dataset, data_args, training_args, stage, template, tokenizer, processor, is_eval=False
)
if isinstance(eval_dataset, dict):
for eval_name, eval_data in eval_dataset.items():
eval_dataset[eval_name] = _get_preprocessed_dataset(
eval_data, data_args, training_args, stage, template, tokenizer, processor, is_eval=True
)
else:
eval_dataset = _get_preprocessed_dataset(
eval_dataset, data_args, training_args, stage, template, tokenizer, processor, is_eval=True
# move front to make sure eval_dataset(if contain or split) can preprocessed appropriately
train_dict, eval_dict = split_dataset(dataset, eval_dataset, data_args, seed=training_args.seed)
if "train" in train_dict:
train_dict["train"] = _get_preprocessed_dataset(
train_dict["train"], data_args, training_args, stage, template, tokenizer, processor, is_eval=False
)
dataset_dict = split_dataset(dataset, eval_dataset, data_args, seed=training_args.seed)
for key in eval_dict:
eval_dict[key] = _get_preprocessed_dataset(
eval_dict[key], data_args, training_args, stage, template, tokenizer, processor, is_eval=True
)
# Combine train and eval dictionaries
dataset_dict = DatasetDict({**train_dict, **eval_dict})
if data_args.tokenized_path is not None: # save tokenized dataset to disk
if training_args.should_save:
dataset_dict.save_to_disk(data_args.tokenized_path)

View File

@@ -22,10 +22,11 @@ import re
from copy import deepcopy
from dataclasses import dataclass
from io import BytesIO
from typing import TYPE_CHECKING, BinaryIO, Literal, Optional, TypedDict, Union
from typing import TYPE_CHECKING, BinaryIO, Literal, NotRequired, Optional, TypedDict, Union
import numpy as np
import torch
import torchaudio
from transformers.image_utils import get_image_size, is_valid_image, to_numpy_array
from transformers.models.mllama.processing_mllama import (
convert_sparse_cross_attention_mask_to_dense,
@@ -34,16 +35,7 @@ from transformers.models.mllama.processing_mllama import (
from typing_extensions import override
from ..extras.constants import AUDIO_PLACEHOLDER, IGNORE_INDEX, IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER
from ..extras.packages import (
is_librosa_available,
is_pillow_available,
is_pyav_available,
is_transformers_version_greater_than,
)
if is_librosa_available():
import librosa
from ..extras.packages import is_pillow_available, is_pyav_available, is_transformers_version_greater_than
if is_pillow_available():
@@ -68,15 +60,28 @@ if TYPE_CHECKING:
from transformers import PreTrainedTokenizer, ProcessorMixin
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
from transformers.image_processing_utils import BaseImageProcessor
from transformers.video_processing_utils import BaseVideoProcessor
class EncodedImage(TypedDict):
path: Optional[str]
bytes: Optional[bytes]
path: str | None
bytes: bytes | None
ImageInput = Union[str, bytes, EncodedImage, BinaryIO, ImageObject]
VideoInput = Union[str, BinaryIO, list[list[ImageInput]]]
AudioInput = Union[str, BinaryIO, NDArray]
class RegularizedImageOutput(TypedDict):
images: list[ImageObject]
class RegularizedVideoOutput(TypedDict):
videos: list[list[ImageObject]]
durations: list[float]
fps_per_video: NotRequired[list[float]]
class RegularizedAudioOutput(TypedDict):
audios: list[NDArray]
sampling_rates: list[float]
class MMProcessor(ProcessorMixin):
patch_size: int
image_seq_length: int
@@ -139,9 +144,9 @@ def _check_video_is_nested_images(video: "VideoInput") -> bool:
@dataclass
class MMPluginMixin:
image_token: Optional[str]
video_token: Optional[str]
audio_token: Optional[str]
image_token: str | None
video_token: str | None
audio_token: str | None
expand_mm_tokens: bool = True
def _validate_input(
@@ -244,7 +249,7 @@ class MMPluginMixin:
sample_frames = min(total_frames, video_maxlen, sample_frames)
return np.linspace(0, total_frames - 1, sample_frames).astype(np.int32)
def _regularize_images(self, images: list["ImageInput"], **kwargs) -> dict[str, list["ImageObject"]]:
def _regularize_images(self, images: list["ImageInput"], **kwargs) -> "RegularizedImageOutput":
r"""Regularize images to avoid error. Including reading and pre-processing."""
results = []
for image in images:
@@ -265,9 +270,10 @@ class MMPluginMixin:
return {"images": results}
def _regularize_videos(self, videos: list["VideoInput"], **kwargs) -> dict[str, list[list["ImageObject"]]]:
def _regularize_videos(self, videos: list["VideoInput"], **kwargs) -> "RegularizedVideoOutput":
r"""Regularizes videos to avoid error. Including reading, resizing and converting."""
results = []
durations = []
for video in videos:
frames: list[ImageObject] = []
if _check_video_is_nested_images(video):
@@ -275,6 +281,7 @@ class MMPluginMixin:
if not is_valid_image(frame) and not isinstance(frame, dict) and not os.path.exists(frame):
raise ValueError("Invalid image found in video frames.")
frames = video
durations.append(len(frames) / kwargs.get("video_fps", 2.0))
else:
container = av.open(video, "r")
video_stream = next(stream for stream in container.streams if stream.type == "video")
@@ -284,19 +291,31 @@ class MMPluginMixin:
if frame_idx in sample_indices:
frames.append(frame.to_image())
if video_stream.duration is None:
durations.append(len(frames) / kwargs.get("video_fps", 2.0))
else:
durations.append(float(video_stream.duration * video_stream.time_base))
frames = self._regularize_images(frames, **kwargs)["images"]
results.append(frames)
return {"videos": results}
return {"videos": results, "durations": durations}
def _regularize_audios(
self, audios: list["AudioInput"], sampling_rate: float, **kwargs
) -> dict[str, Union[list["NDArray"], list[float]]]:
) -> "RegularizedAudioOutput":
r"""Regularizes audios to avoid error. Including reading and resampling."""
results, sampling_rates = [], []
for audio in audios:
if not isinstance(audio, np.ndarray):
audio, sampling_rate = librosa.load(audio, sr=sampling_rate)
audio, sr = torchaudio.load(audio)
if audio.shape[0] > 1:
audio = audio.mean(dim=0, keepdim=True)
if sr != sampling_rate:
audio = torchaudio.functional.resample(audio, sr, sampling_rate)
audio = audio.squeeze(0).numpy()
results.append(audio)
sampling_rates.append(sampling_rate)
@@ -309,7 +328,7 @@ class MMPluginMixin:
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: "MMProcessor",
imglens: Optional[list[int]] = None,
imglens: list[int] | None = None,
) -> dict[str, "torch.Tensor"]:
r"""Process visual inputs.
@@ -407,13 +426,13 @@ class BasePlugin(MMPluginMixin):
def process_token_ids(
self,
input_ids: list[int],
labels: Optional[list[int]],
labels: list[int] | None,
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
tokenizer: "PreTrainedTokenizer",
processor: Optional["MMProcessor"],
) -> tuple[list[int], Optional[list[int]]]:
) -> tuple[list[int], list[int] | None]:
r"""Pre-process token ids after tokenization for VLMs."""
self._validate_input(processor, images, videos, audios)
return input_ids, labels
@@ -446,6 +465,57 @@ class BasePlugin(MMPluginMixin):
return self._get_mm_inputs(images, videos, audios, processor)
@dataclass
class ErnieVLPlugin(BasePlugin):
@override
def process_messages(
self,
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
self._validate_messages(messages, images, videos, audios)
messages = deepcopy(messages)
image_processor: BaseImageProcessor = getattr(processor, "image_processor")
merge_length: int = getattr(image_processor, "merge_size") ** 2
if self.expand_mm_tokens:
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
image_grid_thw = mm_inputs.get("image_grid_thw", [])
video_grid_thw = mm_inputs.get("video_grid_thw", [])
else:
image_grid_thw = [None] * len(images)
video_grid_thw = [None] * len(videos)
image_idx, video_idx = 0, 0
for message in messages:
content = message["content"]
image_token = self.image_token or "<|IMAGE_PLACEHOLDER|>"
video_token = self.video_token or "<|VIDEO_PLACEHOLDER|>"
while IMAGE_PLACEHOLDER in content:
image_seqlen = image_grid_thw[image_idx].prod() // merge_length if self.expand_mm_tokens else 1
content = content.replace(
IMAGE_PLACEHOLDER,
f"Picture {image_idx + 1}:<|IMAGE_START|>{image_token * image_seqlen}<|IMAGE_END|>",
1,
)
image_idx += 1
while VIDEO_PLACEHOLDER in content:
video_seqlen = video_grid_thw[video_idx].prod() // merge_length if self.expand_mm_tokens else 1
content = content.replace(
VIDEO_PLACEHOLDER,
f"Video {video_idx + 1}:<|VIDEO_START|>{video_token * video_seqlen}<|VIDEO_END|>",
1,
)
video_idx += 1
message["content"] = content
return messages
@dataclass
class Gemma3Plugin(BasePlugin):
@override
@@ -1235,13 +1305,13 @@ class PaliGemmaPlugin(BasePlugin):
def process_token_ids(
self,
input_ids: list[int],
labels: Optional[list[int]],
labels: list[int] | None,
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
tokenizer: "PreTrainedTokenizer",
processor: Optional["MMProcessor"],
) -> tuple[list[int], Optional[list[int]]]:
) -> tuple[list[int], list[int] | None]:
self._validate_input(processor, images, videos, audios)
num_images = len(images)
image_seqlen = processor.image_seq_length if self.expand_mm_tokens else 0 # skip mm token
@@ -1418,10 +1488,8 @@ class Qwen2VLPlugin(BasePlugin):
return image
@override
def _regularize_videos(
self, videos: list["VideoInput"], **kwargs
) -> dict[str, Union[list[list["ImageObject"]], list[float]]]:
results, fps_per_video = [], []
def _regularize_videos(self, videos: list["VideoInput"], **kwargs) -> "RegularizedVideoOutput":
results, fps_per_video, durations = [], [], []
for video in videos:
frames: list[ImageObject] = []
if _check_video_is_nested_images(video):
@@ -1431,6 +1499,7 @@ class Qwen2VLPlugin(BasePlugin):
frames = video
fps_per_video.append(kwargs.get("video_fps", 2.0))
durations.append(len(frames) / kwargs.get("video_fps", 2.0))
else:
container = av.open(video, "r")
video_stream = next(stream for stream in container.streams if stream.type == "video")
@@ -1442,8 +1511,10 @@ class Qwen2VLPlugin(BasePlugin):
if video_stream.duration is None:
fps_per_video.append(kwargs.get("video_fps", 2.0))
durations.append(len(frames) / kwargs.get("video_fps", 2.0))
else:
fps_per_video.append(len(sample_indices) / float(video_stream.duration * video_stream.time_base))
durations.append(float(video_stream.duration * video_stream.time_base))
if len(frames) % 2 != 0:
frames.append(frames[-1])
@@ -1451,7 +1522,7 @@ class Qwen2VLPlugin(BasePlugin):
frames = self._regularize_images(frames, **kwargs)["images"]
results.append(frames)
return {"videos": results, "fps_per_video": fps_per_video}
return {"videos": results, "fps_per_video": fps_per_video, "durations": durations}
@override
def _get_mm_inputs(
@@ -1462,6 +1533,7 @@ class Qwen2VLPlugin(BasePlugin):
processor: "MMProcessor",
) -> dict[str, "torch.Tensor"]:
image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
video_processor: BaseVideoProcessor = getattr(processor, "video_processor", None)
mm_inputs = {}
if len(images) != 0:
images = self._regularize_images(
@@ -1479,7 +1551,7 @@ class Qwen2VLPlugin(BasePlugin):
video_fps=getattr(processor, "video_fps", 2.0),
video_maxlen=getattr(processor, "video_maxlen", 128),
)
mm_inputs.update(image_processor(images=None, videos=video_data["videos"], return_tensors="pt"))
mm_inputs.update(video_processor(videos=video_data["videos"], return_tensors="pt"))
temporal_patch_size: int = getattr(image_processor, "temporal_patch_size", 2)
if "second_per_grid_ts" in processor.model_input_names:
mm_inputs["second_per_grid_ts"] = [temporal_patch_size / fps for fps in video_data["fps_per_video"]]
@@ -1565,11 +1637,16 @@ class Qwen3VLPlugin(Qwen2VLPlugin):
video_maxlen=getattr(processor, "video_maxlen", 128),
)
video_metadata = [
{"fps": getattr(processor, "video_fps", 24.0), "duration": len(video), "total_num_frames": len(video)}
for video in videos["videos"]
{"fps": getattr(processor, "video_fps", 24.0), "duration": duration, "total_num_frames": len(video)}
for video, duration in zip(videos["videos"], videos["durations"])
]
mm_inputs.update(
video_processor(videos=videos["videos"], video_metadata=video_metadata, return_metadata=True)
video_processor(
videos=videos["videos"],
video_metadata=video_metadata,
fps=getattr(processor, "video_fps", 2.0),
return_metadata=True,
)
)
temporal_patch_size: int = getattr(image_processor, "temporal_patch_size", 2)
if "second_per_grid_ts" in processor.model_input_names:
@@ -1622,27 +1699,27 @@ class Qwen3VLPlugin(Qwen2VLPlugin):
num_image_tokens += 1
while VIDEO_PLACEHOLDER in content:
metadata = video_metadata[idx]
timestamps = processor._calculate_timestamps(
metadata.frames_indices,
metadata.fps,
video_processor.merge_size,
)
video_structure = ""
for frame_index in range(num_frames):
video_seqlen = (
video_grid_thw[num_video_tokens][1:].prod() // video_merge_length
if self.expand_mm_tokens
else 1
if self.expand_mm_tokens:
metadata = video_metadata[idx]
timestamps = processor._calculate_timestamps(
metadata.frames_indices,
metadata.fps,
video_processor.merge_size,
)
timestamp_sec = timestamps[frame_index]
frame_structure = (
f"<{timestamp_sec:.1f} seconds>"
f"{self.vision_bos_token}{self.video_token * video_seqlen}{self.vision_eos_token}"
)
video_structure += frame_structure
if not self.expand_mm_tokens:
video_structure = ""
for frame_index in range(num_frames):
video_seqlen = (
video_grid_thw[num_video_tokens][1:].prod() // video_merge_length
if self.expand_mm_tokens
else 1
)
timestamp_sec = timestamps[frame_index]
frame_structure = (
f"<{timestamp_sec:.1f} seconds>"
f"{self.vision_bos_token}{self.video_token * video_seqlen}{self.vision_eos_token}"
)
video_structure += frame_structure
else:
video_structure = f"{self.vision_bos_token}{self.video_token}{self.vision_eos_token}"
content = content.replace(VIDEO_PLACEHOLDER, video_structure, 1)
@@ -1684,7 +1761,8 @@ class GLM4VPlugin(Qwen2VLPlugin):
)
# prepare video metadata
video_metadata = [
{"fps": 2, "duration": len(video), "total_frames": len(video)} for video in video_data["videos"]
{"fps": 2, "duration": duration, "total_frames": len(video)}
for video, duration in zip(video_data["videos"], video_data["durations"])
]
mm_inputs.update(video_processor(images=None, videos=video_data["videos"], video_metadata=video_metadata))
@@ -1797,6 +1875,7 @@ class Qwen2OmniPlugin(Qwen2VLPlugin):
processor: "MMProcessor",
) -> dict[str, "torch.Tensor"]:
image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
video_processor: BaseVideoProcessor = getattr(processor, "video_processor", None)
feature_extractor: SequenceFeatureExtractor = getattr(processor, "feature_extractor", None)
mm_inputs = {}
if len(images) != 0:
@@ -1815,7 +1894,7 @@ class Qwen2OmniPlugin(Qwen2VLPlugin):
video_fps=getattr(processor, "video_fps", 2.0),
video_maxlen=getattr(processor, "video_maxlen", 128),
)
mm_inputs.update(image_processor(images=None, videos=video_dict["videos"], return_tensors="pt"))
mm_inputs.update(video_processor(videos=video_dict["videos"], return_tensors="pt"))
temporal_patch_size: int = getattr(image_processor, "temporal_patch_size", 2)
mm_inputs["video_second_per_grid"] = torch.tensor(
[temporal_patch_size / fps for fps in video_dict["fps_per_video"]]
@@ -1861,8 +1940,14 @@ class Qwen2OmniPlugin(Qwen2VLPlugin):
image_grid_thw = mm_inputs.get("image_grid_thw", [])
video_grid_thw = mm_inputs.get("video_grid_thw", [])
if "feature_attention_mask" in mm_inputs:
input_lengths = (mm_inputs["feature_attention_mask"].sum(-1).numpy() - 1) // 2 + 1
audio_lengths = (input_lengths - 2) // 2 + 1
if processor.__class__.__name__ == "Qwen3OmniMoeProcessor": # for qwen3omni
input_lengths = mm_inputs["feature_attention_mask"].sum(-1)
input_lengths_leave = input_lengths % 100
feature_lengths = (input_lengths_leave - 1) // 2 + 1
audio_lengths = ((feature_lengths - 1) // 2 + 1 - 1) // 2 + 1 + (input_lengths // 100) * 13
else:
input_lengths = (mm_inputs["feature_attention_mask"].sum(-1).numpy() - 1) // 2 + 1
audio_lengths = (input_lengths - 2) // 2 + 1
else:
mm_inputs = {}
image_grid_thw = [None] * len(images)
@@ -2009,6 +2094,7 @@ class VideoLlavaPlugin(BasePlugin):
PLUGINS = {
"base": BasePlugin,
"ernie_vl": ErnieVLPlugin,
"gemma3": Gemma3Plugin,
"glm4v": GLM4VPlugin,
"gemma3n": Gemma3nPlugin,
@@ -2040,9 +2126,9 @@ def register_mm_plugin(name: str, plugin_class: type["BasePlugin"]) -> None:
def get_mm_plugin(
name: str,
image_token: Optional[str] = None,
video_token: Optional[str] = None,
audio_token: Optional[str] = None,
image_token: str | None = None,
video_token: str | None = None,
audio_token: str | None = None,
**kwargs,
) -> "BasePlugin":
r"""Get plugin for multimodal inputs."""

View File

@@ -15,7 +15,7 @@
import json
import os
from dataclasses import dataclass
from typing import Any, Literal, Optional, Union
from typing import Any, Literal
from huggingface_hub import hf_hub_download
@@ -30,43 +30,43 @@ class DatasetAttr:
# basic configs
load_from: Literal["hf_hub", "ms_hub", "om_hub", "script", "file"]
dataset_name: str
formatting: Literal["alpaca", "sharegpt"] = "alpaca"
formatting: Literal["alpaca", "sharegpt", "openai"] = "alpaca"
ranking: bool = False
# extra configs
subset: Optional[str] = None
subset: str | None = None
split: str = "train"
folder: Optional[str] = None
num_samples: Optional[int] = None
folder: str | None = None
num_samples: int | None = None
# common columns
system: Optional[str] = None
tools: Optional[str] = None
images: Optional[str] = None
videos: Optional[str] = None
audios: Optional[str] = None
system: str | None = None
tools: str | None = None
images: str | None = None
videos: str | None = None
audios: str | None = None
# dpo columns
chosen: Optional[str] = None
rejected: Optional[str] = None
kto_tag: Optional[str] = None
chosen: str | None = None
rejected: str | None = None
kto_tag: str | None = None
# alpaca columns
prompt: Optional[str] = "instruction"
query: Optional[str] = "input"
response: Optional[str] = "output"
history: Optional[str] = None
prompt: str | None = "instruction"
query: str | None = "input"
response: str | None = "output"
history: str | None = None
# sharegpt columns
messages: Optional[str] = "conversations"
messages: str | None = "conversations"
# sharegpt tags
role_tag: Optional[str] = "from"
content_tag: Optional[str] = "value"
user_tag: Optional[str] = "human"
assistant_tag: Optional[str] = "gpt"
observation_tag: Optional[str] = "observation"
function_tag: Optional[str] = "function_call"
system_tag: Optional[str] = "system"
role_tag: str | None = "from"
content_tag: str | None = "value"
user_tag: str | None = "human"
assistant_tag: str | None = "gpt"
observation_tag: str | None = "observation"
function_tag: str | None = "function_call"
system_tag: str | None = "system"
def __repr__(self) -> str:
return self.dataset_name
def set_attr(self, key: str, obj: dict[str, Any], default: Optional[Any] = None) -> None:
def set_attr(self, key: str, obj: dict[str, Any], default: Any | None = None) -> None:
setattr(self, key, obj.get(key, default))
def join(self, attr: dict[str, Any]) -> None:
@@ -90,7 +90,7 @@ class DatasetAttr:
self.set_attr(tag, attr["tags"])
def get_dataset_list(dataset_names: Optional[list[str]], dataset_dir: Union[str, dict]) -> list["DatasetAttr"]:
def get_dataset_list(dataset_names: list[str] | None, dataset_dir: str | dict) -> list["DatasetAttr"]:
r"""Get the attributes of the datasets."""
if dataset_names is None:
dataset_names = []

View File

@@ -49,6 +49,7 @@ class Template:
default_system: str
stop_words: list[str]
thought_words: tuple[str, str]
tool_call_words: tuple[str, str]
efficient_eos: bool
replace_eos: bool
replace_jinja_template: bool
@@ -156,7 +157,9 @@ class Template:
elif message["role"] == Role.OBSERVATION:
elements += self.format_observation.apply(content=message["content"])
elif message["role"] == Role.FUNCTION:
elements += self.format_function.apply(content=message["content"], thought_words=self.thought_words)
elements += self.format_function.apply(
content=message["content"], thought_words=self.thought_words, tool_call_words=self.tool_call_words
)
else:
raise NotImplementedError("Unexpected role: {}".format(message["role"]))
@@ -199,9 +202,12 @@ class Template:
logger.info_rank0(f"Add pad token: {tokenizer.pad_token}")
if stop_words:
num_added_tokens = tokenizer.add_special_tokens(
dict(additional_special_tokens=stop_words), replace_additional_special_tokens=False
)
try:
num_added_tokens = tokenizer.add_special_tokens(
dict(additional_special_tokens=stop_words), replace_additional_special_tokens=False
)
except TypeError:
num_added_tokens = tokenizer.add_special_tokens(dict(additional_special_tokens=stop_words))
logger.info_rank0("Add {} to stop words.".format(",".join(stop_words)))
if num_added_tokens > 0:
logger.warning_rank0("New tokens have been added, make sure `resize_vocab` is True.")
@@ -468,6 +474,7 @@ def register_template(
default_system: str = "",
stop_words: Optional[list[str]] = None,
thought_words: Optional[tuple[str, str]] = None,
tool_call_words: Optional[tuple[str, str]] = None,
efficient_eos: bool = False,
replace_eos: bool = False,
replace_jinja_template: bool = False,
@@ -519,6 +526,7 @@ def register_template(
default_system=default_system,
stop_words=stop_words or [],
thought_words=thought_words or ("<think>\n", "\n</think>\n\n"),
tool_call_words=tool_call_words or ("<tool_call>", "</tool_call>"),
efficient_eos=efficient_eos,
replace_eos=replace_eos,
replace_jinja_template=replace_jinja_template,
@@ -580,6 +588,7 @@ def parse_template(tokenizer: "PreTrainedTokenizer") -> "Template":
default_system=default_system,
stop_words=[],
thought_words=("<think>\n", "\n</think>\n\n"),
tool_call_words=("<tool_call>", "</tool_call>"),
efficient_eos=False,
replace_eos=False,
replace_jinja_template=False,
@@ -616,7 +625,14 @@ def get_template_and_fix_tokenizer(tokenizer: "PreTrainedTokenizer", data_args:
logger.info_rank0(f"Using default system message: {data_args.default_system}.")
template.default_system = data_args.default_system
template.enable_thinking = data_args.enable_thinking
if isinstance(template, ReasoningTemplate):
logger.warning_rank0(
"You are using reasoning template, "
"please add `_nothink` suffix if the model is not a reasoning model. "
"e.g., qwen3_vl_nothink"
)
template.enable_thinking = data_args.enable_thinking
template.fix_special_tokens(tokenizer)
template.fix_jinja_template(tokenizer)
return template
@@ -956,6 +972,19 @@ register_template(
)
register_template(
name="ernie_vl",
format_user=StringFormatter(slots=["User: {{content}}"]),
format_assistant=StringFormatter(slots=["\nAssistant: {{content}}<|end_of_sentence|>"]),
format_system=StringFormatter(slots=["{{content}}\n"]),
stop_words=["<|end_of_sentence|>"],
replace_eos=True,
replace_jinja_template=True,
template_class=ReasoningTemplate,
mm_plugin=get_mm_plugin(name="ernie_vl", image_token="<|IMAGE_PLACEHOLDER|>", video_token="<|VIDEO_PLACEHOLDER|>"),
)
register_template(
name="exaone",
format_user=StringFormatter(slots=["[|user|]{{content}}\n[|assistant|]"]),
@@ -1105,7 +1134,7 @@ register_template(
# copied from glm4 template
register_template(
name="glm4v_moe",
name="glm4_5v",
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|assistant|>"]),
format_assistant=StringFormatter(slots=["\n{{content}}"]),
format_system=StringFormatter(slots=["<|system|>\n{{content}}"]),
@@ -1137,7 +1166,7 @@ register_template(
register_template(
name="gpt",
name="gpt_oss",
format_user=StringFormatter(slots=["<|start|>user<|message|>{{content}}<|end|><|start|>assistant"]),
format_assistant=StringFormatter(slots=["{{content}}<|end|>"]),
format_system=StringFormatter(slots=["<|start|>system<|message|>{{content}}<|end|>"]),
@@ -1201,10 +1230,10 @@ register_template(
register_template(
name="hunyuan",
format_user=StringFormatter(slots=["<|bos|>user\n{{content}}<|eos|>\n<|bos|>assistant\n"]),
format_assistant=StringFormatter(slots=["{{content}}<|eos|>\n"]),
format_system=StringFormatter(slots=["<|bos|>system\n{{content}}<|eos|>\n"]),
format_prefix=EmptyFormatter(slots=["<|bos|>"]),
format_user=StringFormatter(slots=["{{content}}<|extra_0|>"]),
format_assistant=StringFormatter(slots=["{{content}}<|eos|>"]),
format_system=StringFormatter(slots=["{{content}}<|extra_4|>"]),
format_prefix=EmptyFormatter(slots=["<|startoftext|>"]),
stop_words=["<|eos|>"],
)
@@ -1581,6 +1610,26 @@ register_template(
template_class=ReasoningTemplate,
)
# copied from qwen template
register_template(
name="mimo_v2",
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
format_function=FunctionFormatter(slots=["{{content}}<|im_end|>\n"], tool_format="qwen"),
format_observation=StringFormatter(
slots=["<|im_start|>user\n<tool_response>\n{{content}}\n</tool_response><|im_end|>\n<|im_start|>assistant\n"]
),
format_tools=ToolFormatter(tool_format="qwen"),
default_system="You are MiMo, a helpful AI assistant engineered by Xiaomi.",
stop_words=["<|im_end|>"],
replace_eos=True,
thought_words=("<think>", "</think>"),
template_class=ReasoningTemplate,
)
# copied from qwen2vl
register_template(
name="mimo_vl",
@@ -1664,6 +1713,19 @@ register_template(
)
register_template(
name="ministral3",
format_user=StringFormatter(slots=["[INST]{{content}}[/INST]"]),
format_system=StringFormatter(slots=["{{content}}\n\n"]),
format_function=FunctionFormatter(slots=["[TOOL_CALLS]{{content}}", {"eos_token"}], tool_format="mistral"),
format_observation=StringFormatter(slots=["""[TOOL_RESULTS]{"content": {{content}}}[/TOOL_RESULTS]"""]),
format_tools=ToolFormatter(tool_format="mistral"),
format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
template_class=Llama2Template,
mm_plugin=get_mm_plugin(name="pixtral", image_token="[IMG]"),
)
register_template(
name="olmo",
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|assistant|>\n"]),

View File

@@ -15,7 +15,6 @@
import os
from collections import OrderedDict, defaultdict
from enum import Enum, unique
from typing import Optional
from peft.utils import SAFETENSORS_WEIGHTS_NAME as SAFE_ADAPTER_WEIGHTS_NAME
from peft.utils import WEIGHTS_NAME as ADAPTER_WEIGHTS_NAME
@@ -56,6 +55,19 @@ LAYERNORM_NAMES = {"norm", "ln"}
LLAMABOARD_CONFIG = "llamaboard_config.yaml"
MCA_SUPPORTED_MODELS = {
"deepseek_v3",
"llama",
"mistral",
"mixtral",
"qwen2",
"qwen2_vl",
"qwen2_5_vl",
"qwen3",
"qwen3_moe",
"qwen3_next",
}
METHODS = ["full", "freeze", "lora", "oft"]
MOD_SUPPORTED_MODELS = {"bloom", "falcon", "gemma", "llama", "mistral", "mixtral", "phi", "starcoder2"}
@@ -101,12 +113,14 @@ class AttentionFunction(str, Enum):
DISABLED = "disabled"
SDPA = "sdpa"
FA2 = "fa2"
FA3 = "fa3"
class EngineName(str, Enum):
HF = "huggingface"
VLLM = "vllm"
SGLANG = "sglang"
KT = "ktransformers"
class DownloadSource(str, Enum):
@@ -127,6 +141,7 @@ class QuantizationMethod(str, Enum):
EETQ = "eetq"
HQQ = "hqq"
MXFP4 = "mxfp4"
FP8 = "fp8"
class RopeScaling(str, Enum):
@@ -138,7 +153,7 @@ class RopeScaling(str, Enum):
def register_model_group(
models: dict[str, dict[DownloadSource, str]],
template: Optional[str] = None,
template: str | None = None,
multimodal: bool = False,
) -> None:
for name, path in models.items():
@@ -643,6 +658,26 @@ register_model_group(
)
register_model_group(
models={
"ERNIE-4.5-VL-28B-A3B-PT": {
DownloadSource.DEFAULT: "baidu/ERNIE-4.5-VL-28B-A3B-PT",
DownloadSource.MODELSCOPE: "PaddlePaddle/ERNIE-4.5-VL-28B-A3B-PT",
},
"ERNIE-4.5-VL-28B-A3B-Thinking": {
DownloadSource.DEFAULT: "baidu/ERNIE-4.5-VL-28B-A3B-Thinking",
DownloadSource.MODELSCOPE: "PaddlePaddle/ERNIE-4.5-VL-28B-A3B-Thinking",
},
"ERNIE-4.5-VL-424B-A47B-Base-PT": {
DownloadSource.DEFAULT: "baidu/ERNIE-4.5-VL-424B-A47B-PT",
DownloadSource.MODELSCOPE: "PaddlePaddle/ERNIE-4.5-VL-424B-A47B-PT",
},
},
template="ernie_vl",
multimodal=True,
)
register_model_group(
models={
"EXAONE-3.0-7.8B-Instruct": {
@@ -969,9 +1004,17 @@ register_model_group(
"GLM-4.5V-Air-Thinking": {
DownloadSource.DEFAULT: "zai-org/GLM-4.5V",
DownloadSource.MODELSCOPE: "ZhipuAI/GLM-4.5V",
}
},
"GLM-4.6V": {
DownloadSource.DEFAULT: "zai-org/GLM-4.6V",
DownloadSource.MODELSCOPE: "ZhipuAI/GLM-4.6V",
},
"GLM-4.6V-Flash": {
DownloadSource.DEFAULT: "zai-org/GLM-4.6V-Flash",
DownloadSource.MODELSCOPE: "ZhipuAI/GLM-4.6V-Flash",
},
},
template="glm4v_moe",
template="glm4_5v",
multimodal=True,
)
@@ -1024,7 +1067,7 @@ register_model_group(
DownloadSource.MODELSCOPE: "openai/gpt-oss-120b",
},
},
template="gpt",
template="gpt_oss",
)
@@ -1152,6 +1195,10 @@ register_model_group(
DownloadSource.DEFAULT: "tencent/Hunyuan-7B-Instruct",
DownloadSource.MODELSCOPE: "AI-ModelScope/Hunyuan-7B-Instruct",
},
"Hunyuan-MT-7B-Instruct": {
DownloadSource.DEFAULT: "tencent/Hunyuan-MT-7B",
DownloadSource.MODELSCOPE: "Tencent-Hunyuan/Hunyuan-MT-7B",
},
},
template="hunyuan",
)
@@ -1756,6 +1803,21 @@ register_model_group(
)
register_model_group(
models={
"MiMo-V2-Flash-Base": {
DownloadSource.DEFAULT: "XiaomiMiMo/MiMo-V2-Flash-Base",
DownloadSource.MODELSCOPE: "XiaomiMiMo/MiMo-V2-Flash-Base",
},
"MiMo-V2-Flash": {
DownloadSource.DEFAULT: "XiaomiMiMo/MiMo-V2-Flash",
DownloadSource.MODELSCOPE: "XiaomiMiMo/MiMo-V2-Flash",
},
},
template="mimo_v2",
)
register_model_group(
models={
"MiMo-7B-VL-RL": {
@@ -1780,7 +1842,7 @@ register_model_group(
},
"MiMo-VL-7B-SFT-2508": {
DownloadSource.DEFAULT: "XiaomiMiMo/MiMo-VL-7B-SFT-2508",
DownloadSource.DEFAULT: "XiaomiMiMo/MiMo-VL-7B-SFT-2508",
DownloadSource.MODELSCOPE: "XiaomiMiMo/MiMo-VL-7B-SFT-2508",
},
},
template="qwen2_vl",
@@ -1931,6 +1993,37 @@ register_model_group(
template="mistral",
)
register_model_group(
models={
"Ministral-3-3B-Base-2512": {
DownloadSource.DEFAULT: "mistralai/Ministral-3-3B-Base-2512",
DownloadSource.MODELSCOPE: "mistralai/Ministral-3-3B-Base-2512",
},
"Ministral-3-8B-Base-2512": {
DownloadSource.DEFAULT: "mistralai/Ministral-3-8B-Base-2512",
DownloadSource.MODELSCOPE: "mistralai/Ministral-3-8B-Base-2512",
},
"Ministral-3-14B-Base-2512": {
DownloadSource.DEFAULT: "mistralai/Ministral-3-14B-Base-2512",
DownloadSource.MODELSCOPE: "mistralai/Ministral-3-14B-Base-2512",
},
"Ministral-3-3B-Instruct-2512": {
DownloadSource.DEFAULT: "mistralai/Ministral-3-3B-Instruct-2512",
DownloadSource.MODELSCOPE: "mistralai/Ministral-3-3B-Instruct-2512",
},
"Ministral-3-8B-Instruct-2512": {
DownloadSource.DEFAULT: "mistralai/Ministral-3-8B-Instruct-2512",
DownloadSource.MODELSCOPE: "mistralai/Ministral-3-8B-Instruct-2512",
},
"Ministral-3-14B-Instruct-2512": {
DownloadSource.DEFAULT: "mistralai/Ministral-3-14B-Instruct-2512",
DownloadSource.MODELSCOPE: "mistralai/Ministral-3-14B-Instruct-2512",
},
},
template="ministral3",
multimodal=True,
)
register_model_group(
models={
@@ -3193,6 +3286,10 @@ register_model_group(
register_model_group(
models={
"Qwen3-VL-2B-Instruct": {
DownloadSource.DEFAULT: "Qwen/Qwen3-VL-2B-Instruct",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-VL-2B-Instruct",
},
"Qwen3-VL-4B-Instruct": {
DownloadSource.DEFAULT: "Qwen/Qwen3-VL-4B-Instruct",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-VL-4B-Instruct",
@@ -3201,6 +3298,10 @@ register_model_group(
DownloadSource.DEFAULT: "Qwen/Qwen3-VL-8B-Instruct",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-VL-8B-Instruct",
},
"Qwen3-VL-32B-Instruct": {
DownloadSource.DEFAULT: "Qwen/Qwen3-VL-32B-Instruct",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-VL-32B-Instruct",
},
"Qwen3-VL-30B-A3B-Instruct": {
DownloadSource.DEFAULT: "Qwen/Qwen3-VL-30B-A3B-Instruct",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-VL-30B-A3B-Instruct",
@@ -3217,6 +3318,10 @@ register_model_group(
register_model_group(
models={
"Qwen3-VL-2B-Thinking": {
DownloadSource.DEFAULT: "Qwen/Qwen3-VL-2B-Thinking",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-VL-2B-Thinking",
},
"Qwen3-VL-4B-Thinking": {
DownloadSource.DEFAULT: "Qwen/Qwen3-VL-4B-Thinking",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-VL-4B-Thinking",
@@ -3225,6 +3330,10 @@ register_model_group(
DownloadSource.DEFAULT: "Qwen/Qwen3-VL-8B-Thinking",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-VL-8B-Thinking",
},
"Qwen3-VL-32B-Thinking": {
DownloadSource.DEFAULT: "Qwen/Qwen3-VL-32B-Thinking",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-VL-32B-Thinking",
},
"Qwen3-VL-30B-A3B-Thinking": {
DownloadSource.DEFAULT: "Qwen/Qwen3-VL-30B-A3B-Thinking",
DownloadSource.MODELSCOPE: "Qwen/Qwen3-VL-30B-A3B-Thinking",
@@ -3438,6 +3547,17 @@ register_model_group(
)
register_model_group(
models={
"VibeThinker-1.5B": {
DownloadSource.DEFAULT: "WeiboAI/VibeThinker-1.5B",
DownloadSource.MODELSCOPE: "WeiboAI/VibeThinker-1.5B",
},
},
template="qwen3",
)
register_model_group(
models={
"Vicuna-v1.5-7B-Chat": {

View File

@@ -117,7 +117,7 @@ def _configure_library_root_logger() -> None:
library_root_logger.propagate = False
def get_logger(name: Optional[str] = None) -> "_Logger":
def get_logger(name: str | None = None) -> "_Logger":
r"""Return a logger with the specified name. It it not supposed to be accessed externally."""
if name is None:
name = _get_library_name()

View File

@@ -313,6 +313,10 @@ def use_ray() -> bool:
return is_env_enabled("USE_RAY")
def use_kt() -> bool:
return is_env_enabled("USE_KT")
def find_available_port() -> int:
r"""Find an available port on the local machine."""
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
@@ -328,3 +332,7 @@ def fix_proxy(ipv6_enabled: bool = False) -> None:
if ipv6_enabled:
os.environ.pop("http_proxy", None)
os.environ.pop("HTTP_PROXY", None)
os.environ.pop("https_proxy", None)
os.environ.pop("HTTPS_PROXY", None)
os.environ.pop("all_proxy", None)
os.environ.pop("ALL_PROXY", None)

View File

@@ -70,6 +70,10 @@ def is_matplotlib_available():
return _is_package_available("matplotlib")
def is_mcore_adapter_available():
return _is_package_available("mcore_adapter")
def is_pillow_available():
return _is_package_available("PIL")
@@ -78,6 +82,10 @@ def is_ray_available():
return _is_package_available("ray")
def is_kt_available():
return _is_package_available("ktransformers")
def is_requests_available():
return _is_package_available("requests")
@@ -86,6 +94,14 @@ def is_rouge_available():
return _is_package_available("rouge_chinese")
def is_safetensors_available():
return _is_package_available("safetensors")
def is_sglang_available():
return _is_package_available("sglang")
def is_starlette_available():
return _is_package_available("sse_starlette")
@@ -95,13 +111,14 @@ def is_transformers_version_greater_than(content: str):
return _get_package_version("transformers") >= version.parse(content)
@lru_cache
def is_torch_version_greater_than(content: str):
return _get_package_version("torch") >= version.parse(content)
def is_uvicorn_available():
return _is_package_available("uvicorn")
def is_vllm_available():
return _is_package_available("vllm")
def is_sglang_available():
return _is_package_available("sglang")

View File

@@ -16,22 +16,22 @@
# limitations under the License.
from dataclasses import asdict, dataclass, field
from typing import Any, Literal, Optional
from typing import Any, Literal
@dataclass
class DataArguments:
r"""Arguments pertaining to what data we are going to input our model for training and evaluation."""
template: Optional[str] = field(
template: str | None = field(
default=None,
metadata={"help": "Which template to use for constructing prompts in training and inference."},
)
dataset: Optional[str] = field(
dataset: str | None = field(
default=None,
metadata={"help": "The name of dataset(s) to use for training. Use commas to separate multiple datasets."},
)
eval_dataset: Optional[str] = field(
eval_dataset: str | None = field(
default=None,
metadata={"help": "The name of dataset(s) to use for evaluation. Use commas to separate multiple datasets."},
)
@@ -39,7 +39,7 @@ class DataArguments:
default="data",
metadata={"help": "Path to the folder containing the datasets."},
)
media_dir: Optional[str] = field(
media_dir: str | None = field(
default=None,
metadata={"help": "Path to the folder containing the images, videos or audios. Defaults to `dataset_dir`."},
)
@@ -67,7 +67,7 @@ class DataArguments:
default="concat",
metadata={"help": "Strategy to use in dataset mixing (concat/interleave) (undersampling/oversampling)."},
)
interleave_probs: Optional[str] = field(
interleave_probs: str | None = field(
default=None,
metadata={"help": "Probabilities to sample data from datasets. Use commas to separate multiple datasets."},
)
@@ -79,15 +79,15 @@ class DataArguments:
default=1000,
metadata={"help": "The number of examples in one group in pre-processing."},
)
preprocessing_num_workers: Optional[int] = field(
preprocessing_num_workers: int | None = field(
default=None,
metadata={"help": "The number of processes to use for the pre-processing."},
)
max_samples: Optional[int] = field(
max_samples: int | None = field(
default=None,
metadata={"help": "For debugging purposes, truncate the number of examples for each dataset."},
)
eval_num_beams: Optional[int] = field(
eval_num_beams: int | None = field(
default=None,
metadata={"help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`"},
)
@@ -103,7 +103,7 @@ class DataArguments:
default=False,
metadata={"help": "Whether or not to evaluate on each dataset separately."},
)
packing: Optional[bool] = field(
packing: bool | None = field(
default=None,
metadata={"help": "Enable sequences packing in training. Will automatically enable in pre-training."},
)
@@ -111,19 +111,19 @@ class DataArguments:
default=False,
metadata={"help": "Enable sequence packing without cross-attention."},
)
tool_format: Optional[str] = field(
tool_format: str | None = field(
default=None,
metadata={"help": "Tool format to use for constructing function calling examples."},
)
default_system: Optional[str] = field(
default_system: str | None = field(
default=None,
metadata={"help": "Override the default system message in the template."},
)
enable_thinking: Optional[bool] = field(
enable_thinking: bool | None = field(
default=True,
metadata={"help": "Whether or not to enable thinking mode for reasoning models."},
)
tokenized_path: Optional[str] = field(
tokenized_path: str | None = field(
default=None,
metadata={
"help": (

View File

@@ -14,7 +14,7 @@
import os
from dataclasses import dataclass, field
from typing import Literal, Optional
from typing import Literal
from datasets import DownloadMode
@@ -46,7 +46,7 @@ class EvaluationArguments:
default=5,
metadata={"help": "Number of examplars for few-shot learning."},
)
save_dir: Optional[str] = field(
save_dir: str | None = field(
default=None,
metadata={"help": "Path to save the evaluation results."},
)

View File

@@ -13,7 +13,7 @@
# limitations under the License.
from dataclasses import asdict, dataclass, field
from typing import Any, Literal, Optional
from typing import Any, Literal
@dataclass
@@ -40,7 +40,7 @@ class FreezeArguments:
)
},
)
freeze_extra_modules: Optional[str] = field(
freeze_extra_modules: str | None = field(
default=None,
metadata={
"help": (
@@ -56,7 +56,7 @@ class FreezeArguments:
class LoraArguments:
r"""Arguments pertaining to the LoRA training."""
additional_target: Optional[str] = field(
additional_target: str | None = field(
default=None,
metadata={
"help": (
@@ -66,7 +66,7 @@ class LoraArguments:
)
},
)
lora_alpha: Optional[int] = field(
lora_alpha: int | None = field(
default=None,
metadata={"help": "The scale factor for LoRA fine-tuning (default: lora_rank * 2)."},
)
@@ -88,7 +88,7 @@ class LoraArguments:
)
},
)
loraplus_lr_ratio: Optional[float] = field(
loraplus_lr_ratio: float | None = field(
default=None,
metadata={"help": "LoRA plus learning rate ratio (lr_B / lr_A)."},
)
@@ -126,7 +126,7 @@ class LoraArguments:
class OFTArguments:
r"""Arguments pertaining to the OFT training."""
additional_target: Optional[str] = field(
additional_target: str | None = field(
default=None,
metadata={
"help": (
@@ -220,27 +220,27 @@ class RLHFArguments:
default=False,
metadata={"help": "Whiten the rewards before compute advantages in PPO training."},
)
ref_model: Optional[str] = field(
ref_model: str | None = field(
default=None,
metadata={"help": "Path to the reference model used for the PPO or DPO training."},
)
ref_model_adapters: Optional[str] = field(
ref_model_adapters: str | None = field(
default=None,
metadata={"help": "Path to the adapters of the reference model."},
)
ref_model_quantization_bit: Optional[int] = field(
ref_model_quantization_bit: int | None = field(
default=None,
metadata={"help": "The number of bits to quantize the reference model."},
)
reward_model: Optional[str] = field(
reward_model: str | None = field(
default=None,
metadata={"help": "Path to the reward model used for the PPO training."},
)
reward_model_adapters: Optional[str] = field(
reward_model_adapters: str | None = field(
default=None,
metadata={"help": "Path to the adapters of the reward model."},
)
reward_model_quantization_bit: Optional[int] = field(
reward_model_quantization_bit: int | None = field(
default=None,
metadata={"help": "The number of bits to quantize the reward model."},
)
@@ -248,7 +248,7 @@ class RLHFArguments:
default="lora",
metadata={"help": "The type of the reward model in PPO training. Lora model only supports lora training."},
)
ld_alpha: Optional[float] = field(
ld_alpha: float | None = field(
default=None,
metadata={
"help": (
@@ -361,15 +361,15 @@ class BAdamArgument:
default="layer",
metadata={"help": "Whether to use layer-wise or ratio-wise BAdam optimizer."},
)
badam_start_block: Optional[int] = field(
badam_start_block: int | None = field(
default=None,
metadata={"help": "The starting block index for layer-wise BAdam."},
)
badam_switch_mode: Optional[Literal["ascending", "descending", "random", "fixed"]] = field(
badam_switch_mode: Literal["ascending", "descending", "random", "fixed"] | None = field(
default="ascending",
metadata={"help": "the strategy of picking block to update for layer-wise BAdam."},
)
badam_switch_interval: Optional[int] = field(
badam_switch_interval: int | None = field(
default=50,
metadata={
"help": "Number of steps to update the block for layer-wise BAdam. Use -1 to disable the block update."
@@ -406,15 +406,15 @@ class SwanLabArguments:
default=False,
metadata={"help": "Whether or not to use the SwanLab (an experiment tracking and visualization tool)."},
)
swanlab_project: Optional[str] = field(
swanlab_project: str | None = field(
default="llamafactory",
metadata={"help": "The project name in SwanLab."},
)
swanlab_workspace: Optional[str] = field(
swanlab_workspace: str | None = field(
default=None,
metadata={"help": "The workspace name in SwanLab."},
)
swanlab_run_name: Optional[str] = field(
swanlab_run_name: str | None = field(
default=None,
metadata={"help": "The experiment name in SwanLab."},
)
@@ -422,19 +422,19 @@ class SwanLabArguments:
default="cloud",
metadata={"help": "The mode of SwanLab."},
)
swanlab_api_key: Optional[str] = field(
swanlab_api_key: str | None = field(
default=None,
metadata={"help": "The API key for SwanLab."},
)
swanlab_logdir: Optional[str] = field(
swanlab_logdir: str | None = field(
default=None,
metadata={"help": "The log directory for SwanLab."},
)
swanlab_lark_webhook_url: Optional[str] = field(
swanlab_lark_webhook_url: str | None = field(
default=None,
metadata={"help": "The Lark(飞书) webhook URL for SwanLab."},
)
swanlab_lark_secret: Optional[str] = field(
swanlab_lark_secret: str | None = field(
default=None,
metadata={"help": "The Lark(飞书) secret for SwanLab."},
)
@@ -461,7 +461,7 @@ class FinetuningArguments(
default="sft",
metadata={"help": "Which stage will be performed in training."},
)
finetuning_type: Literal["lora", "freeze", "full"] = field(
finetuning_type: Literal["lora", "oft", "freeze", "full"] = field(
default="lora",
metadata={"help": "Which fine-tuning method to use."},
)
@@ -473,6 +473,15 @@ class FinetuningArguments(
default=False,
metadata={"help": "Whether or not to use the Adam-mini optimizer."},
)
use_mca: bool = field(
default=False,
metadata={
"help": (
"Whether or not to use MCA (Megatron Core Adapter) training. "
"Controlled by USE_MCA environment variable."
)
},
)
use_muon: bool = field(
default=False,
metadata={"help": "Whether or not to use the Muon optimizer."},
@@ -501,7 +510,7 @@ class FinetuningArguments(
default=False,
metadata={"help": "Whether or not to disable the shuffling of the training set."},
)
early_stopping_steps: Optional[int] = field(
early_stopping_steps: int | None = field(
default=None,
metadata={"help": "Number of steps to stop training if the `metric_for_best_model` does not improve."},
)
@@ -521,11 +530,11 @@ class FinetuningArguments(
return arg
self.freeze_trainable_modules: list[str] = split_arg(self.freeze_trainable_modules)
self.freeze_extra_modules: Optional[list[str]] = split_arg(self.freeze_extra_modules)
self.freeze_extra_modules: list[str] | None = split_arg(self.freeze_extra_modules)
self.lora_alpha: int = self.lora_alpha or self.lora_rank * 2
self.lora_target: list[str] = split_arg(self.lora_target)
self.oft_target: list[str] = split_arg(self.oft_target)
self.additional_target: Optional[list[str]] = split_arg(self.additional_target)
self.additional_target: list[str] | None = split_arg(self.additional_target)
self.galore_target: list[str] = split_arg(self.galore_target)
self.apollo_target: list[str] = split_arg(self.apollo_target)
self.use_ref_model = self.stage == "dpo" and self.pref_loss not in ["orpo", "simpo"]

View File

@@ -1,4 +1,4 @@
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
# Copyright 2025 HuggingFace Inc., the KVCache.AI team, Approaching AI, and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py
@@ -17,29 +17,30 @@
import json
from dataclasses import asdict, dataclass, field, fields
from typing import Any, Literal, Optional, Union
from typing import Any, Literal, Self
import torch
from transformers.training_args import _convert_str_dict
from typing_extensions import Self
from omegaconf import OmegaConf
from transformers.training_args import _convert_str_dict
from ..extras.constants import AttentionFunction, EngineName, QuantizationMethod, RopeScaling
from ..extras.logging import get_logger
logger = get_logger(__name__)
@dataclass
class BaseModelArguments:
r"""Arguments pertaining to the model."""
model_name_or_path: Optional[str] = field(
model_name_or_path: str | None = field(
default=None,
metadata={
"help": "Path to the model weight or identifier from huggingface.co/models or modelscope.cn/models."
},
)
adapter_name_or_path: Optional[str] = field(
adapter_name_or_path: str | None = field(
default=None,
metadata={
"help": (
@@ -48,11 +49,11 @@ class BaseModelArguments:
)
},
)
adapter_folder: Optional[str] = field(
adapter_folder: str | None = field(
default=None,
metadata={"help": "The folder containing the adapter weights to load."},
)
cache_dir: Optional[str] = field(
cache_dir: str | None = field(
default=None,
metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co or modelscope.cn."},
)
@@ -68,17 +69,17 @@ class BaseModelArguments:
default=False,
metadata={"help": "Whether or not the special tokens should be split during the tokenization process."},
)
add_tokens: Optional[str] = field(
add_tokens: str | None = field(
default=None,
metadata={
"help": "Non-special tokens to be added into the tokenizer. Use commas to separate multiple tokens."
},
)
add_special_tokens: Optional[str] = field(
add_special_tokens: str | None = field(
default=None,
metadata={"help": "Special tokens to be added into the tokenizer. Use commas to separate multiple tokens."},
)
new_special_tokens_config: Optional[str] = field(
new_special_tokens_config: str | None = field(
default=None,
metadata={
"help": (
@@ -108,7 +109,7 @@ class BaseModelArguments:
default=True,
metadata={"help": "Whether or not to use memory-efficient model loading."},
)
rope_scaling: Optional[RopeScaling] = field(
rope_scaling: RopeScaling | None = field(
default=None,
metadata={"help": "Which scaling strategy should be adopted for the RoPE embeddings."},
)
@@ -120,7 +121,7 @@ class BaseModelArguments:
default=False,
metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."},
)
mixture_of_depths: Optional[Literal["convert", "load"]] = field(
mixture_of_depths: Literal["convert", "load"] | None = field(
default=None,
metadata={"help": "Convert the model to mixture-of-depths (MoD) or load the MoD model."},
)
@@ -136,7 +137,7 @@ class BaseModelArguments:
default=False,
metadata={"help": "Whether or not to enable liger kernel for faster training."},
)
moe_aux_loss_coef: Optional[float] = field(
moe_aux_loss_coef: float | None = field(
default=None,
metadata={"help": "Coefficient of the auxiliary router loss in mixture-of-experts model."},
)
@@ -168,23 +169,27 @@ class BaseModelArguments:
default="offload",
metadata={"help": "Path to offload model weights."},
)
use_cache: bool = field(
use_kv_cache: bool = field(
default=True,
metadata={"help": "Whether or not to use KV cache in generation."},
)
use_v1_kernels: bool = field(
default=False,
metadata={"help": "Whether or not to use high-performance kernels in training."},
)
infer_dtype: Literal["auto", "float16", "bfloat16", "float32"] = field(
default="auto",
metadata={"help": "Data type for model weights and activations at inference."},
)
hf_hub_token: Optional[str] = field(
hf_hub_token: str | None = field(
default=None,
metadata={"help": "Auth token to log in with Hugging Face Hub."},
)
ms_hub_token: Optional[str] = field(
ms_hub_token: str | None = field(
default=None,
metadata={"help": "Auth token to log in with ModelScope Hub."},
)
om_hub_token: Optional[str] = field(
om_hub_token: str | None = field(
default=None,
metadata={"help": "Auth token to log in with Modelers Hub."},
)
@@ -277,7 +282,7 @@ class QuantizationArguments:
default=QuantizationMethod.BNB,
metadata={"help": "Quantization method to use for on-the-fly quantization."},
)
quantization_bit: Optional[int] = field(
quantization_bit: int | None = field(
default=None,
metadata={"help": "The number of bits to quantize the model using on-the-fly quantization."},
)
@@ -289,7 +294,7 @@ class QuantizationArguments:
default=True,
metadata={"help": "Whether or not to use double quantization in bitsandbytes int4 training."},
)
quantization_device_map: Optional[Literal["auto"]] = field(
quantization_device_map: Literal["auto"] | None = field(
default=None,
metadata={"help": "Device map used to infer the 4-bit quantized model, needs bitsandbytes>=0.43.0."},
)
@@ -369,7 +374,7 @@ class ProcessorArguments:
class ExportArguments:
r"""Arguments pertaining to the model export."""
export_dir: Optional[str] = field(
export_dir: str | None = field(
default=None,
metadata={"help": "Path to the directory to save the exported model."},
)
@@ -381,11 +386,11 @@ class ExportArguments:
default="cpu",
metadata={"help": "The device used in model export, use `auto` to accelerate exporting."},
)
export_quantization_bit: Optional[int] = field(
export_quantization_bit: int | None = field(
default=None,
metadata={"help": "The number of bits to quantize the exported model."},
)
export_quantization_dataset: Optional[str] = field(
export_quantization_dataset: str | None = field(
default=None,
metadata={"help": "Path to the dataset or dataset name to use in quantizing the exported model."},
)
@@ -401,7 +406,7 @@ class ExportArguments:
default=False,
metadata={"help": "Whether or not to save the `.bin` files instead of `.safetensors`."},
)
export_hub_model_id: Optional[str] = field(
export_hub_model_id: str | None = field(
default=None,
metadata={"help": "The name of the repository if push the model to the Hugging Face hub."},
)
@@ -431,7 +436,7 @@ class VllmArguments:
default=32,
metadata={"help": "Maximum rank of all LoRAs in the vLLM engine."},
)
vllm_config: Optional[Union[dict, str]] = field(
vllm_config: dict | str | None = field(
default=None,
metadata={"help": "Config to initialize the vllm engine. Please use JSON strings."},
)
@@ -457,7 +462,7 @@ class SGLangArguments:
default=-1,
metadata={"help": "Tensor parallel size for the SGLang engine."},
)
sglang_config: Optional[Union[dict, str]] = field(
sglang_config: dict | str | None = field(
default=None,
metadata={"help": "Config to initialize the SGLang engine. Please use JSON strings."},
)
@@ -473,26 +478,77 @@ class SGLangArguments:
self.sglang_config = _convert_str_dict(json.loads(self.sglang_config))
@dataclass
class KTransformersArguments:
r"""Arguments pertaining to the KT training."""
use_kt: bool = field(
default=False,
metadata={"help": "Whether To Use KTransformers Optimizations For LoRA Training."},
)
kt_optimize_rule: str | None = field(
default=None,
metadata={
"help": "Path To The KTransformers Optimize Rule; See https://github.com/kvcache-ai/ktransformers/."
},
)
cpu_infer: int | None = field(
default=32,
metadata={"help": "Number Of CPU Cores Used For Computation."},
)
chunk_size: int | None = field(
default=8192,
metadata={"help": "Chunk Size Used For CPU Compute In KTransformers."},
)
mode: str | None = field(
default="normal",
metadata={"help": "Normal Or Long_Context For Llama Models."},
)
kt_maxlen: int = field(
default=4096,
metadata={"help": "Maximum Sequence (Prompt + Response) Length Of The KT Engine."},
)
kt_use_cuda_graph: bool = field(
default=True,
metadata={"help": "Whether To Use CUDA Graphs For The KT Engine."},
)
kt_mode: str = field(
default="normal",
metadata={"help": "Normal Or Long_Context Mode For The KT Engine."},
)
kt_force_think: bool = field(
default=False,
metadata={"help": "Force-Think Toggle For The KT Engine."},
)
@dataclass
class ModelArguments(
SGLangArguments, VllmArguments, ExportArguments, ProcessorArguments, QuantizationArguments, BaseModelArguments
SGLangArguments,
VllmArguments,
KTransformersArguments,
ExportArguments,
ProcessorArguments,
QuantizationArguments,
BaseModelArguments,
):
r"""Arguments pertaining to which model/config/tokenizer we are going to fine-tune or infer.
The class on the most right will be displayed first.
"""
compute_dtype: Optional[torch.dtype] = field(
compute_dtype: torch.dtype | None = field(
default=None,
init=False,
metadata={"help": "Torch data type for computing model outputs, derived from `fp/bf16`. Do not specify it."},
)
device_map: Optional[Union[str, dict[str, Any]]] = field(
device_map: str | dict[str, Any] | None = field(
default=None,
init=False,
metadata={"help": "Device map for model placement, derived from training stage. Do not specify it."},
)
model_max_length: Optional[int] = field(
model_max_length: int | None = field(
default=None,
init=False,
metadata={"help": "The maximum input length for model, derived from `cutoff_len`. Do not specify it."},

View File

@@ -18,7 +18,7 @@
import os
import sys
from pathlib import Path
from typing import Any, Optional, Union
from typing import Any, Optional
import torch
import transformers
@@ -32,7 +32,7 @@ from transformers.utils import is_torch_bf16_gpu_available, is_torch_npu_availab
from ..extras import logging
from ..extras.constants import CHECKPOINT_NAMES, EngineName
from ..extras.misc import check_dependencies, check_version, get_current_device, is_env_enabled
from ..extras.packages import is_transformers_version_greater_than
from ..extras.packages import is_mcore_adapter_available, is_transformers_version_greater_than
from .data_args import DataArguments
from .evaluation_args import EvaluationArguments
from .finetuning_args import FinetuningArguments
@@ -53,8 +53,19 @@ _INFER_CLS = tuple[ModelArguments, DataArguments, FinetuningArguments, Generatin
_EVAL_ARGS = [ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
_EVAL_CLS = tuple[ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
if is_mcore_adapter_available() and is_env_enabled("USE_MCA"):
from mcore_adapter import TrainingArguments as McaTrainingArguments
def read_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> Union[dict[str, Any], list[str]]:
_TRAIN_MCA_ARGS = [ModelArguments, DataArguments, McaTrainingArguments, FinetuningArguments, GeneratingArguments]
_TRAIN_MCA_CLS = tuple[
ModelArguments, DataArguments, McaTrainingArguments, FinetuningArguments, GeneratingArguments
]
else:
_TRAIN_MCA_ARGS = []
_TRAIN_MCA_CLS = tuple()
def read_args(args: dict[str, Any] | list[str] | None = None) -> dict[str, Any] | list[str]:
r"""Get arguments from the command line or a config file."""
if args is not None:
return args
@@ -72,7 +83,7 @@ def read_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> Union[
def _parse_args(
parser: "HfArgumentParser", args: Optional[Union[dict[str, Any], list[str]]] = None, allow_extra_keys: bool = False
parser: "HfArgumentParser", args: dict[str, Any] | list[str] | None = None, allow_extra_keys: bool = False
) -> tuple[Any]:
args = read_args(args)
if isinstance(args, dict):
@@ -145,6 +156,9 @@ def _check_extra_dependencies(
finetuning_args: "FinetuningArguments",
training_args: Optional["TrainingArguments"] = None,
) -> None:
if model_args.use_kt:
check_version("ktransformers", mandatory=True)
if model_args.use_unsloth:
check_version("unsloth", mandatory=True)
@@ -191,32 +205,57 @@ def _check_extra_dependencies(
check_version("rouge_chinese", mandatory=True)
def _parse_train_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _TRAIN_CLS:
def _parse_train_args(args: dict[str, Any] | list[str] | None = None) -> _TRAIN_CLS:
parser = HfArgumentParser(_TRAIN_ARGS)
allow_extra_keys = is_env_enabled("ALLOW_EXTRA_ARGS")
return _parse_args(parser, args, allow_extra_keys=allow_extra_keys)
def _parse_infer_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _INFER_CLS:
def _parse_train_mca_args(args: dict[str, Any] | list[str] | None = None) -> _TRAIN_MCA_CLS:
parser = HfArgumentParser(_TRAIN_MCA_ARGS)
allow_extra_keys = is_env_enabled("ALLOW_EXTRA_ARGS")
model_args, data_args, training_args, finetuning_args, generating_args = _parse_args(
parser, args, allow_extra_keys=allow_extra_keys
)
_configure_mca_training_args(training_args, data_args, finetuning_args)
return model_args, data_args, training_args, finetuning_args, generating_args
def _configure_mca_training_args(training_args, data_args, finetuning_args) -> None:
"""Patch training args to avoid args checking errors and sync MCA settings."""
training_args.predict_with_generate = False
training_args.generation_max_length = data_args.cutoff_len
training_args.generation_num_beams = 1
training_args.use_mca = True
finetuning_args.use_mca = True
def _parse_infer_args(args: dict[str, Any] | list[str] | None = None) -> _INFER_CLS:
parser = HfArgumentParser(_INFER_ARGS)
allow_extra_keys = is_env_enabled("ALLOW_EXTRA_ARGS")
return _parse_args(parser, args, allow_extra_keys=allow_extra_keys)
def _parse_eval_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _EVAL_CLS:
def _parse_eval_args(args: dict[str, Any] | list[str] | None = None) -> _EVAL_CLS:
parser = HfArgumentParser(_EVAL_ARGS)
allow_extra_keys = is_env_enabled("ALLOW_EXTRA_ARGS")
return _parse_args(parser, args, allow_extra_keys=allow_extra_keys)
def get_ray_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> RayArguments:
def get_ray_args(args: dict[str, Any] | list[str] | None = None) -> RayArguments:
parser = HfArgumentParser(RayArguments)
(ray_args,) = _parse_args(parser, args, allow_extra_keys=True)
return ray_args
def get_train_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _TRAIN_CLS:
model_args, data_args, training_args, finetuning_args, generating_args = _parse_train_args(args)
def get_train_args(args: dict[str, Any] | list[str] | None = None) -> _TRAIN_CLS:
if is_env_enabled("USE_MCA"):
model_args, data_args, training_args, finetuning_args, generating_args = _parse_train_mca_args(args)
else:
model_args, data_args, training_args, finetuning_args, generating_args = _parse_train_args(args)
finetuning_args.use_mca = False
# Setup logging
if training_args.should_log:
@@ -246,13 +285,16 @@ def get_train_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _
if model_args.shift_attn:
raise ValueError("PPO training is incompatible with S^2-Attn.")
if finetuning_args.reward_model_type == "lora" and model_args.use_kt:
raise ValueError("KTransformers does not support lora reward model.")
if finetuning_args.reward_model_type == "lora" and model_args.use_unsloth:
raise ValueError("Unsloth does not support lora reward model.")
if training_args.report_to and training_args.report_to[0] not in ["wandb", "tensorboard"]:
raise ValueError("PPO only accepts wandb or tensorboard logger.")
if training_args.parallel_mode == ParallelMode.NOT_DISTRIBUTED:
if not model_args.use_kt and training_args.parallel_mode == ParallelMode.NOT_DISTRIBUTED:
raise ValueError("Please launch distributed training with `llamafactory-cli` or `torchrun`.")
if training_args.deepspeed and training_args.parallel_mode != ParallelMode.DISTRIBUTED:
@@ -264,18 +306,15 @@ def get_train_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _
if training_args.do_train and data_args.dataset is None:
raise ValueError("Please specify dataset for training.")
if (training_args.do_eval or training_args.do_predict) and (
if (training_args.do_eval or training_args.do_predict or training_args.predict_with_generate) and (
data_args.eval_dataset is None and data_args.val_size < 1e-6
):
raise ValueError("Please specify dataset for evaluation.")
raise ValueError("Please make sure eval_dataset be provided or val_size >1e-6")
if training_args.predict_with_generate:
if is_deepspeed_zero3_enabled():
raise ValueError("`predict_with_generate` is incompatible with DeepSpeed ZeRO-3.")
if data_args.eval_dataset is None:
raise ValueError("Cannot use `predict_with_generate` if `eval_dataset` is None.")
if finetuning_args.compute_accuracy:
raise ValueError("Cannot use `predict_with_generate` and `compute_accuracy` together.")
@@ -314,6 +353,9 @@ def get_train_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _
if model_args.use_unsloth and is_deepspeed_zero3_enabled():
raise ValueError("Unsloth is incompatible with DeepSpeed ZeRO-3.")
if model_args.use_kt and is_deepspeed_zero3_enabled():
raise ValueError("KTransformers is incompatible with DeepSpeed ZeRO-3.")
if data_args.neat_packing and is_transformers_version_greater_than("4.53.0"):
raise ValueError("Neat packing is incompatible with transformers>=4.53.0.")
@@ -431,7 +473,7 @@ def get_train_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _
return model_args, data_args, training_args, finetuning_args, generating_args
def get_infer_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _INFER_CLS:
def get_infer_args(args: dict[str, Any] | list[str] | None = None) -> _INFER_CLS:
model_args, data_args, finetuning_args, generating_args = _parse_infer_args(args)
# Setup logging
@@ -466,7 +508,7 @@ def get_infer_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _
return model_args, data_args, finetuning_args, generating_args
def get_eval_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _EVAL_CLS:
def get_eval_args(args: dict[str, Any] | list[str] | None = None) -> _EVAL_CLS:
model_args, data_args, eval_args, finetuning_args = _parse_eval_args(args)
# Setup logging

View File

@@ -14,19 +14,33 @@
import json
from dataclasses import dataclass, field
from typing import Literal, Optional, Union
from typing import Literal
from transformers import Seq2SeqTrainingArguments
from transformers.training_args import _convert_str_dict
from ..extras.misc import use_ray
from ..extras.misc import is_env_enabled, use_ray
from ..extras.packages import is_mcore_adapter_available
if is_env_enabled("USE_MCA"):
if not is_mcore_adapter_available():
raise ImportError(
"mcore_adapter is required when USE_MCA=1. Please install `mcore_adapter` and its dependencies."
)
from mcore_adapter import Seq2SeqTrainingArguments as McaSeq2SeqTrainingArguments
BaseTrainingArguments = McaSeq2SeqTrainingArguments
else:
BaseTrainingArguments = Seq2SeqTrainingArguments
@dataclass
class RayArguments:
r"""Arguments pertaining to the Ray training."""
ray_run_name: Optional[str] = field(
ray_run_name: str | None = field(
default=None,
metadata={"help": "The training results will be saved at `<ray_storage_path>/ray_run_name`."},
)
@@ -34,7 +48,7 @@ class RayArguments:
default="./saves",
metadata={"help": "The storage path to save training results to"},
)
ray_storage_filesystem: Optional[Literal["s3", "gs", "gcs"]] = field(
ray_storage_filesystem: Literal["s3", "gs", "gcs"] | None = field(
default=None,
metadata={"help": "The storage filesystem to use. If None specified, local filesystem will be used."},
)
@@ -42,7 +56,7 @@ class RayArguments:
default=1,
metadata={"help": "The number of workers for Ray training. Default is 1 worker."},
)
resources_per_worker: Union[dict, str] = field(
resources_per_worker: dict | str = field(
default_factory=lambda: {"GPU": 1},
metadata={"help": "The resources per worker for Ray training. Default is to use 1 GPU per worker."},
)
@@ -50,7 +64,7 @@ class RayArguments:
default="PACK",
metadata={"help": "The placement strategy for Ray training. Default is PACK."},
)
ray_init_kwargs: Optional[Union[dict, str]] = field(
ray_init_kwargs: dict | str | None = field(
default=None,
metadata={"help": "The arguments to pass to ray.init for Ray training. Default is None."},
)
@@ -78,9 +92,14 @@ class RayArguments:
@dataclass
class TrainingArguments(RayArguments, Seq2SeqTrainingArguments):
class TrainingArguments(RayArguments, BaseTrainingArguments):
r"""Arguments pertaining to the trainer."""
overwrite_output_dir: bool = field(
default=False,
metadata={"help": "deprecated"},
)
def __post_init__(self):
Seq2SeqTrainingArguments.__post_init__(self)
RayArguments.__post_init__(self)
BaseTrainingArguments.__post_init__(self)

View File

@@ -38,7 +38,7 @@ USAGE = (
def launch():
from .extras import logging
from .extras.env import VERSION, print_env
from .extras.misc import find_available_port, get_device_count, is_env_enabled, use_ray
from .extras.misc import find_available_port, get_device_count, is_env_enabled, use_kt, use_ray
logger = logging.get_logger(__name__)
WELCOME = (
@@ -54,7 +54,12 @@ def launch():
)
command = sys.argv.pop(1) if len(sys.argv) > 1 else "help"
if command == "train" and (is_env_enabled("FORCE_TORCHRUN") or (get_device_count() > 1 and not use_ray())):
if is_env_enabled("USE_MCA"): # force use torchrun
os.environ["FORCE_TORCHRUN"] = "1"
if command == "train" and (
is_env_enabled("FORCE_TORCHRUN") or (get_device_count() > 1 and not use_ray() and not use_kt())
):
# launch distributed training
nnodes = os.getenv("NNODES", "1")
node_rank = os.getenv("NODE_RANK", "0")

Some files were not shown because too many files have changed in this diff Show More