[example] Add KTransformers Qwen3MoE example (#9511)

Co-authored-by: unknown <xiongchenhui@hisense.ad>
Co-authored-by: Kingsley <kingsleydodonow@gmail.com>
This commit is contained in:
Peilin Li 2025-11-19 00:53:28 +08:00 committed by GitHub
parent 9779b1f361
commit 887c562d60
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 142 additions and 0 deletions

View File

@ -0,0 +1,10 @@
model_name_or_path: Qwen/Qwen3-235B-A22B-Instruct-2507
adapter_name_or_path: saves/Kllama_Qwen3MoE_235bA22b
template: qwen3_nothink
infer_backend: ktransformers # choices: [huggingface, vllm, sglang, ktransformers]
trust_remote_code: true
use_kt: true # use KTransformers as LoRA sft backend to inference
kt_optimize_rule: examples/kt_optimize_rules/Qwen3Moe-sft-amx.yaml
cpu_infer: 32
chunk_size: 8192

View File

@ -0,0 +1,80 @@
- match:
class: ktransformers.models.modeling_qwen2_moe.Qwen2MoeRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.RotaryEmbedding
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^lm_head$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearTorch"
prefill_op: "KLinearTorch"
# - match:
# name: "^model\\.layers\\..*$" # regular expression
# class: torch.nn.Linear # only match modules matching name and class simultaneously
# replace:
# class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
# kwargs:
# generate_device: "cuda"
# prefill_device: "cuda"
# generate_op: "KLinearTorch"
# prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.(?!.*mlp\\.shared_expert_gate).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearTorch"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\..*\\.mlp$"
replace:
class: ktransformers.operators.experts.KQwen3MoeSparseMoeBlock # mlp module with custom forward function
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model\\.layers\\..*\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KSFTExpertsCPU"
out_device: "cuda"
backend: "AMXInt8" # or "AMXBF16" or "AMXInt8"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\..*\\.self_attn$"
replace:
class: ktransformers.operators.attention.KQwen3MoeAttention # optimized MLA implementation
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KQwen3MoeModel"
kwargs:
per_layer_prefill_intput_threshold: 0

View File

@ -0,0 +1,52 @@
### model
model_name_or_path: Qwen/Qwen3-235B-A22B-Instruct-2507
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: lora
lora_rank: 8
lora_target: all
### dataset
dataset: identity, alpaca_en_demo
template: qwen3_nothink
cutoff_len: 2048
max_samples: 100000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/Kllama_Qwen3MoE_235bA22b
logging_steps: 10
save_steps: 200
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null
### ktransformers
use_kt: true # use KTransformers as LoRA sft backend
kt_optimize_rule: examples/kt_optimize_rules/Qwen3Moe-sft-amx.yaml
cpu_infer: 32
chunk_size: 8192
### eval
# eval_dataset: alpaca_en_demo
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500