mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-27 01:00:34 +08:00
[misc] fix accelerator (#9661)
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
This commit is contained in:
@@ -94,9 +94,8 @@ def configure_quantization(
|
||||
quantization_config: dict[str, Any] = getattr(config, "quantization_config", None)
|
||||
quant_method = quantization_config.get("quant_method", "")
|
||||
|
||||
if (
|
||||
quant_method not in (QuantizationMethod.MXFP4 and QuantizationMethod.FP8)
|
||||
and (is_deepspeed_zero3_enabled() or is_fsdp_enabled())
|
||||
if quant_method not in (QuantizationMethod.MXFP4, QuantizationMethod.FP8) and (
|
||||
is_deepspeed_zero3_enabled() or is_fsdp_enabled()
|
||||
):
|
||||
# mxfp4 will dequant the model weights
|
||||
raise ValueError("DeepSpeed ZeRO-3 or FSDP is incompatible with PTQ-quantized models.")
|
||||
|
||||
@@ -15,11 +15,20 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Utility functions used by the distributed interface.
|
||||
|
||||
Including:
|
||||
- Environment info (rank, world_size, local_rank, etc.)
|
||||
- Accelerator info (device type, device count, etc.)
|
||||
- Collective communication operations (all_gather, all_reduce, broadcast)
|
||||
- Synchronize processes and ensure main-process-first execution order
|
||||
"""
|
||||
|
||||
import os
|
||||
from contextlib import contextmanager
|
||||
from enum import Enum, unique
|
||||
from functools import lru_cache
|
||||
from typing import Optional
|
||||
from functools import lru_cache, wraps
|
||||
from typing import Callable, Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
@@ -46,6 +55,22 @@ class ReduceOp(str, Enum):
|
||||
MIN = "min"
|
||||
|
||||
|
||||
def requires_accelerator(fn):
|
||||
"""Decorator to check if torch.accelerator is available.
|
||||
|
||||
Note: this api requires torch>=2.7.0, otherwise it will raise an AttributeError or RuntimeError
|
||||
"""
|
||||
|
||||
@wraps(fn)
|
||||
def wrapper(*args, **kwargs):
|
||||
if not hasattr(torch, "accelerator"):
|
||||
raise RuntimeError("torch.accelerator is not available, please upgrade torch to 2.7.0 or higher.")
|
||||
|
||||
return fn(*args, **kwargs)
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
def is_distributed() -> bool:
|
||||
"""Check if distributed environment is available."""
|
||||
return os.getenv("RANK") is not None
|
||||
@@ -72,105 +97,105 @@ def get_local_world_size() -> int:
|
||||
|
||||
|
||||
@lru_cache
|
||||
@requires_accelerator
|
||||
def get_current_accelerator(check_available: bool = True) -> torch.device:
|
||||
"""Get current accelerator.
|
||||
|
||||
Note: this api requires torch>=2.7.0, otherwise it will raise an AttributeError or RuntimeError
|
||||
"""
|
||||
if not hasattr(torch, "accelerator"):
|
||||
raise RuntimeError("torch.accelerator is not available, please upgrade torch to 2.7.0 or higher.")
|
||||
|
||||
"""Get current accelerator."""
|
||||
accelerator = torch.accelerator.current_accelerator(check_available=check_available)
|
||||
if accelerator is None:
|
||||
return torch.device(DeviceType.CPU.value)
|
||||
return accelerator or torch.device(DeviceType.CPU.value)
|
||||
|
||||
return accelerator
|
||||
|
||||
@lru_cache
|
||||
@requires_accelerator
|
||||
def get_device_count() -> int:
|
||||
"""Get the number of available devices."""
|
||||
return torch.accelerator.device_count()
|
||||
|
||||
|
||||
@requires_accelerator
|
||||
def synchronize() -> None:
|
||||
"""Synchronize all processes."""
|
||||
torch.accelerator.synchronize()
|
||||
|
||||
|
||||
@requires_accelerator
|
||||
def set_device() -> None:
|
||||
"""Set current accelerator."""
|
||||
torch.accelerator.set_device_index(get_local_rank())
|
||||
|
||||
|
||||
def is_torch_cuda_available():
|
||||
"""Check if CUDA is available."""
|
||||
return get_current_accelerator().type == DeviceType.CUDA
|
||||
|
||||
|
||||
def is_torch_mps_available():
|
||||
"""Check if MPS is available."""
|
||||
return get_current_accelerator().type == DeviceType.MPS
|
||||
|
||||
|
||||
def is_torch_npu_available():
|
||||
"""Check if NPU is available."""
|
||||
return get_current_accelerator().type == DeviceType.NPU
|
||||
|
||||
|
||||
def is_torch_xpu_available():
|
||||
"""Check if XPU is available."""
|
||||
return get_current_accelerator().type == DeviceType.XPU
|
||||
|
||||
|
||||
def get_current_device() -> "torch.device":
|
||||
r"""Get the current available device."""
|
||||
if is_torch_xpu_available():
|
||||
device = "xpu:{}".format(os.getenv("LOCAL_RANK", "0"))
|
||||
elif is_torch_npu_available():
|
||||
device = "npu:{}".format(os.getenv("LOCAL_RANK", "0"))
|
||||
elif is_torch_mps_available():
|
||||
device = "mps:{}".format(os.getenv("LOCAL_RANK", "0"))
|
||||
elif is_torch_cuda_available():
|
||||
device = "cuda:{}".format(os.getenv("LOCAL_RANK", "0"))
|
||||
def operate_tensorlike(fn: Callable[[...], Tensor], data: TensorLike, **kwargs) -> TensorLike:
|
||||
"""Operate tensorlike data on current accelerator."""
|
||||
device = get_current_accelerator()
|
||||
is_tensor = isinstance(data, torch.Tensor)
|
||||
is_ndarray = isinstance(data, np.ndarray)
|
||||
|
||||
if is_tensor:
|
||||
orig_device = data.device
|
||||
data = data.to(device=device)
|
||||
elif is_ndarray:
|
||||
data = torch.from_numpy(data).to(device=device, dtype=torch.float)
|
||||
else:
|
||||
device = "cpu"
|
||||
data = torch.tensor(data, dtype=torch.float, device=device)
|
||||
|
||||
return torch.device(device)
|
||||
result = fn(data, **kwargs)
|
||||
|
||||
|
||||
def get_device_count() -> int:
|
||||
r"""Get the number of available devices."""
|
||||
if is_torch_xpu_available():
|
||||
return torch.xpu.device_count()
|
||||
elif is_torch_npu_available():
|
||||
return torch.npu.device_count()
|
||||
elif is_torch_mps_available():
|
||||
return torch.mps.device_count()
|
||||
elif is_torch_cuda_available():
|
||||
return torch.cuda.device_count()
|
||||
if is_tensor:
|
||||
return result.to(orig_device)
|
||||
elif is_ndarray:
|
||||
return result.cpu().numpy()
|
||||
elif result.numel() == 1:
|
||||
return result.item()
|
||||
else:
|
||||
return 0
|
||||
return result.tolist()
|
||||
|
||||
|
||||
def all_gather(tensor: Tensor, group: Optional[ProcessGroup] = None) -> Tensor:
|
||||
"""Gathers the tensor from all ranks and concats them along the first dim."""
|
||||
"""Gathers the tensor from all ranks and stacks them at the first dim."""
|
||||
world_size = get_world_size()
|
||||
device = get_current_accelerator()
|
||||
output_tensor = torch.empty(world_size * tensor.numel(), dtype=tensor.dtype, device=device)
|
||||
output_tensor = torch.empty(world_size * tensor.numel(), dtype=tensor.dtype, device=tensor.device)
|
||||
dist.all_gather_into_tensor(output_tensor, tensor, group=group)
|
||||
return output_tensor.view(-1, *tensor.size()[1:])
|
||||
return output_tensor.view(-1, *tensor.size())
|
||||
|
||||
|
||||
def all_reduce(data: TensorLike, op: ReduceOp = ReduceOp.MEAN, group: Optional[ProcessGroup] = None) -> TensorLike:
|
||||
def all_reduce(tensor: Tensor, op: ReduceOp = ReduceOp.MEAN, group: Optional[ProcessGroup] = None) -> Tensor:
|
||||
"""Performs all reduce in the given process group."""
|
||||
device = get_current_accelerator()
|
||||
is_ndarray = isinstance(data, np.ndarray)
|
||||
is_tensor = isinstance(data, torch.Tensor)
|
||||
|
||||
if is_ndarray:
|
||||
data = torch.from_numpy(data).to(device=device, dtype=torch.float)
|
||||
elif not is_tensor:
|
||||
data = torch.tensor(data, dtype=torch.float, device=device)
|
||||
|
||||
reduce_ops = {
|
||||
ReduceOp.MEAN: dist.ReduceOp.SUM,
|
||||
ReduceOp.SUM: dist.ReduceOp.SUM,
|
||||
ReduceOp.MAX: dist.ReduceOp.MAX,
|
||||
ReduceOp.MIN: dist.ReduceOp.MIN,
|
||||
}
|
||||
dist.all_reduce(data, op=reduce_ops[op], group=group)
|
||||
dist.all_reduce(tensor, op=reduce_ops[op], group=group)
|
||||
if op == ReduceOp.MEAN: # ReduceOp.AVG is not supported by the NPU backend
|
||||
data /= dist.get_world_size(group=group)
|
||||
tensor /= dist.get_world_size(group=group)
|
||||
|
||||
if is_tensor:
|
||||
return data
|
||||
elif is_ndarray:
|
||||
return data.cpu().numpy()
|
||||
elif data.numel() == 1:
|
||||
return data.item()
|
||||
else:
|
||||
return data.tolist()
|
||||
return tensor
|
||||
|
||||
|
||||
def broadcast(tensor: Tensor, src: int = 0, group: Optional[ProcessGroup] = None) -> Tensor:
|
||||
"""Broadcasts the tensor from the src process to all other processes."""
|
||||
dist.broadcast(tensor, src=src, group=group)
|
||||
return tensor
|
||||
|
||||
|
||||
@contextmanager
|
||||
|
||||
@@ -15,26 +15,27 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""A unified interface for model parallelism and data parallelism.
|
||||
|
||||
Supports model parallelism types:
|
||||
- mp_replicate: Replicate model across multiple devices.
|
||||
- mp_shard: Shard model across multiple devices.
|
||||
|
||||
And data parallelism types:
|
||||
- dp: Data parallelism.
|
||||
- cp: Context parallelism.
|
||||
"""
|
||||
|
||||
from dataclasses import dataclass
|
||||
from datetime import timedelta
|
||||
from enum import Enum
|
||||
from typing import Any, Optional
|
||||
|
||||
from torch.distributed import init_process_group
|
||||
from torch.distributed import barrier, destroy_process_group, init_process_group
|
||||
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
|
||||
|
||||
from ..utils.types import DistributedConfig, ProcessGroup, Tensor, TensorLike
|
||||
from .helper import (
|
||||
ReduceOp,
|
||||
all_gather,
|
||||
all_reduce,
|
||||
get_current_accelerator,
|
||||
get_local_rank,
|
||||
get_local_world_size,
|
||||
get_rank,
|
||||
get_world_size,
|
||||
is_distributed,
|
||||
)
|
||||
from . import helper
|
||||
|
||||
|
||||
class Dim(str, Enum):
|
||||
@@ -60,24 +61,24 @@ class DistributedStrategy:
|
||||
"""Context parallel size, default to 1."""
|
||||
|
||||
def __post_init__(self) -> None:
|
||||
if not is_distributed():
|
||||
if not helper.is_distributed():
|
||||
self.mp_shard_size = 1
|
||||
elif self.mp_shard_size is None:
|
||||
self.mp_shard_size = get_world_size() // self.mp_replicate_size
|
||||
elif self.mp_replicate_size * self.mp_shard_size != get_world_size():
|
||||
self.mp_shard_size = helper.get_world_size() // self.mp_replicate_size
|
||||
elif self.mp_replicate_size * self.mp_shard_size != helper.get_world_size():
|
||||
raise ValueError(
|
||||
f"mp_replicate_size * mp_shard_size must equal to world_size, "
|
||||
f"got {self.mp_replicate_size} * {self.mp_shard_size} != {get_world_size()}."
|
||||
f"got {self.mp_replicate_size} * {self.mp_shard_size} != {helper.get_world_size()}."
|
||||
)
|
||||
|
||||
if not is_distributed():
|
||||
if not helper.is_distributed():
|
||||
self.dp_size = 1
|
||||
elif self.dp_size is None:
|
||||
self.dp_size = get_world_size() // self.cp_size
|
||||
elif self.dp_size * self.cp_size != get_world_size():
|
||||
self.dp_size = helper.get_world_size() // self.cp_size
|
||||
elif self.dp_size * self.cp_size != helper.get_world_size():
|
||||
raise ValueError(
|
||||
f"dp_size * cp_size must equal to world_size, "
|
||||
f"got {self.dp_size} * {self.cp_size} != {get_world_size()}."
|
||||
f"got {self.dp_size} * {self.cp_size} != {helper.get_world_size()}."
|
||||
)
|
||||
|
||||
@property
|
||||
@@ -106,20 +107,6 @@ class DistributedInterface:
|
||||
|
||||
_instance: Optional["DistributedInterface"] = None
|
||||
_initialized: bool = False
|
||||
_is_distributed = is_distributed()
|
||||
_rank = get_rank()
|
||||
_world_size = get_world_size()
|
||||
_local_rank = get_local_rank()
|
||||
_local_world_size = get_local_world_size()
|
||||
|
||||
strategy: Optional[DistributedStrategy] = None
|
||||
"""Distributed strategy."""
|
||||
model_device_mesh: Optional[DeviceMesh] = None
|
||||
"""Model parallel device mesh."""
|
||||
data_device_mesh: Optional[DeviceMesh] = None
|
||||
"""Data parallel device mesh."""
|
||||
current_accelerator = get_current_accelerator()
|
||||
"""Current accelerator."""
|
||||
|
||||
def __new__(cls, *args: Any, **kwargs: Any) -> "DistributedInterface":
|
||||
"""Singleton pattern."""
|
||||
@@ -132,6 +119,14 @@ class DistributedInterface:
|
||||
if self._initialized:
|
||||
return
|
||||
|
||||
self._is_distributed = helper.is_distributed()
|
||||
self._rank = helper.get_rank()
|
||||
self._world_size = helper.get_world_size()
|
||||
self._local_rank = helper.get_local_rank()
|
||||
self._local_world_size = helper.get_local_world_size()
|
||||
self.current_accelerator = helper.get_current_accelerator()
|
||||
self.device_count = helper.get_device_count()
|
||||
|
||||
if config is None:
|
||||
self.strategy = DistributedStrategy()
|
||||
timeout = 18000
|
||||
@@ -145,6 +140,7 @@ class DistributedInterface:
|
||||
timeout = config.get("timeout", 18000)
|
||||
|
||||
if self._is_distributed:
|
||||
helper.set_device()
|
||||
init_process_group(timeout=timedelta(seconds=timeout))
|
||||
self.model_device_mesh = init_device_mesh(
|
||||
device_type=self.current_accelerator.type,
|
||||
@@ -169,65 +165,84 @@ class DistributedInterface:
|
||||
f"model_device_mesh={self.model_device_mesh}, data_device_mesh={self.data_device_mesh}"
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def get_device_mesh(cls, dim: Optional[Dim] = None) -> Optional[DeviceMesh]:
|
||||
def get_device_mesh(self, dim: Optional[Dim] = None) -> Optional[DeviceMesh]:
|
||||
"""Get device mesh for specified dimension."""
|
||||
if dim is None:
|
||||
raise ValueError("dim must be specified.")
|
||||
elif cls.model_device_mesh is None:
|
||||
elif self.model_device_mesh is None:
|
||||
return None
|
||||
elif dim in cls.strategy.data_mesh_dim_names:
|
||||
return cls.data_device_mesh[dim.value]
|
||||
elif dim in self.strategy.data_mesh_dim_names:
|
||||
return self.data_device_mesh[dim.value]
|
||||
else:
|
||||
return cls.model_device_mesh[dim.value]
|
||||
return self.model_device_mesh[dim.value]
|
||||
|
||||
@classmethod
|
||||
def get_group(cls, dim: Optional[Dim] = None) -> Optional[ProcessGroup]:
|
||||
def get_group(self, dim: Optional[Dim] = None) -> Optional[ProcessGroup]:
|
||||
"""Get process group for specified dimension."""
|
||||
if cls.model_device_mesh is None or dim is None:
|
||||
if self.model_device_mesh is None or dim is None:
|
||||
return None
|
||||
else:
|
||||
return cls.get_device_mesh(dim).get_group()
|
||||
return self.get_device_mesh(dim).get_group()
|
||||
|
||||
@classmethod
|
||||
def get_rank(cls, dim: Optional[Dim] = None) -> int:
|
||||
def get_rank(self, dim: Optional[Dim] = None) -> int:
|
||||
"""Get parallel rank for specified dimension."""
|
||||
if cls.model_device_mesh is None:
|
||||
if self.model_device_mesh is None:
|
||||
return 0
|
||||
elif dim is None:
|
||||
return cls._rank
|
||||
return self._rank
|
||||
else:
|
||||
return cls.get_device_mesh(dim).get_local_rank()
|
||||
return self.get_device_mesh(dim).get_local_rank()
|
||||
|
||||
@classmethod
|
||||
def get_world_size(cls, dim: Optional[Dim] = None) -> int:
|
||||
def get_world_size(self, dim: Optional[Dim] = None) -> int:
|
||||
"""Get parallel size for specified dimension."""
|
||||
if cls.model_device_mesh is None:
|
||||
if self.model_device_mesh is None:
|
||||
return 1
|
||||
elif dim is None:
|
||||
return cls._world_size
|
||||
return self._world_size
|
||||
else:
|
||||
return cls.get_device_mesh(dim).size()
|
||||
return self.get_device_mesh(dim).size()
|
||||
|
||||
@classmethod
|
||||
def get_local_rank(cls) -> int:
|
||||
def get_local_rank(self) -> int:
|
||||
"""Get parallel local rank."""
|
||||
return cls._local_rank
|
||||
return self._local_rank
|
||||
|
||||
@classmethod
|
||||
def get_local_world_size(cls) -> int:
|
||||
def get_local_world_size(self) -> int:
|
||||
"""Get parallel local world size."""
|
||||
return cls._local_world_size
|
||||
return self._local_world_size
|
||||
|
||||
@classmethod
|
||||
def all_gather(cls, data: Tensor, dim: Optional[Dim] = Dim.DP) -> Tensor:
|
||||
def all_gather(self, data: Tensor, dim: Optional[Dim] = Dim.DP) -> Tensor:
|
||||
"""Gather tensor across specified parallel group."""
|
||||
return all_gather(data, cls.get_group(dim)) if cls.model_device_mesh is not None else data
|
||||
if self.model_device_mesh is not None:
|
||||
return helper.operate_tensorlike(helper.all_gather, data, group=self.get_group(dim))
|
||||
else:
|
||||
return data
|
||||
|
||||
@classmethod
|
||||
def all_reduce(cls, data: TensorLike, op: ReduceOp = ReduceOp.MEAN, dim: Optional[Dim] = Dim.DP) -> TensorLike:
|
||||
def all_reduce(
|
||||
self, data: TensorLike, op: helper.ReduceOp = helper.ReduceOp.MEAN, dim: Optional[Dim] = Dim.DP
|
||||
) -> TensorLike:
|
||||
"""Reduce tensor across specified parallel group."""
|
||||
return all_reduce(data, op, cls.get_group(dim)) if cls.model_device_mesh is not None else data
|
||||
if self.model_device_mesh is not None:
|
||||
return helper.operate_tensorlike(helper.all_reduce, data, op=op, group=self.get_group(dim))
|
||||
else:
|
||||
return data
|
||||
|
||||
def broadcast(self, data: TensorLike, src: int = 0, dim: Optional[Dim] = Dim.DP) -> TensorLike:
|
||||
"""Broadcast tensor across specified parallel group."""
|
||||
if self.model_device_mesh is not None:
|
||||
return helper.operate_tensorlike(helper.broadcast, data, src=src, group=self.get_group(dim))
|
||||
else:
|
||||
return data
|
||||
|
||||
def sync(self) -> None:
|
||||
"""Synchronize all processes."""
|
||||
helper.synchronize()
|
||||
|
||||
def barrier(self) -> None:
|
||||
"""Barrier all processes."""
|
||||
barrier()
|
||||
|
||||
def destroy(self) -> None:
|
||||
"""Destroy all processes."""
|
||||
destroy_process_group()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -97,7 +97,7 @@ class ModelLoader:
|
||||
self.args.model,
|
||||
config=self.model_config,
|
||||
dtype="auto",
|
||||
device_map=DistributedInterface.current_accelerator,
|
||||
device_map=DistributedInterface().current_accelerator,
|
||||
trust_remote_code=self.args.trust_remote_code,
|
||||
)
|
||||
|
||||
|
||||
@@ -22,10 +22,10 @@ from typing import Optional
|
||||
from torchdata.stateful_dataloader import StatefulDataLoader
|
||||
from torchdata.stateful_dataloader.sampler import StatefulDistributedSampler
|
||||
|
||||
from ..utils.batching_queue import BaseBatchingQueue
|
||||
from ..utils.logging import get_logger
|
||||
from ..utils.types import Processor, TorchDataset
|
||||
from .trainer_utils.data_collator import DataCollator
|
||||
from ...utils.batching_queue import BaseBatchingQueue
|
||||
from ...utils.logging import get_logger
|
||||
from ...utils.types import Processor, TorchDataset
|
||||
from .data_collator import DataCollator
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
@@ -17,7 +17,7 @@ import socket
|
||||
|
||||
|
||||
def find_available_port() -> int:
|
||||
r"""Find an available port on the local machine."""
|
||||
"""Find an available port on the local machine."""
|
||||
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
||||
sock.bind(("", 0))
|
||||
port = sock.getsockname()[1]
|
||||
@@ -26,9 +26,5 @@ def find_available_port() -> int:
|
||||
|
||||
|
||||
def is_env_enabled(env_var: str, default: str = "0") -> bool:
|
||||
r"""Check if the environment variable is enabled."""
|
||||
return os.getenv(env_var, default).lower() in ["true", "y", "1"]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(find_available_port())
|
||||
"""Check if the environment variable is enabled."""
|
||||
return os.getenv(env_var, default).lower() in ["true", "yes", "on", "t", "y", "1"]
|
||||
35
src/llamafactory/v1/utils/pytest.py
Normal file
35
src/llamafactory/v1/utils/pytest.py
Normal file
@@ -0,0 +1,35 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
from contextlib import contextmanager
|
||||
|
||||
|
||||
@contextmanager
|
||||
def dist_env(local_rank: int = 0, world_size: int = 1, master_port: int = 25595):
|
||||
"""Set distributed environment variables."""
|
||||
env_vars = {
|
||||
"MASTER_ADDR": "127.0.0.1",
|
||||
"MASTER_PORT": str(master_port),
|
||||
"RANK": str(local_rank),
|
||||
"LOCAL_RANK": str(local_rank),
|
||||
"WORLD_SIZE": str(world_size),
|
||||
"LOCAL_WORLD_SIZE": str(world_size),
|
||||
}
|
||||
os.environ.update(env_vars)
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
for key in env_vars.keys():
|
||||
os.environ.pop(key, None)
|
||||
@@ -18,19 +18,17 @@ Contains shared fixtures, pytest configuration, and custom markers.
|
||||
"""
|
||||
|
||||
import os
|
||||
from typing import Optional
|
||||
|
||||
import pytest
|
||||
from pytest import Config, Item
|
||||
from pytest import Config, FixtureRequest, Item, MonkeyPatch
|
||||
|
||||
from llamafactory.extras.misc import get_current_device, get_device_count, is_env_enabled
|
||||
from llamafactory.extras.packages import is_transformers_version_greater_than
|
||||
from llamafactory.train.test_utils import patch_valuehead_model
|
||||
|
||||
|
||||
try:
|
||||
CURRENT_DEVICE = get_current_device().type # cpu | cuda | npu
|
||||
except Exception:
|
||||
CURRENT_DEVICE = "cpu"
|
||||
CURRENT_DEVICE = get_current_device().type
|
||||
|
||||
|
||||
def pytest_configure(config: Config):
|
||||
@@ -66,26 +64,27 @@ def _handle_runs_on(items: list[Item]):
|
||||
|
||||
def _handle_slow_tests(items: list[Item]):
|
||||
"""Skip slow tests unless RUN_SLOW is enabled."""
|
||||
if not is_env_enabled("RUN_SLOW", "0"):
|
||||
if not is_env_enabled("RUN_SLOW"):
|
||||
skip_slow = pytest.mark.skip(reason="slow test (set RUN_SLOW=1 to run)")
|
||||
for item in items:
|
||||
if "slow" in item.keywords:
|
||||
item.add_marker(skip_slow)
|
||||
|
||||
|
||||
def _get_visible_devices_env():
|
||||
def _get_visible_devices_env() -> Optional[str]:
|
||||
"""Return device visibility env var name."""
|
||||
if CURRENT_DEVICE == "cuda":
|
||||
return "CUDA_VISIBLE_DEVICES"
|
||||
if CURRENT_DEVICE == "npu":
|
||||
elif CURRENT_DEVICE == "npu":
|
||||
return "ASCEND_RT_VISIBLE_DEVICES"
|
||||
return None
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def _handle_device_visibility(items: list[Item]):
|
||||
"""Handle device visibility based on test markers."""
|
||||
env_key = _get_visible_devices_env()
|
||||
if env_key is None or CURRENT_DEVICE == "cpu":
|
||||
if env_key is None or CURRENT_DEVICE in ("cpu", "mps"):
|
||||
return
|
||||
|
||||
# Parse visible devices
|
||||
@@ -121,7 +120,7 @@ def pytest_collection_modifyitems(config: Config, items: list[Item]):
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def _manage_distributed_env(request, monkeypatch):
|
||||
def _manage_distributed_env(request: FixtureRequest, monkeypatch: MonkeyPatch) -> None:
|
||||
"""Set environment variables for distributed tests if specific devices are requested."""
|
||||
env_key = _get_visible_devices_env()
|
||||
if not env_key:
|
||||
@@ -131,8 +130,7 @@ def _manage_distributed_env(request, monkeypatch):
|
||||
old_value = os.environ.get(env_key)
|
||||
|
||||
marker = request.node.get_closest_marker("require_distributed")
|
||||
if marker:
|
||||
# Distributed test
|
||||
if marker: # distributed test
|
||||
required = marker.args[0] if marker.args else 2
|
||||
specific_devices = marker.args[1] if len(marker.args) > 1 else None
|
||||
|
||||
@@ -142,8 +140,7 @@ def _manage_distributed_env(request, monkeypatch):
|
||||
devices_str = ",".join(str(i) for i in range(required))
|
||||
|
||||
monkeypatch.setenv(env_key, devices_str)
|
||||
else:
|
||||
# Non-distributed test
|
||||
else: # non-distributed test
|
||||
if old_value:
|
||||
visible_devices = [v for v in old_value.split(",") if v != ""]
|
||||
monkeypatch.setenv(env_key, visible_devices[0] if visible_devices else "0")
|
||||
|
||||
@@ -42,7 +42,7 @@ TRAIN_ARGS = {
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize("num_samples", [16])
|
||||
def test_feedback_data(num_samples: int):
|
||||
train_dataset = load_dataset_module(**TRAIN_ARGS)["train_dataset"]
|
||||
|
||||
@@ -51,7 +51,7 @@ def _convert_sharegpt_to_openai(messages: list[dict[str, str]]) -> list[dict[str
|
||||
return new_messages
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize("num_samples", [16])
|
||||
def test_pairwise_data(num_samples: int):
|
||||
train_dataset = load_dataset_module(**TRAIN_ARGS)["train_dataset"]
|
||||
|
||||
@@ -18,7 +18,7 @@ import pytest
|
||||
from llamafactory.data.processor.processor_utils import infer_seqlen
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize(
|
||||
"test_input,test_output",
|
||||
[
|
||||
|
||||
@@ -42,7 +42,7 @@ TRAIN_ARGS = {
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize("num_samples", [16])
|
||||
def test_supervised_single_turn(num_samples: int):
|
||||
train_dataset = load_dataset_module(dataset_dir="ONLINE", dataset=TINY_DATA, **TRAIN_ARGS)["train_dataset"]
|
||||
@@ -62,7 +62,7 @@ def test_supervised_single_turn(num_samples: int):
|
||||
assert train_dataset["input_ids"][index] == ref_input_ids
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize("num_samples", [8])
|
||||
def test_supervised_multi_turn(num_samples: int):
|
||||
train_dataset = load_dataset_module(dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", **TRAIN_ARGS)[
|
||||
@@ -76,7 +76,7 @@ def test_supervised_multi_turn(num_samples: int):
|
||||
assert train_dataset["input_ids"][index] == ref_input_ids
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize("num_samples", [4])
|
||||
def test_supervised_train_on_prompt(num_samples: int):
|
||||
train_dataset = load_dataset_module(
|
||||
@@ -91,7 +91,7 @@ def test_supervised_train_on_prompt(num_samples: int):
|
||||
assert train_dataset["labels"][index] == ref_ids
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize("num_samples", [4])
|
||||
def test_supervised_mask_history(num_samples: int):
|
||||
train_dataset = load_dataset_module(
|
||||
|
||||
@@ -46,7 +46,7 @@ TRAIN_ARGS = {
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize("num_samples", [16])
|
||||
def test_unsupervised_data(num_samples: int):
|
||||
train_dataset = load_dataset_module(**TRAIN_ARGS)["train_dataset"]
|
||||
|
||||
@@ -29,7 +29,7 @@ from llamafactory.model import load_tokenizer
|
||||
TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3")
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_base_collator():
|
||||
model_args, data_args, *_ = get_infer_args({"model_name_or_path": TINY_LLAMA3, "template": "default"})
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
@@ -73,7 +73,7 @@ def test_base_collator():
|
||||
assert batch_input[k].eq(torch.tensor(expected_input[k])).all()
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_multimodal_collator():
|
||||
model_args, data_args, *_ = get_infer_args(
|
||||
{"model_name_or_path": "Qwen/Qwen2-VL-2B-Instruct", "template": "qwen2_vl"}
|
||||
|
||||
@@ -20,7 +20,7 @@ from llamafactory.data.parser import DatasetAttr
|
||||
from llamafactory.hparams import DataArguments
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_alpaca_converter():
|
||||
dataset_attr = DatasetAttr("hf_hub", "llamafactory/tiny-supervised-dataset")
|
||||
data_args = DataArguments()
|
||||
@@ -41,7 +41,7 @@ def test_alpaca_converter():
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_sharegpt_converter():
|
||||
dataset_attr = DatasetAttr("hf_hub", "llamafactory/tiny-supervised-dataset")
|
||||
data_args = DataArguments()
|
||||
|
||||
@@ -38,19 +38,19 @@ TOOLS = [
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_empty_formatter():
|
||||
formatter = EmptyFormatter(slots=["\n"])
|
||||
assert formatter.apply() == ["\n"]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_string_formatter():
|
||||
formatter = StringFormatter(slots=["<s>", "Human: {{content}}\nAssistant:"])
|
||||
assert formatter.apply(content="Hi") == ["<s>", "Human: Hi\nAssistant:"]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_function_formatter():
|
||||
formatter = FunctionFormatter(slots=["{{content}}", "</s>"], tool_format="default")
|
||||
tool_calls = json.dumps(FUNCTION)
|
||||
@@ -60,7 +60,7 @@ def test_function_formatter():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_multi_function_formatter():
|
||||
formatter = FunctionFormatter(slots=["{{content}}", "</s>"], tool_format="default")
|
||||
tool_calls = json.dumps([FUNCTION] * 2)
|
||||
@@ -71,7 +71,7 @@ def test_multi_function_formatter():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_default_tool_formatter():
|
||||
formatter = ToolFormatter(tool_format="default")
|
||||
assert formatter.apply(content=json.dumps(TOOLS)) == [
|
||||
@@ -90,14 +90,14 @@ def test_default_tool_formatter():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_default_tool_extractor():
|
||||
formatter = ToolFormatter(tool_format="default")
|
||||
result = """Action: test_tool\nAction Input: {"foo": "bar", "size": 10}"""
|
||||
assert formatter.extract(result) == [("test_tool", """{"foo": "bar", "size": 10}""")]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_default_multi_tool_extractor():
|
||||
formatter = ToolFormatter(tool_format="default")
|
||||
result = (
|
||||
@@ -110,14 +110,14 @@ def test_default_multi_tool_extractor():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_glm4_function_formatter():
|
||||
formatter = FunctionFormatter(slots=["{{content}}"], tool_format="glm4")
|
||||
tool_calls = json.dumps(FUNCTION)
|
||||
assert formatter.apply(content=tool_calls) == ["""tool_name\n{"foo": "bar", "size": 10}"""]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_glm4_tool_formatter():
|
||||
formatter = ToolFormatter(tool_format="glm4")
|
||||
assert formatter.apply(content=json.dumps(TOOLS)) == [
|
||||
@@ -128,14 +128,14 @@ def test_glm4_tool_formatter():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_glm4_tool_extractor():
|
||||
formatter = ToolFormatter(tool_format="glm4")
|
||||
result = """test_tool\n{"foo": "bar", "size": 10}\n"""
|
||||
assert formatter.extract(result) == [("test_tool", """{"foo": "bar", "size": 10}""")]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_llama3_function_formatter():
|
||||
formatter = FunctionFormatter(slots=["{{content}}<|eot_id|>"], tool_format="llama3")
|
||||
tool_calls = json.dumps(FUNCTION)
|
||||
@@ -144,7 +144,7 @@ def test_llama3_function_formatter():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_llama3_multi_function_formatter():
|
||||
formatter = FunctionFormatter(slots=["{{content}}<|eot_id|>"], tool_format="llama3")
|
||||
tool_calls = json.dumps([FUNCTION] * 2)
|
||||
@@ -155,7 +155,7 @@ def test_llama3_multi_function_formatter():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_llama3_tool_formatter():
|
||||
formatter = ToolFormatter(tool_format="llama3")
|
||||
date = datetime.now().strftime("%d %b %Y")
|
||||
@@ -169,14 +169,14 @@ def test_llama3_tool_formatter():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_llama3_tool_extractor():
|
||||
formatter = ToolFormatter(tool_format="llama3")
|
||||
result = """{"name": "test_tool", "parameters": {"foo": "bar", "size": 10}}\n"""
|
||||
assert formatter.extract(result) == [("test_tool", """{"foo": "bar", "size": 10}""")]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_llama3_multi_tool_extractor():
|
||||
formatter = ToolFormatter(tool_format="llama3")
|
||||
result = (
|
||||
@@ -189,7 +189,7 @@ def test_llama3_multi_tool_extractor():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_mistral_function_formatter():
|
||||
formatter = FunctionFormatter(slots=["[TOOL_CALLS] {{content}}", "</s>"], tool_format="mistral")
|
||||
tool_calls = json.dumps(FUNCTION)
|
||||
@@ -199,7 +199,7 @@ def test_mistral_function_formatter():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_mistral_multi_function_formatter():
|
||||
formatter = FunctionFormatter(slots=["[TOOL_CALLS] {{content}}", "</s>"], tool_format="mistral")
|
||||
tool_calls = json.dumps([FUNCTION] * 2)
|
||||
@@ -211,7 +211,7 @@ def test_mistral_multi_function_formatter():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_mistral_tool_formatter():
|
||||
formatter = ToolFormatter(tool_format="mistral")
|
||||
wrapped_tool = {"type": "function", "function": TOOLS[0]}
|
||||
@@ -220,14 +220,14 @@ def test_mistral_tool_formatter():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_mistral_tool_extractor():
|
||||
formatter = ToolFormatter(tool_format="mistral")
|
||||
result = """{"name": "test_tool", "arguments": {"foo": "bar", "size": 10}}"""
|
||||
assert formatter.extract(result) == [("test_tool", """{"foo": "bar", "size": 10}""")]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_mistral_multi_tool_extractor():
|
||||
formatter = ToolFormatter(tool_format="mistral")
|
||||
result = (
|
||||
@@ -240,7 +240,7 @@ def test_mistral_multi_tool_extractor():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_qwen_function_formatter():
|
||||
formatter = FunctionFormatter(slots=["{{content}}<|im_end|>\n"], tool_format="qwen")
|
||||
tool_calls = json.dumps(FUNCTION)
|
||||
@@ -249,7 +249,7 @@ def test_qwen_function_formatter():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_qwen_multi_function_formatter():
|
||||
formatter = FunctionFormatter(slots=["{{content}}<|im_end|>\n"], tool_format="qwen")
|
||||
tool_calls = json.dumps([FUNCTION] * 2)
|
||||
@@ -260,7 +260,7 @@ def test_qwen_multi_function_formatter():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_qwen_tool_formatter():
|
||||
formatter = ToolFormatter(tool_format="qwen")
|
||||
wrapped_tool = {"type": "function", "function": TOOLS[0]}
|
||||
@@ -274,14 +274,14 @@ def test_qwen_tool_formatter():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_qwen_tool_extractor():
|
||||
formatter = ToolFormatter(tool_format="qwen")
|
||||
result = """<tool_call>\n{"name": "test_tool", "arguments": {"foo": "bar", "size": 10}}\n</tool_call>"""
|
||||
assert formatter.extract(result) == [("test_tool", """{"foo": "bar", "size": 10}""")]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_qwen_multi_tool_extractor():
|
||||
formatter = ToolFormatter(tool_format="qwen")
|
||||
result = (
|
||||
|
||||
@@ -40,21 +40,21 @@ TRAIN_ARGS = {
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_load_train_only():
|
||||
dataset_module = load_dataset_module(**TRAIN_ARGS)
|
||||
assert dataset_module.get("train_dataset") is not None
|
||||
assert dataset_module.get("eval_dataset") is None
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_load_val_size():
|
||||
dataset_module = load_dataset_module(val_size=0.1, **TRAIN_ARGS)
|
||||
assert dataset_module.get("train_dataset") is not None
|
||||
assert dataset_module.get("eval_dataset") is not None
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_load_eval_data():
|
||||
dataset_module = load_dataset_module(eval_dataset=TINY_DATA, **TRAIN_ARGS)
|
||||
assert dataset_module.get("train_dataset") is not None
|
||||
|
||||
@@ -179,7 +179,7 @@ def _check_plugin(
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_base_plugin():
|
||||
tokenizer_module = _load_tokenizer_module(model_name_or_path=TINY_LLAMA3)
|
||||
base_plugin = get_mm_plugin(name="base")
|
||||
@@ -187,7 +187,7 @@ def test_base_plugin():
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
|
||||
@pytest.mark.skipif(not is_transformers_version_greater_than("4.50.0"), reason="Requires transformers>=4.50.0")
|
||||
def test_gemma3_plugin():
|
||||
@@ -210,7 +210,7 @@ def test_gemma3_plugin():
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.skipif(not is_transformers_version_greater_than("4.52.0"), reason="Requires transformers>=4.52.0")
|
||||
def test_internvl_plugin():
|
||||
image_seqlen = 256
|
||||
@@ -229,7 +229,7 @@ def test_internvl_plugin():
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.skipif(not is_transformers_version_greater_than("4.51.0"), reason="Requires transformers>=4.51.0")
|
||||
def test_llama4_plugin():
|
||||
tokenizer_module = _load_tokenizer_module(model_name_or_path=TINY_LLAMA4)
|
||||
@@ -251,7 +251,7 @@ def test_llama4_plugin():
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_llava_plugin():
|
||||
image_seqlen = 576
|
||||
tokenizer_module = _load_tokenizer_module(model_name_or_path="llava-hf/llava-1.5-7b-hf")
|
||||
@@ -265,7 +265,7 @@ def test_llava_plugin():
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_llava_next_plugin():
|
||||
image_seqlen = 1176
|
||||
tokenizer_module = _load_tokenizer_module(model_name_or_path="llava-hf/llava-v1.6-vicuna-7b-hf")
|
||||
@@ -279,7 +279,7 @@ def test_llava_next_plugin():
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_llava_next_video_plugin():
|
||||
image_seqlen = 1176
|
||||
tokenizer_module = _load_tokenizer_module(model_name_or_path="llava-hf/LLaVA-NeXT-Video-7B-hf")
|
||||
@@ -293,7 +293,7 @@ def test_llava_next_video_plugin():
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
|
||||
def test_paligemma_plugin():
|
||||
image_seqlen = 256
|
||||
@@ -313,7 +313,7 @@ def test_paligemma_plugin():
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.skipif(not is_transformers_version_greater_than("4.50.0"), reason="Requires transformers>=4.50.0")
|
||||
def test_pixtral_plugin():
|
||||
image_slice_height, image_slice_width = 2, 2
|
||||
@@ -336,7 +336,7 @@ def test_pixtral_plugin():
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.skipif(not is_transformers_version_greater_than("4.52.0"), reason="Requires transformers>=4.52.0")
|
||||
def test_qwen2_omni_plugin():
|
||||
image_seqlen, audio_seqlen = 4, 2
|
||||
@@ -367,7 +367,7 @@ def test_qwen2_omni_plugin():
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_qwen2_vl_plugin():
|
||||
image_seqlen = 4
|
||||
tokenizer_module = _load_tokenizer_module(model_name_or_path="Qwen/Qwen2-VL-7B-Instruct")
|
||||
@@ -384,7 +384,7 @@ def test_qwen2_vl_plugin():
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.skipif(not is_transformers_version_greater_than("4.57.0"), reason="Requires transformers>=4.57.0")
|
||||
def test_qwen3_vl_plugin():
|
||||
frame_seqlen = 1
|
||||
@@ -406,7 +406,7 @@ def test_qwen3_vl_plugin():
|
||||
_check_plugin(**check_inputs)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.skipif(not is_transformers_version_greater_than("4.47.0"), reason="Requires transformers>=4.47.0")
|
||||
def test_video_llava_plugin():
|
||||
image_seqlen = 256
|
||||
|
||||
@@ -89,7 +89,7 @@ def _check_template(
|
||||
_check_tokenization(tokenizer, (prompt_ids, answer_ids), (prompt_str, answer_str))
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize("use_fast", [True, False])
|
||||
def test_encode_oneturn(use_fast: bool):
|
||||
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3, use_fast=use_fast)
|
||||
@@ -105,7 +105,7 @@ def test_encode_oneturn(use_fast: bool):
|
||||
_check_tokenization(tokenizer, (prompt_ids, answer_ids), (prompt_str, answer_str))
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize("use_fast", [True, False])
|
||||
def test_encode_multiturn(use_fast: bool):
|
||||
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3, use_fast=use_fast)
|
||||
@@ -127,7 +127,7 @@ def test_encode_multiturn(use_fast: bool):
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize("use_fast", [True, False])
|
||||
@pytest.mark.parametrize("cot_messages", [True, False])
|
||||
@pytest.mark.parametrize("enable_thinking", [True, False, None])
|
||||
@@ -154,7 +154,7 @@ def test_reasoning_encode_oneturn(use_fast: bool, cot_messages: bool, enable_thi
|
||||
_check_tokenization(tokenizer, (prompt_ids, answer_ids), (prompt_str, answer_str))
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize("use_fast", [True, False])
|
||||
@pytest.mark.parametrize("cot_messages", [True, False])
|
||||
@pytest.mark.parametrize("enable_thinking", [True, False, None])
|
||||
@@ -184,7 +184,7 @@ def test_reasoning_encode_multiturn(use_fast: bool, cot_messages: bool, enable_t
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize("use_fast", [True, False])
|
||||
def test_jinja_template(use_fast: bool):
|
||||
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3, use_fast=use_fast)
|
||||
@@ -195,7 +195,7 @@ def test_jinja_template(use_fast: bool):
|
||||
assert tokenizer.apply_chat_template(MESSAGES) == ref_tokenizer.apply_chat_template(MESSAGES)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_ollama_modelfile():
|
||||
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3)
|
||||
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
|
||||
@@ -213,14 +213,14 @@ def test_ollama_modelfile():
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_get_stop_token_ids():
|
||||
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3)
|
||||
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
|
||||
assert set(template.get_stop_token_ids(tokenizer)) == {128008, 128009}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
|
||||
@pytest.mark.parametrize("use_fast", [True, False])
|
||||
def test_gemma_template(use_fast: bool):
|
||||
@@ -234,7 +234,7 @@ def test_gemma_template(use_fast: bool):
|
||||
_check_template("google/gemma-3-4b-it", "gemma", prompt_str, answer_str, use_fast)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
|
||||
@pytest.mark.parametrize("use_fast", [True, False])
|
||||
def test_gemma2_template(use_fast: bool):
|
||||
@@ -248,7 +248,7 @@ def test_gemma2_template(use_fast: bool):
|
||||
_check_template("google/gemma-2-2b-it", "gemma2", prompt_str, answer_str, use_fast)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
|
||||
@pytest.mark.parametrize("use_fast", [True, False])
|
||||
def test_llama3_template(use_fast: bool):
|
||||
@@ -262,7 +262,7 @@ def test_llama3_template(use_fast: bool):
|
||||
_check_template("meta-llama/Meta-Llama-3-8B-Instruct", "llama3", prompt_str, answer_str, use_fast)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize(
|
||||
"use_fast", [True, pytest.param(False, marks=pytest.mark.xfail(reason="Llama 4 has no slow tokenizer."))]
|
||||
)
|
||||
@@ -284,7 +284,7 @@ def test_llama4_template(use_fast: bool):
|
||||
pytest.param(False, marks=pytest.mark.xfail(reason="Phi-4 slow tokenizer is broken.")),
|
||||
],
|
||||
)
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_phi4_template(use_fast: bool):
|
||||
prompt_str = (
|
||||
f"<|im_start|>user<|im_sep|>{MESSAGES[0]['content']}<|im_end|>"
|
||||
@@ -296,7 +296,7 @@ def test_phi4_template(use_fast: bool):
|
||||
_check_template("microsoft/phi-4", "phi4", prompt_str, answer_str, use_fast)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.xfail(not HF_TOKEN, reason="Authorization.")
|
||||
@pytest.mark.parametrize("use_fast", [True, False])
|
||||
def test_qwen2_5_template(use_fast: bool):
|
||||
@@ -311,7 +311,7 @@ def test_qwen2_5_template(use_fast: bool):
|
||||
_check_template("Qwen/Qwen2.5-7B-Instruct", "qwen", prompt_str, answer_str, use_fast)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize("use_fast", [True, False])
|
||||
@pytest.mark.parametrize("cot_messages", [True, False])
|
||||
def test_qwen3_template(use_fast: bool, cot_messages: bool):
|
||||
@@ -331,7 +331,7 @@ def test_qwen3_template(use_fast: bool, cot_messages: bool):
|
||||
_check_template("Qwen/Qwen3-8B", "qwen3", prompt_str, answer_str, use_fast, messages=messages)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_parse_llama3_template():
|
||||
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA3, token=HF_TOKEN)
|
||||
template = parse_template(tokenizer)
|
||||
@@ -345,7 +345,7 @@ def test_parse_llama3_template():
|
||||
assert template.default_system == ""
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.xfail(not HF_TOKEN, reason="Authorization.")
|
||||
def test_parse_qwen_template():
|
||||
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-7B-Instruct", token=HF_TOKEN)
|
||||
@@ -358,7 +358,7 @@ def test_parse_qwen_template():
|
||||
assert template.default_system == "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.xfail(not HF_TOKEN, reason="Authorization.")
|
||||
def test_parse_qwen3_template():
|
||||
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B", token=HF_TOKEN)
|
||||
|
||||
@@ -37,13 +37,13 @@ MESSAGES = [
|
||||
EXPECTED_RESPONSE = "_rho"
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_chat():
|
||||
chat_model = ChatModel(INFER_ARGS)
|
||||
assert chat_model.chat(MESSAGES)[0].response_text == EXPECTED_RESPONSE
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_stream_chat():
|
||||
chat_model = ChatModel(INFER_ARGS)
|
||||
response = ""
|
||||
|
||||
@@ -39,7 +39,7 @@ MESSAGES = [
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cuda"])
|
||||
@pytest.mark.skipif(not is_sglang_available(), reason="SGLang is not installed")
|
||||
def test_chat():
|
||||
r"""Test the SGLang engine's basic chat functionality."""
|
||||
@@ -49,7 +49,7 @@ def test_chat():
|
||||
print(response.response_text)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cuda"])
|
||||
@pytest.mark.skipif(not is_sglang_available(), reason="SGLang is not installed")
|
||||
def test_stream_chat():
|
||||
r"""Test the SGLang engine's streaming chat functionality."""
|
||||
|
||||
@@ -49,7 +49,7 @@ INFER_ARGS = {
|
||||
OS_NAME = os.getenv("OS_NAME", "")
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
@pytest.mark.parametrize(
|
||||
"stage,dataset",
|
||||
[
|
||||
@@ -66,7 +66,7 @@ def test_run_exp(stage: str, dataset: str):
|
||||
assert os.path.exists(output_dir)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_export():
|
||||
export_dir = os.path.join("output", "llama3_export")
|
||||
export_model({"export_dir": export_dir, **INFER_ARGS})
|
||||
|
||||
@@ -17,7 +17,7 @@ import pytest
|
||||
from llamafactory.eval.template import get_eval_template
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_eval_template_en():
|
||||
support_set = [
|
||||
{
|
||||
@@ -56,7 +56,7 @@ def test_eval_template_en():
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.runs_on(["cpu", "mps"])
|
||||
def test_eval_template_zh():
|
||||
support_set = [
|
||||
{
|
||||
|
||||
@@ -25,7 +25,6 @@ TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3")
|
||||
UNUSED_TOKEN = "<|UNUSED_TOKEN|>"
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
@pytest.mark.parametrize("special_tokens", [False, True])
|
||||
def test_add_tokens(special_tokens: bool):
|
||||
if special_tokens:
|
||||
|
||||
@@ -39,7 +39,6 @@ INFER_ARGS = {
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
@pytest.mark.xfail(is_transformers_version_greater_than("4.48"), reason="Attention refactor.")
|
||||
def test_attention():
|
||||
attention_available = ["disabled"]
|
||||
|
||||
@@ -39,7 +39,6 @@ TRAIN_ARGS = {
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
@pytest.mark.parametrize("disable_gradient_checkpointing", [False, True])
|
||||
def test_vanilla_checkpointing(disable_gradient_checkpointing: bool):
|
||||
model = load_train_model(disable_gradient_checkpointing=disable_gradient_checkpointing, **TRAIN_ARGS)
|
||||
@@ -47,14 +46,12 @@ def test_vanilla_checkpointing(disable_gradient_checkpointing: bool):
|
||||
assert getattr(module, "gradient_checkpointing") != disable_gradient_checkpointing
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_unsloth_gradient_checkpointing():
|
||||
model = load_train_model(use_unsloth_gc=True, **TRAIN_ARGS)
|
||||
for module in filter(lambda m: hasattr(m, "gradient_checkpointing"), model.modules()):
|
||||
assert module._gradient_checkpointing_func.__self__.__name__ == "UnslothGradientCheckpointing"
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_upcast_layernorm():
|
||||
model = load_train_model(upcast_layernorm=True, **TRAIN_ARGS)
|
||||
for name, param in model.named_parameters():
|
||||
@@ -62,7 +59,6 @@ def test_upcast_layernorm():
|
||||
assert param.dtype == torch.float32
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_upcast_lmhead_output():
|
||||
model = load_train_model(upcast_lmhead_output=True, **TRAIN_ARGS)
|
||||
inputs = torch.randn((1, 16), dtype=torch.float16, device=get_current_device())
|
||||
|
||||
@@ -24,7 +24,6 @@ from llamafactory.model.model_utils.misc import find_expanded_modules
|
||||
HF_TOKEN = os.getenv("HF_TOKEN")
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
|
||||
def test_expanded_modules():
|
||||
config = AutoConfig.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
|
||||
|
||||
@@ -18,7 +18,6 @@ import torch
|
||||
from llamafactory.model.model_utils.packing import get_seqlens_in_batch, get_unpad_data
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
@pytest.mark.parametrize(
|
||||
"attention_mask,golden_seq_lens",
|
||||
[
|
||||
|
||||
@@ -23,7 +23,6 @@ from llamafactory.hparams import FinetuningArguments, ModelArguments
|
||||
from llamafactory.model.adapter import init_adapter
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
@pytest.mark.parametrize("freeze_vision_tower", (False, True))
|
||||
@pytest.mark.parametrize("freeze_multi_modal_projector", (False, True))
|
||||
@pytest.mark.parametrize("freeze_language_model", (False, True))
|
||||
@@ -49,7 +48,6 @@ def test_visual_full(freeze_vision_tower: bool, freeze_multi_modal_projector: bo
|
||||
assert param.requires_grad != freeze_language_model
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
@pytest.mark.parametrize("freeze_vision_tower,freeze_language_model", ((False, False), (False, True), (True, False)))
|
||||
def test_visual_lora(freeze_vision_tower: bool, freeze_language_model: bool):
|
||||
model_args = ModelArguments(model_name_or_path="Qwen/Qwen2-VL-2B-Instruct")
|
||||
@@ -82,7 +80,6 @@ def test_visual_lora(freeze_vision_tower: bool, freeze_language_model: bool):
|
||||
assert (merger_param_name in trainable_params) is False
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_visual_model_save_load():
|
||||
# check VLM's state dict: https://github.com/huggingface/transformers/pull/38385
|
||||
model_args = ModelArguments(model_name_or_path="Qwen/Qwen2-VL-2B-Instruct")
|
||||
|
||||
@@ -30,14 +30,12 @@ INFER_ARGS = {
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_base():
|
||||
model = load_infer_model(**INFER_ARGS)
|
||||
ref_model = load_reference_model(TINY_LLAMA3)
|
||||
compare_model(model, ref_model)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu"])
|
||||
@pytest.mark.usefixtures("fix_valuehead_cpu_loading")
|
||||
def test_valuehead():
|
||||
model = load_infer_model(add_valuehead=True, **INFER_ARGS)
|
||||
|
||||
@@ -14,7 +14,6 @@
|
||||
|
||||
import os
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from llamafactory.train.test_utils import load_infer_model, load_train_model
|
||||
@@ -44,7 +43,6 @@ INFER_ARGS = {
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_freeze_train_all_modules():
|
||||
model = load_train_model(freeze_trainable_layers=1, **TRAIN_ARGS)
|
||||
for name, param in model.named_parameters():
|
||||
@@ -56,7 +54,6 @@ def test_freeze_train_all_modules():
|
||||
assert param.dtype == torch.float16
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_freeze_train_extra_modules():
|
||||
model = load_train_model(freeze_trainable_layers=1, freeze_extra_modules="embed_tokens,lm_head", **TRAIN_ARGS)
|
||||
for name, param in model.named_parameters():
|
||||
@@ -68,7 +65,6 @@ def test_freeze_train_extra_modules():
|
||||
assert param.dtype == torch.float16
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_freeze_inference():
|
||||
model = load_infer_model(**INFER_ARGS)
|
||||
for param in model.parameters():
|
||||
|
||||
@@ -14,7 +14,6 @@
|
||||
|
||||
import os
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from llamafactory.train.test_utils import load_infer_model, load_train_model
|
||||
@@ -44,7 +43,6 @@ INFER_ARGS = {
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_full_train():
|
||||
model = load_train_model(**TRAIN_ARGS)
|
||||
for param in model.parameters():
|
||||
@@ -52,7 +50,6 @@ def test_full_train():
|
||||
assert param.dtype == torch.float32
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_full_inference():
|
||||
model = load_infer_model(**INFER_ARGS)
|
||||
for param in model.parameters():
|
||||
|
||||
@@ -55,35 +55,30 @@ INFER_ARGS = {
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_lora_train_qv_modules():
|
||||
model = load_train_model(lora_target="q_proj,v_proj", **TRAIN_ARGS)
|
||||
linear_modules, _ = check_lora_model(model)
|
||||
assert linear_modules == {"q_proj", "v_proj"}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_lora_train_all_modules():
|
||||
model = load_train_model(lora_target="all", **TRAIN_ARGS)
|
||||
linear_modules, _ = check_lora_model(model)
|
||||
assert linear_modules == {"q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "gate_proj", "down_proj"}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_lora_train_extra_modules():
|
||||
model = load_train_model(additional_target="embed_tokens,lm_head", **TRAIN_ARGS)
|
||||
_, extra_modules = check_lora_model(model)
|
||||
assert extra_modules == {"embed_tokens", "lm_head"}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_lora_train_old_adapters():
|
||||
model = load_train_model(adapter_name_or_path=TINY_LLAMA_ADAPTER, create_new_adapter=False, **TRAIN_ARGS)
|
||||
ref_model = load_reference_model(TINY_LLAMA3, TINY_LLAMA_ADAPTER, use_lora=True, is_trainable=True)
|
||||
compare_model(model, ref_model)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_lora_train_new_adapters():
|
||||
model = load_train_model(adapter_name_or_path=TINY_LLAMA_ADAPTER, create_new_adapter=True, **TRAIN_ARGS)
|
||||
ref_model = load_reference_model(TINY_LLAMA3, TINY_LLAMA_ADAPTER, use_lora=True, is_trainable=True)
|
||||
@@ -92,7 +87,6 @@ def test_lora_train_new_adapters():
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
@pytest.mark.usefixtures("fix_valuehead_cpu_loading")
|
||||
def test_lora_train_valuehead():
|
||||
model = load_train_model(add_valuehead=True, **TRAIN_ARGS)
|
||||
@@ -103,7 +97,6 @@ def test_lora_train_valuehead():
|
||||
assert torch.allclose(state_dict["v_head.summary.bias"], ref_state_dict["v_head.summary.bias"])
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
def test_lora_inference():
|
||||
model = load_infer_model(**INFER_ARGS)
|
||||
ref_model = load_reference_model(TINY_LLAMA3, TINY_LLAMA_ADAPTER, use_lora=True).merge_and_unload()
|
||||
|
||||
@@ -49,7 +49,6 @@ INFER_ARGS = {
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
@pytest.mark.xfail(reason="PiSSA initialization is not stable in different platform.")
|
||||
def test_pissa_train():
|
||||
model = load_train_model(**TRAIN_ARGS)
|
||||
@@ -57,7 +56,6 @@ def test_pissa_train():
|
||||
compare_model(model, ref_model)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
@pytest.mark.xfail(reason="Known connection error.")
|
||||
def test_pissa_inference():
|
||||
model = load_infer_model(**INFER_ARGS)
|
||||
|
||||
@@ -59,7 +59,6 @@ class DataCollatorWithVerbose(DataCollatorWithPadding):
|
||||
return {k: v[:, :1] for k, v in batch.items()} # truncate input length
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cpu", "npu", "cuda"])
|
||||
@pytest.mark.parametrize("disable_shuffling", [False, True])
|
||||
def test_shuffle(disable_shuffling: bool):
|
||||
model_args, data_args, training_args, finetuning_args, _ = get_train_args(
|
||||
|
||||
@@ -1,18 +0,0 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
runs_on = pytest.mark.runs_on
|
||||
@@ -1,2 +1,2 @@
|
||||
# change if test fails or cache is outdated
|
||||
0.9.4.104
|
||||
0.9.4.105
|
||||
|
||||
@@ -1,93 +0,0 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
from llamafactory.v1.accelerator.helper import ReduceOp, all_reduce, is_torch_cuda_available, is_torch_npu_available
|
||||
from llamafactory.v1.utils.utils import find_available_port
|
||||
|
||||
|
||||
def _dist_worker(rank, world_size):
|
||||
if is_torch_cuda_available():
|
||||
backend = "nccl"
|
||||
device = torch.device(f"cuda:{rank}")
|
||||
torch.cuda.set_device(rank)
|
||||
elif is_torch_npu_available():
|
||||
backend = "hccl"
|
||||
device = torch.device(f"npu:{rank}")
|
||||
torch.npu.set_device(rank)
|
||||
else:
|
||||
backend = "gloo"
|
||||
device = torch.device("cpu")
|
||||
|
||||
dist.init_process_group(
|
||||
backend=backend,
|
||||
rank=rank,
|
||||
world_size=world_size,
|
||||
)
|
||||
|
||||
# --------------------
|
||||
# Test all_reduce SUM
|
||||
# --------------------
|
||||
y = torch.tensor(rank + 1.0, device=device)
|
||||
y_sum = all_reduce(y.clone(), op=ReduceOp.SUM)
|
||||
assert y_sum.item() == 3.0
|
||||
|
||||
# --------------------
|
||||
# Test all_reduce MEAN
|
||||
# --------------------
|
||||
y_mean = all_reduce(y.clone(), op=ReduceOp.MEAN)
|
||||
assert y_mean.item() == pytest.approx(1.5)
|
||||
|
||||
# --------------------
|
||||
# Test all_reduce MAX
|
||||
# --------------------
|
||||
y_max = all_reduce(y.clone(), op=ReduceOp.MAX)
|
||||
assert y_max.item() == 2.0
|
||||
|
||||
dist.destroy_process_group()
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["npu", "cuda"])
|
||||
@pytest.mark.require_distributed(2)
|
||||
def test_distributed_ops(monkeypatch):
|
||||
monkeypatch.setenv("MASTER_ADDR", "127.0.0.1")
|
||||
monkeypatch.setenv("MASTER_PORT", str(find_available_port()))
|
||||
WORLD_SIZE = 2
|
||||
mp.spawn(
|
||||
_dist_worker,
|
||||
args=(WORLD_SIZE,),
|
||||
nprocs=WORLD_SIZE,
|
||||
join=True,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["npu", "cuda"])
|
||||
@pytest.mark.require_distributed(4)
|
||||
def test_required_multi():
|
||||
# test require_distributed mark ok
|
||||
pass
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["npu", "cuda"])
|
||||
@pytest.mark.require_distributed(999)
|
||||
def test_required_invalid():
|
||||
# test require_distributed mark not ok,
|
||||
raise RuntimeError(
|
||||
"this case should not be run, please check whether the require_distributed mark implementation is correct"
|
||||
)
|
||||
@@ -12,15 +12,48 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import os
|
||||
|
||||
import pytest
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
from llamafactory.v1.accelerator.helper import ReduceOp
|
||||
from llamafactory.v1.accelerator.interface import DistributedInterface
|
||||
from llamafactory.v1.utils.env import find_available_port
|
||||
from llamafactory.v1.utils.pytest import dist_env
|
||||
|
||||
|
||||
def test_distributed_interface():
|
||||
DistributedInterface()
|
||||
assert DistributedInterface.get_rank() == int(os.getenv("RANK", "0"))
|
||||
assert DistributedInterface.get_world_size() == int(os.getenv("WORLD_SIZE", "1"))
|
||||
assert DistributedInterface.get_local_rank() == int(os.getenv("LOCAL_RANK", "0"))
|
||||
assert DistributedInterface.get_local_world_size() == int(os.getenv("LOCAL_WORLD_SIZE", "1"))
|
||||
def _all_reduce_tests(local_rank: int, world_size: int, master_port: int):
|
||||
with dist_env(local_rank, world_size, master_port):
|
||||
rank = DistributedInterface().get_rank()
|
||||
world_size = DistributedInterface().get_world_size()
|
||||
assert world_size == 2
|
||||
|
||||
y_sum = DistributedInterface().all_reduce(rank + 1.0, op=ReduceOp.SUM)
|
||||
assert y_sum == pytest.approx(3.0)
|
||||
|
||||
y_mean = DistributedInterface().all_reduce(rank + 1.0, op=ReduceOp.MEAN)
|
||||
assert y_mean == pytest.approx(1.5)
|
||||
|
||||
y_max = DistributedInterface().all_reduce(rank + 1.0, op=ReduceOp.MAX)
|
||||
assert y_max == pytest.approx(2.0)
|
||||
|
||||
z = DistributedInterface().all_gather(rank + 1.0)
|
||||
assert z == pytest.approx([1.0, 2.0])
|
||||
|
||||
z = DistributedInterface().broadcast(rank + 1.0)
|
||||
assert z == pytest.approx(1.0)
|
||||
|
||||
|
||||
def test_all_device():
|
||||
assert DistributedInterface().get_rank() == int(os.getenv("RANK", "0"))
|
||||
assert DistributedInterface().get_world_size() == int(os.getenv("WORLD_SIZE", "1"))
|
||||
assert DistributedInterface().get_local_rank() == int(os.getenv("LOCAL_RANK", "0"))
|
||||
assert DistributedInterface().get_local_world_size() == int(os.getenv("LOCAL_WORLD_SIZE", "1"))
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cuda", "npu"])
|
||||
@pytest.mark.require_distributed(2)
|
||||
def test_multi_device():
|
||||
master_port = find_available_port()
|
||||
mp.spawn(_all_reduce_tests, args=(2, master_port), nprocs=2)
|
||||
|
||||
@@ -18,20 +18,17 @@ Contains shared fixtures, pytest configuration, and custom markers.
|
||||
"""
|
||||
|
||||
import os
|
||||
from typing import Optional
|
||||
|
||||
import pytest
|
||||
from pytest import Config, Item
|
||||
from pytest import Config, FixtureRequest, Item, MonkeyPatch
|
||||
|
||||
from llamafactory.train.test_utils import patch_valuehead_model
|
||||
from llamafactory.v1.accelerator.helper import get_current_device, get_device_count
|
||||
from llamafactory.v1.accelerator.helper import get_current_accelerator, get_device_count
|
||||
from llamafactory.v1.utils.env import is_env_enabled
|
||||
from llamafactory.v1.utils.packages import is_transformers_version_greater_than
|
||||
from llamafactory.v1.utils.utils import is_env_enabled
|
||||
|
||||
|
||||
try:
|
||||
CURRENT_DEVICE = get_current_device().type # cpu | cuda | npu
|
||||
except Exception:
|
||||
CURRENT_DEVICE = "cpu"
|
||||
CURRENT_DEVICE = get_current_accelerator().type
|
||||
|
||||
|
||||
def pytest_configure(config: Config):
|
||||
@@ -67,26 +64,27 @@ def _handle_runs_on(items: list[Item]):
|
||||
|
||||
def _handle_slow_tests(items: list[Item]):
|
||||
"""Skip slow tests unless RUN_SLOW is enabled."""
|
||||
if not is_env_enabled("RUN_SLOW", "0"):
|
||||
if not is_env_enabled("RUN_SLOW"):
|
||||
skip_slow = pytest.mark.skip(reason="slow test (set RUN_SLOW=1 to run)")
|
||||
for item in items:
|
||||
if "slow" in item.keywords:
|
||||
item.add_marker(skip_slow)
|
||||
|
||||
|
||||
def _get_visible_devices_env():
|
||||
def _get_visible_devices_env() -> Optional[str]:
|
||||
"""Return device visibility env var name."""
|
||||
if CURRENT_DEVICE == "cuda":
|
||||
return "CUDA_VISIBLE_DEVICES"
|
||||
if CURRENT_DEVICE == "npu":
|
||||
elif CURRENT_DEVICE == "npu":
|
||||
return "ASCEND_RT_VISIBLE_DEVICES"
|
||||
return None
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def _handle_device_visibility(items: list[Item]):
|
||||
"""Handle device visibility based on test markers."""
|
||||
env_key = _get_visible_devices_env()
|
||||
if env_key is None or CURRENT_DEVICE == "cpu":
|
||||
if env_key is None or CURRENT_DEVICE in ("cpu", "mps"):
|
||||
return
|
||||
|
||||
# Parse visible devices
|
||||
@@ -122,7 +120,7 @@ def pytest_collection_modifyitems(config: Config, items: list[Item]):
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def _manage_distributed_env(request, monkeypatch):
|
||||
def _manage_distributed_env(request: FixtureRequest, monkeypatch: MonkeyPatch) -> None:
|
||||
"""Set environment variables for distributed tests if specific devices are requested."""
|
||||
env_key = _get_visible_devices_env()
|
||||
if not env_key:
|
||||
@@ -132,8 +130,7 @@ def _manage_distributed_env(request, monkeypatch):
|
||||
old_value = os.environ.get(env_key)
|
||||
|
||||
marker = request.node.get_closest_marker("require_distributed")
|
||||
if marker:
|
||||
# Distributed test
|
||||
if marker: # distributed test
|
||||
required = marker.args[0] if marker.args else 2
|
||||
specific_devices = marker.args[1] if len(marker.args) > 1 else None
|
||||
|
||||
@@ -143,16 +140,9 @@ def _manage_distributed_env(request, monkeypatch):
|
||||
devices_str = ",".join(str(i) for i in range(required))
|
||||
|
||||
monkeypatch.setenv(env_key, devices_str)
|
||||
else:
|
||||
# Non-distributed test
|
||||
else: # non-distributed test
|
||||
if old_value:
|
||||
visible_devices = [v for v in old_value.split(",") if v != ""]
|
||||
monkeypatch.setenv(env_key, visible_devices[0] if visible_devices else "0")
|
||||
else:
|
||||
monkeypatch.setenv(env_key, "0")
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def fix_valuehead_cpu_loading():
|
||||
"""Fix valuehead model loading."""
|
||||
patch_valuehead_model()
|
||||
|
||||
@@ -28,10 +28,10 @@ from transformers import AutoTokenizer
|
||||
|
||||
from llamafactory.v1.config.data_args import DataArguments
|
||||
from llamafactory.v1.core.data_engine import DataEngine
|
||||
from llamafactory.v1.core.data_loader import DataLoader
|
||||
from llamafactory.v1.core.trainer_utils.data_collator import (
|
||||
DefaultCollator,
|
||||
)
|
||||
from llamafactory.v1.core.trainer_utils.data_loader import DataLoader
|
||||
from llamafactory.v1.plugins.data_plugins.template import QwenTemplate
|
||||
from llamafactory.v1.utils.batching_queue import TextBatchingQueue
|
||||
|
||||
|
||||
@@ -12,57 +12,56 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
from llamafactory.v1.accelerator.helper import get_current_accelerator
|
||||
from llamafactory.v1.plugins.model_plugins.kernels.mlp import npu_swiglu
|
||||
from llamafactory.v1.plugins.model_plugins.kernels.registry import apply_available_kernels, apply_kernel
|
||||
from llamafactory.v1.plugins.model_plugins.kernels.rms_norm import npu_rms_norm
|
||||
from llamafactory.v1.plugins.model_plugins.kernels.rope import npu_rope
|
||||
|
||||
|
||||
class TestKernelPlugin(unittest.TestCase):
|
||||
@patch("torch.accelerator.current_accelerator")
|
||||
def test_apply_kernel(self, mock_get_accelerator):
|
||||
get_current_accelerator.cache_clear()
|
||||
mock_device = MagicMock()
|
||||
mock_device.type = "npu"
|
||||
mock_get_accelerator.return_value = mock_device
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("llamafactory/tiny-random-qwen2.5")
|
||||
|
||||
original_rmsnorm_forward = model.model.layers[0].input_layernorm.forward
|
||||
original_swiglu_forward = model.model.layers[0].mlp.forward
|
||||
|
||||
from llamafactory.v1.plugins.model_plugins.kernels.mlp import npu_swiglu
|
||||
from llamafactory.v1.plugins.model_plugins.kernels.registry import apply_kernel
|
||||
from llamafactory.v1.plugins.model_plugins.kernels.rms_norm import npu_rms_norm
|
||||
from llamafactory.v1.plugins.model_plugins.kernels.rope import npu_rope
|
||||
|
||||
apply_kernel(model, npu_rope.NpuRoPEKernel)
|
||||
|
||||
model = apply_kernel(model, npu_rms_norm.NpuRMSNormKernel)
|
||||
assert model.model.layers[0].input_layernorm is not original_rmsnorm_forward
|
||||
|
||||
model = apply_kernel(model, npu_swiglu.NpuSwiGluKernel)
|
||||
assert model.model.layers[0].mlp.forward is not original_swiglu_forward
|
||||
@pytest.fixture(autouse=True)
|
||||
def clear_accelerator_cache():
|
||||
get_current_accelerator.cache_clear()
|
||||
|
||||
|
||||
class Test_Use_V1_Kernels(unittest.TestCase):
|
||||
@patch("torch.accelerator.current_accelerator")
|
||||
def test_use_v1_kernels(self, mock_get_accelerator):
|
||||
get_current_accelerator.cache_clear()
|
||||
mock_device = MagicMock()
|
||||
mock_device.type = "npu"
|
||||
mock_get_accelerator.return_value = mock_device
|
||||
@patch("torch.accelerator.current_accelerator")
|
||||
def test_apply_kernel(mock_get_accelerator: MagicMock):
|
||||
mock_device = MagicMock()
|
||||
setattr(mock_device, "type", "npu")
|
||||
mock_get_accelerator.return_value = mock_device
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("llamafactory/tiny-random-qwen2.5")
|
||||
model = AutoModelForCausalLM.from_pretrained("llamafactory/tiny-random-qwen2.5")
|
||||
|
||||
original_rmsnorm_forward = model.model.layers[0].input_layernorm.forward
|
||||
original_swiglu_forward = model.model.layers[0].mlp.forward
|
||||
original_rmsnorm_forward = model.model.layers[0].input_layernorm.forward
|
||||
original_swiglu_forward = model.model.layers[0].mlp.forward
|
||||
|
||||
from llamafactory.v1.plugins.model_plugins.kernels.registry import apply_available_kernels
|
||||
apply_kernel(model, npu_rope.NpuRoPEKernel)
|
||||
|
||||
model = apply_available_kernels(model)
|
||||
model = apply_kernel(model, npu_rms_norm.NpuRMSNormKernel)
|
||||
assert model.model.layers[0].input_layernorm is not original_rmsnorm_forward
|
||||
|
||||
assert model.model.layers[0].input_layernorm is not original_rmsnorm_forward
|
||||
assert model.model.layers[0].mlp.forward is not original_swiglu_forward
|
||||
model = apply_kernel(model, npu_swiglu.NpuSwiGluKernel)
|
||||
assert model.model.layers[0].mlp.forward is not original_swiglu_forward
|
||||
|
||||
|
||||
@patch("torch.accelerator.current_accelerator")
|
||||
def test_apply_all_kernels(mock_get_accelerator: MagicMock):
|
||||
get_current_accelerator.cache_clear()
|
||||
mock_device = MagicMock()
|
||||
setattr(mock_device, "type", "npu")
|
||||
mock_get_accelerator.return_value = mock_device
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("llamafactory/tiny-random-qwen2.5")
|
||||
|
||||
original_rmsnorm_forward = model.model.layers[0].input_layernorm.forward
|
||||
original_swiglu_forward = model.model.layers[0].mlp.forward
|
||||
|
||||
model = apply_available_kernels(model)
|
||||
|
||||
assert model.model.layers[0].input_layernorm is not original_rmsnorm_forward
|
||||
assert model.model.layers[0].mlp.forward is not original_swiglu_forward
|
||||
|
||||
Reference in New Issue
Block a user