mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-27 01:00:34 +08:00
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
215 lines
6.2 KiB
Python
215 lines
6.2 KiB
Python
# Copyright 2025 Bytedance Ltd. and the LlamaFactory team.
|
|
#
|
|
# This code is inspired by the Bytedance's VeOmni library.
|
|
# https://github.com/ByteDance-Seed/VeOmni/blob/v0.1.4/veomni/utils/dist_utils.py
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""Utility functions used by the distributed interface.
|
|
|
|
Including:
|
|
- Environment info (rank, world_size, local_rank, etc.)
|
|
- Accelerator info (device type, device count, etc.)
|
|
- Collective communication operations (all_gather, all_reduce, broadcast)
|
|
- Synchronize processes and ensure main-process-first execution order
|
|
"""
|
|
|
|
import os
|
|
from contextlib import contextmanager
|
|
from enum import Enum, unique
|
|
from functools import lru_cache, wraps
|
|
from typing import Callable, Optional
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.distributed as dist
|
|
|
|
from ..utils.types import ProcessGroup, Tensor, TensorLike
|
|
|
|
|
|
@unique
|
|
class DeviceType(str, Enum):
|
|
CPU = "cpu"
|
|
CUDA = "cuda"
|
|
META = "meta"
|
|
MPS = "mps"
|
|
NPU = "npu"
|
|
XPU = "xpu"
|
|
|
|
|
|
@unique
|
|
class ReduceOp(str, Enum):
|
|
SUM = "sum"
|
|
MEAN = "mean"
|
|
MAX = "max"
|
|
MIN = "min"
|
|
|
|
|
|
def requires_accelerator(fn):
|
|
"""Decorator to check if torch.accelerator is available.
|
|
|
|
Note: this api requires torch>=2.7.0, otherwise it will raise an AttributeError or RuntimeError
|
|
"""
|
|
|
|
@wraps(fn)
|
|
def wrapper(*args, **kwargs):
|
|
if not hasattr(torch, "accelerator"):
|
|
raise RuntimeError("torch.accelerator is not available, please upgrade torch to 2.7.0 or higher.")
|
|
|
|
return fn(*args, **kwargs)
|
|
|
|
return wrapper
|
|
|
|
|
|
def is_distributed() -> bool:
|
|
"""Check if distributed environment is available."""
|
|
return os.getenv("RANK") is not None
|
|
|
|
|
|
def get_rank() -> int:
|
|
"""Get rank."""
|
|
return int(os.getenv("RANK", "0"))
|
|
|
|
|
|
def get_world_size() -> int:
|
|
"""Get world size."""
|
|
return int(os.getenv("WORLD_SIZE", "1"))
|
|
|
|
|
|
def get_local_rank() -> int:
|
|
"""Get local rank."""
|
|
return int(os.getenv("LOCAL_RANK", "0"))
|
|
|
|
|
|
def get_local_world_size() -> int:
|
|
"""Get local world size."""
|
|
return int(os.getenv("LOCAL_WORLD_SIZE", "1"))
|
|
|
|
|
|
@lru_cache
|
|
@requires_accelerator
|
|
def get_current_accelerator(check_available: bool = True) -> torch.device:
|
|
"""Get current accelerator."""
|
|
accelerator = torch.accelerator.current_accelerator(check_available=check_available)
|
|
return accelerator or torch.device(DeviceType.CPU.value)
|
|
|
|
|
|
@lru_cache
|
|
@requires_accelerator
|
|
def get_device_count() -> int:
|
|
"""Get the number of available devices."""
|
|
return torch.accelerator.device_count()
|
|
|
|
|
|
@requires_accelerator
|
|
def synchronize() -> None:
|
|
"""Synchronize all processes."""
|
|
torch.accelerator.synchronize()
|
|
|
|
|
|
@requires_accelerator
|
|
def set_device() -> None:
|
|
"""Set current accelerator."""
|
|
torch.accelerator.set_device_index(get_local_rank())
|
|
|
|
|
|
def is_torch_cuda_available():
|
|
"""Check if CUDA is available."""
|
|
return get_current_accelerator().type == DeviceType.CUDA
|
|
|
|
|
|
def is_torch_mps_available():
|
|
"""Check if MPS is available."""
|
|
return get_current_accelerator().type == DeviceType.MPS
|
|
|
|
|
|
def is_torch_npu_available():
|
|
"""Check if NPU is available."""
|
|
return get_current_accelerator().type == DeviceType.NPU
|
|
|
|
|
|
def is_torch_xpu_available():
|
|
"""Check if XPU is available."""
|
|
return get_current_accelerator().type == DeviceType.XPU
|
|
|
|
|
|
def operate_tensorlike(fn: Callable[[...], Tensor], data: TensorLike, **kwargs) -> TensorLike:
|
|
"""Operate tensorlike data on current accelerator."""
|
|
device = get_current_accelerator()
|
|
is_tensor = isinstance(data, torch.Tensor)
|
|
is_ndarray = isinstance(data, np.ndarray)
|
|
|
|
if is_tensor:
|
|
orig_device = data.device
|
|
data = data.to(device=device)
|
|
elif is_ndarray:
|
|
data = torch.from_numpy(data).to(device=device, dtype=torch.float)
|
|
else:
|
|
data = torch.tensor(data, dtype=torch.float, device=device)
|
|
|
|
result = fn(data, **kwargs)
|
|
|
|
if is_tensor:
|
|
return result.to(orig_device)
|
|
elif is_ndarray:
|
|
return result.cpu().numpy()
|
|
elif result.numel() == 1:
|
|
return result.item()
|
|
else:
|
|
return result.tolist()
|
|
|
|
|
|
def all_gather(tensor: Tensor, group: Optional[ProcessGroup] = None) -> Tensor:
|
|
"""Gathers the tensor from all ranks and stacks them at the first dim."""
|
|
world_size = get_world_size()
|
|
output_tensor = torch.empty(world_size * tensor.numel(), dtype=tensor.dtype, device=tensor.device)
|
|
dist.all_gather_into_tensor(output_tensor, tensor, group=group)
|
|
return output_tensor.view(-1, *tensor.size())
|
|
|
|
|
|
def all_reduce(tensor: Tensor, op: ReduceOp = ReduceOp.MEAN, group: Optional[ProcessGroup] = None) -> Tensor:
|
|
"""Performs all reduce in the given process group."""
|
|
reduce_ops = {
|
|
ReduceOp.MEAN: dist.ReduceOp.SUM,
|
|
ReduceOp.SUM: dist.ReduceOp.SUM,
|
|
ReduceOp.MAX: dist.ReduceOp.MAX,
|
|
ReduceOp.MIN: dist.ReduceOp.MIN,
|
|
}
|
|
dist.all_reduce(tensor, op=reduce_ops[op], group=group)
|
|
if op == ReduceOp.MEAN: # ReduceOp.AVG is not supported by the NPU backend
|
|
tensor /= dist.get_world_size(group=group)
|
|
|
|
return tensor
|
|
|
|
|
|
def broadcast(tensor: Tensor, src: int = 0, group: Optional[ProcessGroup] = None) -> Tensor:
|
|
"""Broadcasts the tensor from the src process to all other processes."""
|
|
dist.broadcast(tensor, src=src, group=group)
|
|
return tensor
|
|
|
|
|
|
@contextmanager
|
|
def main_process_first(local_only: bool = True) -> None:
|
|
"""A context manager for torch distributed environment to do something on the main process firstly."""
|
|
if get_world_size() > 1:
|
|
is_main_process = get_local_rank() == 0 if local_only else get_rank() == 0
|
|
try:
|
|
if not is_main_process:
|
|
dist.barrier()
|
|
yield
|
|
finally:
|
|
if is_main_process:
|
|
dist.barrier()
|
|
else:
|
|
yield
|