[misc] Support split eval_dataset when explict set "predict_with_generate" (#9604)

Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
This commit is contained in:
ZIYI ZENG
2025-12-20 01:46:00 +08:00
committed by GitHub
parent ddd7dcc722
commit b0d49e137f
4 changed files with 37 additions and 30 deletions

View File

@@ -81,41 +81,48 @@ def split_dataset(
eval_dataset: Optional[Union["Dataset", "IterableDataset", dict[str, "Dataset"]]],
data_args: "DataArguments",
seed: int,
) -> "DatasetDict":
r"""Split the dataset and returns a dataset dict containing train set and validation set.
) -> tuple[dict, dict]:
r"""Split the dataset and returns two dicts containing train set and validation set.
Support both map dataset and iterable dataset.
Returns:
train_dict: Dictionary containing training data with key "train"
eval_dict: Dictionary containing evaluation data with keys "validation" or "validation_{name}"
"""
if eval_dataset is not None and data_args.val_size > 1e-6:
raise ValueError("Cannot specify `val_size` if `eval_dataset` is not None.")
dataset_dict = {}
# the train and eval better to in dict dtype and separately return for cpode clearly and good handle outside
train_dict, eval_dict = {}, {}
if dataset is not None:
if data_args.streaming:
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed)
if data_args.val_size > 1e-6:
if data_args.streaming:
dataset_dict["validation"] = dataset.take(int(data_args.val_size))
dataset_dict["train"] = dataset.skip(int(data_args.val_size))
eval_dict["validation"] = dataset.take(int(data_args.val_size))
train_dict["train"] = dataset.skip(int(data_args.val_size))
else:
val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size
dataset_dict = dataset.train_test_split(test_size=val_size, seed=seed)
dataset = dataset.train_test_split(test_size=val_size, seed=seed)
dataset_dict = {"train": dataset["train"], "validation": dataset["test"]}
split_result = dataset.train_test_split(test_size=val_size, seed=seed)
train_dict["train"] = split_result["train"]
eval_dict["validation"] = split_result["test"]
else:
dataset_dict["train"] = dataset
train_dict["train"] = dataset
if eval_dataset is not None:
if isinstance(eval_dataset, dict):
dataset_dict.update({f"validation_{name}": data for name, data in eval_dataset.items()})
for name, data in eval_dataset.items():
eval_dict[f"validation_{name}"] = data
else:
if data_args.streaming:
eval_dataset = eval_dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed)
dataset_dict["validation"] = eval_dataset
eval_dict["validation"] = eval_dataset
return DatasetDict(dataset_dict)
return train_dict, eval_dict
def get_dataset_module(dataset: Union["Dataset", "DatasetDict"]) -> "DatasetModule":

View File

@@ -16,7 +16,7 @@ import os
from typing import TYPE_CHECKING, Literal, Optional, Union
import numpy as np
from datasets import Dataset, load_dataset, load_from_disk
from datasets import Dataset, DatasetDict, load_dataset, load_from_disk
from ..extras import logging
from ..extras.constants import FILEEXT2TYPE
@@ -311,20 +311,22 @@ def get_dataset(
)
with training_args.main_process_first(desc="pre-process dataset", local=(not data_args.data_shared_file_system)):
dataset = _get_preprocessed_dataset(
dataset, data_args, training_args, stage, template, tokenizer, processor, is_eval=False
)
if isinstance(eval_dataset, dict):
for eval_name, eval_data in eval_dataset.items():
eval_dataset[eval_name] = _get_preprocessed_dataset(
eval_data, data_args, training_args, stage, template, tokenizer, processor, is_eval=True
)
else:
eval_dataset = _get_preprocessed_dataset(
eval_dataset, data_args, training_args, stage, template, tokenizer, processor, is_eval=True
# move front to make sure eval_dataset(if contain or split) can preprocessed appropriately
train_dict, eval_dict = split_dataset(dataset, eval_dataset, data_args, seed=training_args.seed)
if "train" in train_dict:
train_dict["train"] = _get_preprocessed_dataset(
train_dict["train"], data_args, training_args, stage, template, tokenizer, processor, is_eval=False
)
dataset_dict = split_dataset(dataset, eval_dataset, data_args, seed=training_args.seed)
for key in eval_dict:
eval_dict[key] = _get_preprocessed_dataset(
eval_dict[key], data_args, training_args, stage, template, tokenizer, processor, is_eval=True
)
# Combine train and eval dictionaries
dataset_dict = DatasetDict({**train_dict, **eval_dict})
if data_args.tokenized_path is not None: # save tokenized dataset to disk
if training_args.should_save:
dataset_dict.save_to_disk(data_args.tokenized_path)

View File

@@ -306,18 +306,15 @@ def get_train_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _
if training_args.do_train and data_args.dataset is None:
raise ValueError("Please specify dataset for training.")
if (training_args.do_eval or training_args.do_predict) and (
if (training_args.do_eval or training_args.do_predict or training_args.predict_with_generate) and (
data_args.eval_dataset is None and data_args.val_size < 1e-6
):
raise ValueError("Please specify dataset for evaluation.")
raise ValueError("Please make sure eval_dataset be provided or val_size >1e-6")
if training_args.predict_with_generate:
if is_deepspeed_zero3_enabled():
raise ValueError("`predict_with_generate` is incompatible with DeepSpeed ZeRO-3.")
if data_args.eval_dataset is None:
raise ValueError("Cannot use `predict_with_generate` if `eval_dataset` is None.")
if finetuning_args.compute_accuracy:
raise ValueError("Cannot use `predict_with_generate` and `compute_accuracy` together.")

View File

@@ -42,6 +42,7 @@ TRAIN_ARGS = {
"output_dir": "dummy_dir",
"overwrite_output_dir": True,
"fp16": True,
"report_to": "none", # transfromers compatibility
}