[feat] support megatron-LM training by mcore_adapter (#9237)

Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
This commit is contained in:
Kingsley 2025-10-26 16:21:30 +08:00 committed by GitHub
parent 129e918106
commit 13170577b2
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
14 changed files with 671 additions and 8 deletions

View File

@ -0,0 +1,77 @@
# NVIDIA official image (ubuntu-22.04 + cuda-12.4 + python-3.10)
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-24-08.html
FROM nvcr.io/nvidia/pytorch:24.05-py3
ENV DEBIAN_FRONTEND=noninteractive
ENV PIP_ROOT_USER_ACTION=ignore
ENV PYPI_MIRROR=https://mirrors.aliyun.com/pypi/simple/
ENV PYPI_TRUSTED_HOST=mirrors.aliyun.com
ENV APT_MIRROR=https://mirrors.tuna.tsinghua.edu.cn/ubuntu/
RUN pip install --upgrade pip setuptools wheel --trusted-host ${PYPI_TRUSTED_HOST} --index-url ${PYPI_MIRROR}
RUN pip uninstall -y torch torchvision torch-tensorrt \
flash_attn transformer-engine \
cudf dask-cuda cugraph cugraph-service-server cuml raft-dask cugraph-dgl cugraph-pyg dask-cudf
RUN pip install torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0 --index-url https://download.pytorch.org/whl/cu124
RUN pip uninstall -y opencv opencv-python opencv-python-headless && \
rm -rf /usr/local/lib/python3.10/dist-packages/cv2/ && \
pip install opencv-python-headless==4.11.0.86 --trusted-host ${PYPI_TRUSTED_HOST} --index-url ${PYPI_MIRROR}
RUN pip install "numpy==1.26.4" "optree>=0.13.0" "spacy==3.7.5" "weasel==0.4.1" \
transformer-engine[pytorch]==2.2.0 megatron-core==0.13.0 deepspeed==0.16.4 \
--trusted-host ${PYPI_TRUSTED_HOST} --index-url ${PYPI_MIRROR}
RUN pip install https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.2.post1/flash_attn-2.7.2.post1+cu12torch2.6cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
# RUN pip install vllm==0.8.4 \
# --trusted-host ${PYPI_TRUSTED_HOST} --index-url ${PYPI_MIRROR}
WORKDIR /build
ARG apex_url=git+https://github.com/NVIDIA/apex.git@25.04
RUN pip uninstall -y apex && \
MAX_JOBS=32 NINJA_FLAGS="-j32" NVCC_APPEND_FLAGS="--threads 32" \
pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation \
--config-settings "--build-option=--cpp_ext --cuda_ext --parallel 32" ${apex_url}
RUN rm -rf /build
WORKDIR /workspace
RUN cp /etc/apt/sources.list /etc/apt/sources.list.bak && \
{ \
echo "deb ${APT_MIRROR} jammy main restricted universe multiverse"; \
echo "deb ${APT_MIRROR} jammy-security main restricted universe multiverse"; \
echo "deb ${APT_MIRROR} jammy-updates main restricted universe multiverse"; \
echo "deb ${APT_MIRROR} jammy-backports main restricted universe multiverse"; \
} > /etc/apt/sources.list
RUN apt-get update && apt-get install -y zip
RUN apt-get install -y openjdk-21-jdk
ENV JAVA_HOME /usr/lib/jvm/java-21-openjdk-amd64
# pip install LLaMA-Factory
WORKDIR /app
COPY requirements.txt /app/
RUN pip install --no-cache-dir -r requirements.txt
RUN pip install "git+https://github.com/alibaba/roll.git#subdirectory=mcore_adapter"
COPY . /app/
RUN pip install -e ".[metrics]" --no-build-isolation
# Expose port 7860 for LLaMA Board
ENV GRADIO_SERVER_PORT=7860
EXPOSE 7860
# Expose port 8000 for API service
ENV API_PORT=8000
EXPOSE 8000
# unset proxy
ENV http_proxy=
ENV https_proxy=

View File

@ -0,0 +1,29 @@
model_name_or_path: Qwen/Qwen2-VL-7B-Instruct
image_max_pixels: 262144
video_max_pixels: 16384
do_train: true
stage: sft
finetuning_type: full # only support full for now
dataset: llava_1k_en
preprocessing_num_workers: 8
cutoff_len: 4096
template: qwen2_vl
output_dir: saves/mca/qwen2_vl_full
per_device_train_batch_size: 1
gradient_accumulation_steps: 2
num_train_epochs: 2
learning_rate: 2e-5
logging_steps: 1
save_steps: 100
lr_scheduler_type: cosine
bf16: true
# mcore speed up
tensor_model_parallel_size: 4
sequence_parallel: true
pipeline_model_parallel_size: 2
bias_activation_fusion: true
apply_rope_fusion: true
use_distributed_optimizer: true

View File

@ -0,0 +1,35 @@
model_name_or_path: Qwen/Qwen3-30B-A3B-Instruct-2507
# GPU memory: 8 * 78GB
do_train: true
stage: sft
finetuning_type: full # only support full for now
dataset: alpaca_en_demo
preprocessing_num_workers: 8
cutoff_len: 4096
template: qwen3_nothink
# global batchsize = (8 // 2 // 4) * 8 = 8
output_dir: saves/mca/qwen3_moe_full
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
num_train_epochs: 2
learning_rate: 3e-6
logging_steps: 1
save_steps: 100
lr_scheduler_type: constant
bf16: true
# mcore speed up
tensor_model_parallel_size: 1
sequence_parallel: false
pipeline_model_parallel_size: 4
bias_activation_fusion: true
apply_rope_fusion: true
use_distributed_optimizer: true
overlap_param_gather: true
overlap_grad_reduce: true
moe_grouped_gemm: true
moe_token_dispatcher_type: alltoall
expert_model_parallel_size: 2
recompute_granularity: full

125
scripts/megatron_merge.py Normal file
View File

@ -0,0 +1,125 @@
# Copyright 2025 the ROLL team and the LlamaFactory team.
#
# This code is modified from the ROLL library.
# https://github.com/alibaba/ROLL/blob/main/mcore_adapter/tools/convert.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Optional
import fire
import torch
from mcore_adapter.models.converter.post_converter import convert_checkpoint_to_hf, convert_checkpoint_to_mca
from mcore_adapter.training_args import DistributingParallelArguments
from mcore_adapter.utils import get_logger
from transformers import AutoConfig
logger = get_logger(__name__)
def convert_mca_to_hf(
checkpoint_path: str,
output_path: str = "./output",
bf16: bool = False,
fp16: bool = False,
convert_model_max_length: Optional[int] = None,
):
"""Convert megatron checkpoint to HuggingFace format.
Args:
checkpoint_path: Path to the checkpoint to convert
output_path: Path to save the converted checkpoint
bf16: Use bfloat16 precision
fp16: Use float16 precision
convert_model_max_length: Change the model_max_length in hf config.json
"""
if bf16 and fp16:
raise ValueError("bf16 and fp16 cannot be both True.")
torch_dtype = None
if bf16:
torch_dtype = torch.bfloat16
elif fp16:
torch_dtype = torch.float16
convert_checkpoint_to_hf(checkpoint_path, output_path, torch_dtype=torch_dtype)
if convert_model_max_length is not None:
config = AutoConfig.from_pretrained(output_path, trust_remote_code=True)
config.model_max_length = convert_model_max_length
config.save_pretrained(output_path)
def convert(
checkpoint_path: str,
output_path: str = "./output",
bf16: bool = False,
fp16: bool = False,
convert_model_max_length: Optional[int] = None,
tensor_model_parallel_size: int = 1,
pipeline_model_parallel_size: int = 1,
expert_model_parallel_size: int = 1,
virtual_pipeline_model_parallel_size: Optional[int] = None,
):
"""Convert checkpoint between MCA and HuggingFace formats.
Args:
checkpoint_path: Path to the checkpoint to convert
output_path: Path to save the converted checkpoint
bf16: Use bfloat16 precision
fp16: Use float16 precision
convert_model_max_length: Change the model_max_length in hf config.json
tensor_model_parallel_size: Tensor model parallel size
pipeline_model_parallel_size: Pipeline model parallel size
expert_model_parallel_size: Expert model parallel size
virtual_pipeline_model_parallel_size: Virtual pipeline model parallel size
"""
if bf16 and fp16:
raise ValueError("bf16 and fp16 cannot be both True.")
mca_config_path = os.path.join(checkpoint_path, "mca_config.json")
from_mca = os.path.exists(mca_config_path)
if not from_mca:
dist_args = DistributingParallelArguments(
tensor_model_parallel_size=tensor_model_parallel_size,
pipeline_model_parallel_size=pipeline_model_parallel_size,
expert_model_parallel_size=expert_model_parallel_size,
virtual_pipeline_model_parallel_size=virtual_pipeline_model_parallel_size,
)
convert_checkpoint_to_mca(
checkpoint_path,
output_path,
dist_args,
bf16=bf16,
fp16=fp16,
)
else:
convert_mca_to_hf(
checkpoint_path=checkpoint_path,
output_path=output_path,
bf16=bf16,
fp16=fp16,
convert_model_max_length=convert_model_max_length,
)
def main():
fire.Fire(convert)
if __name__ == "__main__":
main()

View File

@ -56,6 +56,8 @@ LAYERNORM_NAMES = {"norm", "ln"}
LLAMABOARD_CONFIG = "llamaboard_config.yaml"
MCA_SUPPORTED_MODELS = {"deepseek_v3", "llama", "mistral", "mixtral", "qwen2", "qwen2_vl", "qwen2_5_vl", "qwen3", "qwen3_moe", "qwen3_next"}
METHODS = ["full", "freeze", "lora", "oft"]
MOD_SUPPORTED_MODELS = {"bloom", "falcon", "gemma", "llama", "mistral", "mixtral", "phi", "starcoder2"}

View File

@ -70,6 +70,10 @@ def is_matplotlib_available():
return _is_package_available("matplotlib")
def is_mcore_adapter_available():
return _is_package_available("mcore_adapter")
def is_pillow_available():
return _is_package_available("PIL")

View File

@ -461,7 +461,7 @@ class FinetuningArguments(
default="sft",
metadata={"help": "Which stage will be performed in training."},
)
finetuning_type: Literal["lora", "freeze", "full"] = field(
finetuning_type: Literal["lora", "oft", "freeze", "full"] = field(
default="lora",
metadata={"help": "Which fine-tuning method to use."},
)
@ -473,6 +473,10 @@ class FinetuningArguments(
default=False,
metadata={"help": "Whether or not to use the Adam-mini optimizer."},
)
use_mca: bool = field(
default=False,
metadata={"help": "Whether or not to use MCA (Megatron Core Adapter) training. Controlled by USE_MCA environment variable."},
)
use_muon: bool = field(
default=False,
metadata={"help": "Whether or not to use the Muon optimizer."},

View File

@ -32,7 +32,7 @@ from transformers.utils import is_torch_bf16_gpu_available, is_torch_npu_availab
from ..extras import logging
from ..extras.constants import CHECKPOINT_NAMES, EngineName
from ..extras.misc import check_dependencies, check_version, get_current_device, is_env_enabled
from ..extras.packages import is_transformers_version_greater_than
from ..extras.packages import is_mcore_adapter_available, is_transformers_version_greater_than
from .data_args import DataArguments
from .evaluation_args import EvaluationArguments
from .finetuning_args import FinetuningArguments
@ -53,6 +53,13 @@ _INFER_CLS = tuple[ModelArguments, DataArguments, FinetuningArguments, Generatin
_EVAL_ARGS = [ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
_EVAL_CLS = tuple[ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
if is_mcore_adapter_available() and is_env_enabled("USE_MCA"):
from mcore_adapter import TrainingArguments as McaTrainingArguments
_TRAIN_MCA_ARGS = [ModelArguments, DataArguments, McaTrainingArguments, FinetuningArguments, GeneratingArguments]
_TRAIN_MCA_CLS = tuple[ModelArguments, DataArguments, McaTrainingArguments, FinetuningArguments, GeneratingArguments]
else:
_TRAIN_MCA_ARGS = []
_TRAIN_MCA_CLS = tuple()
def read_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> Union[dict[str, Any], list[str]]:
r"""Get arguments from the command line or a config file."""
@ -197,6 +204,27 @@ def _parse_train_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -
return _parse_args(parser, args, allow_extra_keys=allow_extra_keys)
def _parse_train_mca_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _TRAIN_MCA_CLS:
parser = HfArgumentParser(_TRAIN_MCA_ARGS)
allow_extra_keys = is_env_enabled("ALLOW_EXTRA_ARGS")
model_args, data_args, training_args, finetuning_args, generating_args = _parse_args(
parser, args, allow_extra_keys=allow_extra_keys
)
_configure_mca_training_args(training_args, data_args, finetuning_args)
return model_args, data_args, training_args, finetuning_args, generating_args
def _configure_mca_training_args(training_args, data_args, finetuning_args) -> None:
"""Patch training args to avoid args checking errors and sync MCA settings."""
training_args.predict_with_generate = False
training_args.generation_max_length = data_args.cutoff_len
training_args.generation_num_beams = 1
training_args.use_mca = True
finetuning_args.use_mca = True
def _parse_infer_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _INFER_CLS:
parser = HfArgumentParser(_INFER_ARGS)
allow_extra_keys = is_env_enabled("ALLOW_EXTRA_ARGS")
@ -216,7 +244,11 @@ def get_ray_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> Ray
def get_train_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> _TRAIN_CLS:
model_args, data_args, training_args, finetuning_args, generating_args = _parse_train_args(args)
if is_env_enabled("USE_MCA"):
model_args, data_args, training_args, finetuning_args, generating_args = _parse_train_mca_args(args)
else:
model_args, data_args, training_args, finetuning_args, generating_args = _parse_train_args(args)
finetuning_args.use_mca = False
# Setup logging
if training_args.should_log:

View File

@ -19,7 +19,20 @@ from typing import Literal, Optional, Union
from transformers import Seq2SeqTrainingArguments
from transformers.training_args import _convert_str_dict
from ..extras.misc import use_ray
from ..extras.misc import is_env_enabled, use_ray
if is_env_enabled("USE_MCA"):
try:
from mcore_adapter import Seq2SeqTrainingArguments as McaSeq2SeqTrainingArguments
BaseTrainingArguments = McaSeq2SeqTrainingArguments
except ImportError:
raise ImportError(
"mcore_adapter is required when USE_MCA=1.",
"Please install `mcore_adapter` and its dependencies."
)
else:
BaseTrainingArguments = Seq2SeqTrainingArguments
@dataclass
@ -78,7 +91,7 @@ class RayArguments:
@dataclass
class TrainingArguments(RayArguments, Seq2SeqTrainingArguments):
class TrainingArguments(RayArguments, BaseTrainingArguments):
r"""Arguments pertaining to the trainer."""
overwrite_output_dir: bool = field(
@ -87,5 +100,5 @@ class TrainingArguments(RayArguments, Seq2SeqTrainingArguments):
)
def __post_init__(self):
Seq2SeqTrainingArguments.__post_init__(self)
RayArguments.__post_init__(self)
BaseTrainingArguments.__post_init__(self)

View File

@ -54,6 +54,10 @@ def launch():
)
command = sys.argv.pop(1) if len(sys.argv) > 1 else "help"
if is_env_enabled("USE_MCA"):
# force use torchrun
os.environ["FORCE_TORCHRUN"] = "1"
if command == "train" and (is_env_enabled("FORCE_TORCHRUN") or (get_device_count() > 1 and not use_ray())):
# launch distributed training
nnodes = os.getenv("NNODES", "1")

View File

@ -0,0 +1,19 @@
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .workflow import run_dpo, run_pt, run_sft
__all__ = ["run_dpo", "run_pt", "run_sft"]

View File

@ -0,0 +1,15 @@
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO override the original trainer

View File

@ -0,0 +1,292 @@
# Copyright 2025 the ROLL team and the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MCA (mcore_adapter) workflows for PT/SFT/DPO stages, aligned with LLaMA-Factory's workflow style."""
from __future__ import annotations
import functools
from collections.abc import Sequence
from copy import deepcopy
from typing import TYPE_CHECKING, Any
from ...data import (
SFTDataCollatorWith4DAttentionMask,
get_dataset,
get_template_and_fix_tokenizer,
)
from ...data.collator import (
PairwiseDataCollatorWithPadding,
)
from ...extras.constants import IGNORE_INDEX, MCA_SUPPORTED_MODELS
from ...extras.logging import get_logger
from ...extras.misc import calculate_tps
from ...extras.packages import is_mcore_adapter_available
from ...extras.ploting import plot_loss
from ...model import load_tokenizer
from ..callbacks import SaveProcessorCallback
if not is_mcore_adapter_available():
raise ImportError("mcore_adapter is not installed. Please install it with `pip install mcore-adapter`.")
from mcore_adapter.models import AutoConfig, AutoModel
from mcore_adapter.trainer import DPOTrainer as McaDPOTrainer
from mcore_adapter.trainer import McaTrainer
from mcore_adapter.trainer.dpo_config import DPOConfig
from mcore_adapter.training_args import Seq2SeqTrainingArguments as McaSeq2SeqTrainingArguments
if TYPE_CHECKING:
from transformers import DataCollatorForSeq2Seq, TrainerCallback
from ...hparams import DataArguments, FinetuningArguments, ModelArguments
logger = get_logger(__name__)
def _data_collator_wrapper(data_collator: Any):
@functools.wraps(data_collator)
def wrapper(features: Sequence[dict[str, Any]]):
labels_key = [k for k in features[0].keys() if k.endswith("labels")]
input_ids_key = [k for k in features[0].keys() if k.endswith("input_ids")]
for feature in features:
if len(labels_key) == 0: # pt
feature["labels"] = deepcopy(feature["input_ids"])[1:]
for k in labels_key:
feature[k] = feature[k][1:]
for k in input_ids_key:
feature[k] = feature[k][:-1]
for k in ["attention_mask", "position_ids"]:
if k in feature:
feature[k] = feature[k][:-1]
return data_collator(features)
return wrapper
def _check_model_support(model_args: ModelArguments):
from transformers import AutoConfig as HfAutoConfig
config = HfAutoConfig.from_pretrained(model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code)
if config.model_type not in MCA_SUPPORTED_MODELS:
raise ValueError(f"Model {config.model_type} is not supported by MCA.")
def run_pt(
model_args: ModelArguments,
data_args: DataArguments,
training_args: McaSeq2SeqTrainingArguments,
finetuning_args: FinetuningArguments,
callbacks: list[TrainerCallback] | None = None,
):
tokenizer_module = load_tokenizer(model_args)
tokenizer = tokenizer_module["tokenizer"]
template = get_template_and_fix_tokenizer(tokenizer, data_args)
# dataset needs +1 then cut back due to MCA shift logic
data_args.cutoff_len += 1
dataset_module = get_dataset(template, model_args, data_args, training_args, stage="pt", **tokenizer_module)
data_args.cutoff_len -= 1
_check_model_support(model_args)
model = AutoModel.from_pretrained(model_args.model_name_or_path, training_args)
from transformers import DataCollatorForSeq2Seq
data_collator: DataCollatorForSeq2Seq = DataCollatorForSeq2Seq(
tokenizer=tokenizer,
pad_to_multiple_of=8,
label_pad_token_id=IGNORE_INDEX,
)
data_collator = _data_collator_wrapper(data_collator)
trainer = McaTrainer(
model=model,
args=training_args,
tokenizer=tokenizer,
data_collator=data_collator,
callbacks=callbacks,
**dataset_module,
)
if "processor" in tokenizer_module and tokenizer_module["processor"] is not None:
trainer.add_callback(SaveProcessorCallback(tokenizer_module["processor"]))
if training_args.do_train:
train_result = trainer.train(training_args.resume_from_checkpoint)
trainer.save_model()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
keys = ["loss"]
if isinstance(dataset_module.get("eval_dataset"), dict):
keys += [f"eval_{key}_loss" for key in dataset_module["eval_dataset"].keys()]
else:
keys += ["eval_loss"]
plot_loss(training_args.output_dir, keys=keys)
def run_sft(
model_args: ModelArguments,
data_args: DataArguments,
training_args: McaSeq2SeqTrainingArguments,
finetuning_args: FinetuningArguments,
callbacks: list[TrainerCallback] | None = None,
):
# align packing flags
# TODO: FIX SequencePacking
data_args.neat_packing = training_args.sequence_packing = data_args.neat_packing or training_args.sequence_packing
data_args.packing = data_args.neat_packing or data_args.packing
tokenizer_module = load_tokenizer(model_args)
tokenizer = tokenizer_module["tokenizer"]
template = get_template_and_fix_tokenizer(tokenizer, data_args)
# dataset needs +1 then cut back due to MCA shift logic
data_args.cutoff_len += 1
dataset_module = get_dataset(template, model_args, data_args, training_args, stage="sft", **tokenizer_module)
data_args.cutoff_len -= 1
_check_model_support(model_args)
model = AutoModel.from_pretrained(model_args.model_name_or_path, training_args)
# optional freezing for qwen2_vl, qwen2_5_vl
if getattr(model.config, "hf_model_type", None) in ["qwen2_vl", "qwen2_5_vl"] and finetuning_args.freeze_vision_tower:
for name, p in model.named_parameters():
if any(name.startswith(k) for k in ["vision_model.blocks", "vision_model.patch_embed"]):
p.requires_grad_(False)
if getattr(model.config, "hf_model_type", None) in ["qwen2_vl", "qwen2_5_vl"] and finetuning_args.freeze_multi_modal_projector:
for name, p in model.named_parameters():
if any(name.startswith(k) for k in ["multi_modal_projector"]):
p.requires_grad_(False)
if getattr(model.config, "hf_model_type", None) in ["qwen2_vl", "qwen2_5_vl"] and finetuning_args.freeze_language_model:
for name, p in model.named_parameters():
if any(name.startswith(k) for k in ["embedding", "decoder", "output_layer"]):
p.requires_grad_(False)
pad_to_max = (
training_args.expert_model_parallel_size is not None and training_args.expert_model_parallel_size > 1
)
data_collator = SFTDataCollatorWith4DAttentionMask(
template=template,
padding="max_length" if pad_to_max else "longest",
max_length=data_args.cutoff_len if pad_to_max else None,
pad_to_multiple_of=64,
label_pad_token_id=IGNORE_INDEX,
**tokenizer_module,
)
data_collator = _data_collator_wrapper(data_collator)
trainer = McaTrainer(
model=model,
args=training_args,
tokenizer=tokenizer,
data_collator=data_collator,
callbacks=callbacks,
**dataset_module,
)
if "processor" in tokenizer_module and tokenizer_module["processor"] is not None:
trainer.add_callback(SaveProcessorCallback(tokenizer_module["processor"]))
train_result = trainer.train(training_args.resume_from_checkpoint)
trainer.save_model()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
keys = ["loss"]
if isinstance(dataset_module.get("eval_dataset"), dict):
keys += [f"eval_{key}_loss" for key in dataset_module["eval_dataset"].keys()]
else:
keys += ["eval_loss"]
plot_loss(training_args.output_dir, keys=keys)
def run_dpo(
model_args: ModelArguments,
data_args: DataArguments,
training_args: McaSeq2SeqTrainingArguments,
finetuning_args: FinetuningArguments,
callbacks: list[TrainerCallback] | None = None,
):
tokenizer_module = load_tokenizer(model_args)
tokenizer = tokenizer_module["tokenizer"]
template = get_template_and_fix_tokenizer(tokenizer, data_args)
_check_model_support(model_args)
model = AutoModel.from_pretrained(model_args.model_name_or_path, training_args)
if finetuning_args.use_ref_model:
ref_config = AutoConfig.from_pretrained(model_args.model_name_or_path, training_args)
ref_model = AutoModel.from_config(ref_config)
ref_model.load_state_dict(model.state_dict())
else:
ref_model = None
# dataset needs +1 then cut back due to MCA shift logic
data_args.cutoff_len += 1
dataset_module = get_dataset(template, model_args, data_args, training_args, stage="rm", **tokenizer_module)
data_args.cutoff_len -= 1
pad_to_max = (
training_args.expert_model_parallel_size is not None and training_args.expert_model_parallel_size > 1
)
dpo_config = DPOConfig(
beta=finetuning_args.pref_beta,
pref_loss=finetuning_args.pref_loss,
label_smoothing=finetuning_args.dpo_label_smoothing,
)
data_collator = PairwiseDataCollatorWithPadding(
template=template,
pad_to_multiple_of=64,
padding="max_length" if pad_to_max else "longest",
max_length=data_args.cutoff_len if pad_to_max else None,
label_pad_token_id=IGNORE_INDEX,
**tokenizer_module,
)
data_collator = _data_collator_wrapper(data_collator)
trainer = McaDPOTrainer(
model=model,
ref_model=ref_model,
args=training_args,
train_config=dpo_config,
tokenizer=tokenizer,
data_collator=data_collator,
callbacks=callbacks,
**dataset_module,
)
if "processor" in tokenizer_module and tokenizer_module["processor"] is not None:
trainer.add_callback(SaveProcessorCallback(tokenizer_module["processor"]))
train_result = trainer.train(training_args.resume_from_checkpoint)
trainer.save_model()
if finetuning_args.include_effective_tokens_per_second:
train_result.metrics["effective_tokens_per_sec"] = calculate_tps(
dataset_module["train_dataset"], train_result.metrics, stage="rm"
)
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
keys = ["loss", "rewards/accuracies"]
if isinstance(dataset_module.get("eval_dataset"), dict):
keys += [f"eval_{key}_loss" for key in dataset_module["eval_dataset"].keys()]
else:
keys += ["eval_loss"]
plot_loss(training_args.output_dir, keys=keys)

View File

@ -24,7 +24,7 @@ from ..data import get_template_and_fix_tokenizer
from ..extras import logging
from ..extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME
from ..extras.misc import infer_optim_dtype
from ..extras.packages import is_ray_available
from ..extras.packages import is_mcore_adapter_available, is_ray_available
from ..hparams import get_infer_args, get_ray_args, get_train_args, read_args
from ..model import load_model, load_tokenizer
from .callbacks import LogCallback, PissaConvertCallback, ReporterCallback
@ -66,7 +66,19 @@ def _training_function(config: dict[str, Any]) -> None:
callbacks.append(ReporterCallback(model_args, data_args, finetuning_args, generating_args)) # add to last
if finetuning_args.stage == "pt":
if finetuning_args.stage in ["pt", "sft", "dpo"] and finetuning_args.use_mca:
if not is_mcore_adapter_available():
raise ImportError("mcore_adapter is not installed. Please install it with `pip install mcore-adapter`.")
if finetuning_args.stage == "pt":
from .mca import run_pt as run_pt_mca
run_pt_mca(model_args, data_args, training_args, finetuning_args, callbacks)
elif finetuning_args.stage == "sft":
from .mca import run_sft as run_sft_mca
run_sft_mca(model_args, data_args, training_args, finetuning_args, callbacks)
else: # dpo
from .mca import run_dpo as run_dpo_mca
run_dpo_mca(model_args, data_args, training_args, finetuning_args, callbacks)
elif finetuning_args.stage == "pt":
run_pt(model_args, data_args, training_args, finetuning_args, callbacks)
elif finetuning_args.stage == "sft":
run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)