mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-23 15:50:39 +08:00
Compare commits
64 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
75ebeeaea0 | ||
|
|
ab793177c6 | ||
|
|
9acdd67b83 | ||
|
|
3f428d9981 | ||
|
|
05cbea115a | ||
|
|
38afdcfc68 | ||
|
|
1e0b1d9c72 | ||
|
|
44702fdb4b | ||
|
|
7edaee71a9 | ||
|
|
d0d0e02007 | ||
|
|
4df110b0a9 | ||
|
|
51fd114d8b | ||
|
|
89653419d0 | ||
|
|
7980854d44 | ||
|
|
51d7c06ddd | ||
|
|
00c36ec01c | ||
|
|
b0462d8079 | ||
|
|
b66d17a324 | ||
|
|
717493cb79 | ||
|
|
302da69461 | ||
|
|
4ae25bfce7 | ||
|
|
bd52f4a408 | ||
|
|
17117106e4 | ||
|
|
aec76bb4c8 | ||
|
|
47d5dc8824 | ||
|
|
fe0b1bae49 | ||
|
|
ccf22911d4 | ||
|
|
128be02fc0 | ||
|
|
31e3488a51 | ||
|
|
b215776f2d | ||
|
|
38cf0dc1c5 | ||
|
|
7566530669 | ||
|
|
a27755db41 | ||
|
|
3da7703c5a | ||
|
|
f34104cf6e | ||
|
|
f247c86dc0 | ||
|
|
ae9d8787ce | ||
|
|
8772fe0de8 | ||
|
|
c292c71c1a | ||
|
|
d0d9cae9cd | ||
|
|
1f92c4e9d2 | ||
|
|
9b981f2c7e | ||
|
|
85eccbbf77 | ||
|
|
b80ab0caf0 | ||
|
|
1e817914b3 | ||
|
|
799c1cd21b | ||
|
|
292acc71a3 | ||
|
|
3621a36494 | ||
|
|
3087ab7f62 | ||
|
|
e46ab49a34 | ||
|
|
8a27590c5f | ||
|
|
06cdc313a7 | ||
|
|
94da8841af | ||
|
|
fbc6725f03 | ||
|
|
6b8766080d | ||
|
|
c373a84400 | ||
|
|
7606854ff7 | ||
|
|
83bacda8fb | ||
|
|
f74fc450e8 | ||
|
|
3b4f8a4980 | ||
|
|
79b46734cb | ||
|
|
55638f3bae | ||
|
|
f4f2209271 | ||
|
|
f613682551 |
@@ -162,90 +162,6 @@ workflows:
|
||||
jobs:
|
||||
# - main:
|
||||
# context: DOCKERHUB_TOKEN
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda113
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu113
|
||||
name: linux_conda_py38_cu113_pyt1120
|
||||
python_version: '3.8'
|
||||
pytorch_version: 1.12.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda116
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu116
|
||||
name: linux_conda_py38_cu116_pyt1120
|
||||
python_version: '3.8'
|
||||
pytorch_version: 1.12.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda113
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu113
|
||||
name: linux_conda_py38_cu113_pyt1121
|
||||
python_version: '3.8'
|
||||
pytorch_version: 1.12.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda116
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu116
|
||||
name: linux_conda_py38_cu116_pyt1121
|
||||
python_version: '3.8'
|
||||
pytorch_version: 1.12.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda116
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu116
|
||||
name: linux_conda_py38_cu116_pyt1130
|
||||
python_version: '3.8'
|
||||
pytorch_version: 1.13.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda117
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu117
|
||||
name: linux_conda_py38_cu117_pyt1130
|
||||
python_version: '3.8'
|
||||
pytorch_version: 1.13.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda116
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu116
|
||||
name: linux_conda_py38_cu116_pyt1131
|
||||
python_version: '3.8'
|
||||
pytorch_version: 1.13.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda117
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu117
|
||||
name: linux_conda_py38_cu117_pyt1131
|
||||
python_version: '3.8'
|
||||
pytorch_version: 1.13.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda117
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu117
|
||||
name: linux_conda_py38_cu117_pyt200
|
||||
python_version: '3.8'
|
||||
pytorch_version: 2.0.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py38_cu118_pyt200
|
||||
python_version: '3.8'
|
||||
pytorch_version: 2.0.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda117
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu117
|
||||
name: linux_conda_py38_cu117_pyt201
|
||||
python_version: '3.8'
|
||||
pytorch_version: 2.0.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py38_cu118_pyt201
|
||||
python_version: '3.8'
|
||||
pytorch_version: 2.0.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
@@ -261,89 +177,103 @@ workflows:
|
||||
python_version: '3.8'
|
||||
pytorch_version: 2.1.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda113
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu113
|
||||
name: linux_conda_py39_cu113_pyt1120
|
||||
python_version: '3.9'
|
||||
pytorch_version: 1.12.0
|
||||
cu_version: cu118
|
||||
name: linux_conda_py38_cu118_pyt211
|
||||
python_version: '3.8'
|
||||
pytorch_version: 2.1.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda116
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu116
|
||||
name: linux_conda_py39_cu116_pyt1120
|
||||
python_version: '3.9'
|
||||
pytorch_version: 1.12.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda113
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu113
|
||||
name: linux_conda_py39_cu113_pyt1121
|
||||
python_version: '3.9'
|
||||
pytorch_version: 1.12.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda116
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu116
|
||||
name: linux_conda_py39_cu116_pyt1121
|
||||
python_version: '3.9'
|
||||
pytorch_version: 1.12.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda116
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu116
|
||||
name: linux_conda_py39_cu116_pyt1130
|
||||
python_version: '3.9'
|
||||
pytorch_version: 1.13.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda117
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu117
|
||||
name: linux_conda_py39_cu117_pyt1130
|
||||
python_version: '3.9'
|
||||
pytorch_version: 1.13.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda116
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu116
|
||||
name: linux_conda_py39_cu116_pyt1131
|
||||
python_version: '3.9'
|
||||
pytorch_version: 1.13.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda117
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu117
|
||||
name: linux_conda_py39_cu117_pyt1131
|
||||
python_version: '3.9'
|
||||
pytorch_version: 1.13.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda117
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu117
|
||||
name: linux_conda_py39_cu117_pyt200
|
||||
python_version: '3.9'
|
||||
pytorch_version: 2.0.0
|
||||
cu_version: cu121
|
||||
name: linux_conda_py38_cu121_pyt211
|
||||
python_version: '3.8'
|
||||
pytorch_version: 2.1.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py39_cu118_pyt200
|
||||
python_version: '3.9'
|
||||
pytorch_version: 2.0.0
|
||||
name: linux_conda_py38_cu118_pyt212
|
||||
python_version: '3.8'
|
||||
pytorch_version: 2.1.2
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda117
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu117
|
||||
name: linux_conda_py39_cu117_pyt201
|
||||
python_version: '3.9'
|
||||
pytorch_version: 2.0.1
|
||||
cu_version: cu121
|
||||
name: linux_conda_py38_cu121_pyt212
|
||||
python_version: '3.8'
|
||||
pytorch_version: 2.1.2
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py39_cu118_pyt201
|
||||
python_version: '3.9'
|
||||
pytorch_version: 2.0.1
|
||||
name: linux_conda_py38_cu118_pyt220
|
||||
python_version: '3.8'
|
||||
pytorch_version: 2.2.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py38_cu121_pyt220
|
||||
python_version: '3.8'
|
||||
pytorch_version: 2.2.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py38_cu118_pyt222
|
||||
python_version: '3.8'
|
||||
pytorch_version: 2.2.2
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py38_cu121_pyt222
|
||||
python_version: '3.8'
|
||||
pytorch_version: 2.2.2
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py38_cu118_pyt231
|
||||
python_version: '3.8'
|
||||
pytorch_version: 2.3.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py38_cu121_pyt231
|
||||
python_version: '3.8'
|
||||
pytorch_version: 2.3.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py38_cu118_pyt240
|
||||
python_version: '3.8'
|
||||
pytorch_version: 2.4.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py38_cu121_pyt240
|
||||
python_version: '3.8'
|
||||
pytorch_version: 2.4.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py38_cu118_pyt241
|
||||
python_version: '3.8'
|
||||
pytorch_version: 2.4.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py38_cu121_pyt241
|
||||
python_version: '3.8'
|
||||
pytorch_version: 2.4.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
@@ -359,89 +289,103 @@ workflows:
|
||||
python_version: '3.9'
|
||||
pytorch_version: 2.1.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda113
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu113
|
||||
name: linux_conda_py310_cu113_pyt1120
|
||||
python_version: '3.10'
|
||||
pytorch_version: 1.12.0
|
||||
cu_version: cu118
|
||||
name: linux_conda_py39_cu118_pyt211
|
||||
python_version: '3.9'
|
||||
pytorch_version: 2.1.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda116
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu116
|
||||
name: linux_conda_py310_cu116_pyt1120
|
||||
python_version: '3.10'
|
||||
pytorch_version: 1.12.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda113
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu113
|
||||
name: linux_conda_py310_cu113_pyt1121
|
||||
python_version: '3.10'
|
||||
pytorch_version: 1.12.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda116
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu116
|
||||
name: linux_conda_py310_cu116_pyt1121
|
||||
python_version: '3.10'
|
||||
pytorch_version: 1.12.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda116
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu116
|
||||
name: linux_conda_py310_cu116_pyt1130
|
||||
python_version: '3.10'
|
||||
pytorch_version: 1.13.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda117
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu117
|
||||
name: linux_conda_py310_cu117_pyt1130
|
||||
python_version: '3.10'
|
||||
pytorch_version: 1.13.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda116
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu116
|
||||
name: linux_conda_py310_cu116_pyt1131
|
||||
python_version: '3.10'
|
||||
pytorch_version: 1.13.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda117
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu117
|
||||
name: linux_conda_py310_cu117_pyt1131
|
||||
python_version: '3.10'
|
||||
pytorch_version: 1.13.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda117
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu117
|
||||
name: linux_conda_py310_cu117_pyt200
|
||||
python_version: '3.10'
|
||||
pytorch_version: 2.0.0
|
||||
cu_version: cu121
|
||||
name: linux_conda_py39_cu121_pyt211
|
||||
python_version: '3.9'
|
||||
pytorch_version: 2.1.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py310_cu118_pyt200
|
||||
python_version: '3.10'
|
||||
pytorch_version: 2.0.0
|
||||
name: linux_conda_py39_cu118_pyt212
|
||||
python_version: '3.9'
|
||||
pytorch_version: 2.1.2
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda117
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu117
|
||||
name: linux_conda_py310_cu117_pyt201
|
||||
python_version: '3.10'
|
||||
pytorch_version: 2.0.1
|
||||
cu_version: cu121
|
||||
name: linux_conda_py39_cu121_pyt212
|
||||
python_version: '3.9'
|
||||
pytorch_version: 2.1.2
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py310_cu118_pyt201
|
||||
python_version: '3.10'
|
||||
pytorch_version: 2.0.1
|
||||
name: linux_conda_py39_cu118_pyt220
|
||||
python_version: '3.9'
|
||||
pytorch_version: 2.2.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py39_cu121_pyt220
|
||||
python_version: '3.9'
|
||||
pytorch_version: 2.2.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py39_cu118_pyt222
|
||||
python_version: '3.9'
|
||||
pytorch_version: 2.2.2
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py39_cu121_pyt222
|
||||
python_version: '3.9'
|
||||
pytorch_version: 2.2.2
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py39_cu118_pyt231
|
||||
python_version: '3.9'
|
||||
pytorch_version: 2.3.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py39_cu121_pyt231
|
||||
python_version: '3.9'
|
||||
pytorch_version: 2.3.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py39_cu118_pyt240
|
||||
python_version: '3.9'
|
||||
pytorch_version: 2.4.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py39_cu121_pyt240
|
||||
python_version: '3.9'
|
||||
pytorch_version: 2.4.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py39_cu118_pyt241
|
||||
python_version: '3.9'
|
||||
pytorch_version: 2.4.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py39_cu121_pyt241
|
||||
python_version: '3.9'
|
||||
pytorch_version: 2.4.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
@@ -456,6 +400,104 @@ workflows:
|
||||
name: linux_conda_py310_cu121_pyt210
|
||||
python_version: '3.10'
|
||||
pytorch_version: 2.1.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py310_cu118_pyt211
|
||||
python_version: '3.10'
|
||||
pytorch_version: 2.1.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py310_cu121_pyt211
|
||||
python_version: '3.10'
|
||||
pytorch_version: 2.1.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py310_cu118_pyt212
|
||||
python_version: '3.10'
|
||||
pytorch_version: 2.1.2
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py310_cu121_pyt212
|
||||
python_version: '3.10'
|
||||
pytorch_version: 2.1.2
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py310_cu118_pyt220
|
||||
python_version: '3.10'
|
||||
pytorch_version: 2.2.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py310_cu121_pyt220
|
||||
python_version: '3.10'
|
||||
pytorch_version: 2.2.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py310_cu118_pyt222
|
||||
python_version: '3.10'
|
||||
pytorch_version: 2.2.2
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py310_cu121_pyt222
|
||||
python_version: '3.10'
|
||||
pytorch_version: 2.2.2
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py310_cu118_pyt231
|
||||
python_version: '3.10'
|
||||
pytorch_version: 2.3.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py310_cu121_pyt231
|
||||
python_version: '3.10'
|
||||
pytorch_version: 2.3.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py310_cu118_pyt240
|
||||
python_version: '3.10'
|
||||
pytorch_version: 2.4.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py310_cu121_pyt240
|
||||
python_version: '3.10'
|
||||
pytorch_version: 2.4.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py310_cu118_pyt241
|
||||
python_version: '3.10'
|
||||
pytorch_version: 2.4.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py310_cu121_pyt241
|
||||
python_version: '3.10'
|
||||
pytorch_version: 2.4.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
@@ -470,6 +512,174 @@ workflows:
|
||||
name: linux_conda_py311_cu121_pyt210
|
||||
python_version: '3.11'
|
||||
pytorch_version: 2.1.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py311_cu118_pyt211
|
||||
python_version: '3.11'
|
||||
pytorch_version: 2.1.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py311_cu121_pyt211
|
||||
python_version: '3.11'
|
||||
pytorch_version: 2.1.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py311_cu118_pyt212
|
||||
python_version: '3.11'
|
||||
pytorch_version: 2.1.2
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py311_cu121_pyt212
|
||||
python_version: '3.11'
|
||||
pytorch_version: 2.1.2
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py311_cu118_pyt220
|
||||
python_version: '3.11'
|
||||
pytorch_version: 2.2.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py311_cu121_pyt220
|
||||
python_version: '3.11'
|
||||
pytorch_version: 2.2.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py311_cu118_pyt222
|
||||
python_version: '3.11'
|
||||
pytorch_version: 2.2.2
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py311_cu121_pyt222
|
||||
python_version: '3.11'
|
||||
pytorch_version: 2.2.2
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py311_cu118_pyt231
|
||||
python_version: '3.11'
|
||||
pytorch_version: 2.3.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py311_cu121_pyt231
|
||||
python_version: '3.11'
|
||||
pytorch_version: 2.3.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py311_cu118_pyt240
|
||||
python_version: '3.11'
|
||||
pytorch_version: 2.4.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py311_cu121_pyt240
|
||||
python_version: '3.11'
|
||||
pytorch_version: 2.4.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py311_cu118_pyt241
|
||||
python_version: '3.11'
|
||||
pytorch_version: 2.4.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py311_cu121_pyt241
|
||||
python_version: '3.11'
|
||||
pytorch_version: 2.4.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py312_cu118_pyt220
|
||||
python_version: '3.12'
|
||||
pytorch_version: 2.2.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py312_cu121_pyt220
|
||||
python_version: '3.12'
|
||||
pytorch_version: 2.2.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py312_cu118_pyt222
|
||||
python_version: '3.12'
|
||||
pytorch_version: 2.2.2
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py312_cu121_pyt222
|
||||
python_version: '3.12'
|
||||
pytorch_version: 2.2.2
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py312_cu118_pyt231
|
||||
python_version: '3.12'
|
||||
pytorch_version: 2.3.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py312_cu121_pyt231
|
||||
python_version: '3.12'
|
||||
pytorch_version: 2.3.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py312_cu118_pyt240
|
||||
python_version: '3.12'
|
||||
pytorch_version: 2.4.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py312_cu121_pyt240
|
||||
python_version: '3.12'
|
||||
pytorch_version: 2.4.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py312_cu118_pyt241
|
||||
python_version: '3.12'
|
||||
pytorch_version: 2.4.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py312_cu121_pyt241
|
||||
python_version: '3.12'
|
||||
pytorch_version: 2.4.1
|
||||
- binary_linux_conda_cuda:
|
||||
name: testrun_conda_cuda_py310_cu117_pyt201
|
||||
context: DOCKERHUB_TOKEN
|
||||
|
||||
@@ -19,19 +19,18 @@ from packaging import version
|
||||
# The CUDA versions which have pytorch conda packages available for linux for each
|
||||
# version of pytorch.
|
||||
CONDA_CUDA_VERSIONS = {
|
||||
"1.12.0": ["cu113", "cu116"],
|
||||
"1.12.1": ["cu113", "cu116"],
|
||||
"1.13.0": ["cu116", "cu117"],
|
||||
"1.13.1": ["cu116", "cu117"],
|
||||
"2.0.0": ["cu117", "cu118"],
|
||||
"2.0.1": ["cu117", "cu118"],
|
||||
"2.1.0": ["cu118", "cu121"],
|
||||
"2.1.1": ["cu118", "cu121"],
|
||||
"2.1.2": ["cu118", "cu121"],
|
||||
"2.2.0": ["cu118", "cu121"],
|
||||
"2.2.2": ["cu118", "cu121"],
|
||||
"2.3.1": ["cu118", "cu121"],
|
||||
"2.4.0": ["cu118", "cu121"],
|
||||
"2.4.1": ["cu118", "cu121"],
|
||||
}
|
||||
|
||||
|
||||
def conda_docker_image_for_cuda(cuda_version):
|
||||
if cuda_version in ("cu101", "cu102", "cu111"):
|
||||
return None
|
||||
if len(cuda_version) != 5:
|
||||
raise ValueError("Unknown cuda version")
|
||||
return "pytorch/conda-builder:cuda" + cuda_version[2:]
|
||||
@@ -52,12 +51,18 @@ def pytorch_versions_for_python(python_version):
|
||||
for i in CONDA_CUDA_VERSIONS
|
||||
if version.Version(i) >= version.Version("2.1.0")
|
||||
]
|
||||
if python_version == "3.12":
|
||||
return [
|
||||
i
|
||||
for i in CONDA_CUDA_VERSIONS
|
||||
if version.Version(i) >= version.Version("2.2.0")
|
||||
]
|
||||
|
||||
|
||||
def workflows(prefix="", filter_branch=None, upload=False, indentation=6):
|
||||
w = []
|
||||
for btype in ["conda"]:
|
||||
for python_version in ["3.8", "3.9", "3.10", "3.11"]:
|
||||
for python_version in ["3.8", "3.9", "3.10", "3.11", "3.12"]:
|
||||
for pytorch_version in pytorch_versions_for_python(python_version):
|
||||
for cu_version in CONDA_CUDA_VERSIONS[pytorch_version]:
|
||||
w += workflow_pair(
|
||||
|
||||
5
.flake8
5
.flake8
@@ -1,5 +1,8 @@
|
||||
[flake8]
|
||||
ignore = E203, E266, E501, W503, E221
|
||||
# B028 No explicit stacklevel argument found.
|
||||
# B907 'foo' is manually surrounded by quotes, consider using the `!r` conversion flag.
|
||||
# B905 `zip()` without an explicit `strict=` parameter.
|
||||
ignore = E203, E266, E501, W503, E221, B028, B905, B907
|
||||
max-line-length = 88
|
||||
max-complexity = 18
|
||||
select = B,C,E,F,W,T4,B9
|
||||
|
||||
11
INSTALL.md
11
INSTALL.md
@@ -8,11 +8,10 @@
|
||||
The core library is written in PyTorch. Several components have underlying implementation in CUDA for improved performance. A subset of these components have CPU implementations in C++/PyTorch. It is advised to use PyTorch3D with GPU support in order to use all the features.
|
||||
|
||||
- Linux or macOS or Windows
|
||||
- Python 3.8, 3.9 or 3.10
|
||||
- PyTorch 1.12.0, 1.12.1, 1.13.0, 2.0.0, 2.0.1 or 2.1.0.
|
||||
- Python
|
||||
- PyTorch 2.1.0, 2.1.1, 2.1.2, 2.2.0, 2.2.1, 2.2.2, 2.3.0, 2.3.1, 2.4.0 or 2.4.1.
|
||||
- torchvision that matches the PyTorch installation. You can install them together as explained at pytorch.org to make sure of this.
|
||||
- gcc & g++ ≥ 4.9
|
||||
- [fvcore](https://github.com/facebookresearch/fvcore)
|
||||
- [ioPath](https://github.com/facebookresearch/iopath)
|
||||
- If CUDA is to be used, use a version which is supported by the corresponding pytorch version and at least version 9.2.
|
||||
- If CUDA older than 11.7 is to be used and you are building from source, the CUB library must be available. We recommend version 1.10.0.
|
||||
@@ -22,7 +21,7 @@ The runtime dependencies can be installed by running:
|
||||
conda create -n pytorch3d python=3.9
|
||||
conda activate pytorch3d
|
||||
conda install pytorch=1.13.0 torchvision pytorch-cuda=11.6 -c pytorch -c nvidia
|
||||
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
|
||||
conda install -c iopath iopath
|
||||
```
|
||||
|
||||
For the CUB build time dependency, which you only need if you have CUDA older than 11.7, if you are using conda, you can continue with
|
||||
@@ -49,6 +48,7 @@ For developing on top of PyTorch3D or contributing, you will need to run the lin
|
||||
- tdqm
|
||||
- jupyter
|
||||
- imageio
|
||||
- fvcore
|
||||
- plotly
|
||||
- opencv-python
|
||||
|
||||
@@ -59,6 +59,7 @@ conda install jupyter
|
||||
pip install scikit-image matplotlib imageio plotly opencv-python
|
||||
|
||||
# Tests/Linting
|
||||
conda install -c fvcore -c conda-forge fvcore
|
||||
pip install black usort flake8 flake8-bugbear flake8-comprehensions
|
||||
```
|
||||
|
||||
@@ -97,7 +98,7 @@ version_str="".join([
|
||||
torch.version.cuda.replace(".",""),
|
||||
f"_pyt{pyt_version_str}"
|
||||
])
|
||||
!pip install fvcore iopath
|
||||
!pip install iopath
|
||||
!pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html
|
||||
```
|
||||
|
||||
|
||||
@@ -146,6 +146,12 @@ If you are using the pulsar backend for sphere-rendering (the `PulsarPointRender
|
||||
|
||||
Please see below for a timeline of the codebase updates in reverse chronological order. We are sharing updates on the releases as well as research projects which are built with PyTorch3D. The changelogs for the releases are available under [`Releases`](https://github.com/facebookresearch/pytorch3d/releases), and the builds can be installed using `conda` as per the instructions in [INSTALL.md](INSTALL.md).
|
||||
|
||||
**[Oct 31st 2023]:** PyTorch3D [v0.7.5](https://github.com/facebookresearch/pytorch3d/releases/tag/v0.7.5) released.
|
||||
|
||||
**[May 10th 2023]:** PyTorch3D [v0.7.4](https://github.com/facebookresearch/pytorch3d/releases/tag/v0.7.4) released.
|
||||
|
||||
**[Apr 5th 2023]:** PyTorch3D [v0.7.3](https://github.com/facebookresearch/pytorch3d/releases/tag/v0.7.3) released.
|
||||
|
||||
**[Dec 19th 2022]:** PyTorch3D [v0.7.2](https://github.com/facebookresearch/pytorch3d/releases/tag/v0.7.2) released.
|
||||
|
||||
**[Oct 23rd 2022]:** PyTorch3D [v0.7.1](https://github.com/facebookresearch/pytorch3d/releases/tag/v0.7.1) released.
|
||||
|
||||
@@ -23,7 +23,7 @@ conda init bash
|
||||
source ~/.bashrc
|
||||
conda create -y -n myenv python=3.8 matplotlib ipython ipywidgets nbconvert
|
||||
conda activate myenv
|
||||
conda install -y -c fvcore -c iopath -c conda-forge fvcore iopath
|
||||
conda install -y -c iopath iopath
|
||||
conda install -y -c pytorch pytorch=1.6.0 cudatoolkit=10.1 torchvision
|
||||
conda install -y -c pytorch3d-nightly pytorch3d
|
||||
pip install plotly scikit-image
|
||||
|
||||
@@ -5,7 +5,6 @@ sphinx_rtd_theme
|
||||
sphinx_markdown_tables
|
||||
numpy
|
||||
iopath
|
||||
fvcore
|
||||
https://download.pytorch.org/whl/cpu/torchvision-0.15.2%2Bcpu-cp311-cp311-linux_x86_64.whl
|
||||
https://download.pytorch.org/whl/cpu/torch-2.0.1%2Bcpu-cp311-cp311-linux_x86_64.whl
|
||||
omegaconf
|
||||
|
||||
@@ -83,25 +83,31 @@
|
||||
"import os\n",
|
||||
"import sys\n",
|
||||
"import torch\n",
|
||||
"import subprocess\n",
|
||||
"need_pytorch3d=False\n",
|
||||
"try:\n",
|
||||
" import pytorch3d\n",
|
||||
"except ModuleNotFoundError:\n",
|
||||
" need_pytorch3d=True\n",
|
||||
"if need_pytorch3d:\n",
|
||||
" if torch.__version__.startswith(\"2.1.\") and sys.platform.startswith(\"linux\"):\n",
|
||||
" # We try to install PyTorch3D via a released wheel.\n",
|
||||
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
|
||||
" version_str=\"\".join([\n",
|
||||
" f\"py3{sys.version_info.minor}_cu\",\n",
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install fvcore iopath\n",
|
||||
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
|
||||
" version_str=\"\".join([\n",
|
||||
" f\"py3{sys.version_info.minor}_cu\",\n",
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install iopath\n",
|
||||
" if sys.platform.startswith(\"linux\"):\n",
|
||||
" print(\"Trying to install wheel for PyTorch3D\")\n",
|
||||
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
|
||||
" else:\n",
|
||||
" # We try to install PyTorch3D from source.\n",
|
||||
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
|
||||
" pip_list = !pip freeze\n",
|
||||
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
|
||||
" if need_pytorch3d:\n",
|
||||
" print(f\"failed to find/install wheel for {version_str}\")\n",
|
||||
"if need_pytorch3d:\n",
|
||||
" print(\"Installing PyTorch3D from source\")\n",
|
||||
" !pip install ninja\n",
|
||||
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -70,25 +70,31 @@
|
||||
"import os\n",
|
||||
"import sys\n",
|
||||
"import torch\n",
|
||||
"import subprocess\n",
|
||||
"need_pytorch3d=False\n",
|
||||
"try:\n",
|
||||
" import pytorch3d\n",
|
||||
"except ModuleNotFoundError:\n",
|
||||
" need_pytorch3d=True\n",
|
||||
"if need_pytorch3d:\n",
|
||||
" if torch.__version__.startswith(\"2.1.\") and sys.platform.startswith(\"linux\"):\n",
|
||||
" # We try to install PyTorch3D via a released wheel.\n",
|
||||
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
|
||||
" version_str=\"\".join([\n",
|
||||
" f\"py3{sys.version_info.minor}_cu\",\n",
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install fvcore iopath\n",
|
||||
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
|
||||
" version_str=\"\".join([\n",
|
||||
" f\"py3{sys.version_info.minor}_cu\",\n",
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install iopath\n",
|
||||
" if sys.platform.startswith(\"linux\"):\n",
|
||||
" print(\"Trying to install wheel for PyTorch3D\")\n",
|
||||
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
|
||||
" else:\n",
|
||||
" # We try to install PyTorch3D from source.\n",
|
||||
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
|
||||
" pip_list = !pip freeze\n",
|
||||
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
|
||||
" if need_pytorch3d:\n",
|
||||
" print(f\"failed to find/install wheel for {version_str}\")\n",
|
||||
"if need_pytorch3d:\n",
|
||||
" print(\"Installing PyTorch3D from source\")\n",
|
||||
" !pip install ninja\n",
|
||||
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -45,25 +45,31 @@
|
||||
"import os\n",
|
||||
"import sys\n",
|
||||
"import torch\n",
|
||||
"import subprocess\n",
|
||||
"need_pytorch3d=False\n",
|
||||
"try:\n",
|
||||
" import pytorch3d\n",
|
||||
"except ModuleNotFoundError:\n",
|
||||
" need_pytorch3d=True\n",
|
||||
"if need_pytorch3d:\n",
|
||||
" if torch.__version__.startswith(\"2.1.\") and sys.platform.startswith(\"linux\"):\n",
|
||||
" # We try to install PyTorch3D via a released wheel.\n",
|
||||
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
|
||||
" version_str=\"\".join([\n",
|
||||
" f\"py3{sys.version_info.minor}_cu\",\n",
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install fvcore iopath\n",
|
||||
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
|
||||
" version_str=\"\".join([\n",
|
||||
" f\"py3{sys.version_info.minor}_cu\",\n",
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install iopath\n",
|
||||
" if sys.platform.startswith(\"linux\"):\n",
|
||||
" print(\"Trying to install wheel for PyTorch3D\")\n",
|
||||
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
|
||||
" else:\n",
|
||||
" # We try to install PyTorch3D from source.\n",
|
||||
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
|
||||
" pip_list = !pip freeze\n",
|
||||
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
|
||||
" if need_pytorch3d:\n",
|
||||
" print(f\"failed to find/install wheel for {version_str}\")\n",
|
||||
"if need_pytorch3d:\n",
|
||||
" print(\"Installing PyTorch3D from source\")\n",
|
||||
" !pip install ninja\n",
|
||||
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -405,7 +411,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"random_model_images = shapenet_dataset.render(\n",
|
||||
" sample_nums=[3],\n",
|
||||
" sample_nums=[5],\n",
|
||||
" device=device,\n",
|
||||
" cameras=cameras,\n",
|
||||
" raster_settings=raster_settings,\n",
|
||||
|
||||
@@ -84,25 +84,31 @@
|
||||
"import os\n",
|
||||
"import sys\n",
|
||||
"import torch\n",
|
||||
"import subprocess\n",
|
||||
"need_pytorch3d=False\n",
|
||||
"try:\n",
|
||||
" import pytorch3d\n",
|
||||
"except ModuleNotFoundError:\n",
|
||||
" need_pytorch3d=True\n",
|
||||
"if need_pytorch3d:\n",
|
||||
" if torch.__version__.startswith(\"2.1.\") and sys.platform.startswith(\"linux\"):\n",
|
||||
" # We try to install PyTorch3D via a released wheel.\n",
|
||||
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
|
||||
" version_str=\"\".join([\n",
|
||||
" f\"py3{sys.version_info.minor}_cu\",\n",
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install fvcore iopath\n",
|
||||
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
|
||||
" version_str=\"\".join([\n",
|
||||
" f\"py3{sys.version_info.minor}_cu\",\n",
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install iopath\n",
|
||||
" if sys.platform.startswith(\"linux\"):\n",
|
||||
" print(\"Trying to install wheel for PyTorch3D\")\n",
|
||||
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
|
||||
" else:\n",
|
||||
" # We try to install PyTorch3D from source.\n",
|
||||
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
|
||||
" pip_list = !pip freeze\n",
|
||||
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
|
||||
" if need_pytorch3d:\n",
|
||||
" print(f\"failed to find/install wheel for {version_str}\")\n",
|
||||
"if need_pytorch3d:\n",
|
||||
" print(\"Installing PyTorch3D from source\")\n",
|
||||
" !pip install ninja\n",
|
||||
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -50,25 +50,31 @@
|
||||
"import os\n",
|
||||
"import sys\n",
|
||||
"import torch\n",
|
||||
"import subprocess\n",
|
||||
"need_pytorch3d=False\n",
|
||||
"try:\n",
|
||||
" import pytorch3d\n",
|
||||
"except ModuleNotFoundError:\n",
|
||||
" need_pytorch3d=True\n",
|
||||
"if need_pytorch3d:\n",
|
||||
" if torch.__version__.startswith(\"2.1.\") and sys.platform.startswith(\"linux\"):\n",
|
||||
" # We try to install PyTorch3D via a released wheel.\n",
|
||||
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
|
||||
" version_str=\"\".join([\n",
|
||||
" f\"py3{sys.version_info.minor}_cu\",\n",
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install fvcore iopath\n",
|
||||
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
|
||||
" version_str=\"\".join([\n",
|
||||
" f\"py3{sys.version_info.minor}_cu\",\n",
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install iopath\n",
|
||||
" if sys.platform.startswith(\"linux\"):\n",
|
||||
" print(\"Trying to install wheel for PyTorch3D\")\n",
|
||||
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
|
||||
" else:\n",
|
||||
" # We try to install PyTorch3D from source.\n",
|
||||
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
|
||||
" pip_list = !pip freeze\n",
|
||||
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
|
||||
" if need_pytorch3d:\n",
|
||||
" print(f\"failed to find/install wheel for {version_str}\")\n",
|
||||
"if need_pytorch3d:\n",
|
||||
" print(\"Installing PyTorch3D from source\")\n",
|
||||
" !pip install ninja\n",
|
||||
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -62,25 +62,31 @@
|
||||
"import os\n",
|
||||
"import sys\n",
|
||||
"import torch\n",
|
||||
"import subprocess\n",
|
||||
"need_pytorch3d=False\n",
|
||||
"try:\n",
|
||||
" import pytorch3d\n",
|
||||
"except ModuleNotFoundError:\n",
|
||||
" need_pytorch3d=True\n",
|
||||
"if need_pytorch3d:\n",
|
||||
" if torch.__version__.startswith(\"2.1.\") and sys.platform.startswith(\"linux\"):\n",
|
||||
" # We try to install PyTorch3D via a released wheel.\n",
|
||||
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
|
||||
" version_str=\"\".join([\n",
|
||||
" f\"py3{sys.version_info.minor}_cu\",\n",
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install fvcore iopath\n",
|
||||
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
|
||||
" version_str=\"\".join([\n",
|
||||
" f\"py3{sys.version_info.minor}_cu\",\n",
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install iopath\n",
|
||||
" if sys.platform.startswith(\"linux\"):\n",
|
||||
" print(\"Trying to install wheel for PyTorch3D\")\n",
|
||||
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
|
||||
" else:\n",
|
||||
" # We try to install PyTorch3D from source.\n",
|
||||
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
|
||||
" pip_list = !pip freeze\n",
|
||||
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
|
||||
" if need_pytorch3d:\n",
|
||||
" print(f\"failed to find/install wheel for {version_str}\")\n",
|
||||
"if need_pytorch3d:\n",
|
||||
" print(\"Installing PyTorch3D from source\")\n",
|
||||
" !pip install ninja\n",
|
||||
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -41,25 +41,31 @@
|
||||
"import os\n",
|
||||
"import sys\n",
|
||||
"import torch\n",
|
||||
"import subprocess\n",
|
||||
"need_pytorch3d=False\n",
|
||||
"try:\n",
|
||||
" import pytorch3d\n",
|
||||
"except ModuleNotFoundError:\n",
|
||||
" need_pytorch3d=True\n",
|
||||
"if need_pytorch3d:\n",
|
||||
" if torch.__version__.startswith(\"2.1.\") and sys.platform.startswith(\"linux\"):\n",
|
||||
" # We try to install PyTorch3D via a released wheel.\n",
|
||||
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
|
||||
" version_str=\"\".join([\n",
|
||||
" f\"py3{sys.version_info.minor}_cu\",\n",
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install fvcore iopath\n",
|
||||
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
|
||||
" version_str=\"\".join([\n",
|
||||
" f\"py3{sys.version_info.minor}_cu\",\n",
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install iopath\n",
|
||||
" if sys.platform.startswith(\"linux\"):\n",
|
||||
" print(\"Trying to install wheel for PyTorch3D\")\n",
|
||||
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
|
||||
" else:\n",
|
||||
" # We try to install PyTorch3D from source.\n",
|
||||
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
|
||||
" pip_list = !pip freeze\n",
|
||||
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
|
||||
" if need_pytorch3d:\n",
|
||||
" print(f\"failed to find/install wheel for {version_str}\")\n",
|
||||
"if need_pytorch3d:\n",
|
||||
" print(\"Installing PyTorch3D from source\")\n",
|
||||
" !pip install ninja\n",
|
||||
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -72,25 +72,31 @@
|
||||
"import os\n",
|
||||
"import sys\n",
|
||||
"import torch\n",
|
||||
"import subprocess\n",
|
||||
"need_pytorch3d=False\n",
|
||||
"try:\n",
|
||||
" import pytorch3d\n",
|
||||
"except ModuleNotFoundError:\n",
|
||||
" need_pytorch3d=True\n",
|
||||
"if need_pytorch3d:\n",
|
||||
" if torch.__version__.startswith(\"2.1.\") and sys.platform.startswith(\"linux\"):\n",
|
||||
" # We try to install PyTorch3D via a released wheel.\n",
|
||||
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
|
||||
" version_str=\"\".join([\n",
|
||||
" f\"py3{sys.version_info.minor}_cu\",\n",
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install fvcore iopath\n",
|
||||
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
|
||||
" version_str=\"\".join([\n",
|
||||
" f\"py3{sys.version_info.minor}_cu\",\n",
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install iopath\n",
|
||||
" if sys.platform.startswith(\"linux\"):\n",
|
||||
" print(\"Trying to install wheel for PyTorch3D\")\n",
|
||||
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
|
||||
" else:\n",
|
||||
" # We try to install PyTorch3D from source.\n",
|
||||
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
|
||||
" pip_list = !pip freeze\n",
|
||||
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
|
||||
" if need_pytorch3d:\n",
|
||||
" print(f\"failed to find/install wheel for {version_str}\")\n",
|
||||
"if need_pytorch3d:\n",
|
||||
" print(\"Installing PyTorch3D from source\")\n",
|
||||
" !pip install ninja\n",
|
||||
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -66,25 +66,31 @@
|
||||
"import os\n",
|
||||
"import sys\n",
|
||||
"import torch\n",
|
||||
"import subprocess\n",
|
||||
"need_pytorch3d=False\n",
|
||||
"try:\n",
|
||||
" import pytorch3d\n",
|
||||
"except ModuleNotFoundError:\n",
|
||||
" need_pytorch3d=True\n",
|
||||
"if need_pytorch3d:\n",
|
||||
" if torch.__version__.startswith(\"2.1.\") and sys.platform.startswith(\"linux\"):\n",
|
||||
" # We try to install PyTorch3D via a released wheel.\n",
|
||||
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
|
||||
" version_str=\"\".join([\n",
|
||||
" f\"py3{sys.version_info.minor}_cu\",\n",
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install fvcore iopath\n",
|
||||
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
|
||||
" version_str=\"\".join([\n",
|
||||
" f\"py3{sys.version_info.minor}_cu\",\n",
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install iopath\n",
|
||||
" if sys.platform.startswith(\"linux\"):\n",
|
||||
" print(\"Trying to install wheel for PyTorch3D\")\n",
|
||||
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
|
||||
" else:\n",
|
||||
" # We try to install PyTorch3D from source.\n",
|
||||
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
|
||||
" pip_list = !pip freeze\n",
|
||||
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
|
||||
" if need_pytorch3d:\n",
|
||||
" print(f\"failed to find/install wheel for {version_str}\")\n",
|
||||
"if need_pytorch3d:\n",
|
||||
" print(\"Installing PyTorch3D from source\")\n",
|
||||
" !pip install ninja\n",
|
||||
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -44,25 +44,31 @@
|
||||
"import os\n",
|
||||
"import sys\n",
|
||||
"import torch\n",
|
||||
"import subprocess\n",
|
||||
"need_pytorch3d=False\n",
|
||||
"try:\n",
|
||||
" import pytorch3d\n",
|
||||
"except ModuleNotFoundError:\n",
|
||||
" need_pytorch3d=True\n",
|
||||
"if need_pytorch3d:\n",
|
||||
" if torch.__version__.startswith(\"2.1.\") and sys.platform.startswith(\"linux\"):\n",
|
||||
" # We try to install PyTorch3D via a released wheel.\n",
|
||||
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
|
||||
" version_str=\"\".join([\n",
|
||||
" f\"py3{sys.version_info.minor}_cu\",\n",
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install fvcore iopath\n",
|
||||
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
|
||||
" version_str=\"\".join([\n",
|
||||
" f\"py3{sys.version_info.minor}_cu\",\n",
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install iopath\n",
|
||||
" if sys.platform.startswith(\"linux\"):\n",
|
||||
" print(\"Trying to install wheel for PyTorch3D\")\n",
|
||||
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
|
||||
" else:\n",
|
||||
" # We try to install PyTorch3D from source.\n",
|
||||
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
|
||||
" pip_list = !pip freeze\n",
|
||||
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
|
||||
" if need_pytorch3d:\n",
|
||||
" print(f\"failed to find/install wheel for {version_str}\")\n",
|
||||
"if need_pytorch3d:\n",
|
||||
" print(\"Installing PyTorch3D from source\")\n",
|
||||
" !pip install ninja\n",
|
||||
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -51,25 +51,31 @@
|
||||
"import os\n",
|
||||
"import sys\n",
|
||||
"import torch\n",
|
||||
"import subprocess\n",
|
||||
"need_pytorch3d=False\n",
|
||||
"try:\n",
|
||||
" import pytorch3d\n",
|
||||
"except ModuleNotFoundError:\n",
|
||||
" need_pytorch3d=True\n",
|
||||
"if need_pytorch3d:\n",
|
||||
" if torch.__version__.startswith(\"2.1.\") and sys.platform.startswith(\"linux\"):\n",
|
||||
" # We try to install PyTorch3D via a released wheel.\n",
|
||||
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
|
||||
" version_str=\"\".join([\n",
|
||||
" f\"py3{sys.version_info.minor}_cu\",\n",
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install fvcore iopath\n",
|
||||
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
|
||||
" version_str=\"\".join([\n",
|
||||
" f\"py3{sys.version_info.minor}_cu\",\n",
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install iopath\n",
|
||||
" if sys.platform.startswith(\"linux\"):\n",
|
||||
" print(\"Trying to install wheel for PyTorch3D\")\n",
|
||||
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
|
||||
" else:\n",
|
||||
" # We try to install PyTorch3D from source.\n",
|
||||
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
|
||||
" pip_list = !pip freeze\n",
|
||||
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
|
||||
" if need_pytorch3d:\n",
|
||||
" print(f\"failed to find/install wheel for {version_str}\")\n",
|
||||
"if need_pytorch3d:\n",
|
||||
" print(\"Installing PyTorch3D from source\")\n",
|
||||
" !pip install ninja\n",
|
||||
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -67,25 +67,31 @@
|
||||
"import os\n",
|
||||
"import sys\n",
|
||||
"import torch\n",
|
||||
"import subprocess\n",
|
||||
"need_pytorch3d=False\n",
|
||||
"try:\n",
|
||||
" import pytorch3d\n",
|
||||
"except ModuleNotFoundError:\n",
|
||||
" need_pytorch3d=True\n",
|
||||
"if need_pytorch3d:\n",
|
||||
" if torch.__version__.startswith(\"2.1.\") and sys.platform.startswith(\"linux\"):\n",
|
||||
" # We try to install PyTorch3D via a released wheel.\n",
|
||||
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
|
||||
" version_str=\"\".join([\n",
|
||||
" f\"py3{sys.version_info.minor}_cu\",\n",
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install fvcore iopath\n",
|
||||
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
|
||||
" version_str=\"\".join([\n",
|
||||
" f\"py3{sys.version_info.minor}_cu\",\n",
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install iopath\n",
|
||||
" if sys.platform.startswith(\"linux\"):\n",
|
||||
" print(\"Trying to install wheel for PyTorch3D\")\n",
|
||||
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
|
||||
" else:\n",
|
||||
" # We try to install PyTorch3D from source.\n",
|
||||
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
|
||||
" pip_list = !pip freeze\n",
|
||||
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
|
||||
" if need_pytorch3d:\n",
|
||||
" print(f\"failed to find/install wheel for {version_str}\")\n",
|
||||
"if need_pytorch3d:\n",
|
||||
" print(\"Installing PyTorch3D from source\")\n",
|
||||
" !pip install ninja\n",
|
||||
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -80,6 +80,12 @@ def setup_cuda():
|
||||
def setup_conda_pytorch_constraint() -> List[str]:
|
||||
pytorch_constraint = f"- pytorch=={PYTORCH_VERSION}"
|
||||
os.environ["CONDA_PYTORCH_CONSTRAINT"] = pytorch_constraint
|
||||
if pytorch_major_minor < (2, 2):
|
||||
os.environ["CONDA_PYTORCH_MKL_CONSTRAINT"] = "- mkl!=2024.1.0"
|
||||
os.environ["SETUPTOOLS_CONSTRAINT"] = "- setuptools<70"
|
||||
else:
|
||||
os.environ["CONDA_PYTORCH_MKL_CONSTRAINT"] = ""
|
||||
os.environ["SETUPTOOLS_CONSTRAINT"] = "- setuptools"
|
||||
os.environ["CONDA_PYTORCH_BUILD_CONSTRAINT"] = pytorch_constraint
|
||||
os.environ["PYTORCH_VERSION_NODOT"] = PYTORCH_VERSION.replace(".", "")
|
||||
|
||||
@@ -117,7 +123,7 @@ def do_build(start_args: List[str]):
|
||||
if test_flag is not None:
|
||||
args.append(test_flag)
|
||||
|
||||
args.extend(["-c", "bottler", "-c", "fvcore", "-c", "iopath", "-c", "conda-forge"])
|
||||
args.extend(["-c", "bottler", "-c", "iopath", "-c", "conda-forge"])
|
||||
args.append("--no-anaconda-upload")
|
||||
args.extend(["--python", os.environ["PYTHON_VERSION"]])
|
||||
args.append("packaging/pytorch3d")
|
||||
|
||||
@@ -26,6 +26,6 @@ version_str="".join([
|
||||
torch.version.cuda.replace(".",""),
|
||||
f"_pyt{pyt_version_str}"
|
||||
])
|
||||
!pip install fvcore iopath
|
||||
!pip install iopath
|
||||
!pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html
|
||||
```
|
||||
|
||||
@@ -144,7 +144,7 @@ do
|
||||
conda activate "$tag"
|
||||
# shellcheck disable=SC2086
|
||||
conda install -y -c pytorch $extra_channel "pytorch=$pytorch_version" "$cudatools=$CUDA_TAG"
|
||||
pip install fvcore iopath
|
||||
pip install iopath
|
||||
echo "python version" "$python_version" "pytorch version" "$pytorch_version" "cuda version" "$cu_version" "tag" "$tag"
|
||||
|
||||
rm -rf dist
|
||||
|
||||
@@ -12,8 +12,9 @@ requirements:
|
||||
|
||||
host:
|
||||
- python
|
||||
- setuptools
|
||||
{{ environ.get('SETUPTOOLS_CONSTRAINT') }}
|
||||
{{ environ.get('CONDA_PYTORCH_BUILD_CONSTRAINT') }}
|
||||
{{ environ.get('CONDA_PYTORCH_MKL_CONSTRAINT') }}
|
||||
{{ environ.get('CONDA_CUDATOOLKIT_CONSTRAINT') }}
|
||||
{{ environ.get('CONDA_CPUONLY_FEATURE') }}
|
||||
|
||||
@@ -21,7 +22,6 @@ requirements:
|
||||
- python
|
||||
- numpy >=1.11
|
||||
- torchvision >=0.5
|
||||
- fvcore
|
||||
- iopath
|
||||
{{ environ.get('CONDA_PYTORCH_CONSTRAINT') }}
|
||||
{{ environ.get('CONDA_CUDATOOLKIT_CONSTRAINT') }}
|
||||
|
||||
@@ -3,3 +3,5 @@
|
||||
#
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
@@ -5,6 +5,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
""""
|
||||
This file is the entry point for launching experiments with Implicitron.
|
||||
|
||||
@@ -97,7 +99,7 @@ except ModuleNotFoundError:
|
||||
no_accelerate = os.environ.get("PYTORCH3D_NO_ACCELERATE") is not None
|
||||
|
||||
|
||||
class Experiment(Configurable): # pyre-ignore: 13
|
||||
class Experiment(Configurable):
|
||||
"""
|
||||
This class is at the top level of Implicitron's config hierarchy. Its
|
||||
members are high-level components necessary for training an implicit rende-
|
||||
@@ -118,12 +120,16 @@ class Experiment(Configurable): # pyre-ignore: 13
|
||||
will be saved here.
|
||||
"""
|
||||
|
||||
# pyre-fixme[13]: Attribute `data_source` is never initialized.
|
||||
data_source: DataSourceBase
|
||||
data_source_class_type: str = "ImplicitronDataSource"
|
||||
# pyre-fixme[13]: Attribute `model_factory` is never initialized.
|
||||
model_factory: ModelFactoryBase
|
||||
model_factory_class_type: str = "ImplicitronModelFactory"
|
||||
# pyre-fixme[13]: Attribute `optimizer_factory` is never initialized.
|
||||
optimizer_factory: OptimizerFactoryBase
|
||||
optimizer_factory_class_type: str = "ImplicitronOptimizerFactory"
|
||||
# pyre-fixme[13]: Attribute `training_loop` is never initialized.
|
||||
training_loop: TrainingLoopBase
|
||||
training_loop_class_type: str = "ImplicitronTrainingLoop"
|
||||
|
||||
|
||||
@@ -3,3 +3,5 @@
|
||||
#
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
import logging
|
||||
import os
|
||||
from typing import Optional
|
||||
@@ -43,7 +45,7 @@ class ModelFactoryBase(ReplaceableBase):
|
||||
|
||||
|
||||
@registry.register
|
||||
class ImplicitronModelFactory(ModelFactoryBase): # pyre-ignore [13]
|
||||
class ImplicitronModelFactory(ModelFactoryBase):
|
||||
"""
|
||||
A factory class that initializes an implicit rendering model.
|
||||
|
||||
@@ -59,6 +61,7 @@ class ImplicitronModelFactory(ModelFactoryBase): # pyre-ignore [13]
|
||||
|
||||
"""
|
||||
|
||||
# pyre-fixme[13]: Attribute `model` is never initialized.
|
||||
model: ImplicitronModelBase
|
||||
model_class_type: str = "GenericModel"
|
||||
resume: bool = True
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
import inspect
|
||||
import logging
|
||||
import os
|
||||
@@ -121,7 +123,6 @@ class ImplicitronOptimizerFactory(OptimizerFactoryBase):
|
||||
"""
|
||||
# Get the parameters to optimize
|
||||
if hasattr(model, "_get_param_groups"): # use the model function
|
||||
# pyre-ignore[29]
|
||||
p_groups = model._get_param_groups(self.lr, wd=self.weight_decay)
|
||||
else:
|
||||
p_groups = [
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
import logging
|
||||
import os
|
||||
import time
|
||||
@@ -28,13 +30,13 @@ from .utils import seed_all_random_engines
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
# pyre-fixme[13]: Attribute `evaluator` is never initialized.
|
||||
class TrainingLoopBase(ReplaceableBase):
|
||||
"""
|
||||
Members:
|
||||
evaluator: An EvaluatorBase instance, used to evaluate training results.
|
||||
"""
|
||||
|
||||
# pyre-fixme[13]: Attribute `evaluator` is never initialized.
|
||||
evaluator: Optional[EvaluatorBase]
|
||||
evaluator_class_type: Optional[str] = "ImplicitronEvaluator"
|
||||
|
||||
@@ -110,6 +112,8 @@ class ImplicitronTrainingLoop(TrainingLoopBase):
|
||||
def __post_init__(self):
|
||||
run_auto_creation(self)
|
||||
|
||||
# pyre-fixme[14]: `run` overrides method defined in `TrainingLoopBase`
|
||||
# inconsistently.
|
||||
def run(
|
||||
self,
|
||||
*,
|
||||
@@ -391,7 +395,6 @@ class ImplicitronTrainingLoop(TrainingLoopBase):
|
||||
):
|
||||
prefix = f"e{stats.epoch}_it{stats.it[trainmode]}"
|
||||
if hasattr(model, "visualize"):
|
||||
# pyre-ignore [29]
|
||||
model.visualize(
|
||||
viz,
|
||||
visdom_env_imgs,
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
|
||||
import random
|
||||
|
||||
|
||||
@@ -3,3 +3,5 @@
|
||||
#
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
import os
|
||||
import tempfile
|
||||
import unittest
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
import logging
|
||||
import os
|
||||
import unittest
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
import os
|
||||
import unittest
|
||||
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
import contextlib
|
||||
import logging
|
||||
import os
|
||||
|
||||
@@ -5,6 +5,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
"""
|
||||
Script to visualize a previously trained model. Example call:
|
||||
|
||||
|
||||
@@ -343,12 +343,14 @@ class RadianceFieldRenderer(torch.nn.Module):
|
||||
# For a full render pass concatenate the output chunks,
|
||||
# and reshape to image size.
|
||||
out = {
|
||||
k: torch.cat(
|
||||
[ch_o[k] for ch_o in chunk_outputs],
|
||||
dim=1,
|
||||
).view(-1, *self._image_size, 3)
|
||||
if chunk_outputs[0][k] is not None
|
||||
else None
|
||||
k: (
|
||||
torch.cat(
|
||||
[ch_o[k] for ch_o in chunk_outputs],
|
||||
dim=1,
|
||||
).view(-1, *self._image_size, 3)
|
||||
if chunk_outputs[0][k] is not None
|
||||
else None
|
||||
)
|
||||
for k in ("rgb_fine", "rgb_coarse", "rgb_gt")
|
||||
}
|
||||
else:
|
||||
|
||||
@@ -4,4 +4,6 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
__version__ = "0.7.5"
|
||||
# pyre-unsafe
|
||||
|
||||
__version__ = "0.7.8"
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
from .datatypes import Device, get_device, make_device
|
||||
|
||||
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
from typing import Sequence, Tuple, Union
|
||||
|
||||
import torch
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
from typing import Optional, Union
|
||||
|
||||
import torch
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
import math
|
||||
from typing import Tuple
|
||||
|
||||
|
||||
@@ -4,5 +4,7 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
from .symeig3x3 import symeig3x3
|
||||
from .utils import _safe_det_3x3
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
import math
|
||||
from typing import Optional, Tuple
|
||||
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
@@ -7,11 +7,15 @@
|
||||
*/
|
||||
|
||||
// clang-format off
|
||||
#if !defined(USE_ROCM)
|
||||
#include "./pulsar/global.h" // Include before <torch/extension.h>.
|
||||
#endif
|
||||
#include <torch/extension.h>
|
||||
// clang-format on
|
||||
#if !defined(USE_ROCM)
|
||||
#include "./pulsar/pytorch/renderer.h"
|
||||
#include "./pulsar/pytorch/tensor_util.h"
|
||||
#endif
|
||||
#include "ball_query/ball_query.h"
|
||||
#include "blending/sigmoid_alpha_blend.h"
|
||||
#include "compositing/alpha_composite.h"
|
||||
@@ -99,6 +103,8 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def("marching_cubes", &MarchingCubes);
|
||||
|
||||
// Pulsar.
|
||||
// Pulsar not enabled on AMD.
|
||||
#if !defined(USE_ROCM)
|
||||
#ifdef PULSAR_LOGGING_ENABLED
|
||||
c10::ShowLogInfoToStderr();
|
||||
#endif
|
||||
@@ -183,4 +189,5 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.attr("MAX_UINT") = py::int_(MAX_UINT);
|
||||
m.attr("MAX_USHORT") = py::int_(MAX_USHORT);
|
||||
m.attr("PULSAR_MAX_GRAD_SPHERES") = py::int_(MAX_GRAD_SPHERES);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -338,7 +338,7 @@ std::tuple<at::Tensor, at::Tensor> KNearestNeighborIdxCuda(
|
||||
|
||||
TORCH_CHECK((norm == 1) || (norm == 2), "Norm must be 1 or 2.");
|
||||
|
||||
TORCH_CHECK(p2.size(2) == D, "Point sets must have the same last dimension");
|
||||
TORCH_CHECK(p1.size(2) == D, "Point sets must have the same last dimension");
|
||||
auto long_dtype = lengths1.options().dtype(at::kLong);
|
||||
auto idxs = at::zeros({N, P1, K}, long_dtype);
|
||||
auto dists = at::zeros({N, P1, K}, p1.options());
|
||||
@@ -495,7 +495,7 @@ __global__ void KNearestNeighborBackwardKernel(
|
||||
if ((p1_idx < num1) && (k < num2)) {
|
||||
const float grad_dist = grad_dists[n * P1 * K + p1_idx * K + k];
|
||||
// index of point in p2 corresponding to the k-th nearest neighbor
|
||||
const size_t p2_idx = idxs[n * P1 * K + p1_idx * K + k];
|
||||
const int64_t p2_idx = idxs[n * P1 * K + p1_idx * K + k];
|
||||
// If the index is the pad value of -1 then ignore it
|
||||
if (p2_idx == -1) {
|
||||
continue;
|
||||
|
||||
@@ -223,7 +223,7 @@ __global__ void CompactVoxelsKernel(
|
||||
compactedVoxelArray,
|
||||
const at::PackedTensorAccessor32<int, 1, at::RestrictPtrTraits>
|
||||
voxelOccupied,
|
||||
const at::PackedTensorAccessor32<int, 1, at::RestrictPtrTraits>
|
||||
const at::PackedTensorAccessor32<int64_t, 1, at::RestrictPtrTraits>
|
||||
voxelOccupiedScan,
|
||||
uint numVoxels) {
|
||||
uint id = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
@@ -255,7 +255,8 @@ __global__ void GenerateFacesKernel(
|
||||
at::PackedTensorAccessor<int64_t, 1, at::RestrictPtrTraits> ids,
|
||||
at::PackedTensorAccessor32<int, 1, at::RestrictPtrTraits>
|
||||
compactedVoxelArray,
|
||||
at::PackedTensorAccessor32<int, 1, at::RestrictPtrTraits> numVertsScanned,
|
||||
at::PackedTensorAccessor32<int64_t, 1, at::RestrictPtrTraits>
|
||||
numVertsScanned,
|
||||
const uint activeVoxels,
|
||||
const at::PackedTensorAccessor32<float, 3, at::RestrictPtrTraits> vol,
|
||||
const at::PackedTensorAccessor32<int, 2, at::RestrictPtrTraits> faceTable,
|
||||
@@ -381,6 +382,44 @@ __global__ void GenerateFacesKernel(
|
||||
} // end for grid-strided kernel
|
||||
}
|
||||
|
||||
// ATen/Torch does not have an exclusive-scan operator. Additionally, in the
|
||||
// code below we need to get the "total number of items to work on" after
|
||||
// a scan, which with an inclusive-scan would simply be the value of the last
|
||||
// element in the tensor.
|
||||
//
|
||||
// This utility function hits two birds with one stone, by running
|
||||
// an inclusive-scan into a right-shifted view of a tensor that's
|
||||
// allocated to be one element bigger than the input tensor.
|
||||
//
|
||||
// Note; return tensor is `int64_t` per element, even if the input
|
||||
// tensor is only 32-bit. Also, the return tensor is one element bigger
|
||||
// than the input one.
|
||||
//
|
||||
// Secondary optional argument is an output argument that gets the
|
||||
// value of the last element of the return tensor (because you almost
|
||||
// always need this CPU-side right after this function anyway).
|
||||
static at::Tensor ExclusiveScanAndTotal(
|
||||
const at::Tensor& inTensor,
|
||||
int64_t* optTotal = nullptr) {
|
||||
const auto inSize = inTensor.sizes()[0];
|
||||
auto retTensor = at::zeros({inSize + 1}, at::kLong).to(inTensor.device());
|
||||
|
||||
using at::indexing::None;
|
||||
using at::indexing::Slice;
|
||||
auto rightShiftedView = retTensor.index({Slice(1, None)});
|
||||
|
||||
// Do an (inclusive-scan) cumulative sum in to the view that's
|
||||
// shifted one element to the right...
|
||||
at::cumsum_out(rightShiftedView, inTensor, 0, at::kLong);
|
||||
|
||||
if (optTotal) {
|
||||
*optTotal = retTensor[inSize].cpu().item<int64_t>();
|
||||
}
|
||||
|
||||
// ...so that the not-shifted tensor holds the exclusive-scan
|
||||
return retTensor;
|
||||
}
|
||||
|
||||
// Entrance for marching cubes cuda extension. Marching Cubes is an algorithm to
|
||||
// create triangle meshes from an implicit function (one of the form f(x, y, z)
|
||||
// = 0). It works by iteratively checking a grid of cubes superimposed over a
|
||||
@@ -443,20 +482,18 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> MarchingCubesCuda(
|
||||
using at::indexing::Slice;
|
||||
|
||||
auto d_voxelVerts =
|
||||
at::zeros({numVoxels + 1}, at::TensorOptions().dtype(at::kInt))
|
||||
at::zeros({numVoxels}, at::TensorOptions().dtype(at::kInt))
|
||||
.to(vol.device());
|
||||
auto d_voxelVerts_ = d_voxelVerts.index({Slice(1, None)});
|
||||
auto d_voxelOccupied =
|
||||
at::zeros({numVoxels + 1}, at::TensorOptions().dtype(at::kInt))
|
||||
at::zeros({numVoxels}, at::TensorOptions().dtype(at::kInt))
|
||||
.to(vol.device());
|
||||
auto d_voxelOccupied_ = d_voxelOccupied.index({Slice(1, None)});
|
||||
|
||||
// Execute "ClassifyVoxelKernel" kernel to precompute
|
||||
// two arrays - d_voxelOccupied and d_voxelVertices to global memory,
|
||||
// which stores the occupancy state and number of voxel vertices per voxel.
|
||||
ClassifyVoxelKernel<<<grid, threads, 0, stream>>>(
|
||||
d_voxelVerts_.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
|
||||
d_voxelOccupied_.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
|
||||
d_voxelVerts.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
|
||||
d_voxelOccupied.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
|
||||
vol.packed_accessor32<float, 3, at::RestrictPtrTraits>(),
|
||||
isolevel);
|
||||
AT_CUDA_CHECK(cudaGetLastError());
|
||||
@@ -466,12 +503,9 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> MarchingCubesCuda(
|
||||
// count for voxels in the grid and compute the number of active voxels.
|
||||
// If the number of active voxels is 0, return zero tensor for verts and
|
||||
// faces.
|
||||
|
||||
auto d_voxelOccupiedScan = at::cumsum(d_voxelOccupied, 0);
|
||||
auto d_voxelOccupiedScan_ = d_voxelOccupiedScan.index({Slice(1, None)});
|
||||
|
||||
// number of active voxels
|
||||
int activeVoxels = d_voxelOccupiedScan[numVoxels].cpu().item<int>();
|
||||
int64_t activeVoxels = 0;
|
||||
auto d_voxelOccupiedScan =
|
||||
ExclusiveScanAndTotal(d_voxelOccupied, &activeVoxels);
|
||||
|
||||
const int device_id = vol.device().index();
|
||||
auto opt = at::TensorOptions().dtype(at::kInt).device(at::kCUDA, device_id);
|
||||
@@ -486,23 +520,21 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> MarchingCubesCuda(
|
||||
return std::make_tuple(verts, faces, ids);
|
||||
}
|
||||
|
||||
// Execute "CompactVoxelsKernel" kernel to compress voxels for accleration.
|
||||
// Execute "CompactVoxelsKernel" kernel to compress voxels for acceleration.
|
||||
// This allows us to run triangle generation on only the occupied voxels.
|
||||
auto d_compVoxelArray = at::zeros({activeVoxels}, opt);
|
||||
CompactVoxelsKernel<<<grid, threads, 0, stream>>>(
|
||||
d_compVoxelArray.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
|
||||
d_voxelOccupied.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
|
||||
d_voxelOccupiedScan_.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
|
||||
d_voxelOccupiedScan
|
||||
.packed_accessor32<int64_t, 1, at::RestrictPtrTraits>(),
|
||||
numVoxels);
|
||||
AT_CUDA_CHECK(cudaGetLastError());
|
||||
cudaDeviceSynchronize();
|
||||
|
||||
// Scan d_voxelVerts array to generate offsets of vertices for each voxel
|
||||
auto d_voxelVertsScan = at::cumsum(d_voxelVerts, 0);
|
||||
auto d_voxelVertsScan_ = d_voxelVertsScan.index({Slice(1, None)});
|
||||
|
||||
// total number of vertices
|
||||
int totalVerts = d_voxelVertsScan[numVoxels].cpu().item<int>();
|
||||
int64_t totalVerts = 0;
|
||||
auto d_voxelVertsScan = ExclusiveScanAndTotal(d_voxelVerts, &totalVerts);
|
||||
|
||||
// Execute "GenerateFacesKernel" kernel
|
||||
// This runs only on the occupied voxels.
|
||||
@@ -522,7 +554,7 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> MarchingCubesCuda(
|
||||
faces.packed_accessor<int64_t, 2, at::RestrictPtrTraits>(),
|
||||
ids.packed_accessor<int64_t, 1, at::RestrictPtrTraits>(),
|
||||
d_compVoxelArray.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
|
||||
d_voxelVertsScan_.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
|
||||
d_voxelVertsScan.packed_accessor32<int64_t, 1, at::RestrictPtrTraits>(),
|
||||
activeVoxels,
|
||||
vol.packed_accessor32<float, 3, at::RestrictPtrTraits>(),
|
||||
faceTable.packed_accessor32<int, 2, at::RestrictPtrTraits>(),
|
||||
|
||||
@@ -71,8 +71,8 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> MarchingCubesCpu(
|
||||
if ((j + 1) % 3 == 0 && ps[0] != ps[1] && ps[1] != ps[2] &&
|
||||
ps[2] != ps[0]) {
|
||||
for (int k = 0; k < 3; k++) {
|
||||
int v = tri[k];
|
||||
edge_id_to_v[tri.at(k)] = ps.at(k);
|
||||
int64_t v = tri.at(k);
|
||||
edge_id_to_v[v] = ps.at(k);
|
||||
if (!uniq_edge_id.count(v)) {
|
||||
uniq_edge_id[v] = verts.size();
|
||||
verts.push_back(edge_id_to_v[v]);
|
||||
|
||||
@@ -30,11 +30,18 @@
|
||||
#define GLOBAL __global__
|
||||
#define RESTRICT __restrict__
|
||||
#define DEBUGBREAK()
|
||||
#ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
|
||||
#pragma nv_diag_suppress 1866
|
||||
#pragma nv_diag_suppress 2941
|
||||
#pragma nv_diag_suppress 2951
|
||||
#pragma nv_diag_suppress 2967
|
||||
#else
|
||||
#pragma diag_suppress = attribute_not_allowed
|
||||
#pragma diag_suppress = 1866
|
||||
#pragma diag_suppress = 2941
|
||||
#pragma diag_suppress = 2951
|
||||
#pragma diag_suppress = 2967
|
||||
#endif
|
||||
#else // __CUDACC__
|
||||
#define INLINE inline
|
||||
#define HOST
|
||||
@@ -49,6 +56,7 @@
|
||||
#pragma clang diagnostic pop
|
||||
#ifdef WITH_CUDA
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <vector_functions.h>
|
||||
#else
|
||||
#ifndef cudaStream_t
|
||||
typedef void* cudaStream_t;
|
||||
@@ -65,8 +73,6 @@ struct float2 {
|
||||
struct float3 {
|
||||
float x, y, z;
|
||||
};
|
||||
#endif
|
||||
namespace py = pybind11;
|
||||
inline float3 make_float3(const float& x, const float& y, const float& z) {
|
||||
float3 res;
|
||||
res.x = x;
|
||||
@@ -74,6 +80,8 @@ inline float3 make_float3(const float& x, const float& y, const float& z) {
|
||||
res.z = z;
|
||||
return res;
|
||||
}
|
||||
#endif
|
||||
namespace py = pybind11;
|
||||
|
||||
inline bool operator==(const float3& a, const float3& b) {
|
||||
return a.x == b.x && a.y == b.y && a.z == b.z;
|
||||
|
||||
@@ -357,11 +357,11 @@ void MAX_WS(
|
||||
//
|
||||
//
|
||||
#define END_PARALLEL() \
|
||||
end_parallel:; \
|
||||
end_parallel :; \
|
||||
}
|
||||
#define END_PARALLEL_NORET() }
|
||||
#define END_PARALLEL_2D() \
|
||||
end_parallel:; \
|
||||
end_parallel :; \
|
||||
} \
|
||||
}
|
||||
#define END_PARALLEL_2D_NORET() \
|
||||
|
||||
@@ -93,7 +93,7 @@ HOST void construct(
|
||||
MALLOC(self->di_sorted_d, DrawInfo, max_num_balls);
|
||||
MALLOC(self->region_flags_d, char, max_num_balls);
|
||||
MALLOC(self->num_selected_d, size_t, 1);
|
||||
MALLOC(self->forw_info_d, float, width* height*(3 + 2 * n_track));
|
||||
MALLOC(self->forw_info_d, float, width* height * (3 + 2 * n_track));
|
||||
MALLOC(self->min_max_pixels_d, IntersectInfo, 1);
|
||||
MALLOC(self->grad_pos_d, float3, max_num_balls);
|
||||
MALLOC(self->grad_col_d, float, max_num_balls* n_channels);
|
||||
|
||||
@@ -99,7 +99,7 @@ GLOBAL void render(
|
||||
/** Whether loading of balls is completed. */
|
||||
SHARED bool loading_done;
|
||||
/** The number of balls loaded overall (just for statistics). */
|
||||
SHARED int n_balls_loaded;
|
||||
[[maybe_unused]] SHARED int n_balls_loaded;
|
||||
/** The area this thread block covers. */
|
||||
SHARED IntersectInfo block_area;
|
||||
if (thread_block.thread_rank() == 0) {
|
||||
|
||||
@@ -244,8 +244,7 @@ at::Tensor RasterizeCoarseCuda(
|
||||
if (num_bins_y >= kMaxItemsPerBin || num_bins_x >= kMaxItemsPerBin) {
|
||||
std::stringstream ss;
|
||||
ss << "In RasterizeCoarseCuda got num_bins_y: " << num_bins_y
|
||||
<< ", num_bins_x: " << num_bins_x << ", "
|
||||
<< "; that's too many!";
|
||||
<< ", num_bins_x: " << num_bins_x << ", " << "; that's too many!";
|
||||
AT_ERROR(ss.str());
|
||||
}
|
||||
auto opts = elems_per_batch.options().dtype(at::kInt);
|
||||
|
||||
@@ -144,7 +144,7 @@ __device__ void CheckPixelInsideFace(
|
||||
const bool zero_face_area =
|
||||
(face_area <= kEpsilon && face_area >= -1.0f * kEpsilon);
|
||||
|
||||
if (zmax < 0 || cull_backfaces && back_face || outside_bbox ||
|
||||
if (zmax < 0 || (cull_backfaces && back_face) || outside_bbox ||
|
||||
zero_face_area) {
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -18,6 +18,8 @@ const auto vEpsilon = 1e-8;
|
||||
|
||||
// Common functions and operators for float2.
|
||||
|
||||
// Complex arithmetic is already defined for AMD.
|
||||
#if !defined(USE_ROCM)
|
||||
__device__ inline float2 operator-(const float2& a, const float2& b) {
|
||||
return make_float2(a.x - b.x, a.y - b.y);
|
||||
}
|
||||
@@ -41,6 +43,7 @@ __device__ inline float2 operator*(const float2& a, const float2& b) {
|
||||
__device__ inline float2 operator*(const float a, const float2& b) {
|
||||
return make_float2(a * b.x, a * b.y);
|
||||
}
|
||||
#endif
|
||||
|
||||
__device__ inline float FloatMin3(const float a, const float b, const float c) {
|
||||
return fminf(a, fminf(b, c));
|
||||
|
||||
@@ -23,37 +23,51 @@ WarpReduceMin(scalar_t* min_dists, int64_t* min_idxs, const size_t tid) {
|
||||
min_idxs[tid] = min_idxs[tid + 32];
|
||||
min_dists[tid] = min_dists[tid + 32];
|
||||
}
|
||||
// AMD does not use explicit syncwarp and instead automatically inserts memory
|
||||
// fences during compilation.
|
||||
#if !defined(USE_ROCM)
|
||||
__syncwarp();
|
||||
#endif
|
||||
// s = 16
|
||||
if (min_dists[tid] > min_dists[tid + 16]) {
|
||||
min_idxs[tid] = min_idxs[tid + 16];
|
||||
min_dists[tid] = min_dists[tid + 16];
|
||||
}
|
||||
#if !defined(USE_ROCM)
|
||||
__syncwarp();
|
||||
#endif
|
||||
// s = 8
|
||||
if (min_dists[tid] > min_dists[tid + 8]) {
|
||||
min_idxs[tid] = min_idxs[tid + 8];
|
||||
min_dists[tid] = min_dists[tid + 8];
|
||||
}
|
||||
#if !defined(USE_ROCM)
|
||||
__syncwarp();
|
||||
#endif
|
||||
// s = 4
|
||||
if (min_dists[tid] > min_dists[tid + 4]) {
|
||||
min_idxs[tid] = min_idxs[tid + 4];
|
||||
min_dists[tid] = min_dists[tid + 4];
|
||||
}
|
||||
#if !defined(USE_ROCM)
|
||||
__syncwarp();
|
||||
#endif
|
||||
// s = 2
|
||||
if (min_dists[tid] > min_dists[tid + 2]) {
|
||||
min_idxs[tid] = min_idxs[tid + 2];
|
||||
min_dists[tid] = min_dists[tid + 2];
|
||||
}
|
||||
#if !defined(USE_ROCM)
|
||||
__syncwarp();
|
||||
#endif
|
||||
// s = 1
|
||||
if (min_dists[tid] > min_dists[tid + 1]) {
|
||||
min_idxs[tid] = min_idxs[tid + 1];
|
||||
min_dists[tid] = min_dists[tid + 1];
|
||||
}
|
||||
#if !defined(USE_ROCM)
|
||||
__syncwarp();
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
@@ -65,30 +79,42 @@ __device__ void WarpReduceMax(
|
||||
dists[tid] = dists[tid + 32];
|
||||
dists_idx[tid] = dists_idx[tid + 32];
|
||||
}
|
||||
#if !defined(USE_ROCM)
|
||||
__syncwarp();
|
||||
#endif
|
||||
if (dists[tid] < dists[tid + 16]) {
|
||||
dists[tid] = dists[tid + 16];
|
||||
dists_idx[tid] = dists_idx[tid + 16];
|
||||
}
|
||||
#if !defined(USE_ROCM)
|
||||
__syncwarp();
|
||||
#endif
|
||||
if (dists[tid] < dists[tid + 8]) {
|
||||
dists[tid] = dists[tid + 8];
|
||||
dists_idx[tid] = dists_idx[tid + 8];
|
||||
}
|
||||
#if !defined(USE_ROCM)
|
||||
__syncwarp();
|
||||
#endif
|
||||
if (dists[tid] < dists[tid + 4]) {
|
||||
dists[tid] = dists[tid + 4];
|
||||
dists_idx[tid] = dists_idx[tid + 4];
|
||||
}
|
||||
#if !defined(USE_ROCM)
|
||||
__syncwarp();
|
||||
#endif
|
||||
if (dists[tid] < dists[tid + 2]) {
|
||||
dists[tid] = dists[tid + 2];
|
||||
dists_idx[tid] = dists_idx[tid + 2];
|
||||
}
|
||||
#if !defined(USE_ROCM)
|
||||
__syncwarp();
|
||||
#endif
|
||||
if (dists[tid] < dists[tid + 1]) {
|
||||
dists[tid] = dists[tid + 1];
|
||||
dists_idx[tid] = dists_idx[tid + 1];
|
||||
}
|
||||
#if !defined(USE_ROCM)
|
||||
__syncwarp();
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
from .r2n2 import BlenderCamera, collate_batched_R2N2, R2N2, render_cubified_voxels
|
||||
from .shapenet import ShapeNetCore
|
||||
from .utils import collate_batched_meshes
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
from .r2n2 import R2N2
|
||||
from .utils import BlenderCamera, collate_batched_R2N2, render_cubified_voxels
|
||||
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
import json
|
||||
import warnings
|
||||
from os import path
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
import math
|
||||
from typing import Dict, List
|
||||
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
from .shapenet_core import ShapeNetCore
|
||||
|
||||
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
import json
|
||||
import os
|
||||
import warnings
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
import warnings
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
from typing import Dict, List
|
||||
|
||||
from pytorch3d.renderer.mesh import TexturesAtlas
|
||||
|
||||
@@ -3,3 +3,5 @@
|
||||
#
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
@@ -3,3 +3,5 @@
|
||||
#
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
|
||||
import torch
|
||||
from pytorch3d.implicitron.tools.config import registry
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
from dataclasses import dataclass
|
||||
from enum import Enum
|
||||
from typing import Iterator, List, Optional, Tuple
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
from typing import Optional, Tuple
|
||||
|
||||
from pytorch3d.implicitron.tools.config import (
|
||||
@@ -39,7 +41,7 @@ class DataSourceBase(ReplaceableBase):
|
||||
|
||||
|
||||
@registry.register
|
||||
class ImplicitronDataSource(DataSourceBase): # pyre-ignore[13]
|
||||
class ImplicitronDataSource(DataSourceBase):
|
||||
"""
|
||||
Represents the data used in Implicitron. This is the only implementation
|
||||
of DataSourceBase provided.
|
||||
@@ -50,8 +52,11 @@ class ImplicitronDataSource(DataSourceBase): # pyre-ignore[13]
|
||||
data_loader_map_provider_class_type: identifies type for data_loader_map_provider.
|
||||
"""
|
||||
|
||||
# pyre-fixme[13]: Attribute `dataset_map_provider` is never initialized.
|
||||
dataset_map_provider: DatasetMapProviderBase
|
||||
# pyre-fixme[13]: Attribute `dataset_map_provider_class_type` is never initialized.
|
||||
dataset_map_provider_class_type: str
|
||||
# pyre-fixme[13]: Attribute `data_loader_map_provider` is never initialized.
|
||||
data_loader_map_provider: DataLoaderMapProviderBase
|
||||
data_loader_map_provider_class_type: str = "SequenceDataLoaderMapProvider"
|
||||
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
from collections import defaultdict
|
||||
from dataclasses import dataclass
|
||||
from typing import (
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
import logging
|
||||
import os
|
||||
from dataclasses import dataclass
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
import os
|
||||
from abc import ABC, abstractmethod
|
||||
from collections import defaultdict
|
||||
@@ -274,6 +276,7 @@ class FrameData(Mapping[str, Any]):
|
||||
image_size_hw=tuple(self.effective_image_size_hw), # pyre-ignore
|
||||
)
|
||||
crop_bbox_xywh = bbox_xyxy_to_xywh(clamp_bbox_xyxy)
|
||||
self.crop_bbox_xywh = crop_bbox_xywh
|
||||
|
||||
if self.fg_probability is not None:
|
||||
self.fg_probability = crop_around_box(
|
||||
@@ -432,7 +435,7 @@ class FrameData(Mapping[str, Any]):
|
||||
# TODO: don't store K; enforce working in NDC space
|
||||
return join_cameras_as_batch(batch)
|
||||
else:
|
||||
return torch.utils.data._utils.collate.default_collate(batch)
|
||||
return torch.utils.data.dataloader.default_collate(batch)
|
||||
|
||||
|
||||
FrameDataSubtype = TypeVar("FrameDataSubtype", bound=FrameData)
|
||||
@@ -576,11 +579,11 @@ class GenericFrameDataBuilder(FrameDataBuilderBase[FrameDataSubtype], ABC):
|
||||
camera_quality_score=safe_as_tensor(
|
||||
sequence_annotation.viewpoint_quality_score, torch.float
|
||||
),
|
||||
point_cloud_quality_score=safe_as_tensor(
|
||||
point_cloud.quality_score, torch.float
|
||||
)
|
||||
if point_cloud is not None
|
||||
else None,
|
||||
point_cloud_quality_score=(
|
||||
safe_as_tensor(point_cloud.quality_score, torch.float)
|
||||
if point_cloud is not None
|
||||
else None
|
||||
),
|
||||
)
|
||||
|
||||
fg_mask_np: Optional[np.ndarray] = None
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
import copy
|
||||
import functools
|
||||
import gzip
|
||||
@@ -124,9 +126,9 @@ class JsonIndexDataset(DatasetBase, ReplaceableBase):
|
||||
dimension of the cropping bounding box, relative to box size.
|
||||
"""
|
||||
|
||||
frame_annotations_type: ClassVar[
|
||||
Type[types.FrameAnnotation]
|
||||
] = types.FrameAnnotation
|
||||
frame_annotations_type: ClassVar[Type[types.FrameAnnotation]] = (
|
||||
types.FrameAnnotation
|
||||
)
|
||||
|
||||
path_manager: Any = None
|
||||
frame_annotations_file: str = ""
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
|
||||
import json
|
||||
import os
|
||||
@@ -64,7 +66,7 @@ _NEED_CONTROL: Tuple[str, ...] = (
|
||||
|
||||
|
||||
@registry.register
|
||||
class JsonIndexDatasetMapProvider(DatasetMapProviderBase): # pyre-ignore [13]
|
||||
class JsonIndexDatasetMapProvider(DatasetMapProviderBase):
|
||||
"""
|
||||
Generates the training / validation and testing dataset objects for
|
||||
a dataset laid out on disk like Co3D, with annotations in json files.
|
||||
@@ -93,6 +95,7 @@ class JsonIndexDatasetMapProvider(DatasetMapProviderBase): # pyre-ignore [13]
|
||||
path_manager_factory_class_type: The class type of `path_manager_factory`.
|
||||
"""
|
||||
|
||||
# pyre-fixme[13]: Attribute `category` is never initialized.
|
||||
category: str
|
||||
task_str: str = "singlesequence"
|
||||
dataset_root: str = _CO3D_DATASET_ROOT
|
||||
@@ -102,8 +105,10 @@ class JsonIndexDatasetMapProvider(DatasetMapProviderBase): # pyre-ignore [13]
|
||||
test_restrict_sequence_id: int = -1
|
||||
assert_single_seq: bool = False
|
||||
only_test_set: bool = False
|
||||
# pyre-fixme[13]: Attribute `dataset` is never initialized.
|
||||
dataset: JsonIndexDataset
|
||||
dataset_class_type: str = "JsonIndexDataset"
|
||||
# pyre-fixme[13]: Attribute `path_manager_factory` is never initialized.
|
||||
path_manager_factory: PathManagerFactory
|
||||
path_manager_factory_class_type: str = "PathManagerFactory"
|
||||
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
|
||||
import copy
|
||||
import json
|
||||
@@ -54,7 +56,7 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@registry.register
|
||||
class JsonIndexDatasetMapProviderV2(DatasetMapProviderBase): # pyre-ignore [13]
|
||||
class JsonIndexDatasetMapProviderV2(DatasetMapProviderBase):
|
||||
"""
|
||||
Generates the training, validation, and testing dataset objects for
|
||||
a dataset laid out on disk like CO3Dv2, with annotations in gzipped json files.
|
||||
@@ -169,7 +171,9 @@ class JsonIndexDatasetMapProviderV2(DatasetMapProviderBase): # pyre-ignore [13]
|
||||
path_manager_factory_class_type: The class type of `path_manager_factory`.
|
||||
"""
|
||||
|
||||
# pyre-fixme[13]: Attribute `category` is never initialized.
|
||||
category: str
|
||||
# pyre-fixme[13]: Attribute `subset_name` is never initialized.
|
||||
subset_name: str
|
||||
dataset_root: str = _CO3DV2_DATASET_ROOT
|
||||
|
||||
@@ -181,8 +185,10 @@ class JsonIndexDatasetMapProviderV2(DatasetMapProviderBase): # pyre-ignore [13]
|
||||
n_known_frames_for_test: int = 0
|
||||
|
||||
dataset_class_type: str = "JsonIndexDataset"
|
||||
# pyre-fixme[13]: Attribute `dataset` is never initialized.
|
||||
dataset: JsonIndexDataset
|
||||
|
||||
# pyre-fixme[13]: Attribute `path_manager_factory` is never initialized.
|
||||
path_manager_factory: PathManagerFactory
|
||||
path_manager_factory_class_type: str = "PathManagerFactory"
|
||||
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
# @lint-ignore-every LICENSELINT
|
||||
# Adapted from https://github.com/bmild/nerf/blob/master/load_blender.py
|
||||
# Copyright (c) 2020 bmild
|
||||
|
||||
# pyre-unsafe
|
||||
import json
|
||||
import os
|
||||
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
# @lint-ignore-every LICENSELINT
|
||||
# Adapted from https://github.com/bmild/nerf/blob/master/load_llff.py
|
||||
# Copyright (c) 2020 bmild
|
||||
|
||||
# pyre-unsafe
|
||||
import logging
|
||||
import os
|
||||
import warnings
|
||||
@@ -34,11 +36,7 @@ def _minify(basedir, path_manager, factors=(), resolutions=()):
|
||||
|
||||
imgdir = os.path.join(basedir, "images")
|
||||
imgs = [os.path.join(imgdir, f) for f in sorted(_ls(path_manager, imgdir))]
|
||||
imgs = [
|
||||
f
|
||||
for f in imgs
|
||||
if any([f.endswith(ex) for ex in ["JPG", "jpg", "png", "jpeg", "PNG"]])
|
||||
]
|
||||
imgs = [f for f in imgs if f.endswith("JPG", "jpg", "png", "jpeg", "PNG")]
|
||||
imgdir_orig = imgdir
|
||||
|
||||
wd = os.getcwd()
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
from os.path import dirname, join, realpath
|
||||
from typing import Optional, Tuple
|
||||
|
||||
@@ -30,7 +32,7 @@ from .utils import DATASET_TYPE_KNOWN
|
||||
|
||||
|
||||
@registry.register
|
||||
class RenderedMeshDatasetMapProvider(DatasetMapProviderBase): # pyre-ignore [13]
|
||||
class RenderedMeshDatasetMapProvider(DatasetMapProviderBase):
|
||||
"""
|
||||
A simple single-scene dataset based on PyTorch3D renders of a mesh.
|
||||
Provides `num_views` renders of the mesh as train, with no val
|
||||
@@ -74,6 +76,7 @@ class RenderedMeshDatasetMapProvider(DatasetMapProviderBase): # pyre-ignore [13
|
||||
resolution: int = 128
|
||||
use_point_light: bool = True
|
||||
gpu_idx: Optional[int] = 0
|
||||
# pyre-fixme[13]: Attribute `path_manager_factory` is never initialized.
|
||||
path_manager_factory: PathManagerFactory
|
||||
path_manager_factory_class_type: str = "PathManagerFactory"
|
||||
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
|
||||
import warnings
|
||||
from collections import Counter
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
|
||||
# This file defines a base class for dataset map providers which
|
||||
# provide data for a single scene.
|
||||
@@ -81,7 +83,6 @@ class SingleSceneDataset(DatasetBase, Configurable):
|
||||
return self.eval_batches
|
||||
|
||||
|
||||
# pyre-fixme[13]: Uninitialized attribute
|
||||
class SingleSceneDatasetMapProviderBase(DatasetMapProviderBase):
|
||||
"""
|
||||
Base for provider of data for one scene from LLFF or blender datasets.
|
||||
@@ -98,8 +99,11 @@ class SingleSceneDatasetMapProviderBase(DatasetMapProviderBase):
|
||||
testing frame.
|
||||
"""
|
||||
|
||||
# pyre-fixme[13]: Attribute `base_dir` is never initialized.
|
||||
base_dir: str
|
||||
# pyre-fixme[13]: Attribute `object_name` is never initialized.
|
||||
object_name: str
|
||||
# pyre-fixme[13]: Attribute `path_manager_factory` is never initialized.
|
||||
path_manager_factory: PathManagerFactory
|
||||
path_manager_factory_class_type: str = "PathManagerFactory"
|
||||
n_known_frames_for_test: Optional[int] = None
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
import logging
|
||||
from typing import Any, Dict, Optional, Tuple
|
||||
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
|
||||
import dataclasses
|
||||
import gzip
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
|
||||
import functools
|
||||
import warnings
|
||||
@@ -200,7 +202,7 @@ def resize_image(
|
||||
mode: str = "bilinear",
|
||||
) -> Tuple[torch.Tensor, float, torch.Tensor]:
|
||||
|
||||
if type(image) == np.ndarray:
|
||||
if isinstance(image, np.ndarray):
|
||||
image = torch.from_numpy(image)
|
||||
|
||||
if image_height is None or image_width is None:
|
||||
@@ -346,6 +348,7 @@ def adjust_camera_to_image_scale_(
|
||||
camera: PerspectiveCameras,
|
||||
original_size_wh: torch.Tensor,
|
||||
new_size_wh: torch.LongTensor,
|
||||
# pyre-fixme[7]: Expected `PerspectiveCameras` but got implicit return value of `None`.
|
||||
) -> PerspectiveCameras:
|
||||
focal_length_px, principal_point_px = _convert_ndc_to_pixels(
|
||||
camera.focal_length[0],
|
||||
@@ -365,7 +368,7 @@ def adjust_camera_to_image_scale_(
|
||||
image_size_wh_output,
|
||||
)
|
||||
camera.focal_length = focal_length_scaled[None]
|
||||
camera.principal_point = principal_point_scaled[None] # pyre-ignore
|
||||
camera.principal_point = principal_point_scaled[None]
|
||||
|
||||
|
||||
# NOTE this cache is per-worker; they are implemented as processes.
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
from typing import cast, Optional, Tuple
|
||||
|
||||
import torch
|
||||
@@ -88,10 +90,11 @@ def get_implicitron_sequence_pointcloud(
|
||||
frame_data.camera,
|
||||
frame_data.image_rgb,
|
||||
frame_data.depth_map,
|
||||
(cast(torch.Tensor, frame_data.fg_probability) > 0.5).float()
|
||||
if frame_data.fg_probability is not None
|
||||
else None,
|
||||
mask_points=mask_points,
|
||||
(
|
||||
(cast(torch.Tensor, frame_data.fg_probability) > 0.5).float()
|
||||
if mask_points and frame_data.fg_probability is not None
|
||||
else None
|
||||
),
|
||||
)
|
||||
|
||||
return point_cloud, frame_data
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
|
||||
import dataclasses
|
||||
import os
|
||||
|
||||
@@ -3,3 +3,5 @@
|
||||
#
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
|
||||
import copy
|
||||
import warnings
|
||||
@@ -282,9 +284,9 @@ def eval_batch(
|
||||
image_rgb_masked=image_rgb_masked,
|
||||
depth_render=cloned_render["depth_render"],
|
||||
depth_map=frame_data.depth_map,
|
||||
depth_mask=frame_data.depth_mask[:1]
|
||||
if frame_data.depth_mask is not None
|
||||
else None,
|
||||
depth_mask=(
|
||||
frame_data.depth_mask[:1] if frame_data.depth_mask is not None else None
|
||||
),
|
||||
visdom_env=visualize_visdom_env,
|
||||
)
|
||||
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
import copy
|
||||
import json
|
||||
import logging
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
# Allows to register the models
|
||||
# see: pytorch3d.implicitron.tools.config.registry:register
|
||||
from pytorch3d.implicitron.models.generic_model import GenericModel
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
|
||||
@@ -4,4 +4,6 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
from .feature_extractor import FeatureExtractorBase
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import torch
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
import logging
|
||||
import math
|
||||
from typing import Any, Dict, Optional, Tuple
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
|
||||
# Note: The #noqa comments below are for unused imports of pluggable implementations
|
||||
# which are part of implicitron. They ensure that the registry is prepopulated.
|
||||
@@ -63,7 +65,7 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@registry.register
|
||||
class GenericModel(ImplicitronModelBase): # pyre-ignore: 13
|
||||
class GenericModel(ImplicitronModelBase):
|
||||
"""
|
||||
GenericModel is a wrapper for the neural implicit
|
||||
rendering and reconstruction pipeline which consists
|
||||
@@ -224,34 +226,42 @@ class GenericModel(ImplicitronModelBase): # pyre-ignore: 13
|
||||
|
||||
# ---- global encoder settings
|
||||
global_encoder_class_type: Optional[str] = None
|
||||
# pyre-fixme[13]: Attribute `global_encoder` is never initialized.
|
||||
global_encoder: Optional[GlobalEncoderBase]
|
||||
|
||||
# ---- raysampler
|
||||
raysampler_class_type: str = "AdaptiveRaySampler"
|
||||
# pyre-fixme[13]: Attribute `raysampler` is never initialized.
|
||||
raysampler: RaySamplerBase
|
||||
|
||||
# ---- renderer configs
|
||||
renderer_class_type: str = "MultiPassEmissionAbsorptionRenderer"
|
||||
# pyre-fixme[13]: Attribute `renderer` is never initialized.
|
||||
renderer: BaseRenderer
|
||||
|
||||
# ---- image feature extractor settings
|
||||
# (This is only created if view_pooler is enabled)
|
||||
# pyre-fixme[13]: Attribute `image_feature_extractor` is never initialized.
|
||||
image_feature_extractor: Optional[FeatureExtractorBase]
|
||||
image_feature_extractor_class_type: Optional[str] = None
|
||||
# ---- view pooler settings
|
||||
view_pooler_enabled: bool = False
|
||||
# pyre-fixme[13]: Attribute `view_pooler` is never initialized.
|
||||
view_pooler: Optional[ViewPooler]
|
||||
|
||||
# ---- implicit function settings
|
||||
implicit_function_class_type: str = "NeuralRadianceFieldImplicitFunction"
|
||||
# This is just a model, never constructed.
|
||||
# The actual implicit functions live in self._implicit_functions
|
||||
# pyre-fixme[13]: Attribute `implicit_function` is never initialized.
|
||||
implicit_function: ImplicitFunctionBase
|
||||
|
||||
# ----- metrics
|
||||
# pyre-fixme[13]: Attribute `view_metrics` is never initialized.
|
||||
view_metrics: ViewMetricsBase
|
||||
view_metrics_class_type: str = "ViewMetrics"
|
||||
|
||||
# pyre-fixme[13]: Attribute `regularization_metrics` is never initialized.
|
||||
regularization_metrics: RegularizationMetricsBase
|
||||
regularization_metrics_class_type: str = "RegularizationMetrics"
|
||||
|
||||
@@ -395,9 +405,11 @@ class GenericModel(ImplicitronModelBase): # pyre-ignore: 13
|
||||
n_targets = (
|
||||
1
|
||||
if evaluation_mode == EvaluationMode.EVALUATION
|
||||
else batch_size
|
||||
if self.n_train_target_views <= 0
|
||||
else min(self.n_train_target_views, batch_size)
|
||||
else (
|
||||
batch_size
|
||||
if self.n_train_target_views <= 0
|
||||
else min(self.n_train_target_views, batch_size)
|
||||
)
|
||||
)
|
||||
|
||||
# A helper function for selecting n_target first elements from the input
|
||||
@@ -422,9 +434,12 @@ class GenericModel(ImplicitronModelBase): # pyre-ignore: 13
|
||||
ray_bundle: ImplicitronRayBundle = self.raysampler(
|
||||
target_cameras,
|
||||
evaluation_mode,
|
||||
mask=mask_crop[:n_targets]
|
||||
if mask_crop is not None and sampling_mode == RenderSamplingMode.MASK_SAMPLE
|
||||
else None,
|
||||
mask=(
|
||||
mask_crop[:n_targets]
|
||||
if mask_crop is not None
|
||||
and sampling_mode == RenderSamplingMode.MASK_SAMPLE
|
||||
else None
|
||||
),
|
||||
)
|
||||
|
||||
# custom_args hold additional arguments to the implicit function.
|
||||
|
||||
@@ -3,3 +3,5 @@
|
||||
#
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
import warnings
|
||||
from collections import defaultdict
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
from typing import List, Optional, Union
|
||||
|
||||
import torch
|
||||
@@ -57,12 +59,13 @@ class GlobalEncoderBase(ReplaceableBase):
|
||||
|
||||
# TODO: probabilistic embeddings?
|
||||
@registry.register
|
||||
class SequenceAutodecoder(GlobalEncoderBase, torch.nn.Module): # pyre-ignore: 13
|
||||
class SequenceAutodecoder(GlobalEncoderBase, torch.nn.Module):
|
||||
"""
|
||||
A global encoder implementation which provides an autodecoder encoding
|
||||
of the frame's sequence identifier.
|
||||
"""
|
||||
|
||||
# pyre-fixme[13]: Attribute `autodecoder` is never initialized.
|
||||
autodecoder: Autodecoder
|
||||
|
||||
def __post_init__(self):
|
||||
|
||||
@@ -3,3 +3,5 @@
|
||||
#
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user