Compare commits

...

114 Commits
v0.7.5 ... main

Author SHA1 Message Date
Antoine Dumoulin
50f8efa1cb Use sparse_coo_tensor in laplacian_matrices.py (#1991)
Summary:
update obsolete torch.sparse.FloatTensor to torch.sparse_coo_tensor

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1991

Reviewed By: MichaelRamamonjisoa

Differential Revision: D80084359

Pulled By: bottler

fbshipit-source-id: dc6c7a90211113d1ce5338a92c8c0030bfe12e65
2025-08-13 07:55:57 -07:00
Olga Gerasimova
5043d15361 avoid CPU/GPU sync in sample_farthest_points
Summary:
Optimizing sample_farthest_poinst by reducing CPU/GPU sync:
1. replacing iterative randint for starting indexes for 1 function call, if length is constant
2. Avoid sync in fetching maxumum of sample points, if we sample the same amount
3. Initializing 1 tensor for samples and indixes

compare
https://fburl.com/mlhub/7wk0xi98
Before
{F1980383703}
after
{F1980383707}

Histogram match pretty closely
{F1980464338}

Reviewed By: bottler

Differential Revision: D78731869

fbshipit-source-id: 060528ae7a1e0fbbd005d129c151eaf9405841de
2025-07-23 10:23:40 -07:00
Stone Tao
e3d3a67a89 Clamp matrices in matrix_to_euler_angles function (#1989)
Summary:
Closes https://github.com/facebookresearch/pytorch3d/issues/1988

Credit goes to tylerlum for raising this issue and suggesting this fix in https://github.com/haosulab/ManiSkill/pull/1090

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1989

Reviewed By: MichaelRamamonjisoa

Differential Revision: D78021983

Pulled By: bottler

fbshipit-source-id: d723f1924a399f4d7fd072e96ea740ae73cf280f
2025-07-10 06:08:19 -07:00
Jeremy Reizenstein
e55ea90609 disable import tests
Summary: these tests don't work, aren't needed right now

Reviewed By: MichaelRamamonjisoa

Differential Revision: D78084742

fbshipit-source-id: 9cff2b30427dec314e34e81179816af4073bbe23
2025-07-10 05:20:22 -07:00
Melvin He
3aee2a6005 Fixes bus error hard crashes on Apple Silicon MPS devices
Summary:
Fixes hard crashes (bus errors) when using MPS device (Apple Silicon) by implementing CPU checks throughout files in csrc subdirectories to check if on same mesh on a CPU device.

Note that this is the fourth and ultimate part of a larger change through multiple files & directories.

Reviewed By: bottler

Differential Revision: D77698176

fbshipit-source-id: 5bc9e3c5cea61afd486aed7396f390d92775ec6d
2025-07-03 12:34:37 -07:00
Melvin He
c5ea8fa49e Adds CHECK_CPU macros checks for tensors not on CPU
Summary:
Adds CHECK_CPU macros that checks if a tensor is on the CPU device throughout csrc directories and subdir up to `pulsar`.

Note that this is the third part of a larger change, and to keep diffs better organized, subsequent diffs will update the remaining directories.

Reviewed By: bottler

Differential Revision: D77696998

fbshipit-source-id: 470ca65b23d9965483b5bdd30c712da8e1131787
2025-07-03 08:29:36 -07:00
Melvin He
3ff6c5ab85 Error instead of crash for tensors on exotic devices
Summary:
Adds CHECK_CPU macros that checks if a tensor is on the CPU device throughout csrc directories up to `marching_cubes`. Directories updated include those in `gather_scatter`, `interp_face_attrs`, `iou_box3d`, `knn`, and `marching_cubes`.

Note that this is the second part of a larger change, and to keep diffs better organized, subsequent diffs will update the remaining directories.

Reviewed By: bottler

Differential Revision: D77558550

fbshipit-source-id: 762a0fe88548dc8d0901b198a11c40d0c36e173f
2025-07-01 09:14:38 -07:00
Srivathsan Govindarajan
267bd8ef87 Revert _sqrt_positive_part change
Reviewed By: bottler

Differential Revision: D77549647

fbshipit-source-id: a0ef0bc015c643ad7416c781886e2e23b5105bdd
2025-06-30 14:13:27 -07:00
Melvin He
177eec6378 Error instead of crash for tensors on exotic devices (#1986)
Summary:
Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1986

Adds device checks to prevent crashes on unsupported devices in PyTorch3D. Updates the `pytorch3d_cutils.h` file to include new macro CHECK_CPU that checks if a tensor is on the CPU device. This macro is then used in the directories from `ball_query` to `face_area_normals` to ensure that tensors are not on unsupported devices like MPS.

Note that this is the first part of a larger change, and to keep diffs better organized, subsequent diffs will update the remaining directories.

Reviewed By: bottler

Differential Revision: D77473296

fbshipit-source-id: 13dc84620dee667bddebad1dade2d2cb5a59c737
2025-06-30 12:27:38 -07:00
Srivathsan Govindarajan
71db7a0ea2 Removing dynamic shape ops and boolean indexing in matrix_to_quaternion
Summary:
The current implementation of `matrix_to_quaternion` and `_sqrt_positive_part` uses boolean indexing, which can slow down performance and cause incompatibility with `torch.compile` unless `torch._dynamo.config.capture_dynamic_output_shape_ops` is set to `True`.

To enhance performance and compatibility, I recommend using  `torch.gather` to select the best-conditioned quaternions and `F.relu` instead of `x>0` (bottler's suggestion)

For a detailed comparison of the implementation differences when using `torch.compile`, please refer to my Bento notebook
N7438339.

Reviewed By: bottler

Differential Revision: D77176230

fbshipit-source-id: 9a6a2e0015b5865056297d5f45badc3c425b93ce
2025-06-25 01:18:46 -07:00
Grace Cheng
6020323d94 Fix Self-Assignment in CUDA Stream Parameter in renderer.forward.device.h
Summary: Resolved self-assignment warnings in the `renderer.forward.device.h` file by removing redundant assignments of the `stream` variable to itself in `cub::DeviceSelect::Flagged` function calls. This change eliminates compiler errors and ensures cleaner, more efficient code execution.

Reviewed By: bottler

Differential Revision: D76554140

fbshipit-source-id: 28eae0186246f51a8ac8002644f184349aa49560
2025-06-13 11:00:16 -07:00
Emmanuel Ferdman
182e845c19 Resolve logger warnings (#1981)
Summary:
# PR Summary
This small PR resolves the annoying deprecation warnings of the `logger` library:
```python
DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead
```

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1981

Reviewed By: MichaelRamamonjisoa

Differential Revision: D75287169

Pulled By: bottler

fbshipit-source-id: 9ff9f5dd648aca8d8bb5d33577909da711d18647
2025-06-10 02:27:54 -07:00
generatedunixname89002005287564
f315ac131b Fix CQS signal facebook-unused-include-check in fbcode/vision/fair/pytorch3d/pytorch3d/csrc
Reviewed By: dtolnay

Differential Revision: D75938951

fbshipit-source-id: 8e4f9ce82ec988a30e4c8d54881b78560ceab0e0
2025-06-04 13:09:58 -07:00
Nick Riasanovsky
fc08621879 Fix distutils failure in Triton Beta testing
Summary: Fixes the distutils issues similar to D73934713

Reviewed By: bottler

Differential Revision: D75631611

fbshipit-source-id: 09c354d8cc51ff2c46f4688d7f674370e3f48f1e
2025-05-29 18:18:49 -07:00
generatedunixname89002005287564
3f327a516b Fix CQS signal facebook-unused-include-check in fbcode/vision/fair/pytorch3d/pytorch3d/csrc/pulsar
Reviewed By: dtolnay

Differential Revision: D75209078

fbshipit-source-id: 6b67d3354091d18b8171a6f4b38465ffcc9e17c5
2025-05-26 19:14:57 -07:00
Ting Xu
366eff21d9 Fix PyTorch3D build failure on windows
Summary: Replace #defines by typedefs by following the instructions at https://github.com/facebookresearch/pytorch3d/issues/1970?fbclid=IwY2xjawKZqMJleHRuA2FlbQIxMQBicmlkETFyWFczV2hMVmdOczJWellIAR7jxI6zGQiC5ag-FUXjSK12ljn7rmbMKc3HsLX-BC1TMpOUTJy-bsZxmfKzmw_aem_MIG_nc3eg7LL1o2fSAbl0A#issuecomment-2894339456

Reviewed By: bottler

Differential Revision: D75083182

fbshipit-source-id: 7131fe555bb0da615b341e77ddd8761ebce9d7eb
2025-05-21 07:46:49 -07:00
Jeff Daily
0a59450f0e remove IntWrapper (#1964)
Summary:
I could not access https://github.com/NVlabs/cub/issues/172 to understand whether IntWrapper was still necessary but the comment is from 5 years ago and causes problems for the ROCm build.

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1964

Reviewed By: MichaelRamamonjisoa

Differential Revision: D71937895

Pulled By: bottler

fbshipit-source-id: 5e0351e1bd8599b670436cd3464796eca33156f6
2025-03-28 08:16:54 -07:00
Richard Barnes
3987612062 Fix CUDA kernel index data type in vision/fair/pytorch3d/pytorch3d/csrc/compositing/alpha_composite.cu +10
Summary:
CUDA kernel variables matching the type `(thread|block|grid).(Idx|Dim).(x|y|z)` [have the data type `uint`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/#built-in-variables).

Many programmers mistakenly use implicit casts to turn these data types into `int`. In fact, the [CUDA Programming Guide](https://docs.nvidia.com/cuda/cuda-c-programming-guide/) it self is inconsistent and incorrect in its use of data types in programming examples.

The result of these implicit casts is that our kernels may give unexpected results when exposed to large datasets, i.e., those exceeding >~2B items.

While we now have linters in place to prevent simple mistakes (D71236150), our codebase has many problematic instances. This diff fixes some of them.

Reviewed By: dtolnay

Differential Revision: D71355356

fbshipit-source-id: cea44891416d9efd2f466d6c45df4e36008fa036
2025-03-19 13:21:43 -07:00
Alexandros Benetatos
06a76ef8dd Correct "fast" matrix_to_axis_angle near pi (#1953)
Summary:
A continuation of https://github.com/facebookresearch/pytorch3d/issues/1948 -- this commit fixes a small numerical issue with `matrix_to_axis_angle(..., fast=True)` near `pi`.
bottler feel free to check this out, it's a single-line change.

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1953

Reviewed By: MichaelRamamonjisoa

Differential Revision: D70088251

Pulled By: bottler

fbshipit-source-id: 54cc7f946283db700cec2cd5575cf918456b7f32
2025-03-11 12:25:59 -07:00
Richard Barnes
21205730d9 Fix unused-variable issues, mostly relating to AMD/HIP
Reviewed By: meyering

Differential Revision: D70845538

fbshipit-source-id: 8e52b5e1f1d96b86404fc3b8cbc6fb952e2cb1a6
2025-03-08 13:03:17 -08:00
Richard Barnes
7e09505538 Enable -Wunused-value in vision/PACKAGE +1
Summary:
This diff enables compilation warning flags for the directory in question. Further details are in [this workplace post](https://fb.workplace.com/permalink.php?story_fbid=pfbid02XaWNiCVk69r1ghfvDVpujB8Hr9Y61uDvNakxiZFa2jwiPHscVdEQwCBHrmWZSyMRl&id=100051201402394).

This is a low-risk diff. There are **no run-time effects** and the diff has already been observed to compile locally. **If the code compiles, it work; test errors are spurious.**

Differential Revision: D70282347

fbshipit-source-id: e2fa55c002d7124b13450c812165d244b8a53f4e
2025-03-04 17:49:30 -08:00
Nicholas Ormrod
20bd8b33f6 facebook-unused-include-check in fbcode/vision
Summary:
Remove headers flagged by facebook-unused-include-check over fbcode.vision.

+ format and autodeps

This is a codemod. It was automatically generated and will be landed once it is approved and tests are passing in sandcastle.
You have been added as a reviewer by Sentinel or Butterfly.

Autodiff project: uiv
Autodiff partition: fbcode.vision
Autodiff bookmark: ad.uiv.fbcode.vision

Reviewed By: dtolnay

Differential Revision: D70403619

fbshipit-source-id: d109c15774eeb3d809875f75fa2a26ed20d7f9a6
2025-02-28 18:08:12 -08:00
alex-bene
7a3c0cbc9d Increase performance for conversions including axis angles (#1948)
Summary:
This is an extension of https://github.com/facebookresearch/pytorch3d/issues/1544 with various speed, stability, and readability improvements. (I could not find a way to make a commit to the existing PR). This PR is still based on the [Rodrigues' rotation formula](https://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions#Rotation_matrix_%E2%86%94_Euler_axis/angle).

The motivation is the same; this change speeds up the conversions up to 10x, depending on the device, batch size, etc.

### Notes
- As the angles get very close to `π`, the existing implementation and the proposed one start to differ. However, (my understanding is that) this is not a problem as the axis can not be stably inferred from the rotation matrix in this case in general.
- bottler , I tried to follow similar conventions as existing functions to deal with weird angles, let me know if something needs to be changed to merge this.

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1948

Reviewed By: MichaelRamamonjisoa

Differential Revision: D69193009

Pulled By: bottler

fbshipit-source-id: e5ed34b45b625114ec4419bb89e22a6aefad4eeb
2025-02-07 07:37:42 -08:00
Roman Shapovalov
215590b497 In FrameDataBuilder, set all path even if we don’t load blobs
Summary:
This is a somewhat not BC change: some None paths will be replaced by metadata paths, even when they were not used for data loading.

Moreover, removing the legacy fix to the paths in the old CO3D release.

Reviewed By: bottler

Differential Revision: D69048238

fbshipit-source-id: 2a8b26d7b9f5e2adf39c65888b5863a5a9de1996
2025-02-06 09:41:44 -08:00
Antoine Toisoul
43cd681d4f Updates to Implicitron dataset, metrics and tools
Summary: Update Pytorch3D to be able to run assetgen (see later diffs in the stack)

Reviewed By: shapovalov

Differential Revision: D65942513

fbshipit-source-id: 1d01141c9f7e106608fa591be6e0d3262cb5944f
2025-01-27 09:43:42 -08:00
Roman Shapovalov
42a4a7d432 Generalising SqlIndexDataset to support subtypes of SqlSequenceAnnotation
Summary: We did not often extend sequence-level metadata but now for applications like text-to-3D/video, we need to store captions and similar.

Reviewed By: bottler

Differential Revision: D68269926

fbshipit-source-id: f8af308adce51863d719a335d85cd2558943bd4c
2025-01-20 03:39:06 -08:00
generatedunixname89002005307016
699bc671ca Add missing Pyre mode headers] [batch:3/1531] [shard:41/N]
Differential Revision: D68316763

fbshipit-source-id: fb3e1e1a17786f6f681f1b11b48b4efd7a8ac311
2025-01-17 12:41:56 -08:00
Roman Shapovalov
49cf5a0f37 Loading fg probability from the alpha channel of image_rgb
Summary:
It is often easier to store the mask together with RGB, especially for renders. The logic in this diff:
* if load_mask and mask_path provided, take the mask from mask_path,
* otherwise, check if the image has the alpha channel and take it as a mask.

Reviewed By: antoinetlc

Differential Revision: D68160212

fbshipit-source-id: d9b6779f90027a4987ba96800983f441edff9c74
2025-01-15 11:53:30 -08:00
Roman Shapovalov
89b851e64c Refactor a utility function for bbox conversion
Summary: This function makes it easier to extend FrameData class with new channels; brushing it up a bit.

Reviewed By: bottler

Differential Revision: D67816470

fbshipit-source-id: 6575415c864d0f539e283889760cd2331bf226a7
2025-01-06 04:17:57 -08:00
Roman Shapovalov
5247f6ad74 Fixing type hints in FrameData
Summary: As subj

Reviewed By: bottler

Differential Revision: D67791200

fbshipit-source-id: c2db01c94718102618f4c8bc5c5130c65ee1d81f
2025-01-06 04:17:57 -08:00
Roman Shapovalov
e41aff47db Adding default values to FrameData for internal usage
Summary: Ensuring all fields in FrameData have defaults.

Reviewed By: bottler

Differential Revision: D67762780

fbshipit-source-id: b680d29a1a11689850905978df544cdb4eb7ddcd
2025-01-06 04:17:57 -08:00
Roman Shapovalov
64a5bfadc8 Adding SQL Dataset related files to the build script
Summary: Now that we have SQLAlchemy 2.0, we can fully use them.

Reviewed By: bottler

Differential Revision: D66920096

fbshipit-source-id: 25c0ea1c4f7361e66348035519627dc961b9e6e6
2024-12-23 16:05:26 -08:00
Thomas Polasek
055ab3a2e3 Convert directory fbcode/vision to use the Ruff Formatter
Summary:
Converts the directory specified to use the Ruff formatter in pyfmt

ruff_dog

If this diff causes merge conflicts when rebasing, please run
`hg status -n -0 --change . -I '**/*.{py,pyi}' | xargs -0 arc pyfmt`
on your diff, and amend any changes before rebasing onto latest.
That should help reduce or eliminate any merge conflicts.

allow-large-files

Reviewed By: bottler

Differential Revision: D66472063

fbshipit-source-id: 35841cb397e4f8e066e2159550d2f56b403b1bef
2024-11-26 02:38:20 -08:00
Edward Yang
f6c2ca6bfc Prepare for "Fix type-safety of torch.nn.Module instances": wave 2
Summary: See D52890934

Reviewed By: malfet, r-barnes

Differential Revision: D66245100

fbshipit-source-id: 019058106ac7eaacf29c1c55912922ea55894d23
2024-11-21 11:08:51 -08:00
Jeremy Reizenstein
e20cbe9b0e test fixes and lints
Summary:
- followup recent pyre change D63415925
- make tests remove temporary files
- weights_only=True in torch.load
- lint fixes

3 test fixes from VRehnberg in https://github.com/facebookresearch/pytorch3d/issues/1914
- imageio channels fix
- frozen decorator in test_config
- load_blobs positional

Reviewed By: MichaelRamamonjisoa

Differential Revision: D66162167

fbshipit-source-id: 7737e174691b62f1708443a4fae07343cec5bfeb
2024-11-20 09:15:51 -08:00
Jeremy Reizenstein
c17e6f947a run CI tests on main
Reviewed By: MichaelRamamonjisoa

Differential Revision: D66162168

fbshipit-source-id: 90268c1925fa9439b876df143035c9d3c3a74632
2024-11-20 05:06:52 -08:00
Yann Noutary
91c9f34137 Add safeguard in case num_tris diverges
Summary:
This PR fixes adds a safeguard preventing num_tris to overflow in `MAX_TRIS`-length arrays. The update rule of `num_tris` is bounded :

 - max(num_tris(t)) = 2*num_tris(t-1)
 - num_tris(0) = 12
 - t <= 6

So :
 - max(num_tris) = 2^6*12
 - max(num_tris) = 768

Reviewed By: bottler

Differential Revision: D66162573

fbshipit-source-id: e269a79c75c6cc33306986b1f1256cffbe96c730
2024-11-20 01:24:28 -08:00
Jeremy Reizenstein
81d82980bc Fix ogl test hang
Summary: See https://github.com/facebookresearch/pytorch3d/issues/1908

Reviewed By: MichaelRamamonjisoa

Differential Revision: D65280253

fbshipit-source-id: ec05902c5f2f7eb9ddd92bda0045cc3564b8c091
2024-11-06 11:40:42 -08:00
Jeremy Reizenstein
8fe6934885 fix subdivide_meshes with empty mesh #1788
Summary:
Simplify code

fixes https://github.com/facebookresearch/pytorch3d/issues/1788

Reviewed By: MichaelRamamonjisoa

Differential Revision: D61847675

fbshipit-source-id: 48400875d1d885bb3615bc9f4b3c7c3d822b67e7
2024-11-06 11:40:26 -08:00
bottler
c434957b2a Run tests in github action (#1896)
Summary: Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1896

Reviewed By: MichaelRamamonjisoa

Differential Revision: D65272512

Pulled By: bottler

fbshipit-source-id: 3bcfab43acd2d6be5444ff25178381510ddac015
2024-11-06 11:15:34 -08:00
Jeremy Reizenstein
dd2a11b5fc Fix OFF for new numpy errors
Summary: Error messages have changed around numpy version 2, making existing code fail.

Reviewed By: MichaelRamamonjisoa

Differential Revision: D65280674

fbshipit-source-id: b3ae613ea8f0f4ae20fb6e5e816314b8c10e6c65
2024-11-06 11:13:59 -08:00
Richard Barnes
9563ef79ca c10::optional -> std::optional in some files
Reviewed By: jermenkoo

Differential Revision: D65425234

fbshipit-source-id: 1e7707d6b6aab640cc1fdd3bd71a3b50f77a0909
2024-11-04 12:03:51 -08:00
generatedunixname89002005287564
008c7ab58c Pre-silence Pyre Errors for upcoming upgrade] [batch:67/603] [shard:3/N]
Reviewed By: MaggieMoss

Differential Revision: D65290095

fbshipit-source-id: ced87d096aa8939700de5599ce6984cd7ae93912
2024-10-31 16:26:25 -07:00
Jeremy Reizenstein
9eaed4c495 Fix K>1 in multimap UV sampling
Summary:
Fixes https://github.com/facebookresearch/pytorch3d/issues/1897
"Wrong dimension on gather".

Reviewed By: cijose

Differential Revision: D65280675

fbshipit-source-id: 1d587036887972bb2a2ea56d40df19cbf1aeb6cc
2024-10-31 16:05:10 -07:00
Richard Barnes
e13848265d at::optional -> std::optional (#1170)
Summary: Pull Request resolved: https://github.com/pytorch/ao/pull/1170

Reviewed By: gineshidalgo99

Differential Revision: D64938040

fbshipit-source-id: 57f98b90676ad0164a6975ea50e4414fd85ae6c4
2024-10-25 06:37:57 -07:00
generatedunixname89002005307016
58566963d6 Add type error suppressions for upcoming upgrade
Reviewed By: MaggieMoss

Differential Revision: D64502797

fbshipit-source-id: cee9a54dfa8a005d5912b895d0bd094f352c5c6f
2024-10-16 19:22:01 -07:00
Suresh Babu Kolla
e17ed5cd50 Hipify Pulsar for PyTorch3D
Summary:
- Hipified Pytorch Pulsar
   - Created separate target for Pulsar tests and enabled RE testing
   - Pytorch3D full test suite requires additional work like fixing EGL
     dependencies on AMD

Reviewed By: danzimm

Differential Revision: D61339912

fbshipit-source-id: 0d10bc966e4de4a959f3834a386bad24e449dc1f
2024-10-09 14:38:42 -07:00
Richard Barnes
8ed0c7a002 c10::optional -> std::optional
Summary: `c10::optional` is an alias for `std::optional`. Let's remove the alias and use the real thing.

Reviewed By: meyering

Differential Revision: D63402341

fbshipit-source-id: 241383e7ca4b2f3f1f9cac3af083056123dfd02b
2024-10-03 14:38:37 -07:00
Richard Barnes
2da913c7e6 c10::optional -> std::optional
Summary: `c10::optional` is an alias for `std::optional`. Let's remove the alias and use the real thing.

Reviewed By: palmje

Differential Revision: D63409387

fbshipit-source-id: fb6db59a14db9e897e2e6b6ad378f33bf2af86e8
2024-10-02 11:09:29 -07:00
generatedunixname89002005307016
fca83e6369 Convert .pyre_configuration.local to fast by default architecture] [batch:23/263] [shard:3/N] [A]
Reviewed By: connernilsen

Differential Revision: D63415925

fbshipit-source-id: c3e28405c70f9edcf8c21457ac4faf7315b07322
2024-09-25 17:34:03 -07:00
Jeremy Reizenstein
75ebeeaea0 update version to 0.7.8
Summary: as title

Reviewed By: das-intensity

Differential Revision: D62588556

fbshipit-source-id: 55bae19dd1df796e83179cd29d805fcd871b6d23
2024-09-13 02:31:49 -07:00
Jeremy Reizenstein
ab793177c6 remove pytorch2.0 builds
Summary: these are failing in ci

Reviewed By: das-intensity

Differential Revision: D62594666

fbshipit-source-id: 5e3a7441be2978803dc2d3e361365e0fffa7ad3b
2024-09-13 02:07:25 -07:00
Jeremy Reizenstein
9acdd67b83 fix obj material indexing bug #1368
Summary:
Make the negative index actually not an error

fixes https://github.com/facebookresearch/pytorch3d/issues/1368

Reviewed By: das-intensity

Differential Revision: D62177991

fbshipit-source-id: e5ed433bde1f54251c4d4b6db073c029cbe87343
2024-09-13 02:00:49 -07:00
Nicholas Dahm
3f428d9981 pytorch 2.4.0 + 2.4.1
Summary:
Apparently pytorch 2.4 is now supported as per [this closed issue](https://github.com/facebookresearch/pytorch3d/issues/1863).

Added the `2.4.0` & `2.4.1` versions to `regenerate.py` then ran that as per the `README_fb.md` which generated `config.yml` changes.

Reviewed By: bottler

Differential Revision: D62517831

fbshipit-source-id: 002e276dfe2fa078136ff2f6c747d937abbadd1a
2024-09-11 15:09:43 -07:00
Josh Fromm
05cbea115a Hipify Pytorch3D (#1851)
Summary:
X-link: https://github.com/pytorch/pytorch/pull/133343

X-link: https://github.com/fairinternal/pytorch3d/pull/45

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1851

Enables pytorch3d to build on AMD. An important part of enabling this was not compiling the Pulsar backend when the target is AMD. There are simply too many kernel incompatibilites to make it work (I tried haha). Fortunately, it doesnt seem like most modern applications of pytorch3d rely on Pulsar. We should be able to unlock most of pytorch3d's goodness on AMD without it.

Reviewed By: bottler, houseroad

Differential Revision: D61171993

fbshipit-source-id: fd4aee378a3568b22676c5bf2b727c135ff710af
2024-08-15 16:18:22 -07:00
generatedunixname89002005307016
38afdcfc68 upgrade pyre version in fbcode/vision - batch 2
Reviewed By: bottler

Differential Revision: D60992234

fbshipit-source-id: 899db6ed590ef966ff651c11027819e59b8401a3
2024-08-09 02:07:45 -07:00
Christine Sun
1e0b1d9c72 Remove Python versions from Install.md
Summary: To avoid the installation instructions for PyTorch3D becoming out-of-date, instead of specifying certain Python versions, update to just `Python`. Reader will understand it has to be a Python version compatible with GitHub.

Reviewed By: bottler

Differential Revision: D60919848

fbshipit-source-id: 5e974970a0db3d3d32fae44e5dd30cbc1ce237a9
2024-08-07 13:46:31 -07:00
Rebecca Chen (Python)
44702fdb4b Add "max" point reduction for chamfer distance
Summary:
* Adds a "max" option for the point_reduction input to the
  chamfer_distance function.
* When combining the x and y directions, maxes the losses instead
  of summing them when point_reduction="max".
* Moves batch reduction to happen after the directions are
  combined.
* Adds test_chamfer_point_reduction_max and
  test_single_directional_chamfer_point_reduction_max tests.

Fixes  https://github.com/facebookresearch/pytorch3d/issues/1838

Reviewed By: bottler

Differential Revision: D60614661

fbshipit-source-id: 7879816acfda03e945bada951b931d2c522756eb
2024-08-02 10:46:07 -07:00
Jeremy Reizenstein
7edaee71a9 allow matrix_to_quaternion onnx export
Summary: Attempt to allow torch.onnx.dynamo_export(matrix_to_quaternion) to work.

Differential Revision: D59812279

fbshipit-source-id: 4497e5b543bec9d5c2bdccfb779d154750a075ad
2024-07-16 11:30:20 -07:00
Roman Shapovalov
d0d0e02007 Fix: setting FrameData.crop_bbox_xywh for backwards compatibility
Summary: This diff is fixing a backwards compatibility issue in PyTorch3D's dataset API. The code ensures that the `crop_bbox_xywh` attribute is set when box_crop flag is on. This is an implementation detail that people should not really use, however some people depend on this behaviour.

Reviewed By: bottler

Differential Revision: D59777449

fbshipit-source-id: b875e9eb909038b8629ccdade87661bb2c39d529
2024-07-16 02:21:13 -07:00
Jeremy Reizenstein
4df110b0a9 remove fvcore dependency
Summary: This is not actually needed and is causing a conda-forge confusion to do with python_abi - which needs users to have `-c conda-forge` when they install pytorch3d.

Reviewed By: patricklabatut

Differential Revision: D59587930

fbshipit-source-id: 961ae13a62e1b2b2ce6d8781db38bd97eca69e65
2024-07-11 04:35:38 -07:00
Huy Do
51fd114d8b Forward fix internal pyre failure from D58983461
Summary:
X-link: https://github.com/pytorch/pytorch/pull/129525

Somehow, using underscore alias of some builtin types breaks pyre

Reviewed By: malfet, clee2000

Differential Revision: D59029768

fbshipit-source-id: cfa2171b66475727b9545355e57a8297c1dc0bc6
2024-06-27 07:35:18 -07:00
Jeremy Reizenstein
89653419d0 version 0.7.7
Summary: New version

Reviewed By: MichaelRamamonjisoa

Differential Revision: D58668979

fbshipit-source-id: 195eaf83e4da51a106ef72e38dbb98c51c51724c
2024-06-25 06:59:24 -07:00
Jeremy Reizenstein
7980854d44 require pytorch 2.0+
Summary: Problems with timeouts on old builds.

Reviewed By: MichaelRamamonjisoa

Differential Revision: D58819435

fbshipit-source-id: e1976534a102ad3841f3b297c772e916aeea12cb
2024-06-21 08:15:17 -07:00
Jeremy Reizenstein
51d7c06ddd MKL version fix in CI (#1820)
Summary:
Fix for "undefined symbol: iJIT_NotifyEvent" build issue,

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1820

Reviewed By: MichaelRamamonjisoa

Differential Revision: D58685326

fbshipit-source-id: 48b54367c00851cc6fbb111ca98d69a2ace8361b
2024-06-21 08:15:17 -07:00
Sergii Dymchenko
00c36ec01c Update deprecated PyTorch functions in fbcode/vision
Reviewed By: bottler

Differential Revision: D58762015

fbshipit-source-id: a0d05fe63a88d33e3f7783b5a7b2a476dd3a7449
2024-06-20 14:06:28 -07:00
vedrenne
b0462d8079 Allow indexing for classes inheriting Transform3d (#1801)
Summary:
Currently, it is not possible to access a sub-transform using an indexer for all 3d transforms inheriting the `Transforms3d` class.
For instance:

```python
from pytorch3d import transforms

N = 10
r = transforms.random_rotations(N)
T = transforms.Transform3d().rotate(R=r)
R = transforms.Rotate(r)

x = T[0]  # ok
x = R[0]  # TypeError: __init__() got an unexpected keyword argument 'matrix'
```

This is because all these classes (namely `Rotate`, `Translate`, `Scale`, `RotateAxisAngle`) inherit the `__getitem__()` method from `Transform3d` which has the [following code on line 201](https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/transform3d.py#L201):

```python
return self.__class__(matrix=self.get_matrix()[index])
```

The four classes inheriting `Transform3d` are not initialized through a matrix argument, hence they error.
I propose to modify the `__getitem__()` method of the `Transform3d` class to fix this behavior. The least invasive way to do it I can think of consists of creating an empty instance of the current class, then setting the `_matrix` attribute manually. Thus, instead of
```python
return self.__class__(matrix=self.get_matrix()[index])
```
I propose to do:
```python
instance = self.__class__.__new__(self.__class__)
instance._matrix = self.get_matrix()[index]
return instance
```

As far as I can tell, this modification occurs no modification whatsoever for the user, except for the ability to index all 3d transforms.

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1801

Reviewed By: MichaelRamamonjisoa

Differential Revision: D58410389

Pulled By: bottler

fbshipit-source-id: f371e4c63d2ae4c927a7ad48c2de8862761078de
2024-06-17 07:48:18 -07:00
Jeremy Reizenstein
b66d17a324 Undo c10=>std optional rename
Summary: Undoes the pytorch3d changes in D57294278 because they break builds for for PyTorch<2.1 .

Reviewed By: MichaelRamamonjisoa

Differential Revision: D57379779

fbshipit-source-id: 47a12511abcec4c3f4e2f62eff5ba99deb2fab4c
2024-06-17 07:09:30 -07:00
Kyle Vedder
717493cb79 Fixed last dimension size check so that it doesn't trivially pass. (#1815)
Summary:
Currently, it checks that the `2`th dimension of `p2` is the same size as the `2`th dimension of `p2` instead of `p1`.

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1815

Reviewed By: MichaelRamamonjisoa

Differential Revision: D58586966

Pulled By: bottler

fbshipit-source-id: d4f723fa264f90fe368c10825c1acdfdc4c406dc
2024-06-17 06:00:13 -07:00
Jeremy Reizenstein
302da69461 builds for PyTorch 2.2.1 2.2.2 2.3.0 2.3.1
Summary: Build for new pytorch versions

Reviewed By: MichaelRamamonjisoa

Differential Revision: D58668956

fbshipit-source-id: 7fdfb377b370448d6147daded6a21b8db87586fb
2024-06-17 05:57:59 -07:00
Roman Shapovalov
4ae25bfce7 Moving ray bundle to float dtype
Summary: We can now move ray bundle to float dtype (e.g. from fp16 like types).

Reviewed By: bottler

Differential Revision: D57493109

fbshipit-source-id: 4e18a427e968b646fe5feafbff653811cd007981
2024-05-30 10:06:38 -07:00
Richard Barnes
bd52f4a408 c10::optional -> std::optional in tensorboard/adhoc/Adhoc.h +9
Summary: `c10::optional` was switched to be `std::optional` after PyTorch moved to C++17. Let's eliminate `c10::optional`, if we can.

Reviewed By: albanD

Differential Revision: D57294278

fbshipit-source-id: f6f26133c43f8d92a4588f59df7d689e7909a0cd
2024-05-13 16:40:34 -07:00
generatedunixname89002005307016
17117106e4 upgrade pyre version in fbcode/vision - batch 2
Differential Revision: D57183103

fbshipit-source-id: 7e2f42ddc6a1fa02abc27a451987d67a00264cbb
2024-05-10 01:18:43 -07:00
Richard Barnes
aec76bb4c8 Remove unused-but-set variables in vision/fair/pytorch3d/pytorch3d/csrc/pulsar/include/renderer.render.device.h +1
Summary:
This diff removes a variable that was set, but which was not used.

LLVM-15 has a warning `-Wunused-but-set-variable` which we treat as an error because it's so often diagnostic of a code issue. Unused but set variables often indicate a programming mistake, but can also just be unnecessary cruft that harms readability and performance.

Removing this variable will not change how your code works, but the unused variable may indicate your code isn't working the way you thought it was. I've gone through each of these by hand, but mistakes may have slipped through. If you feel the diff needs changes before landing, **please commandeer** and make appropriate changes: there are hundreds of these and responding to them individually is challenging.

For questions/comments, contact r-barnes.

 - If you approve of this diff, please use the "Accept & Ship" button :-)

Reviewed By: bottler

Differential Revision: D56886956

fbshipit-source-id: 0c515ed98b812b1c106a59e19ec90751ce32e8c0
2024-05-02 13:58:05 -07:00
Andres Suarez
47d5dc8824 Apply clang-format 18
Summary: Previously this code conformed from clang-format 12.

Reviewed By: igorsugak

Differential Revision: D56065247

fbshipit-source-id: f5a985dd8f8b84f2f9e1818b3719b43c5a1b05b3
2024-04-14 11:28:32 -07:00
generatedunixname89002005307016
fe0b1bae49 upgrade pyre version in fbcode/vision - batch 2
Differential Revision: D55650177

fbshipit-source-id: d5faa4d805bb40fe3dea70b0601e7a1382b09f3a
2024-04-02 18:11:50 -07:00
Ruishen Lyu
ccf22911d4 Optimize list_to_packed to avoid for loop (#1737)
Summary:
For larger N and Mi value (e.g. N=154, Mi=238) I notice list_to_packed() has become a bottleneck for my application. By removing the for loop and running on GPU, i see a 10-20 x speedup.

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1737

Reviewed By: MichaelRamamonjisoa

Differential Revision: D54187993

Pulled By: bottler

fbshipit-source-id: 16399a24cb63b48c30460c7d960abef603b115d0
2024-04-02 07:50:25 -07:00
Ashim Dahal
128be02fc0 feat: adjusted sample_nums (#1768)
Summary:
adjusted sample_nums to match the number of columns in the image grid. It originally produced image grid with 5 axes but only 3 images and after this fix, the block would work as intended.

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1768

Reviewed By: MichaelRamamonjisoa

Differential Revision: D55632872

Pulled By: bottler

fbshipit-source-id: 44d633a8068076889e49d49b8a7910dba0db37a7
2024-04-02 06:02:48 -07:00
Roeia Kishk
31e3488a51 Changed tutorials' pip searching
Summary:
### Generalise tutorials' pip searching:
## Required Information:
This diff contains changes to several PyTorch3D tutorials.

**Purpose of this diff:**
Replace the current installation code with a more streamlined approach that tries to install the wheel first and falls back to installing from source if the wheel is not found.

**Why this diff is required:**
This diff makes it easier to cope with new PyTorch releases and reduce the need for manual intervention, as the current process involves checking the version of PyTorch in Colab and building a new wheel if it doesn't match the expected version, which generates additional work each time there is a a new PyTorch version in Colab.

**Changes:**
Before:
```
    if torch.__version__.startswith("2.1.") and sys.platform.startswith("linux"):
        # We try to install PyTorch3D via a released wheel.
        pyt_version_str=torch.__version__.split("+")[0].replace(".", "")
        version_str="".join([
            f"py3{sys.version_info.minor}_cu",
            torch.version.cuda.replace(".",""),
            f"_pyt{pyt_version_str}"
        ])
        !pip install fvcore iopath
        !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html
    else:
        # We try to install PyTorch3D from source.
        !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'
```
After:
```
    pyt_version_str=torch.__version__.split("+")[0].replace(".", "")
    version_str="".join([
        f"py3{sys.version_info.minor}_cu",
        torch.version.cuda.replace(".",""),
        f"_pyt{pyt_version_str}"
    ])
    !pip install fvcore iopath
    if sys.platform.startswith("linux"):
      # We try to install PyTorch3D via a released wheel.
      !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html
      pip_list = !pip freeze
      need_pytorch3d = not any(i.startswith("pytorch3d==") for  i in pip_list)

    if need_pytorch3d:
        # We try to install PyTorch3D from source.
        !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'
```

Reviewed By: bottler

Differential Revision: D55431832

fbshipit-source-id: a8de9162470698320241ae8401427dcb1ce17c37
2024-03-28 11:24:43 -07:00
generatedunixname89002005307016
b215776f2d upgrade pyre version in fbcode/vision - batch 2
Differential Revision: D55395614

fbshipit-source-id: 71677892b5d6f219f6df25b4efb51fb0f6b1441b
2024-03-26 22:02:22 -07:00
Cijo Jose
38cf0dc1c5 TexturesUV multiple maps
Summary: Implements the  the TexturesUV with multiple map ids.

Reviewed By: bottler

Differential Revision: D53944063

fbshipit-source-id: 06c25eb6d69f72db0484f16566dd2ca32a560b82
2024-03-12 06:59:31 -07:00
Jaap Suter
7566530669 CUDA marching_cubes fix
Summary:
Fix an inclusive vs exclusive scan mix-up that was accidentally introduced when removing the Thrust dependency (`Thrust::exclusive_scan`) and reimplementing it using `at::cumsum` (which does an inclusive scan).

This fixes two Github reported issues:

 * https://github.com/facebookresearch/pytorch3d/issues/1731
 * https://github.com/facebookresearch/pytorch3d/issues/1751

Reviewed By: bottler

Differential Revision: D54605545

fbshipit-source-id: da9e92f3f8a9a35f7b7191428d0b9a9ca03e0d4d
2024-03-07 15:38:24 -08:00
Conner Nilsen
a27755db41 Pyre Configurationless migration for] [batch:85/112] [shard:6/N]
Reviewed By: inseokhwang

Differential Revision: D54438157

fbshipit-source-id: a6acfe146ed29fff82123b5e458906d4b4cee6a2
2024-03-04 18:30:37 -08:00
Amethyst Reese
3da7703c5a apply Black 2024 style in fbcode (4/16)
Summary:
Formats the covered files with pyfmt.

paintitblack

Reviewed By: aleivag

Differential Revision: D54447727

fbshipit-source-id: 8844b1caa08de94d04ac4df3c768dbf8c865fd2f
2024-03-02 17:31:19 -08:00
Jeremy Reizenstein
f34104cf6e version 0.7.6
Summary: New version

Reviewed By: cijose

Differential Revision: D53852987

fbshipit-source-id: 962ab9f61153883df9da0601356bd6b108dc5df7
2024-02-19 03:28:54 -08:00
Jeremy Reizenstein
f247c86dc0 Update tutorials for 0.7.6
Summary:
version number changed with
`sed -i "s/2.1\./2.2./" *b`

Reviewed By: cijose

Differential Revision: D53852986

fbshipit-source-id: 1662c8e6d671321887a3263bc3880d5c33d1f866
2024-02-19 03:28:54 -08:00
Cijo Jose
ae9d8787ce Support color in cubify
Summary: The diff support colors in cubify for align = "center"

Reviewed By: bottler

Differential Revision: D53777011

fbshipit-source-id: ccb2bd1e3d89be3d1ac943eff08f40e50b0540d9
2024-02-16 08:19:12 -08:00
Jeremy Reizenstein
8772fe0de8 Make OpenGL optional in tests
Summary: Add an option to run tests without the OpenGL Renderer.

Reviewed By: patricklabatut

Differential Revision: D53573400

fbshipit-source-id: 54a14e7b2f156d24e0c561fdb279f4a9af01b793
2024-02-13 07:43:42 -08:00
Ada Martin
c292c71c1a c++ marching cubes fix
Summary:
Fixes https://github.com/facebookresearch/pytorch3d/issues/1641. The bug was caused by the mistaken downcasting of an int64_t into int, causing issues only on inputs large enough to have hashes that escaped the bounds of an int32.

Also added a test case for this issue.

Reviewed By: bottler

Differential Revision: D53505370

fbshipit-source-id: 0fdd0efc6d259cc3b0263e7ff3a4ab2c648ec521
2024-02-08 11:13:15 -08:00
Jeremy Reizenstein
d0d9cae9cd builds for PyTorch 2.1.1 2.1.2 2.2.0
Summary: Build for new pytorch versions

Reviewed By: shapovalov

Differential Revision: D53266104

fbshipit-source-id: f7aaacaf39cab3839b24f45361c36f087d0ea7c9
2024-02-07 11:56:52 -08:00
generatedunixname89002005287564
1f92c4e9d2 vision/fair
Reviewed By: zsol

Differential Revision: D53258682

fbshipit-source-id: 3f006b5f31a2b1ffdc6323d3a3b08ac46c3162ce
2024-01-31 07:43:49 -08:00
generatedunixname89002005307016
9b981f2c7e suppress errors in vision/fair/pytorch3d
Differential Revision: D53152021

fbshipit-source-id: 78be99b00abe4d992db844ff5877a89d42d468af
2024-01-26 19:10:37 -08:00
generatedunixname89002005307016
85eccbbf77 suppress errors in vision/fair/pytorch3d
Differential Revision: D53111480

fbshipit-source-id: 0f506bf29cf908e40b058ae72f51e828cd597825
2024-01-25 21:13:30 -08:00
generatedunixname89002005307016
b80ab0caf0 upgrade pyre version in fbcode/vision - batch 1
Differential Revision: D53059851

fbshipit-source-id: f5d0951186c858f90ddf550323a163e4b6d42b68
2024-01-24 23:56:06 -08:00
Dimitris Prountzos
1e817914b3 Fix compiler warning in knn.ku
Summary: This change updates the type of p2_idx from size_t to int64_t to address compiler warnings related to signed/unsigned comparison.

Reviewed By: bottler

Differential Revision: D52879393

fbshipit-source-id: de5484d78a907fccdaae3ce036b5e4a1a0a4de70
2024-01-18 12:27:16 -08:00
Ido Zachevsky
799c1cd21b Allow get_rgbd_point_cloud to take any #channels
Summary: Fixed `get_rgbd_point_cloud` to take any number of image input channels.

Reviewed By: bottler

Differential Revision: D52796276

fbshipit-source-id: 3ddc0d1e337a6cc53fc86c40a6ddb136f036f9bc
2024-01-16 03:38:26 -08:00
Abdelrahman Selim
292acc71a3 Update so3 operations for numerical stability
Summary: Replace implementations of `so3_exp_map` and `so3_log_map` in so3.py with existing more-stable implementations.

Reviewed By: bottler

Differential Revision: D52513319

fbshipit-source-id: fbfc039643fef284d8baa11bab61651964077afe
2024-01-04 02:26:56 -08:00
Jeremy Reizenstein
3621a36494 mac build fix
Summary: Fix for https://github.com/facebookresearch/pytorch3d/issues/1708

Reviewed By: patricklabatut

Differential Revision: D52480756

fbshipit-source-id: 530c0f9413970fba042eec354e28318c96e35f42
2024-01-03 07:46:54 -08:00
Abdelrahman Selim
3087ab7f62 Standardize matrix_to_quaternion output
Summary:
An OSS user has pointed out in https://github.com/facebookresearch/pytorch3d/issues/1703 that the output of matrix_to_quaternion (in that file) can be non standardized.

This diff solves the issue by adding a line of standardize at the end of the function

Reviewed By: bottler

Differential Revision: D52368721

fbshipit-source-id: c8d0426307fcdb7fd165e032572382d5ae360cde
2023-12-21 13:43:29 -08:00
Tony Tan
e46ab49a34 Submeshing TexturesAtlas for PyTorch3D 3D Rendering
Summary: Implement submeshing for TexturesAtlas and add associated test

Reviewed By: bottler

Differential Revision: D52334053

fbshipit-source-id: d54080e9af1f0c01551702736e858e3bd439ac58
2023-12-21 11:08:01 -08:00
Hassan Lotfi
8a27590c5f Submeshing TexturesUV
Summary: Implement `submeshes` for TexturesUV. Fix what Meshes.submeshes passes to the texture's submeshes function to make this possible.

Reviewed By: bottler

Differential Revision: D52192060

fbshipit-source-id: 526734962e3376aaf75654200164cdcebfff6997
2023-12-19 06:48:06 -08:00
Eric Young
06cdc313a7 PyTorch3D - Avoid flip in TexturesAtlas
Summary: Performance improvement: Use torch.lerp to map uv coordinates to the range needed for grid_sample (i.e. map [0, 1] to [-1, 1] and invert the y-axis)

Reviewed By: bottler

Differential Revision: D51961728

fbshipit-source-id: db19a5e3f482e9af7b96b20f88a1e5d0076dac43
2023-12-11 12:49:17 -08:00
Roman Shapovalov
94da8841af Align_corners switch in Volumes
Summary:
Porting this commit by davnov134 .
93a3a62800 (diff-a8e107ebe039de52ca112ac6ddfba6ebccd53b4f53030b986e13f019fe57a378)

Capability to interpret world/local coordinates with various align_corners semantics.

Reviewed By: bottler

Differential Revision: D51855420

fbshipit-source-id: 834cd220c25d7f0143d8a55ba880da5977099dd6
2023-12-07 03:07:41 -08:00
generatedunixname89002005307016
fbc6725f03 upgrade pyre version in fbcode/vision - batch 2
Differential Revision: D51902460

fbshipit-source-id: 3ffc5d7d2da5c5d4e971ee8275bd999c709e0b12
2023-12-06 20:53:53 -08:00
Jeremy Reizenstein
6b8766080d Use cuda's make_float3 in pulsar
Summary: Fixes github.com/facebookresearch/pytorch3d/issues/1680

Reviewed By: MichaelRamamonjisoa

Differential Revision: D51587889

fbshipit-source-id: e68ae32d7041fb9ea3e981cf2bde47f947a41ca2
2023-12-05 03:15:02 -08:00
sewon.jeon
c373a84400 Use updated naming to remove warning (#1687)
Summary:
diag_suppress is  deprecated from cuda

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1687

Reviewed By: MichaelRamamonjisoa

Differential Revision: D51495875

Pulled By: bottler

fbshipit-source-id: 6543a15e666238365719117bfcf5f7dac532aec1
2023-12-05 03:15:02 -08:00
sewon.jeon
7606854ff7 Fix windows build (#1689)
Summary:
Change the data type usage in the code to ensure cross-platform compatibility
long -> int64_t

<img width="628" alt="image" src="https://github.com/facebookresearch/pytorch3d/assets/6214316/40041f7f-3c09-4571-b9ff-676c625802e9">

Tested under
Win 11 and Ubuntu 22.04
with
CUDA 12.1.1 torch 2.1.1

Related issues & PR

https://github.com/facebookresearch/pytorch3d/pull/9

https://github.com/facebookresearch/pytorch3d/issues/1679

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1689

Reviewed By: MichaelRamamonjisoa

Differential Revision: D51521562

Pulled By: bottler

fbshipit-source-id: d8ea81e223c642e0e9fb283f5d7efc9d6ac00d93
2023-12-05 03:14:06 -08:00
Jeremy Reizenstein
83bacda8fb lint
Summary: Fix recent flake complaints

Reviewed By: MichaelRamamonjisoa

Differential Revision: D51811912

fbshipit-source-id: 65183f5bc7058da910e4d5a63b2250ce8637f1cc
2023-12-04 13:43:34 -08:00
generatedunixname89002005307016
f74fc450e8 suppress errors in vision/fair/pytorch3d
Differential Revision: D51645956

fbshipit-source-id: 1ae7279efa0a27bb9bc5255527bafebb84fdafd0
2023-11-28 19:10:06 -08:00
Dan Johnson
3b4f8a4980 Adding reference and context to PointsRenderer
Summary: User confusion (https://github.com/facebookresearch/pytorch3d/issues/1579) about how zbuf is used for alpha compositing. Added small description and reference to paper to help give some context.

Reviewed By: bottler

Differential Revision: D51374933

fbshipit-source-id: 8c489a5b5d0a81f0d936c1348b9ade6787c39c9a
2023-11-16 08:58:08 -08:00
Aleksandrs Ecins
79b46734cb Fix lint in test_render_points
Summary: Fixes lint in test_render_points in the PyTorch3D library.

Differential Revision: D51289841

fbshipit-source-id: 1eae621eb8e87b0fe5979f35acd878944f574a6a
2023-11-14 11:07:28 -08:00
YangHai
55638f3bae Support reading uv and uv map for ply format if texture_uv exists in ply file (#1100)
Summary:
When the ply format looks as follows:
  ```
comment TextureFile ***.png
element vertex 892
property double x
property double y
property double z
property double nx
property double ny
property double nz
property double texture_u
property double texture_v
```
`MeshPlyFormat` class will read uv from the ply file and read the uv map as commented as TextureFile.

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1100

Reviewed By: MichaelRamamonjisoa

Differential Revision: D50885176

Pulled By: bottler

fbshipit-source-id: be75b1ec9a17a1ed87dbcf846a9072ea967aec37
2023-11-14 07:44:14 -08:00
Jeremy Reizenstein
f4f2209271 Fix for mask_points=False
Summary: Remove unused argument `mask_points` from `get_rgbd_point_cloud` and fix `get_implicitron_sequence_pointcloud`, which assumed it was used.

Reviewed By: MichaelRamamonjisoa

Differential Revision: D50885848

fbshipit-source-id: c0b834764ad5ef560107bd8eab04952d000489b8
2023-11-14 07:42:18 -08:00
Jeremy Reizenstein
f613682551 marching_cubes type fix
Summary: fixes https://github.com/facebookresearch/pytorch3d/issues/1679

Reviewed By: MichaelRamamonjisoa

Differential Revision: D50949933

fbshipit-source-id: 5c467de8bf84dd2a3d61748b3846678582d24ea3
2023-11-14 07:38:54 -08:00
386 changed files with 4048 additions and 1611 deletions

View File

@ -162,90 +162,6 @@ workflows:
jobs:
# - main:
# context: DOCKERHUB_TOKEN
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda113
context: DOCKERHUB_TOKEN
cu_version: cu113
name: linux_conda_py38_cu113_pyt1120
python_version: '3.8'
pytorch_version: 1.12.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda116
context: DOCKERHUB_TOKEN
cu_version: cu116
name: linux_conda_py38_cu116_pyt1120
python_version: '3.8'
pytorch_version: 1.12.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda113
context: DOCKERHUB_TOKEN
cu_version: cu113
name: linux_conda_py38_cu113_pyt1121
python_version: '3.8'
pytorch_version: 1.12.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda116
context: DOCKERHUB_TOKEN
cu_version: cu116
name: linux_conda_py38_cu116_pyt1121
python_version: '3.8'
pytorch_version: 1.12.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda116
context: DOCKERHUB_TOKEN
cu_version: cu116
name: linux_conda_py38_cu116_pyt1130
python_version: '3.8'
pytorch_version: 1.13.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda117
context: DOCKERHUB_TOKEN
cu_version: cu117
name: linux_conda_py38_cu117_pyt1130
python_version: '3.8'
pytorch_version: 1.13.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda116
context: DOCKERHUB_TOKEN
cu_version: cu116
name: linux_conda_py38_cu116_pyt1131
python_version: '3.8'
pytorch_version: 1.13.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda117
context: DOCKERHUB_TOKEN
cu_version: cu117
name: linux_conda_py38_cu117_pyt1131
python_version: '3.8'
pytorch_version: 1.13.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda117
context: DOCKERHUB_TOKEN
cu_version: cu117
name: linux_conda_py38_cu117_pyt200
python_version: '3.8'
pytorch_version: 2.0.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py38_cu118_pyt200
python_version: '3.8'
pytorch_version: 2.0.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda117
context: DOCKERHUB_TOKEN
cu_version: cu117
name: linux_conda_py38_cu117_pyt201
python_version: '3.8'
pytorch_version: 2.0.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py38_cu118_pyt201
python_version: '3.8'
pytorch_version: 2.0.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
@ -261,89 +177,103 @@ workflows:
python_version: '3.8'
pytorch_version: 2.1.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda113
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu113
name: linux_conda_py39_cu113_pyt1120
python_version: '3.9'
pytorch_version: 1.12.0
cu_version: cu118
name: linux_conda_py38_cu118_pyt211
python_version: '3.8'
pytorch_version: 2.1.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda116
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu116
name: linux_conda_py39_cu116_pyt1120
python_version: '3.9'
pytorch_version: 1.12.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda113
context: DOCKERHUB_TOKEN
cu_version: cu113
name: linux_conda_py39_cu113_pyt1121
python_version: '3.9'
pytorch_version: 1.12.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda116
context: DOCKERHUB_TOKEN
cu_version: cu116
name: linux_conda_py39_cu116_pyt1121
python_version: '3.9'
pytorch_version: 1.12.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda116
context: DOCKERHUB_TOKEN
cu_version: cu116
name: linux_conda_py39_cu116_pyt1130
python_version: '3.9'
pytorch_version: 1.13.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda117
context: DOCKERHUB_TOKEN
cu_version: cu117
name: linux_conda_py39_cu117_pyt1130
python_version: '3.9'
pytorch_version: 1.13.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda116
context: DOCKERHUB_TOKEN
cu_version: cu116
name: linux_conda_py39_cu116_pyt1131
python_version: '3.9'
pytorch_version: 1.13.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda117
context: DOCKERHUB_TOKEN
cu_version: cu117
name: linux_conda_py39_cu117_pyt1131
python_version: '3.9'
pytorch_version: 1.13.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda117
context: DOCKERHUB_TOKEN
cu_version: cu117
name: linux_conda_py39_cu117_pyt200
python_version: '3.9'
pytorch_version: 2.0.0
cu_version: cu121
name: linux_conda_py38_cu121_pyt211
python_version: '3.8'
pytorch_version: 2.1.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py39_cu118_pyt200
python_version: '3.9'
pytorch_version: 2.0.0
name: linux_conda_py38_cu118_pyt212
python_version: '3.8'
pytorch_version: 2.1.2
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda117
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu117
name: linux_conda_py39_cu117_pyt201
python_version: '3.9'
pytorch_version: 2.0.1
cu_version: cu121
name: linux_conda_py38_cu121_pyt212
python_version: '3.8'
pytorch_version: 2.1.2
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py39_cu118_pyt201
python_version: '3.9'
pytorch_version: 2.0.1
name: linux_conda_py38_cu118_pyt220
python_version: '3.8'
pytorch_version: 2.2.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py38_cu121_pyt220
python_version: '3.8'
pytorch_version: 2.2.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py38_cu118_pyt222
python_version: '3.8'
pytorch_version: 2.2.2
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py38_cu121_pyt222
python_version: '3.8'
pytorch_version: 2.2.2
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py38_cu118_pyt231
python_version: '3.8'
pytorch_version: 2.3.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py38_cu121_pyt231
python_version: '3.8'
pytorch_version: 2.3.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py38_cu118_pyt240
python_version: '3.8'
pytorch_version: 2.4.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py38_cu121_pyt240
python_version: '3.8'
pytorch_version: 2.4.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py38_cu118_pyt241
python_version: '3.8'
pytorch_version: 2.4.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py38_cu121_pyt241
python_version: '3.8'
pytorch_version: 2.4.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
@ -359,89 +289,103 @@ workflows:
python_version: '3.9'
pytorch_version: 2.1.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda113
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu113
name: linux_conda_py310_cu113_pyt1120
python_version: '3.10'
pytorch_version: 1.12.0
cu_version: cu118
name: linux_conda_py39_cu118_pyt211
python_version: '3.9'
pytorch_version: 2.1.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda116
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu116
name: linux_conda_py310_cu116_pyt1120
python_version: '3.10'
pytorch_version: 1.12.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda113
context: DOCKERHUB_TOKEN
cu_version: cu113
name: linux_conda_py310_cu113_pyt1121
python_version: '3.10'
pytorch_version: 1.12.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda116
context: DOCKERHUB_TOKEN
cu_version: cu116
name: linux_conda_py310_cu116_pyt1121
python_version: '3.10'
pytorch_version: 1.12.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda116
context: DOCKERHUB_TOKEN
cu_version: cu116
name: linux_conda_py310_cu116_pyt1130
python_version: '3.10'
pytorch_version: 1.13.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda117
context: DOCKERHUB_TOKEN
cu_version: cu117
name: linux_conda_py310_cu117_pyt1130
python_version: '3.10'
pytorch_version: 1.13.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda116
context: DOCKERHUB_TOKEN
cu_version: cu116
name: linux_conda_py310_cu116_pyt1131
python_version: '3.10'
pytorch_version: 1.13.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda117
context: DOCKERHUB_TOKEN
cu_version: cu117
name: linux_conda_py310_cu117_pyt1131
python_version: '3.10'
pytorch_version: 1.13.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda117
context: DOCKERHUB_TOKEN
cu_version: cu117
name: linux_conda_py310_cu117_pyt200
python_version: '3.10'
pytorch_version: 2.0.0
cu_version: cu121
name: linux_conda_py39_cu121_pyt211
python_version: '3.9'
pytorch_version: 2.1.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py310_cu118_pyt200
python_version: '3.10'
pytorch_version: 2.0.0
name: linux_conda_py39_cu118_pyt212
python_version: '3.9'
pytorch_version: 2.1.2
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda117
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu117
name: linux_conda_py310_cu117_pyt201
python_version: '3.10'
pytorch_version: 2.0.1
cu_version: cu121
name: linux_conda_py39_cu121_pyt212
python_version: '3.9'
pytorch_version: 2.1.2
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py310_cu118_pyt201
python_version: '3.10'
pytorch_version: 2.0.1
name: linux_conda_py39_cu118_pyt220
python_version: '3.9'
pytorch_version: 2.2.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py39_cu121_pyt220
python_version: '3.9'
pytorch_version: 2.2.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py39_cu118_pyt222
python_version: '3.9'
pytorch_version: 2.2.2
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py39_cu121_pyt222
python_version: '3.9'
pytorch_version: 2.2.2
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py39_cu118_pyt231
python_version: '3.9'
pytorch_version: 2.3.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py39_cu121_pyt231
python_version: '3.9'
pytorch_version: 2.3.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py39_cu118_pyt240
python_version: '3.9'
pytorch_version: 2.4.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py39_cu121_pyt240
python_version: '3.9'
pytorch_version: 2.4.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py39_cu118_pyt241
python_version: '3.9'
pytorch_version: 2.4.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py39_cu121_pyt241
python_version: '3.9'
pytorch_version: 2.4.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
@ -456,6 +400,104 @@ workflows:
name: linux_conda_py310_cu121_pyt210
python_version: '3.10'
pytorch_version: 2.1.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py310_cu118_pyt211
python_version: '3.10'
pytorch_version: 2.1.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py310_cu121_pyt211
python_version: '3.10'
pytorch_version: 2.1.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py310_cu118_pyt212
python_version: '3.10'
pytorch_version: 2.1.2
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py310_cu121_pyt212
python_version: '3.10'
pytorch_version: 2.1.2
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py310_cu118_pyt220
python_version: '3.10'
pytorch_version: 2.2.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py310_cu121_pyt220
python_version: '3.10'
pytorch_version: 2.2.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py310_cu118_pyt222
python_version: '3.10'
pytorch_version: 2.2.2
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py310_cu121_pyt222
python_version: '3.10'
pytorch_version: 2.2.2
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py310_cu118_pyt231
python_version: '3.10'
pytorch_version: 2.3.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py310_cu121_pyt231
python_version: '3.10'
pytorch_version: 2.3.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py310_cu118_pyt240
python_version: '3.10'
pytorch_version: 2.4.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py310_cu121_pyt240
python_version: '3.10'
pytorch_version: 2.4.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py310_cu118_pyt241
python_version: '3.10'
pytorch_version: 2.4.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py310_cu121_pyt241
python_version: '3.10'
pytorch_version: 2.4.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
@ -470,6 +512,174 @@ workflows:
name: linux_conda_py311_cu121_pyt210
python_version: '3.11'
pytorch_version: 2.1.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py311_cu118_pyt211
python_version: '3.11'
pytorch_version: 2.1.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py311_cu121_pyt211
python_version: '3.11'
pytorch_version: 2.1.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py311_cu118_pyt212
python_version: '3.11'
pytorch_version: 2.1.2
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py311_cu121_pyt212
python_version: '3.11'
pytorch_version: 2.1.2
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py311_cu118_pyt220
python_version: '3.11'
pytorch_version: 2.2.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py311_cu121_pyt220
python_version: '3.11'
pytorch_version: 2.2.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py311_cu118_pyt222
python_version: '3.11'
pytorch_version: 2.2.2
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py311_cu121_pyt222
python_version: '3.11'
pytorch_version: 2.2.2
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py311_cu118_pyt231
python_version: '3.11'
pytorch_version: 2.3.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py311_cu121_pyt231
python_version: '3.11'
pytorch_version: 2.3.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py311_cu118_pyt240
python_version: '3.11'
pytorch_version: 2.4.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py311_cu121_pyt240
python_version: '3.11'
pytorch_version: 2.4.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py311_cu118_pyt241
python_version: '3.11'
pytorch_version: 2.4.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py311_cu121_pyt241
python_version: '3.11'
pytorch_version: 2.4.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py312_cu118_pyt220
python_version: '3.12'
pytorch_version: 2.2.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py312_cu121_pyt220
python_version: '3.12'
pytorch_version: 2.2.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py312_cu118_pyt222
python_version: '3.12'
pytorch_version: 2.2.2
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py312_cu121_pyt222
python_version: '3.12'
pytorch_version: 2.2.2
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py312_cu118_pyt231
python_version: '3.12'
pytorch_version: 2.3.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py312_cu121_pyt231
python_version: '3.12'
pytorch_version: 2.3.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py312_cu118_pyt240
python_version: '3.12'
pytorch_version: 2.4.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py312_cu121_pyt240
python_version: '3.12'
pytorch_version: 2.4.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py312_cu118_pyt241
python_version: '3.12'
pytorch_version: 2.4.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py312_cu121_pyt241
python_version: '3.12'
pytorch_version: 2.4.1
- binary_linux_conda_cuda:
name: testrun_conda_cuda_py310_cu117_pyt201
context: DOCKERHUB_TOKEN

View File

@ -19,19 +19,18 @@ from packaging import version
# The CUDA versions which have pytorch conda packages available for linux for each
# version of pytorch.
CONDA_CUDA_VERSIONS = {
"1.12.0": ["cu113", "cu116"],
"1.12.1": ["cu113", "cu116"],
"1.13.0": ["cu116", "cu117"],
"1.13.1": ["cu116", "cu117"],
"2.0.0": ["cu117", "cu118"],
"2.0.1": ["cu117", "cu118"],
"2.1.0": ["cu118", "cu121"],
"2.1.1": ["cu118", "cu121"],
"2.1.2": ["cu118", "cu121"],
"2.2.0": ["cu118", "cu121"],
"2.2.2": ["cu118", "cu121"],
"2.3.1": ["cu118", "cu121"],
"2.4.0": ["cu118", "cu121"],
"2.4.1": ["cu118", "cu121"],
}
def conda_docker_image_for_cuda(cuda_version):
if cuda_version in ("cu101", "cu102", "cu111"):
return None
if len(cuda_version) != 5:
raise ValueError("Unknown cuda version")
return "pytorch/conda-builder:cuda" + cuda_version[2:]
@ -52,12 +51,18 @@ def pytorch_versions_for_python(python_version):
for i in CONDA_CUDA_VERSIONS
if version.Version(i) >= version.Version("2.1.0")
]
if python_version == "3.12":
return [
i
for i in CONDA_CUDA_VERSIONS
if version.Version(i) >= version.Version("2.2.0")
]
def workflows(prefix="", filter_branch=None, upload=False, indentation=6):
w = []
for btype in ["conda"]:
for python_version in ["3.8", "3.9", "3.10", "3.11"]:
for python_version in ["3.8", "3.9", "3.10", "3.11", "3.12"]:
for pytorch_version in pytorch_versions_for_python(python_version):
for cu_version in CONDA_CUDA_VERSIONS[pytorch_version]:
w += workflow_pair(
@ -83,7 +88,6 @@ def workflow_pair(
upload=False,
filter_branch,
):
w = []
py = python_version.replace(".", "")
pyt = pytorch_version.replace(".", "")
@ -122,7 +126,6 @@ def generate_base_workflow(
btype,
filter_branch=None,
):
d = {
"name": base_workflow_name,
"python_version": python_version,

View File

@ -1,5 +1,8 @@
[flake8]
ignore = E203, E266, E501, W503, E221
# B028 No explicit stacklevel argument found.
# B907 'foo' is manually surrounded by quotes, consider using the `!r` conversion flag.
# B905 `zip()` without an explicit `strict=` parameter.
ignore = E203, E266, E501, W503, E221, B028, B905, B907
max-line-length = 88
max-complexity = 18
select = B,C,E,F,W,T4,B9

23
.github/workflows/build.yml vendored Normal file
View File

@ -0,0 +1,23 @@
name: facebookresearch/pytorch3d/build_and_test
on:
pull_request:
branches:
- main
push:
branches:
- main
jobs:
binary_linux_conda_cuda:
runs-on: 4-core-ubuntu-gpu-t4
env:
PYTHON_VERSION: "3.12"
BUILD_VERSION: "${{ github.run_number }}"
PYTORCH_VERSION: "2.4.1"
CU_VERSION: "cu121"
JUST_TESTRUN: 1
steps:
- uses: actions/checkout@v4
- name: Build and run tests
run: |-
conda create --name env --yes --quiet conda-build
conda run --no-capture-output --name env python3 ./packaging/build_conda.py --use-conda-cuda

View File

@ -8,11 +8,10 @@
The core library is written in PyTorch. Several components have underlying implementation in CUDA for improved performance. A subset of these components have CPU implementations in C++/PyTorch. It is advised to use PyTorch3D with GPU support in order to use all the features.
- Linux or macOS or Windows
- Python 3.8, 3.9 or 3.10
- PyTorch 1.12.0, 1.12.1, 1.13.0, 2.0.0, 2.0.1 or 2.1.0.
- Python
- PyTorch 2.1.0, 2.1.1, 2.1.2, 2.2.0, 2.2.1, 2.2.2, 2.3.0, 2.3.1, 2.4.0 or 2.4.1.
- torchvision that matches the PyTorch installation. You can install them together as explained at pytorch.org to make sure of this.
- gcc & g++ ≥ 4.9
- [fvcore](https://github.com/facebookresearch/fvcore)
- [ioPath](https://github.com/facebookresearch/iopath)
- If CUDA is to be used, use a version which is supported by the corresponding pytorch version and at least version 9.2.
- If CUDA older than 11.7 is to be used and you are building from source, the CUB library must be available. We recommend version 1.10.0.
@ -22,7 +21,7 @@ The runtime dependencies can be installed by running:
conda create -n pytorch3d python=3.9
conda activate pytorch3d
conda install pytorch=1.13.0 torchvision pytorch-cuda=11.6 -c pytorch -c nvidia
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
conda install -c iopath iopath
```
For the CUB build time dependency, which you only need if you have CUDA older than 11.7, if you are using conda, you can continue with
@ -49,6 +48,7 @@ For developing on top of PyTorch3D or contributing, you will need to run the lin
- tdqm
- jupyter
- imageio
- fvcore
- plotly
- opencv-python
@ -59,6 +59,7 @@ conda install jupyter
pip install scikit-image matplotlib imageio plotly opencv-python
# Tests/Linting
conda install -c fvcore -c conda-forge fvcore
pip install black usort flake8 flake8-bugbear flake8-comprehensions
```
@ -97,7 +98,7 @@ version_str="".join([
torch.version.cuda.replace(".",""),
f"_pyt{pyt_version_str}"
])
!pip install fvcore iopath
!pip install iopath
!pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html
```

View File

@ -146,6 +146,12 @@ If you are using the pulsar backend for sphere-rendering (the `PulsarPointRender
Please see below for a timeline of the codebase updates in reverse chronological order. We are sharing updates on the releases as well as research projects which are built with PyTorch3D. The changelogs for the releases are available under [`Releases`](https://github.com/facebookresearch/pytorch3d/releases), and the builds can be installed using `conda` as per the instructions in [INSTALL.md](INSTALL.md).
**[Oct 31st 2023]:** PyTorch3D [v0.7.5](https://github.com/facebookresearch/pytorch3d/releases/tag/v0.7.5) released.
**[May 10th 2023]:** PyTorch3D [v0.7.4](https://github.com/facebookresearch/pytorch3d/releases/tag/v0.7.4) released.
**[Apr 5th 2023]:** PyTorch3D [v0.7.3](https://github.com/facebookresearch/pytorch3d/releases/tag/v0.7.3) released.
**[Dec 19th 2022]:** PyTorch3D [v0.7.2](https://github.com/facebookresearch/pytorch3d/releases/tag/v0.7.2) released.
**[Oct 23rd 2022]:** PyTorch3D [v0.7.1](https://github.com/facebookresearch/pytorch3d/releases/tag/v0.7.1) released.

View File

@ -36,5 +36,5 @@ then
echo "Running pyre..."
echo "To restart/kill pyre server, run 'pyre restart' or 'pyre kill' in fbcode/"
( cd ~/fbsource/fbcode; pyre -l vision/fair/pytorch3d/ )
( cd ~/fbsource/fbcode; arc pyre check //vision/fair/pytorch3d/... )
fi

View File

@ -23,7 +23,7 @@ conda init bash
source ~/.bashrc
conda create -y -n myenv python=3.8 matplotlib ipython ipywidgets nbconvert
conda activate myenv
conda install -y -c fvcore -c iopath -c conda-forge fvcore iopath
conda install -y -c iopath iopath
conda install -y -c pytorch pytorch=1.6.0 cudatoolkit=10.1 torchvision
conda install -y -c pytorch3d-nightly pytorch3d
pip install plotly scikit-image

View File

@ -10,6 +10,7 @@ This example demonstrates the most trivial, direct interface of the pulsar
sphere renderer. It renders and saves an image with 10 random spheres.
Output: basic.png.
"""
import logging
import math
from os import path

View File

@ -11,6 +11,7 @@ interface for sphere renderering. It renders and saves an image with
10 random spheres.
Output: basic-pt3d.png.
"""
import logging
from os import path

View File

@ -14,6 +14,7 @@ distorted. Gradient-based optimization is used to converge towards the
original camera parameters.
Output: cam.gif.
"""
import logging
import math
from os import path

View File

@ -14,6 +14,7 @@ distorted. Gradient-based optimization is used to converge towards the
original camera parameters.
Output: cam-pt3d.gif
"""
import logging
from os import path

View File

@ -18,6 +18,7 @@ This example is not available yet through the 'unified' interface,
because opacity support has not landed in PyTorch3D for general data
structures yet.
"""
import logging
import math
from os import path

View File

@ -13,6 +13,7 @@ The scene is initialized with random spheres. Gradient-based
optimization is used to converge towards a faithful
scene representation.
"""
import logging
import math

View File

@ -13,6 +13,7 @@ The scene is initialized with random spheres. Gradient-based
optimization is used to converge towards a faithful
scene representation.
"""
import logging
import math

View File

@ -5,7 +5,6 @@ sphinx_rtd_theme
sphinx_markdown_tables
numpy
iopath
fvcore
https://download.pytorch.org/whl/cpu/torchvision-0.15.2%2Bcpu-cp311-cp311-linux_x86_64.whl
https://download.pytorch.org/whl/cpu/torch-2.0.1%2Bcpu-cp311-cp311-linux_x86_64.whl
omegaconf

View File

@ -83,25 +83,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith(\"2.1.\") and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@ -70,25 +70,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith(\"2.1.\") and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@ -45,25 +45,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith(\"2.1.\") and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{
@ -405,7 +411,7 @@
"outputs": [],
"source": [
"random_model_images = shapenet_dataset.render(\n",
" sample_nums=[3],\n",
" sample_nums=[5],\n",
" device=device,\n",
" cameras=cameras,\n",
" raster_settings=raster_settings,\n",

View File

@ -84,25 +84,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith(\"2.1.\") and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@ -50,25 +50,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith(\"2.1.\") and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@ -62,25 +62,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith(\"2.1.\") and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@ -41,25 +41,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith(\"2.1.\") and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@ -72,25 +72,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith(\"2.1.\") and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@ -66,25 +66,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith(\"2.1.\") and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@ -44,25 +44,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith(\"2.1.\") and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@ -51,25 +51,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith(\"2.1.\") and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@ -67,25 +67,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith(\"2.1.\") and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@ -4,10 +4,11 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import os.path
import runpy
import subprocess
from typing import List
from typing import List, Tuple
# required env vars:
# CU_VERSION: E.g. cu112
@ -23,7 +24,7 @@ pytorch_major_minor = tuple(int(i) for i in PYTORCH_VERSION.split(".")[:2])
source_root_dir = os.environ["PWD"]
def version_constraint(version):
def version_constraint(version) -> str:
"""
Given version "11.3" returns " >=11.3,<11.4"
"""
@ -32,7 +33,7 @@ def version_constraint(version):
return f" >={version},<{upper}"
def get_cuda_major_minor():
def get_cuda_major_minor() -> Tuple[str, str]:
if CU_VERSION == "cpu":
raise ValueError("fn only for cuda builds")
if len(CU_VERSION) != 5 or CU_VERSION[:2] != "cu":
@ -42,11 +43,10 @@ def get_cuda_major_minor():
return major, minor
def setup_cuda():
def setup_cuda(use_conda_cuda: bool) -> List[str]:
if CU_VERSION == "cpu":
return
return []
major, minor = get_cuda_major_minor()
os.environ["CUDA_HOME"] = f"/usr/local/cuda-{major}.{minor}/"
os.environ["FORCE_CUDA"] = "1"
basic_nvcc_flags = (
@ -75,11 +75,26 @@ def setup_cuda():
if os.environ.get("JUST_TESTRUN", "0") != "1":
os.environ["NVCC_FLAGS"] = nvcc_flags
if use_conda_cuda:
os.environ["CONDA_CUDA_TOOLKIT_BUILD_CONSTRAINT1"] = "- cuda-toolkit"
os.environ["CONDA_CUDA_TOOLKIT_BUILD_CONSTRAINT2"] = (
f"- cuda-version={major}.{minor}"
)
return ["-c", f"nvidia/label/cuda-{major}.{minor}.0"]
else:
os.environ["CUDA_HOME"] = f"/usr/local/cuda-{major}.{minor}/"
return []
def setup_conda_pytorch_constraint() -> List[str]:
pytorch_constraint = f"- pytorch=={PYTORCH_VERSION}"
os.environ["CONDA_PYTORCH_CONSTRAINT"] = pytorch_constraint
if pytorch_major_minor < (2, 2):
os.environ["CONDA_PYTORCH_MKL_CONSTRAINT"] = "- mkl!=2024.1.0"
os.environ["SETUPTOOLS_CONSTRAINT"] = "- setuptools<70"
else:
os.environ["CONDA_PYTORCH_MKL_CONSTRAINT"] = ""
os.environ["SETUPTOOLS_CONSTRAINT"] = "- setuptools"
os.environ["CONDA_PYTORCH_BUILD_CONSTRAINT"] = pytorch_constraint
os.environ["PYTORCH_VERSION_NODOT"] = PYTORCH_VERSION.replace(".", "")
@ -89,7 +104,7 @@ def setup_conda_pytorch_constraint() -> List[str]:
return ["-c", "pytorch", "-c", "nvidia"]
def setup_conda_cudatoolkit_constraint():
def setup_conda_cudatoolkit_constraint() -> None:
if CU_VERSION == "cpu":
os.environ["CONDA_CPUONLY_FEATURE"] = "- cpuonly"
os.environ["CONDA_CUDATOOLKIT_CONSTRAINT"] = ""
@ -110,14 +125,14 @@ def setup_conda_cudatoolkit_constraint():
os.environ["CONDA_CUDATOOLKIT_CONSTRAINT"] = toolkit
def do_build(start_args: List[str]):
def do_build(start_args: List[str]) -> None:
args = start_args.copy()
test_flag = os.environ.get("TEST_FLAG")
if test_flag is not None:
args.append(test_flag)
args.extend(["-c", "bottler", "-c", "fvcore", "-c", "iopath", "-c", "conda-forge"])
args.extend(["-c", "bottler", "-c", "iopath", "-c", "conda-forge"])
args.append("--no-anaconda-upload")
args.extend(["--python", os.environ["PYTHON_VERSION"]])
args.append("packaging/pytorch3d")
@ -126,8 +141,16 @@ def do_build(start_args: List[str]):
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Build the conda package.")
parser.add_argument(
"--use-conda-cuda",
action="store_true",
help="get cuda from conda ignoring local cuda",
)
our_args = parser.parse_args()
args = ["conda", "build"]
setup_cuda()
args += setup_cuda(use_conda_cuda=our_args.use_conda_cuda)
init_path = source_root_dir + "/pytorch3d/__init__.py"
build_version = runpy.run_path(init_path)["__version__"]

View File

@ -26,6 +26,6 @@ version_str="".join([
torch.version.cuda.replace(".",""),
f"_pyt{pyt_version_str}"
])
!pip install fvcore iopath
!pip install iopath
!pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html
```

View File

@ -144,7 +144,7 @@ do
conda activate "$tag"
# shellcheck disable=SC2086
conda install -y -c pytorch $extra_channel "pytorch=$pytorch_version" "$cudatools=$CUDA_TAG"
pip install fvcore iopath
pip install iopath
echo "python version" "$python_version" "pytorch version" "$pytorch_version" "cuda version" "$cu_version" "tag" "$tag"
rm -rf dist

View File

@ -8,12 +8,16 @@ source:
requirements:
build:
- {{ compiler('c') }} # [win]
{{ environ.get('CONDA_CUDA_TOOLKIT_BUILD_CONSTRAINT1', '') }}
{{ environ.get('CONDA_CUDA_TOOLKIT_BUILD_CONSTRAINT2', '') }}
{{ environ.get('CONDA_CUB_CONSTRAINT') }}
host:
- python
- setuptools
- mkl =2023 # [x86_64]
{{ environ.get('SETUPTOOLS_CONSTRAINT') }}
{{ environ.get('CONDA_PYTORCH_BUILD_CONSTRAINT') }}
{{ environ.get('CONDA_PYTORCH_MKL_CONSTRAINT') }}
{{ environ.get('CONDA_CUDATOOLKIT_CONSTRAINT') }}
{{ environ.get('CONDA_CPUONLY_FEATURE') }}
@ -21,7 +25,7 @@ requirements:
- python
- numpy >=1.11
- torchvision >=0.5
- fvcore
- mkl =2023 # [x86_64]
- iopath
{{ environ.get('CONDA_PYTORCH_CONSTRAINT') }}
{{ environ.get('CONDA_CUDATOOLKIT_CONSTRAINT') }}
@ -47,8 +51,11 @@ test:
- imageio
- hydra-core
- accelerate
- matplotlib
- tabulate
- pandas
- sqlalchemy
commands:
#pytest .
python -m unittest discover -v -s tests -t .

View File

@ -3,3 +3,5 @@
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe

View File

@ -5,7 +5,9 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
""""
# pyre-unsafe
""" "
This file is the entry point for launching experiments with Implicitron.
Launch Training
@ -42,6 +44,7 @@ The outputs of the experiment are saved and logged in multiple ways:
config file.
"""
import logging
import os
import warnings
@ -97,7 +100,7 @@ except ModuleNotFoundError:
no_accelerate = os.environ.get("PYTORCH3D_NO_ACCELERATE") is not None
class Experiment(Configurable): # pyre-ignore: 13
class Experiment(Configurable):
"""
This class is at the top level of Implicitron's config hierarchy. Its
members are high-level components necessary for training an implicit rende-
@ -118,12 +121,16 @@ class Experiment(Configurable): # pyre-ignore: 13
will be saved here.
"""
# pyre-fixme[13]: Attribute `data_source` is never initialized.
data_source: DataSourceBase
data_source_class_type: str = "ImplicitronDataSource"
# pyre-fixme[13]: Attribute `model_factory` is never initialized.
model_factory: ModelFactoryBase
model_factory_class_type: str = "ImplicitronModelFactory"
# pyre-fixme[13]: Attribute `optimizer_factory` is never initialized.
optimizer_factory: OptimizerFactoryBase
optimizer_factory_class_type: str = "ImplicitronOptimizerFactory"
# pyre-fixme[13]: Attribute `training_loop` is never initialized.
training_loop: TrainingLoopBase
training_loop_class_type: str = "ImplicitronTrainingLoop"

View File

@ -3,3 +3,5 @@
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe

View File

@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import logging
import os
from typing import Optional
@ -24,7 +26,6 @@ logger = logging.getLogger(__name__)
class ModelFactoryBase(ReplaceableBase):
resume: bool = True # resume from the last checkpoint
def __call__(self, **kwargs) -> ImplicitronModelBase:
@ -43,7 +44,7 @@ class ModelFactoryBase(ReplaceableBase):
@registry.register
class ImplicitronModelFactory(ModelFactoryBase): # pyre-ignore [13]
class ImplicitronModelFactory(ModelFactoryBase):
"""
A factory class that initializes an implicit rendering model.
@ -59,6 +60,7 @@ class ImplicitronModelFactory(ModelFactoryBase): # pyre-ignore [13]
"""
# pyre-fixme[13]: Attribute `model` is never initialized.
model: ImplicitronModelBase
model_class_type: str = "GenericModel"
resume: bool = True
@ -113,7 +115,9 @@ class ImplicitronModelFactory(ModelFactoryBase): # pyre-ignore [13]
"cuda:%d" % 0: "cuda:%d" % accelerator.local_process_index
}
model_state_dict = torch.load(
model_io.get_model_path(model_path), map_location=map_location
model_io.get_model_path(model_path),
map_location=map_location,
weights_only=True,
)
try:

View File

@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import inspect
import logging
import os
@ -121,7 +123,7 @@ class ImplicitronOptimizerFactory(OptimizerFactoryBase):
"""
# Get the parameters to optimize
if hasattr(model, "_get_param_groups"): # use the model function
# pyre-ignore[29]
# pyre-fixme[29]: `Union[Tensor, Module]` is not a function.
p_groups = model._get_param_groups(self.lr, wd=self.weight_decay)
else:
p_groups = [
@ -240,7 +242,7 @@ class ImplicitronOptimizerFactory(OptimizerFactoryBase):
map_location = {
"cuda:%d" % 0: "cuda:%d" % accelerator.local_process_index
}
optimizer_state = torch.load(opt_path, map_location)
optimizer_state = torch.load(opt_path, map_location, weights_only=True)
else:
raise FileNotFoundError(f"Optimizer state {opt_path} does not exist.")
return optimizer_state

View File

@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import logging
import os
import time
@ -28,13 +30,13 @@ from .utils import seed_all_random_engines
logger = logging.getLogger(__name__)
# pyre-fixme[13]: Attribute `evaluator` is never initialized.
class TrainingLoopBase(ReplaceableBase):
"""
Members:
evaluator: An EvaluatorBase instance, used to evaluate training results.
"""
# pyre-fixme[13]: Attribute `evaluator` is never initialized.
evaluator: Optional[EvaluatorBase]
evaluator_class_type: Optional[str] = "ImplicitronEvaluator"
@ -110,6 +112,8 @@ class ImplicitronTrainingLoop(TrainingLoopBase):
def __post_init__(self):
run_auto_creation(self)
# pyre-fixme[14]: `run` overrides method defined in `TrainingLoopBase`
# inconsistently.
def run(
self,
*,
@ -157,7 +161,6 @@ class ImplicitronTrainingLoop(TrainingLoopBase):
for epoch in range(start_epoch, self.max_epochs):
# automatic new_epoch and plotting of stats at every epoch start
with stats:
# Make sure to re-seed random generators to ensure reproducibility
# even after restart.
seed_all_random_engines(seed + epoch)
@ -391,7 +394,7 @@ class ImplicitronTrainingLoop(TrainingLoopBase):
):
prefix = f"e{stats.epoch}_it{stats.it[trainmode]}"
if hasattr(model, "visualize"):
# pyre-ignore [29]
# pyre-fixme[29]: `Union[Tensor, Module]` is not a function.
model.visualize(
viz,
visdom_env_imgs,

View File

@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import random

View File

@ -3,3 +3,5 @@
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe

View File

@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import os
import tempfile
import unittest
@ -51,12 +53,8 @@ class TestExperiment(unittest.TestCase):
cfg.data_source_ImplicitronDataSource_args.dataset_map_provider_class_type = (
"JsonIndexDatasetMapProvider"
)
dataset_args = (
cfg.data_source_ImplicitronDataSource_args.dataset_map_provider_JsonIndexDatasetMapProvider_args
)
dataloader_args = (
cfg.data_source_ImplicitronDataSource_args.data_loader_map_provider_SequenceDataLoaderMapProvider_args
)
dataset_args = cfg.data_source_ImplicitronDataSource_args.dataset_map_provider_JsonIndexDatasetMapProvider_args
dataloader_args = cfg.data_source_ImplicitronDataSource_args.data_loader_map_provider_SequenceDataLoaderMapProvider_args
dataset_args.category = "skateboard"
dataset_args.test_restrict_sequence_id = 0
dataset_args.dataset_root = "manifold://co3d/tree/extracted"
@ -92,12 +90,8 @@ class TestExperiment(unittest.TestCase):
cfg.data_source_ImplicitronDataSource_args.dataset_map_provider_class_type = (
"JsonIndexDatasetMapProvider"
)
dataset_args = (
cfg.data_source_ImplicitronDataSource_args.dataset_map_provider_JsonIndexDatasetMapProvider_args
)
dataloader_args = (
cfg.data_source_ImplicitronDataSource_args.data_loader_map_provider_SequenceDataLoaderMapProvider_args
)
dataset_args = cfg.data_source_ImplicitronDataSource_args.dataset_map_provider_JsonIndexDatasetMapProvider_args
dataloader_args = cfg.data_source_ImplicitronDataSource_args.data_loader_map_provider_SequenceDataLoaderMapProvider_args
dataset_args.category = "skateboard"
dataset_args.test_restrict_sequence_id = 0
dataset_args.dataset_root = "manifold://co3d/tree/extracted"
@ -109,9 +103,7 @@ class TestExperiment(unittest.TestCase):
cfg.training_loop_ImplicitronTrainingLoop_args.max_epochs = 2
cfg.training_loop_ImplicitronTrainingLoop_args.store_checkpoints = False
cfg.optimizer_factory_ImplicitronOptimizerFactory_args.lr_policy = "Exponential"
cfg.optimizer_factory_ImplicitronOptimizerFactory_args.exponential_lr_step_size = (
2
)
cfg.optimizer_factory_ImplicitronOptimizerFactory_args.exponential_lr_step_size = 2
if DEBUG:
experiment.dump_cfg(cfg)

View File

@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import logging
import os
import unittest
@ -79,8 +81,9 @@ class TestOptimizerFactory(unittest.TestCase):
def test_param_overrides_self_param_group_assignment(self):
pa, pb, pc = [torch.nn.Parameter(data=torch.tensor(i * 1.0)) for i in range(3)]
na, nb = Node(params=[pa]), Node(
params=[pb], param_groups={"self": "pb_self", "p1": "pb_param"}
na, nb = (
Node(params=[pa]),
Node(params=[pb], param_groups={"self": "pb_self", "p1": "pb_param"}),
)
root = Node(children=[na, nb], params=[pc], param_groups={"m1": "pb_member"})
param_groups = self._get_param_groups(root)

View File

@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import os
import unittest

View File

@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import contextlib
import logging
import os

View File

@ -5,6 +5,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
"""
Script to visualize a previously trained model. Example call:

View File

@ -84,9 +84,9 @@ def get_nerf_datasets(
if autodownload and any(not os.path.isfile(p) for p in (cameras_path, image_path)):
# Automatically download the data files if missing.
download_data((dataset_name,), data_root=data_root)
download_data([dataset_name], data_root=data_root)
train_data = torch.load(cameras_path)
train_data = torch.load(cameras_path, weights_only=True)
n_cameras = train_data["cameras"]["R"].shape[0]
_image_max_image_pixels = Image.MAX_IMAGE_PIXELS

View File

@ -343,12 +343,14 @@ class RadianceFieldRenderer(torch.nn.Module):
# For a full render pass concatenate the output chunks,
# and reshape to image size.
out = {
k: torch.cat(
[ch_o[k] for ch_o in chunk_outputs],
dim=1,
).view(-1, *self._image_size, 3)
if chunk_outputs[0][k] is not None
else None
k: (
torch.cat(
[ch_o[k] for ch_o in chunk_outputs],
dim=1,
).view(-1, *self._image_size, 3)
if chunk_outputs[0][k] is not None
else None
)
for k in ("rgb_fine", "rgb_coarse", "rgb_gt")
}
else:

View File

@ -194,7 +194,6 @@ class Stats:
it = self.it[stat_set]
for stat in self.log_vars:
if stat not in self.stats[stat_set]:
self.stats[stat_set][stat] = AverageMeter()

View File

@ -24,7 +24,6 @@ CONFIG_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), "configs"
@hydra.main(config_path=CONFIG_DIR, config_name="lego")
def main(cfg: DictConfig):
# Device on which to run.
if torch.cuda.is_available():
device = "cuda"
@ -63,7 +62,7 @@ def main(cfg: DictConfig):
raise ValueError(f"Model checkpoint {checkpoint_path} does not exist!")
print(f"Loading checkpoint {checkpoint_path}.")
loaded_data = torch.load(checkpoint_path)
loaded_data = torch.load(checkpoint_path, weights_only=True)
# Do not load the cached xy grid.
# - this allows setting an arbitrary evaluation image size.
state_dict = {

View File

@ -42,7 +42,6 @@ class TestRaysampler(unittest.TestCase):
cameras, rays = [], []
for _ in range(batch_size):
R = random_rotations(1)
T = torch.randn(1, 3)
focal_length = torch.rand(1, 2) + 0.5

View File

@ -25,7 +25,6 @@ CONFIG_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), "configs"
@hydra.main(config_path=CONFIG_DIR, config_name="lego")
def main(cfg: DictConfig):
# Set the relevant seeds for reproducibility.
np.random.seed(cfg.seed)
torch.manual_seed(cfg.seed)
@ -77,7 +76,7 @@ def main(cfg: DictConfig):
# Resume training if requested.
if cfg.resume and os.path.isfile(checkpoint_path):
print(f"Resuming from checkpoint {checkpoint_path}.")
loaded_data = torch.load(checkpoint_path)
loaded_data = torch.load(checkpoint_path, weights_only=True)
model.load_state_dict(loaded_data["model"])
stats = pickle.loads(loaded_data["stats"])
print(f" => resuming from epoch {stats.epoch}.")
@ -219,7 +218,6 @@ def main(cfg: DictConfig):
# Validation
if epoch % cfg.validation_epoch_interval == 0 and epoch > 0:
# Sample a validation camera/image.
val_batch = next(val_dataloader.__iter__())
val_image, val_camera, camera_idx = val_batch[0].values()

View File

@ -4,4 +4,6 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
__version__ = "0.7.5"
# pyre-unsafe
__version__ = "0.7.8"

View File

@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
from .datatypes import Device, get_device, make_device

View File

@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
from typing import Sequence, Tuple, Union
import torch
@ -15,7 +17,7 @@ Some functions which depend on PyTorch or Python versions.
def meshgrid_ij(
*A: Union[torch.Tensor, Sequence[torch.Tensor]]
*A: Union[torch.Tensor, Sequence[torch.Tensor]],
) -> Tuple[torch.Tensor, ...]: # pragma: no cover
"""
Like torch.meshgrid was before PyTorch 1.10.0, i.e. with indexing set to ij

View File

@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
from typing import Optional, Union
import torch

View File

@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import math
from typing import Tuple

View File

@ -4,5 +4,7 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
from .symeig3x3 import symeig3x3
from .utils import _safe_det_3x3

View File

@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import math
from typing import Optional, Tuple

View File

@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import torch

View File

@ -81,6 +81,8 @@ inline std::tuple<at::Tensor, at::Tensor> BallQuery(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(p1);
CHECK_CPU(p2);
return BallQueryCpu(
p1.contiguous(),
p2.contiguous(),

View File

@ -7,7 +7,6 @@
*/
#include <torch/extension.h>
#include <queue>
#include <tuple>
std::tuple<at::Tensor, at::Tensor> BallQueryCpu(

View File

@ -98,6 +98,11 @@ at::Tensor SigmoidAlphaBlendBackward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(distances);
CHECK_CPU(pix_to_face);
CHECK_CPU(alphas);
CHECK_CPU(grad_alphas);
return SigmoidAlphaBlendBackwardCpu(
grad_alphas, alphas, distances, pix_to_face, sigma);
}

View File

@ -28,17 +28,16 @@ __global__ void alphaCompositeCudaForwardKernel(
const at::PackedTensorAccessor64<float, 4, at::RestrictPtrTraits> alphas,
const at::PackedTensorAccessor64<int64_t, 4, at::RestrictPtrTraits> points_idx) {
// clang-format on
const int64_t batch_size = result.size(0);
const int64_t C = features.size(0);
const int64_t H = points_idx.size(2);
const int64_t W = points_idx.size(3);
// Get the batch and index
const int batch = blockIdx.x;
const auto batch = blockIdx.x;
const int num_pixels = C * H * W;
const int num_threads = gridDim.y * blockDim.x;
const int tid = blockIdx.y * blockDim.x + threadIdx.x;
const auto num_threads = gridDim.y * blockDim.x;
const auto tid = blockIdx.y * blockDim.x + threadIdx.x;
// Iterate over each feature in each pixel
for (int pid = tid; pid < num_pixels; pid += num_threads) {
@ -79,17 +78,16 @@ __global__ void alphaCompositeCudaBackwardKernel(
const at::PackedTensorAccessor64<float, 4, at::RestrictPtrTraits> alphas,
const at::PackedTensorAccessor64<int64_t, 4, at::RestrictPtrTraits> points_idx) {
// clang-format on
const int64_t batch_size = points_idx.size(0);
const int64_t C = features.size(0);
const int64_t H = points_idx.size(2);
const int64_t W = points_idx.size(3);
// Get the batch and index
const int batch = blockIdx.x;
const auto batch = blockIdx.x;
const int num_pixels = C * H * W;
const int num_threads = gridDim.y * blockDim.x;
const int tid = blockIdx.y * blockDim.x + threadIdx.x;
const auto num_threads = gridDim.y * blockDim.x;
const auto tid = blockIdx.y * blockDim.x + threadIdx.x;
// Parallelize over each feature in each pixel in images of size H * W,
// for each image in the batch of size batch_size

View File

@ -74,6 +74,9 @@ torch::Tensor alphaCompositeForward(
AT_ERROR("Not compiled with GPU support");
#endif
} else {
CHECK_CPU(features);
CHECK_CPU(alphas);
CHECK_CPU(points_idx);
return alphaCompositeCpuForward(features, alphas, points_idx);
}
}
@ -101,6 +104,11 @@ std::tuple<torch::Tensor, torch::Tensor> alphaCompositeBackward(
AT_ERROR("Not compiled with GPU support");
#endif
} else {
CHECK_CPU(grad_outputs);
CHECK_CPU(features);
CHECK_CPU(alphas);
CHECK_CPU(points_idx);
return alphaCompositeCpuBackward(
grad_outputs, features, alphas, points_idx);
}

View File

@ -28,17 +28,16 @@ __global__ void weightedSumNormCudaForwardKernel(
const at::PackedTensorAccessor64<float, 4, at::RestrictPtrTraits> alphas,
const at::PackedTensorAccessor64<int64_t, 4, at::RestrictPtrTraits> points_idx) {
// clang-format on
const int64_t batch_size = result.size(0);
const int64_t C = features.size(0);
const int64_t H = points_idx.size(2);
const int64_t W = points_idx.size(3);
// Get the batch and index
const int batch = blockIdx.x;
const auto batch = blockIdx.x;
const int num_pixels = C * H * W;
const int num_threads = gridDim.y * blockDim.x;
const int tid = blockIdx.y * blockDim.x + threadIdx.x;
const auto num_threads = gridDim.y * blockDim.x;
const auto tid = blockIdx.y * blockDim.x + threadIdx.x;
// Parallelize over each feature in each pixel in images of size H * W,
// for each image in the batch of size batch_size
@ -92,17 +91,16 @@ __global__ void weightedSumNormCudaBackwardKernel(
const at::PackedTensorAccessor64<float, 4, at::RestrictPtrTraits> alphas,
const at::PackedTensorAccessor64<int64_t, 4, at::RestrictPtrTraits> points_idx) {
// clang-format on
const int64_t batch_size = points_idx.size(0);
const int64_t C = features.size(0);
const int64_t H = points_idx.size(2);
const int64_t W = points_idx.size(3);
// Get the batch and index
const int batch = blockIdx.x;
const auto batch = blockIdx.x;
const int num_pixels = C * W * H;
const int num_threads = gridDim.y * blockDim.x;
const int tid = blockIdx.y * blockDim.x + threadIdx.x;
const auto num_threads = gridDim.y * blockDim.x;
const auto tid = blockIdx.y * blockDim.x + threadIdx.x;
// Parallelize over each feature in each pixel in images of size H * W,
// for each image in the batch of size batch_size

View File

@ -73,6 +73,10 @@ torch::Tensor weightedSumNormForward(
AT_ERROR("Not compiled with GPU support");
#endif
} else {
CHECK_CPU(features);
CHECK_CPU(alphas);
CHECK_CPU(points_idx);
return weightedSumNormCpuForward(features, alphas, points_idx);
}
}
@ -100,6 +104,11 @@ std::tuple<torch::Tensor, torch::Tensor> weightedSumNormBackward(
AT_ERROR("Not compiled with GPU support");
#endif
} else {
CHECK_CPU(grad_outputs);
CHECK_CPU(features);
CHECK_CPU(alphas);
CHECK_CPU(points_idx);
return weightedSumNormCpuBackward(
grad_outputs, features, alphas, points_idx);
}

View File

@ -26,17 +26,16 @@ __global__ void weightedSumCudaForwardKernel(
const at::PackedTensorAccessor64<float, 4, at::RestrictPtrTraits> alphas,
const at::PackedTensorAccessor64<int64_t, 4, at::RestrictPtrTraits> points_idx) {
// clang-format on
const int64_t batch_size = result.size(0);
const int64_t C = features.size(0);
const int64_t H = points_idx.size(2);
const int64_t W = points_idx.size(3);
// Get the batch and index
const int batch = blockIdx.x;
const auto batch = blockIdx.x;
const int num_pixels = C * H * W;
const int num_threads = gridDim.y * blockDim.x;
const int tid = blockIdx.y * blockDim.x + threadIdx.x;
const auto num_threads = gridDim.y * blockDim.x;
const auto tid = blockIdx.y * blockDim.x + threadIdx.x;
// Parallelize over each feature in each pixel in images of size H * W,
// for each image in the batch of size batch_size
@ -74,17 +73,16 @@ __global__ void weightedSumCudaBackwardKernel(
const at::PackedTensorAccessor64<float, 4, at::RestrictPtrTraits> alphas,
const at::PackedTensorAccessor64<int64_t, 4, at::RestrictPtrTraits> points_idx) {
// clang-format on
const int64_t batch_size = points_idx.size(0);
const int64_t C = features.size(0);
const int64_t H = points_idx.size(2);
const int64_t W = points_idx.size(3);
// Get the batch and index
const int batch = blockIdx.x;
const auto batch = blockIdx.x;
const int num_pixels = C * H * W;
const int num_threads = gridDim.y * blockDim.x;
const int tid = blockIdx.y * blockDim.x + threadIdx.x;
const auto num_threads = gridDim.y * blockDim.x;
const auto tid = blockIdx.y * blockDim.x + threadIdx.x;
// Iterate over each pixel to compute the contribution to the
// gradient for the features and weights

View File

@ -72,6 +72,9 @@ torch::Tensor weightedSumForward(
AT_ERROR("Not compiled with GPU support");
#endif
} else {
CHECK_CPU(features);
CHECK_CPU(alphas);
CHECK_CPU(points_idx);
return weightedSumCpuForward(features, alphas, points_idx);
}
}
@ -98,6 +101,11 @@ std::tuple<torch::Tensor, torch::Tensor> weightedSumBackward(
AT_ERROR("Not compiled with GPU support");
#endif
} else {
CHECK_CPU(grad_outputs);
CHECK_CPU(features);
CHECK_CPU(alphas);
CHECK_CPU(points_idx);
return weightedSumCpuBackward(grad_outputs, features, alphas, points_idx);
}
}

View File

@ -8,7 +8,6 @@
// clang-format off
#include "./pulsar/global.h" // Include before <torch/extension.h>.
#include <torch/extension.h>
// clang-format on
#include "./pulsar/pytorch/renderer.h"
#include "./pulsar/pytorch/tensor_util.h"
@ -99,6 +98,7 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("marching_cubes", &MarchingCubes);
// Pulsar.
// Pulsar not enabled on AMD.
#ifdef PULSAR_LOGGING_ENABLED
c10::ShowLogInfoToStderr();
#endif
@ -148,10 +148,10 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
py::arg("gamma"),
py::arg("max_depth"),
py::arg("min_depth") /* = 0.f*/,
py::arg(
"bg_col") /* = at::nullopt not exposed properly in pytorch 1.1. */
py::arg("bg_col") /* = std::nullopt not exposed properly in
pytorch 1.1. */
,
py::arg("opacity") /* = at::nullopt ... */,
py::arg("opacity") /* = std::nullopt ... */,
py::arg("percent_allowed_difference") = 0.01f,
py::arg("max_n_hits") = MAX_UINT,
py::arg("mode") = 0)

View File

@ -60,6 +60,8 @@ std::tuple<at::Tensor, at::Tensor> FaceAreasNormalsForward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(verts);
CHECK_CPU(faces);
return FaceAreasNormalsForwardCpu(verts, faces);
}
@ -80,5 +82,9 @@ at::Tensor FaceAreasNormalsBackward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(grad_areas);
CHECK_CPU(grad_normals);
CHECK_CPU(verts);
CHECK_CPU(faces);
return FaceAreasNormalsBackwardCpu(grad_areas, grad_normals, verts, faces);
}

View File

@ -20,14 +20,14 @@ __global__ void GatherScatterCudaKernel(
const size_t V,
const size_t D,
const size_t E) {
const int tid = threadIdx.x;
const auto tid = threadIdx.x;
// Reverse the vertex order if backward.
const int v0_idx = backward ? 1 : 0;
const int v1_idx = backward ? 0 : 1;
// Edges are split evenly across the blocks.
for (int e = blockIdx.x; e < E; e += gridDim.x) {
for (auto e = blockIdx.x; e < E; e += gridDim.x) {
// Get indices of vertices which form the edge.
const int64_t v0 = edges[2 * e + v0_idx];
const int64_t v1 = edges[2 * e + v1_idx];
@ -35,7 +35,7 @@ __global__ void GatherScatterCudaKernel(
// Split vertex features evenly across threads.
// This implementation will be quite wasteful when D<128 since there will be
// a lot of threads doing nothing.
for (int d = tid; d < D; d += blockDim.x) {
for (auto d = tid; d < D; d += blockDim.x) {
const float val = input[v1 * D + d];
float* address = output + v0 * D + d;
atomicAdd(address, val);

View File

@ -53,5 +53,7 @@ at::Tensor GatherScatter(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(input);
CHECK_CPU(edges);
return GatherScatterCpu(input, edges, directed, backward);
}

View File

@ -20,8 +20,8 @@ __global__ void InterpFaceAttrsForwardKernel(
const size_t P,
const size_t F,
const size_t D) {
const int tid = threadIdx.x + blockIdx.x * blockDim.x;
const int num_threads = blockDim.x * gridDim.x;
const auto tid = threadIdx.x + blockIdx.x * blockDim.x;
const auto num_threads = blockDim.x * gridDim.x;
for (int pd = tid; pd < P * D; pd += num_threads) {
const int p = pd / D;
const int d = pd % D;
@ -93,8 +93,8 @@ __global__ void InterpFaceAttrsBackwardKernel(
const size_t P,
const size_t F,
const size_t D) {
const int tid = threadIdx.x + blockIdx.x * blockDim.x;
const int num_threads = blockDim.x * gridDim.x;
const auto tid = threadIdx.x + blockIdx.x * blockDim.x;
const auto num_threads = blockDim.x * gridDim.x;
for (int pd = tid; pd < P * D; pd += num_threads) {
const int p = pd / D;
const int d = pd % D;

View File

@ -57,6 +57,8 @@ at::Tensor InterpFaceAttrsForward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(face_attrs);
CHECK_CPU(barycentric_coords);
return InterpFaceAttrsForwardCpu(pix_to_face, barycentric_coords, face_attrs);
}
@ -106,6 +108,9 @@ std::tuple<at::Tensor, at::Tensor> InterpFaceAttrsBackward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(face_attrs);
CHECK_CPU(barycentric_coords);
CHECK_CPU(grad_pix_attrs);
return InterpFaceAttrsBackwardCpu(
pix_to_face, barycentric_coords, face_attrs, grad_pix_attrs);
}

View File

@ -44,5 +44,7 @@ inline std::tuple<at::Tensor, at::Tensor> IoUBox3D(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(boxes1);
CHECK_CPU(boxes2);
return IoUBox3DCpu(boxes1.contiguous(), boxes2.contiguous());
}

View File

@ -7,10 +7,7 @@
*/
#include <torch/extension.h>
#include <torch/torch.h>
#include <list>
#include <numeric>
#include <queue>
#include <tuple>
#include "iou_box3d/iou_utils.h"

View File

@ -461,10 +461,8 @@ __device__ inline std::tuple<float3, float3> ArgMaxVerts(
__device__ inline bool IsCoplanarTriTri(
const FaceVerts& tri1,
const FaceVerts& tri2) {
const float3 tri1_ctr = FaceCenter({tri1.v0, tri1.v1, tri1.v2});
const float3 tri1_n = FaceNormal({tri1.v0, tri1.v1, tri1.v2});
const float3 tri2_ctr = FaceCenter({tri2.v0, tri2.v1, tri2.v2});
const float3 tri2_n = FaceNormal({tri2.v0, tri2.v1, tri2.v2});
// Check if parallel
@ -500,7 +498,6 @@ __device__ inline bool IsCoplanarTriPlane(
const FaceVerts& tri,
const FaceVerts& plane,
const float3& normal) {
const float3 tri_ctr = FaceCenter({tri.v0, tri.v1, tri.v2});
const float3 nt = FaceNormal({tri.v0, tri.v1, tri.v2});
// check if parallel
@ -728,7 +725,7 @@ __device__ inline int BoxIntersections(
}
}
// Update the face_verts_out tris
num_tris = offset;
num_tris = min(MAX_TRIS, offset);
for (int j = 0; j < num_tris; ++j) {
face_verts_out[j] = tri_verts_updated[j];
}

View File

@ -338,7 +338,7 @@ std::tuple<at::Tensor, at::Tensor> KNearestNeighborIdxCuda(
TORCH_CHECK((norm == 1) || (norm == 2), "Norm must be 1 or 2.");
TORCH_CHECK(p2.size(2) == D, "Point sets must have the same last dimension");
TORCH_CHECK(p1.size(2) == D, "Point sets must have the same last dimension");
auto long_dtype = lengths1.options().dtype(at::kLong);
auto idxs = at::zeros({N, P1, K}, long_dtype);
auto dists = at::zeros({N, P1, K}, p1.options());
@ -495,7 +495,7 @@ __global__ void KNearestNeighborBackwardKernel(
if ((p1_idx < num1) && (k < num2)) {
const float grad_dist = grad_dists[n * P1 * K + p1_idx * K + k];
// index of point in p2 corresponding to the k-th nearest neighbor
const size_t p2_idx = idxs[n * P1 * K + p1_idx * K + k];
const int64_t p2_idx = idxs[n * P1 * K + p1_idx * K + k];
// If the index is the pad value of -1 then ignore it
if (p2_idx == -1) {
continue;

View File

@ -74,6 +74,8 @@ std::tuple<at::Tensor, at::Tensor> KNearestNeighborIdx(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(p1);
CHECK_CPU(p2);
return KNearestNeighborIdxCpu(p1, p2, lengths1, lengths2, norm, K);
}
@ -140,6 +142,8 @@ std::tuple<at::Tensor, at::Tensor> KNearestNeighborBackward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(p1);
CHECK_CPU(p2);
return KNearestNeighborBackwardCpu(
p1, p2, lengths1, lengths2, idxs, norm, grad_dists);
}

View File

@ -223,7 +223,7 @@ __global__ void CompactVoxelsKernel(
compactedVoxelArray,
const at::PackedTensorAccessor32<int, 1, at::RestrictPtrTraits>
voxelOccupied,
const at::PackedTensorAccessor32<int, 1, at::RestrictPtrTraits>
const at::PackedTensorAccessor32<int64_t, 1, at::RestrictPtrTraits>
voxelOccupiedScan,
uint numVoxels) {
uint id = blockIdx.x * blockDim.x + threadIdx.x;
@ -255,7 +255,8 @@ __global__ void GenerateFacesKernel(
at::PackedTensorAccessor<int64_t, 1, at::RestrictPtrTraits> ids,
at::PackedTensorAccessor32<int, 1, at::RestrictPtrTraits>
compactedVoxelArray,
at::PackedTensorAccessor32<int, 1, at::RestrictPtrTraits> numVertsScanned,
at::PackedTensorAccessor32<int64_t, 1, at::RestrictPtrTraits>
numVertsScanned,
const uint activeVoxels,
const at::PackedTensorAccessor32<float, 3, at::RestrictPtrTraits> vol,
const at::PackedTensorAccessor32<int, 2, at::RestrictPtrTraits> faceTable,
@ -381,6 +382,44 @@ __global__ void GenerateFacesKernel(
} // end for grid-strided kernel
}
// ATen/Torch does not have an exclusive-scan operator. Additionally, in the
// code below we need to get the "total number of items to work on" after
// a scan, which with an inclusive-scan would simply be the value of the last
// element in the tensor.
//
// This utility function hits two birds with one stone, by running
// an inclusive-scan into a right-shifted view of a tensor that's
// allocated to be one element bigger than the input tensor.
//
// Note; return tensor is `int64_t` per element, even if the input
// tensor is only 32-bit. Also, the return tensor is one element bigger
// than the input one.
//
// Secondary optional argument is an output argument that gets the
// value of the last element of the return tensor (because you almost
// always need this CPU-side right after this function anyway).
static at::Tensor ExclusiveScanAndTotal(
const at::Tensor& inTensor,
int64_t* optTotal = nullptr) {
const auto inSize = inTensor.sizes()[0];
auto retTensor = at::zeros({inSize + 1}, at::kLong).to(inTensor.device());
using at::indexing::None;
using at::indexing::Slice;
auto rightShiftedView = retTensor.index({Slice(1, None)});
// Do an (inclusive-scan) cumulative sum in to the view that's
// shifted one element to the right...
at::cumsum_out(rightShiftedView, inTensor, 0, at::kLong);
if (optTotal) {
*optTotal = retTensor[inSize].cpu().item<int64_t>();
}
// ...so that the not-shifted tensor holds the exclusive-scan
return retTensor;
}
// Entrance for marching cubes cuda extension. Marching Cubes is an algorithm to
// create triangle meshes from an implicit function (one of the form f(x, y, z)
// = 0). It works by iteratively checking a grid of cubes superimposed over a
@ -443,20 +482,18 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> MarchingCubesCuda(
using at::indexing::Slice;
auto d_voxelVerts =
at::zeros({numVoxels + 1}, at::TensorOptions().dtype(at::kInt))
at::zeros({numVoxels}, at::TensorOptions().dtype(at::kInt))
.to(vol.device());
auto d_voxelVerts_ = d_voxelVerts.index({Slice(1, None)});
auto d_voxelOccupied =
at::zeros({numVoxels + 1}, at::TensorOptions().dtype(at::kInt))
at::zeros({numVoxels}, at::TensorOptions().dtype(at::kInt))
.to(vol.device());
auto d_voxelOccupied_ = d_voxelOccupied.index({Slice(1, None)});
// Execute "ClassifyVoxelKernel" kernel to precompute
// two arrays - d_voxelOccupied and d_voxelVertices to global memory,
// which stores the occupancy state and number of voxel vertices per voxel.
ClassifyVoxelKernel<<<grid, threads, 0, stream>>>(
d_voxelVerts_.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
d_voxelOccupied_.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
d_voxelVerts.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
d_voxelOccupied.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
vol.packed_accessor32<float, 3, at::RestrictPtrTraits>(),
isolevel);
AT_CUDA_CHECK(cudaGetLastError());
@ -466,12 +503,9 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> MarchingCubesCuda(
// count for voxels in the grid and compute the number of active voxels.
// If the number of active voxels is 0, return zero tensor for verts and
// faces.
auto d_voxelOccupiedScan = at::cumsum(d_voxelOccupied, 0);
auto d_voxelOccupiedScan_ = d_voxelOccupiedScan.index({Slice(1, None)});
// number of active voxels
int activeVoxels = d_voxelOccupiedScan[numVoxels].cpu().item<int>();
int64_t activeVoxels = 0;
auto d_voxelOccupiedScan =
ExclusiveScanAndTotal(d_voxelOccupied, &activeVoxels);
const int device_id = vol.device().index();
auto opt = at::TensorOptions().dtype(at::kInt).device(at::kCUDA, device_id);
@ -486,23 +520,21 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> MarchingCubesCuda(
return std::make_tuple(verts, faces, ids);
}
// Execute "CompactVoxelsKernel" kernel to compress voxels for accleration.
// Execute "CompactVoxelsKernel" kernel to compress voxels for acceleration.
// This allows us to run triangle generation on only the occupied voxels.
auto d_compVoxelArray = at::zeros({activeVoxels}, opt);
CompactVoxelsKernel<<<grid, threads, 0, stream>>>(
d_compVoxelArray.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
d_voxelOccupied.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
d_voxelOccupiedScan_.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
d_voxelOccupiedScan
.packed_accessor32<int64_t, 1, at::RestrictPtrTraits>(),
numVoxels);
AT_CUDA_CHECK(cudaGetLastError());
cudaDeviceSynchronize();
// Scan d_voxelVerts array to generate offsets of vertices for each voxel
auto d_voxelVertsScan = at::cumsum(d_voxelVerts, 0);
auto d_voxelVertsScan_ = d_voxelVertsScan.index({Slice(1, None)});
// total number of vertices
int totalVerts = d_voxelVertsScan[numVoxels].cpu().item<int>();
int64_t totalVerts = 0;
auto d_voxelVertsScan = ExclusiveScanAndTotal(d_voxelVerts, &totalVerts);
// Execute "GenerateFacesKernel" kernel
// This runs only on the occupied voxels.
@ -522,7 +554,7 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> MarchingCubesCuda(
faces.packed_accessor<int64_t, 2, at::RestrictPtrTraits>(),
ids.packed_accessor<int64_t, 1, at::RestrictPtrTraits>(),
d_compVoxelArray.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
d_voxelVertsScan_.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
d_voxelVertsScan.packed_accessor32<int64_t, 1, at::RestrictPtrTraits>(),
activeVoxels,
vol.packed_accessor32<float, 3, at::RestrictPtrTraits>(),
faceTable.packed_accessor32<int, 2, at::RestrictPtrTraits>(),

View File

@ -58,5 +58,6 @@ inline std::tuple<at::Tensor, at::Tensor, at::Tensor> MarchingCubes(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(vol);
return MarchingCubesCpu(vol.contiguous(), isolevel);
}

View File

@ -71,8 +71,8 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> MarchingCubesCpu(
if ((j + 1) % 3 == 0 && ps[0] != ps[1] && ps[1] != ps[2] &&
ps[2] != ps[0]) {
for (int k = 0; k < 3; k++) {
int v = tri[k];
edge_id_to_v[tri.at(k)] = ps.at(k);
int64_t v = tri.at(k);
edge_id_to_v[v] = ps.at(k);
if (!uniq_edge_id.count(v)) {
uniq_edge_id[v] = verts.size();
verts.push_back(edge_id_to_v[v]);

View File

@ -88,6 +88,8 @@ at::Tensor PackedToPadded(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(inputs_packed);
CHECK_CPU(first_idxs);
return PackedToPaddedCpu(inputs_packed, first_idxs, max_size);
}
@ -105,5 +107,7 @@ at::Tensor PaddedToPacked(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(inputs_padded);
CHECK_CPU(first_idxs);
return PaddedToPackedCpu(inputs_padded, first_idxs, num_inputs);
}

View File

@ -110,7 +110,7 @@ __global__ void DistanceForwardKernel(
__syncthreads();
// Perform reduction in shared memory.
for (int s = blockDim.x / 2; s > 32; s >>= 1) {
for (auto s = blockDim.x / 2; s > 32; s >>= 1) {
if (tid < s) {
if (min_dists[tid] > min_dists[tid + s]) {
min_dists[tid] = min_dists[tid + s];
@ -502,8 +502,8 @@ __global__ void PointFaceArrayForwardKernel(
const float3* tris_f3 = (float3*)tris;
// Parallelize over P * S computations
const int num_threads = gridDim.x * blockDim.x;
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
const auto num_threads = gridDim.x * blockDim.x;
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (int t_i = tid; t_i < P * T; t_i += num_threads) {
const int t = t_i / P; // segment index.
@ -576,8 +576,8 @@ __global__ void PointFaceArrayBackwardKernel(
const float3* tris_f3 = (float3*)tris;
// Parallelize over P * S computations
const int num_threads = gridDim.x * blockDim.x;
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
const auto num_threads = gridDim.x * blockDim.x;
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (int t_i = tid; t_i < P * T; t_i += num_threads) {
const int t = t_i / P; // triangle index.
@ -683,8 +683,8 @@ __global__ void PointEdgeArrayForwardKernel(
float3* segms_f3 = (float3*)segms;
// Parallelize over P * S computations
const int num_threads = gridDim.x * blockDim.x;
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
const auto num_threads = gridDim.x * blockDim.x;
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (int t_i = tid; t_i < P * S; t_i += num_threads) {
const int s = t_i / P; // segment index.
@ -752,8 +752,8 @@ __global__ void PointEdgeArrayBackwardKernel(
float3* segms_f3 = (float3*)segms;
// Parallelize over P * S computations
const int num_threads = gridDim.x * blockDim.x;
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
const auto num_threads = gridDim.x * blockDim.x;
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (int t_i = tid; t_i < P * S; t_i += num_threads) {
const int s = t_i / P; // segment index.

View File

@ -88,6 +88,10 @@ std::tuple<torch::Tensor, torch::Tensor> PointFaceDistanceForward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(points);
CHECK_CPU(points_first_idx);
CHECK_CPU(tris);
CHECK_CPU(tris_first_idx);
return PointFaceDistanceForwardCpu(
points, points_first_idx, tris, tris_first_idx, min_triangle_area);
}
@ -143,6 +147,10 @@ std::tuple<torch::Tensor, torch::Tensor> PointFaceDistanceBackward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(points);
CHECK_CPU(tris);
CHECK_CPU(idx_points);
CHECK_CPU(grad_dists);
return PointFaceDistanceBackwardCpu(
points, tris, idx_points, grad_dists, min_triangle_area);
}
@ -221,6 +229,10 @@ std::tuple<torch::Tensor, torch::Tensor> FacePointDistanceForward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(points);
CHECK_CPU(points_first_idx);
CHECK_CPU(tris);
CHECK_CPU(tris_first_idx);
return FacePointDistanceForwardCpu(
points, points_first_idx, tris, tris_first_idx, min_triangle_area);
}
@ -277,6 +289,10 @@ std::tuple<torch::Tensor, torch::Tensor> FacePointDistanceBackward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(points);
CHECK_CPU(tris);
CHECK_CPU(idx_tris);
CHECK_CPU(grad_dists);
return FacePointDistanceBackwardCpu(
points, tris, idx_tris, grad_dists, min_triangle_area);
}
@ -346,6 +362,10 @@ std::tuple<torch::Tensor, torch::Tensor> PointEdgeDistanceForward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(points);
CHECK_CPU(points_first_idx);
CHECK_CPU(segms);
CHECK_CPU(segms_first_idx);
return PointEdgeDistanceForwardCpu(
points, points_first_idx, segms, segms_first_idx, max_points);
}
@ -396,6 +416,10 @@ std::tuple<torch::Tensor, torch::Tensor> PointEdgeDistanceBackward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(points);
CHECK_CPU(segms);
CHECK_CPU(idx_points);
CHECK_CPU(grad_dists);
return PointEdgeDistanceBackwardCpu(points, segms, idx_points, grad_dists);
}
@ -464,6 +488,10 @@ std::tuple<torch::Tensor, torch::Tensor> EdgePointDistanceForward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(points);
CHECK_CPU(points_first_idx);
CHECK_CPU(segms);
CHECK_CPU(segms_first_idx);
return EdgePointDistanceForwardCpu(
points, points_first_idx, segms, segms_first_idx, max_segms);
}
@ -514,6 +542,10 @@ std::tuple<torch::Tensor, torch::Tensor> EdgePointDistanceBackward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(points);
CHECK_CPU(segms);
CHECK_CPU(idx_segms);
CHECK_CPU(grad_dists);
return EdgePointDistanceBackwardCpu(points, segms, idx_segms, grad_dists);
}
@ -567,6 +599,8 @@ torch::Tensor PointFaceArrayDistanceForward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(points);
CHECK_CPU(tris);
return PointFaceArrayDistanceForwardCpu(points, tris, min_triangle_area);
}
@ -613,6 +647,9 @@ std::tuple<torch::Tensor, torch::Tensor> PointFaceArrayDistanceBackward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(points);
CHECK_CPU(tris);
CHECK_CPU(grad_dists);
return PointFaceArrayDistanceBackwardCpu(
points, tris, grad_dists, min_triangle_area);
}
@ -661,6 +698,8 @@ torch::Tensor PointEdgeArrayDistanceForward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(points);
CHECK_CPU(segms);
return PointEdgeArrayDistanceForwardCpu(points, segms);
}
@ -703,5 +742,8 @@ std::tuple<torch::Tensor, torch::Tensor> PointEdgeArrayDistanceBackward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(points);
CHECK_CPU(segms);
CHECK_CPU(grad_dists);
return PointEdgeArrayDistanceBackwardCpu(points, segms, grad_dists);
}

View File

@ -104,6 +104,12 @@ inline void PointsToVolumesForward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(points_3d);
CHECK_CPU(points_features);
CHECK_CPU(volume_densities);
CHECK_CPU(volume_features);
CHECK_CPU(grid_sizes);
CHECK_CPU(mask);
PointsToVolumesForwardCpu(
points_3d,
points_features,
@ -183,6 +189,14 @@ inline void PointsToVolumesBackward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
CHECK_CPU(points_3d);
CHECK_CPU(points_features);
CHECK_CPU(grid_sizes);
CHECK_CPU(mask);
CHECK_CPU(grad_volume_densities);
CHECK_CPU(grad_volume_features);
CHECK_CPU(grad_points_3d);
CHECK_CPU(grad_points_features);
PointsToVolumesBackwardCpu(
points_3d,
points_features,

View File

@ -8,9 +8,7 @@
#include <torch/csrc/autograd/VariableTypeUtils.h>
#include <torch/extension.h>
#include <algorithm>
#include <cmath>
#include <thread>
#include <vector>
// In the x direction, the location {0, ..., grid_size_x - 1} correspond to

View File

@ -15,8 +15,8 @@
#endif
#if defined(_WIN64) || defined(_WIN32)
#define uint unsigned int
#define ushort unsigned short
using uint = unsigned int;
using ushort = unsigned short;
#endif
#include "./logging.h" // <- include before torch/extension.h
@ -30,11 +30,20 @@
#define GLOBAL __global__
#define RESTRICT __restrict__
#define DEBUGBREAK()
#ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
#pragma nv_diag_suppress 1866
#pragma nv_diag_suppress 2941
#pragma nv_diag_suppress 2951
#pragma nv_diag_suppress 2967
#else
#if !defined(USE_ROCM)
#pragma diag_suppress = attribute_not_allowed
#pragma diag_suppress = 1866
#pragma diag_suppress = 2941
#pragma diag_suppress = 2951
#pragma diag_suppress = 2967
#endif //! USE_ROCM
#endif
#else // __CUDACC__
#define INLINE inline
#define HOST
@ -49,6 +58,9 @@
#pragma clang diagnostic pop
#ifdef WITH_CUDA
#include <ATen/cuda/CUDAContext.h>
#if !defined(USE_ROCM)
#include <vector_functions.h>
#endif //! USE_ROCM
#else
#ifndef cudaStream_t
typedef void* cudaStream_t;
@ -65,8 +77,6 @@ struct float2 {
struct float3 {
float x, y, z;
};
#endif
namespace py = pybind11;
inline float3 make_float3(const float& x, const float& y, const float& z) {
float3 res;
res.x = x;
@ -74,6 +84,8 @@ inline float3 make_float3(const float& x, const float& y, const float& z) {
res.z = z;
return res;
}
#endif
namespace py = pybind11;
inline bool operator==(const float3& a, const float3& b) {
return a.x == b.x && a.y == b.y && a.z == b.z;

View File

@ -59,6 +59,11 @@ getLastCudaError(const char* errorMessage, const char* file, const int line) {
#define SHARED __shared__
#define ACTIVEMASK() __activemask()
#define BALLOT(mask, val) __ballot_sync((mask), val)
/* TODO (ROCM-6.2): None of the WARP_* are used anywhere and ROCM-6.2 natively
* supports __shfl_*. Disabling until the move to ROCM-6.2.
*/
#if !defined(USE_ROCM)
/**
* Find the cumulative sum within a warp up to the current
* thread lane, with each mask thread contributing base.
@ -115,6 +120,7 @@ INLINE DEVICE float3 WARP_SUM_FLOAT3(
ret.z = WARP_SUM(group, mask, base.z);
return ret;
}
#endif //! USE_ROCM
// Floating point.
// #define FMUL(a, b) __fmul_rn((a), (b))
@ -142,6 +148,7 @@ INLINE DEVICE float3 WARP_SUM_FLOAT3(
#define FMA(x, y, z) __fmaf_rn((x), (y), (z))
#define I2F(a) __int2float_rn(a)
#define FRCP(x) __frcp_rn(x)
#if !defined(USE_ROCM)
__device__ static float atomicMax(float* address, float val) {
int* address_as_i = (int*)address;
int old = *address_as_i, assumed;
@ -166,6 +173,7 @@ __device__ static float atomicMin(float* address, float val) {
} while (assumed != old);
return __int_as_float(old);
}
#endif //! USE_ROCM
#define DMAX(a, b) FMAX(a, b)
#define DMIN(a, b) FMIN(a, b)
#define DSQRT(a) sqrt(a)
@ -409,7 +417,7 @@ __device__ static float atomicMin(float* address, float val) {
(OUT_PTR), \
(NUM_SELECTED_PTR), \
(NUM_ITEMS), \
stream = (STREAM));
(STREAM));
#define COPY_HOST_DEV(PTR_D, PTR_H, TYPE, SIZE) \
HANDLECUDA(cudaMemcpy( \

Some files were not shown because too many files have changed in this diff Show More