123 Commits

Author SHA1 Message Date
generatedunixname89002005307016
fe0b1bae49 upgrade pyre version in fbcode/vision - batch 2
Differential Revision: D55650177

fbshipit-source-id: d5faa4d805bb40fe3dea70b0601e7a1382b09f3a
2024-04-02 18:11:50 -07:00
generatedunixname89002005307016
b215776f2d upgrade pyre version in fbcode/vision - batch 2
Differential Revision: D55395614

fbshipit-source-id: 71677892b5d6f219f6df25b4efb51fb0f6b1441b
2024-03-26 22:02:22 -07:00
Conner Nilsen
a27755db41 Pyre Configurationless migration for] [batch:85/112] [shard:6/N]
Reviewed By: inseokhwang

Differential Revision: D54438157

fbshipit-source-id: a6acfe146ed29fff82123b5e458906d4b4cee6a2
2024-03-04 18:30:37 -08:00
Cijo Jose
ae9d8787ce Support color in cubify
Summary: The diff support colors in cubify for align = "center"

Reviewed By: bottler

Differential Revision: D53777011

fbshipit-source-id: ccb2bd1e3d89be3d1ac943eff08f40e50b0540d9
2024-02-16 08:19:12 -08:00
generatedunixname89002005307016
b80ab0caf0 upgrade pyre version in fbcode/vision - batch 1
Differential Revision: D53059851

fbshipit-source-id: f5d0951186c858f90ddf550323a163e4b6d42b68
2024-01-24 23:56:06 -08:00
Roman Shapovalov
94da8841af Align_corners switch in Volumes
Summary:
Porting this commit by davnov134 .
93a3a62800 (diff-a8e107ebe039de52ca112ac6ddfba6ebccd53b4f53030b986e13f019fe57a378)

Capability to interpret world/local coordinates with various align_corners semantics.

Reviewed By: bottler

Differential Revision: D51855420

fbshipit-source-id: 834cd220c25d7f0143d8a55ba880da5977099dd6
2023-12-07 03:07:41 -08:00
generatedunixname89002005307016
eaf0709d6a suppress errors in vision/fair/pytorch3d
Differential Revision: D49531589

fbshipit-source-id: 61c28ae33d2e5f75fd1695f35dc99931a3aaf7d3
2023-09-22 03:33:05 -07:00
Emilien Garreau
4e7715ce66 Remove unused pyre-ignore or pyre-fixme
Reviewed By: bottler

Differential Revision: D47223471

fbshipit-source-id: 8bdabf2a69dd7aec7202141122a9c69220ba7ef1
2023-07-05 02:58:47 -07:00
generatedunixname89002005307016
573a42cd5f suppress errors in vision/fair/pytorch3d
Differential Revision: D46685078

fbshipit-source-id: daf2e75f24b68d2eab74cddca8ab9446e96951e7
2023-06-13 07:14:48 -07:00
generatedunixname89002005307016
de3a474d2b suppress errors in vision/fair/pytorch3d
Differential Revision: D41897914

fbshipit-source-id: 675f4ad6938bc12d295bbb63a69e3ff98b319a9a
2022-12-09 18:50:58 -08:00
Jeremy Reizenstein
a2c6af9250 more code blocks for readthedocs
Summary: More rst syntax fixes

Reviewed By: davidsonic

Differential Revision: D40977328

fbshipit-source-id: a3a3accbf2ba7cd9c84a0a82d0265010764a9d61
2022-11-29 03:13:40 -08:00
Jiali Duan
8b8291830e Marching Cubes cuda extension
Summary:
Torch CUDA extension for Marching Cubes
- MC involving 3 steps:
  - 1st forward pass to collect vertices and occupied state for each voxel
  - Compute compactVoxelArray to skip non-empty voxels
  - 2nd pass to genereate interpolated vertex positions and faces by marching through the grid
- In contrast to existing MC:
   - Bind each interpolated vertex with a global edge_id to address floating-point precision
   - Added deduplication process to remove redundant vertices and faces

Benchmarks (ms):

| N / V(^3)      | python          | C++             |   CUDA   | Speedup |
| 2 / 20          |    12176873  |       24338     |     4363   | 2790x/5x|
| 1 / 100          |     -             |    3070511     |   27126   |    113x    |
| 2 / 100          |     -             |    5968934     |   53129   |    112x    |
| 1 / 256          |     -             |  61278092     | 430900   |    142x    |
| 2 / 256          |     -             |125687930     | 856941   |    146x   |

Reviewed By: kjchalup

Differential Revision: D39644248

fbshipit-source-id: d679c0c79d67b98b235d12296f383d760a00042a
2022-11-15 19:42:04 -08:00
Roman Shapovalov
f3c1e0837c MC rasterize supports heterogeneous bundle; refactoring of bundle-to-padded
Summary:
Rasterize MC was not adapted to heterogeneous bundles.

There are some caveats though:
1) on CO3D, we get up to 18 points per image, which is too few for a reasonable visualisation (see below);
2) rasterising for a batch of 100 is slow.

I also moved the unpacking code close to the bundle to be able to reuse it.

{F789678778}

Reviewed By: bottler, davnov134

Differential Revision: D41008600

fbshipit-source-id: 9f10f1f9f9a174cf8c534b9b9859587d69832b71
2022-11-07 13:43:31 -08:00
Jiali Duan
0d8608b9f9 Marching Cubes C++ torch extension
Summary:
Torch C++ extension for Marching Cubes

- Add torch C++ extension for marching cubes. Observe a speed up of ~255x-324x speed up (over varying batch sizes and spatial resolutions)

- Add C++ impl in existing unit-tests.

(Note: this ignores all push blocking failures!)

Reviewed By: kjchalup

Differential Revision: D39590638

fbshipit-source-id: e44d2852a24c2c398e5ea9db20f0dfaa1817e457
2022-10-06 11:13:53 -07:00
Jiali Duan
850efdf706 Python marching cubes improvements
Summary: Overhaul of marching_cubes_naive for better performance and to avoid relying on unstable hashing. In particular, instead of hashing vertex positions, we index each interpolated vertex with its corresponding edge in the 3d grid.

Reviewed By: kjchalup

Differential Revision: D39419642

fbshipit-source-id: b5fede3525c545d1d374198928dfb216262f0ec0
2022-10-06 11:08:49 -07:00
Darijan Gudelj
f34da3d3b6 packed_to_padded now accepts all sizes
Summary:
We need to make packing/unpacking in 2 places for mixed frame raysampling (metrics and raysampler) but those tensors that need to be unpacked/packed have more than two dimensions.
I could have reshaped and stored dimensions but this seems to just complicate code there with something which packed_to_padded should support.
I could have made a separate function for implicitron but it would confusing to have two different padded_to_packed functions inside pytorch3d codebase one of which does packing for (b, max) and (b, max, f) and the other for (b, max, …)

Reviewed By: bottler

Differential Revision: D39729026

fbshipit-source-id: 2bdebf290dcc6c316b7fe1aeee49bbb5255e508c
2022-09-22 11:27:43 -07:00
Jeremy Reizenstein
cb7bd33e7f validate lengths in chamfer and farthest_points
Summary: Fixes #1326

Reviewed By: kjchalup

Differential Revision: D39259697

fbshipit-source-id: 51392f4cc4a956165a62901cb115fcefe0e17277
2022-09-08 15:03:36 -07:00
Chris Lambert
d4a1051e0f Remove pytorch3d's wrappers for eigh, solve, lstsq, qr
Summary: Remove the compat functions eigh, solve, lstsq, and qr. Migrate callers to use torch.linalg directly.

Reviewed By: bottler

Differential Revision: D39172949

fbshipit-source-id: 484230a553237808f06ee5cdfde64651cba91c4c
2022-08-31 13:04:07 -07:00
Krzysztof Chalupka
6653f4400b Fix up docstrings
Summary:
One of the docstrings is a disaster see https://pytorch3d.readthedocs.io/en/latest/modules/ops.html

Also some minor fixes I encountered when browsing the code

Reviewed By: bottler

Differential Revision: D38581595

fbshipit-source-id: 3b6ca97788af380a44df9144a6a4cac782c6eab8
2022-08-23 14:58:49 -07:00
Ashish Sinha
60808972b8 typo fix (#1293)
Summary:
fixes typo of the docstring.

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1293

Differential Revision: D38737416

Pulled By: bottler

fbshipit-source-id: 3f9da3e97b55c2acd858263de9e85eaee272a98f
2022-08-16 06:46:11 -07:00
Jeremy Reizenstein
8e0c82b89a lint fix: raise from None
Summary: New linter warning is complaining about `raise` inside `except`.

Reviewed By: kjchalup

Differential Revision: D37819264

fbshipit-source-id: 56ad5d0558ea39e1125f3c76b43b7376aea2bc7c
2022-07-14 04:21:44 -07:00
Pyre Bot Jr
7978ffd1e4 suppress errors in vision/fair/pytorch3d
Differential Revision: D37172764

fbshipit-source-id: a2ec367e56de2781a17f5e708eb5832ec9d7e6b4
2022-06-15 06:27:35 -07:00
John Reese
3b2300641a apply import merging for fbcode (11 of 11)
Summary:
Applies new import merging and sorting from µsort v1.0.

When merging imports, µsort will make a best-effort to move associated
comments to match merged elements, but there are known limitations due to
the diynamic nature of Python and developer tooling. These changes should
not produce any dangerous runtime changes, but may require touch-ups to
satisfy linters and other tooling.

Note that µsort uses case-insensitive, lexicographical sorting, which
results in a different ordering compared to isort. This provides a more
consistent sorting order, matching the case-insensitive order used when
sorting import statements by module name, and ensures that "frog", "FROG",
and "Frog" always sort next to each other.

For details on µsort's sorting and merging semantics, see the user guide:
https://usort.readthedocs.io/en/stable/guide.html#sorting

Reviewed By: lisroach

Differential Revision: D36402260

fbshipit-source-id: 7cb52f09b740ccc580e61e6d1787d27381a8ce00
2022-05-15 12:53:03 -07:00
John Reese
bef959c755 formatting changes from black 22.3.0
Summary:
Applies the black-fbsource codemod with the new build of pyfmt.

paintitblack

Reviewed By: lisroach

Differential Revision: D36324783

fbshipit-source-id: 280c09e88257e5e569ab729691165d8dedd767bc
2022-05-11 19:55:56 -07:00
Tim Hatch
34bbb3ad32 apply import merging for fbcode/vision/fair (2 of 2)
Summary:
Applies new import merging and sorting from µsort v1.0.

When merging imports, µsort will make a best-effort to move associated
comments to match merged elements, but there are known limitations due to
the diynamic nature of Python and developer tooling. These changes should
not produce any dangerous runtime changes, but may require touch-ups to
satisfy linters and other tooling.

Note that µsort uses case-insensitive, lexicographical sorting, which
results in a different ordering compared to isort. This provides a more
consistent sorting order, matching the case-insensitive order used when
sorting import statements by module name, and ensures that "frog", "FROG",
and "Frog" always sort next to each other.

For details on µsort's sorting and merging semantics, see the user guide:
https://usort.readthedocs.io/en/stable/guide.html#sorting

Reviewed By: bottler

Differential Revision: D35553814

fbshipit-source-id: be49bdb6a4c25264ff8d4db3a601f18736d17be1
2022-04-13 06:51:33 -07:00
Jeremy Reizenstein
df08ea8eb4 Fix inferred typing
Summary: D35513897 (4b94649f7b) was a pyre infer job which got some things wrong. Correct by adding the correct types, so these things shouldn't need worrying about again.

Reviewed By: patricklabatut

Differential Revision: D35546144

fbshipit-source-id: 89f6ea2b67be27aa0b0b14afff4347cccf23feb7
2022-04-13 04:40:56 -07:00
Jeremy Reizenstein
78fd5af1a6 make points2volumes feature rescaling optional
Summary: Add option to not rescale the features, giving more control. https://github.com/facebookresearch/pytorch3d/issues/1137

Reviewed By: nikhilaravi

Differential Revision: D35219577

fbshipit-source-id: cbbb643b91b71bc908cedc6dac0f63f6d1355c85
2022-04-13 04:39:47 -07:00
Georgia Gkioxari
67fff956a2 add L1 support for KNN & Chamfer
Summary:
Added L1 norm for KNN and chamfer op
* The norm is now specified with a variable `norm` which can only be 1 or 2

Reviewed By: bottler

Differential Revision: D35419637

fbshipit-source-id: 77813fec650b30c28342af90d5ed02c89133e136
2022-04-10 10:27:20 -07:00
Pyre Bot Jr
4b94649f7b Add annotations to vision/fair/pytorch3d
Reviewed By: shannonzhu

Differential Revision: D35513897

fbshipit-source-id: 1ca12671df1bd6608a7dce9193c145d5985c0b45
2022-04-08 18:23:41 -07:00
yaookyie
4c48beb226 Fix scatter_ error in cubify (#1067)
Summary:
Error Reproduction:

python=3.8.12
pytorch=1.9.1
pytorch3d=0.6.1
cudatoolkit=11.1.74

test.py:
```python
import torch
from pytorch3d.ops import cubify
voxels = torch.Tensor([[[[0,1], [0,0]], [[0,1], [0,0]]]]).float()
meshes = cubify(voxels, 0.5, device="cpu")
```

The error appears when `device="cpu"` and `pytorch=1.9.1` (works fine with pytorch=1.10.2)

Error message:
```console
/home/kyle/anaconda3/envs/adapt-net/lib/python3.8/site-packages/torch/_tensor.py:575: UserWarning: floor_divide is deprecated, and will be removed in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values.
To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). (Triggered internally at  /opt/conda/conda-bld/pytorch_1631630839582/work/aten/src/ATen/native/BinaryOps.cpp:467.)
  return torch.floor_divide(self, other)
Traceback (most recent call last):
  File "test.py", line 5, in <module>
    meshes = cubify(voxels, 0.5, device="cpu")
  File "/home/kyle/anaconda3/envs/adapt-net/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 28, in decorate_context
    return func(*args, **kwargs)
  File "/home/kyle/Desktop/pytorch3d/pytorch3d/ops/cubify.py", line 227, in cubify
    idleverts.scatter_(0, grid_faces.flatten(), 0)
RuntimeError: Expected index [60] to be smaller than self [27] apart from dimension 0 and to be smaller size than src [27]
```

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1067

Reviewed By: nikhilaravi

Differential Revision: D34893567

Pulled By: bottler

fbshipit-source-id: aa95980f7319302044141f7821ef48129cfa37a6
2022-04-05 13:16:36 -07:00
Jeremy Reizenstein
4d043fc9ac PyTorch 1.7 compatibility
Summary: Small changes discovered based on circleCI failures.

Reviewed By: patricklabatut

Differential Revision: D34426807

fbshipit-source-id: 819860f34b2f367dd24057ca7490284204180a13
2022-02-25 07:53:34 -08:00
Jeremy Reizenstein
db1f7c4506 avoid symeig
Summary: Use the newer eigh to avoid deprecation warnings in newer pytorch.

Reviewed By: patricklabatut

Differential Revision: D34375784

fbshipit-source-id: 40efe0d33fdfa071fba80fc97ed008cbfd2ef249
2022-02-21 07:24:21 -08:00
Jeremy Reizenstein
47c0997227 Followup D33970393 (auto typing)
Summary: D33970393 (e9fb6c27e3) ran an inference to add some typing. Remove some where it was a bit too confident. (Also fix some pyre errors in plotly_vis caused by new mismatch.)

Reviewed By: patricklabatut

Differential Revision: D34004689

fbshipit-source-id: 430182b0ff0b91be542a3120da6d6b1d2b247c59
2022-02-09 12:42:56 -08:00
Pyre Bot Jr
e9fb6c27e3 Add annotations to vision/fair/pytorch3d
Reviewed By: shannonzhu

Differential Revision: D33970393

fbshipit-source-id: 9b4dfaccfc3793fd37705a923d689cb14c9d26ba
2022-02-03 01:46:32 -08:00
Jeremy Reizenstein
c2862ff427 use workaround for points_normals
Summary:
Use existing workaround for batched 3x3 symeig because it is faster than torch.symeig.

Added benchmark showing speedup. True = workaround.
```
Benchmark                Avg Time(μs)      Peak Time(μs) Iterations
--------------------------------------------------------------------------------
normals_True_3000            16237           17233             31
normals_True_6000            33028           33391             16
normals_False_3000        18623069        18623069              1
normals_False_6000        36535475        36535475              1
```

Should help https://github.com/facebookresearch/pytorch3d/issues/988

Reviewed By: nikhilaravi

Differential Revision: D33660585

fbshipit-source-id: d1162b277f5d61ed67e367057a61f25e03888dce
2022-01-24 11:41:55 -08:00
Jeremy Reizenstein
9eeb456e82 Update license for company name
Summary: Update all FB license strings to the new format.

Reviewed By: patricklabatut

Differential Revision: D33403538

fbshipit-source-id: 97a4596c5c888f3c54f44456dc07e718a387a02c
2022-01-04 11:43:38 -08:00
Pyre Bot Jr
7660ed1876 suppress errors in fbcode/vision - batch 2
Differential Revision: D33338085

fbshipit-source-id: fdb207864718c56dfa0d20530b59349c93af11bd
2021-12-28 11:28:48 -08:00
Pyre Bot Jr
315f2487db suppress errors in vision/fair/pytorch3d
Differential Revision: D33202801

fbshipit-source-id: d4cb0f4f4a8ad5a6519ce4b8c640e8f96fbeaccb
2021-12-17 19:23:58 -08:00
Georgia Gkioxari
ccfb72cc50 small fix for iou3d
Summary:
A small numerical fix for IoU for 3D boxes, fixes GH #992

* Adds a check for boxes with zero side areas (invalid boxes)
* Fixes numerical issue when two boxes have coplanar sides

Reviewed By: nikhilaravi

Differential Revision: D33195691

fbshipit-source-id: 8a34b4d1f1e5ec2edb6d54143930da44bdde0906
2021-12-17 16:13:51 -08:00
Pyre Bot Jr
7c111f7379 suppress errors in vision/fair/pytorch3d
Differential Revision: D31737477

fbshipit-source-id: 2590548c1b7a65c277ccddd405276c244fde0961
2021-10-18 12:18:08 -07:00
Jeremy Reizenstein
34b1b4ab8b defaulted grid_sizes in points2vols
Summary: Fix #873, that grid_sizes defaults to the wrong dtype in points2volumes code, and mask doesn't have a proper default.

Reviewed By: nikhilaravi

Differential Revision: D31503545

fbshipit-source-id: fa32a1a6074fc7ac7bdb362edfb5e5839866a472
2021-10-16 14:41:59 -07:00
Nikhila Ravi
2f2466f472 Update eps for coplanar check in 3D IoU
Summary: Make eps=1e-4 by default for coplanar check and also enable it to be set by the user in call to `box3d_overlap`.

Reviewed By: gkioxari

Differential Revision: D31596836

fbshipit-source-id: b57fe603fd136cfa58fddf836922706d44fe894e
2021-10-13 13:29:47 -07:00
Pyre Bot Jr
6d36c1e2b0 suppress errors in vision/fair/pytorch3d
Differential Revision: D31496551

fbshipit-source-id: 705fd88f319875db3f7938a2946c48a51ea225f5
2021-10-07 21:58:08 -07:00
Jeremy Reizenstein
ee2b2feb98 Use C++/CUDA in points2vols
Summary:
Move the core of add_points_to_volumes to the new C++/CUDA implementation. Add new flag to let the user stop this happening. Avoids copies. About a 30% speedup on the larger cases, up to 50% on the smaller cases.

New timings
```
Benchmark                                                               Avg Time(μs)      Peak Time(μs) Iterations
--------------------------------------------------------------------------------
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_1000                     4575           12591            110
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_10000                   25468           29186             20
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_100000                 202085          209897              3
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_1000                 46059           48188             11
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_10000                83759           95669              7
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_100000              326056          339393              2
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_1000                       2379            4738            211
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_10000                     12100           63099             42
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_100000                    63323           63737              8
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_1000                   45216           45479             12
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_10000                  57205           58524              9
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_100000                139499          139926              4
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_1000                   40129           40431             13
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_10000                 204949          239293              3
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_100000               1664541         1664541              1
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_1000               391573          395108              2
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_10000              674869          674869              1
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_100000            2713632         2713632              1
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_1000                     12726           13506             40
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_10000                    73103           73299              7
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_100000                  598634          598634              1
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_1000                 398742          399256              2
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_10000                543129          543129              1
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_100000              1242956         1242956              1
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_1000                  1814            8884            276
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_10000                 1996            8851            251
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_100000                4608           11529            109
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_1000               5183           12508             97
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_10000              7106           14077             71
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_100000            25914           31818             20
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_1000                    1778            8823            282
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_10000                   1825            8613            274
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_100000                  3154           10161            159
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_1000                 4888            9404            103
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_10000                5194            9963             97
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_100000               8109           14933             62
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_1000                 3320           10306            151
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_10000                7003            8595             72
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_100000              49140           52957             11
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_1000             35890           36918             14
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_10000            58890           59337              9
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_100000          286878          287600              2
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_1000                   2484            8805            202
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_10000                  3967            9090            127
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_100000                19423           19799             26
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_1000               33228           33329             16
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_10000              37292           37370             14
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_100000             73550           74017              7
--------------------------------------------------------------------------------
```
Previous timings
```
Benchmark                                                               Avg Time(μs)      Peak Time(μs) Iterations
--------------------------------------------------------------------------------
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_1000                    10100           46422             50
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_10000                   28442           32100             18
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_100000                 241127          254269              3
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_1000                 54149           79480             10
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_10000               125459          212734              4
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_100000              512739          512739              1
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_1000                       2866           13365            175
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_10000                      7026           12604             72
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_100000                    48822           55607             11
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_1000                   38098           38576             14
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_10000                  48006           54120             11
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_100000                131563          138536              4
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_1000                   64615           91735              8
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_10000                 228815          246095              3
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_100000               3086615         3086615              1
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_1000               464298          465292              2
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_10000             1053440         1053440              1
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_100000            6736236         6736236              1
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_1000                     11940           12440             42
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_10000                    56641           58051              9
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_100000                  711492          711492              1
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_1000                 326437          329846              2
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_10000                418514          427911              2
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_100000              1524285         1524285              1
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_1000                  5949           13602             85
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_10000                 5817           13001             86
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_100000               23833           25971             21
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_1000               9029           16178             56
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_10000             11595           18601             44
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_100000            46986           47344             11
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_1000                    2554            9747            196
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_10000                   2676            9537            187
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_100000                  6567           14179             77
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_1000                 5840           12811             86
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_10000                6102           13128             82
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_100000              11945           11995             42
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_1000                 7642           13671             66
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_10000               25190           25260             20
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_100000             212018          212134              3
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_1000             40421           45692             13
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_10000            92078           92132              6
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_100000          457211          457229              2
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_1000                   3574           10377            140
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_10000                  7222           13023             70
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_100000                48127           48165             11
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_1000               34732           35295             15
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_10000              43050           51064             12
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_100000            106028          106058              5
--------------------------------------------------------------------------------
```

Reviewed By: nikhilaravi

Differential Revision: D29548609

fbshipit-source-id: 7026e832ea299145c3f6b55687f3c1601294f5c0
2021-10-01 11:58:24 -07:00
Jeremy Reizenstein
0dfc6e0eb8 CPU function for points2vols
Summary: Single C++ function for the core of points2vols, not used anywhere yet. Added ability to control align_corners and the weight of each point, which may be useful later.

Reviewed By: nikhilaravi

Differential Revision: D29548607

fbshipit-source-id: a5cda7ec2c14836624e7dfe744c4bbb3f3d3dfe2
2021-10-01 11:58:24 -07:00
Nikhila Ravi
ff8d4762f4 (new) CUDA IoU for 3D boxes
Summary: CUDA implementation of 3D bounding box overlap calculation.

Reviewed By: gkioxari

Differential Revision: D31157919

fbshipit-source-id: 5dc89805d01fef2d6779f00a33226131e39c43ed
2021-09-29 18:49:09 -07:00
Nikhila Ravi
53266ec9ff C++ IoU for 3D Boxes
Summary: C++ Implementation of algorithm to compute 3D bounding boxes for batches of bboxes of shape (N, 8, 3) and (M, 8, 3).

Reviewed By: gkioxari

Differential Revision: D30905190

fbshipit-source-id: 02e2cf025cd4fa3ff706ce5cf9b82c0fb5443f96
2021-09-29 17:03:43 -07:00
Nikhila Ravi
2293f1fed0 IoU for 3D boxes
Summary:
I have implemented an exact solution for 3D IoU of oriented 3D boxes.

This file includes:
* box3d_overlap: which computes the exact IoU of box1 and box2
* box3d_overlap_sampling: which computes an approximate IoU of box1 and box2 by sampling points within the boxes

Note that both implementations currently do not support batching.

Our exact IoU implementation is based on the fact that the intersecting shape of the two 3D boxes will be formed by segments of the surface of the boxes. Our algorithm computes these segments by reasoning whether triangles of one box are within the second box and vice versa. We deal with intersecting triangles by clipping them.

Reviewed By: gkioxari

Differential Revision: D30667497

fbshipit-source-id: 2f747f410f90b7f854eeaf3036794bc3ac982917
2021-09-29 13:44:10 -07:00
Pyre Bot Jr
526df446c6 suppress errors in vision/fair/pytorch3d
Differential Revision: D31042748

fbshipit-source-id: fffb983bd6765d306a407587ddf64e68e57e9ecc
2021-09-18 12:24:58 -07:00
Nikhila Ravi
bd04ffaf77 Farthest point sampling CUDA
Summary:
CUDA implementation of farthest point sampling algorithm.

## Visual comparison

Compared to random sampling, farthest point sampling gives better coverage of the shape.

{F658631262}

## Reduction

Parallelized block reduction to find the max value at each iteration happens as follows:

1. First split the points into two equal sized parts (e.g. for a list with 8 values):
`[20, 27, 6, 8 | 11, 10, 2, 33]`
2. Use half of the thread (4 threads) to compare pairs of elements from each half (e.g elements [0, 4], [1, 5] etc) and store the result in the first half of the list:
`[20, 27, 6, 33 | 11, 10, 2, 33]`
Now we no longer care about the second part but again divide the first part into two
`[20, 27 | 6, 33| -, -, -, -]`
Now we can use 2 threads to compare the 4 elements
4. Finally we have gotten down to a single pair
`[20 | 33 | -, - | -, -, -, -]`
Use 1 thread to compare the remaining two elements
5. The max will now be at thread id = 0
`[33 | - | -, - | -, -, -, -]`
The reduction will give the farthest point for the selected batch index at this iteration.

Reviewed By: bottler, jcjohnson

Differential Revision: D30401803

fbshipit-source-id: 525bd5ae27c4b13b501812cfe62306bb003827d2
2021-09-15 13:49:22 -07:00