mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
make points2volumes feature rescaling optional
Summary: Add option to not rescale the features, giving more control. https://github.com/facebookresearch/pytorch3d/issues/1137 Reviewed By: nikhilaravi Differential Revision: D35219577 fbshipit-source-id: cbbb643b91b71bc908cedc6dac0f63f6d1355c85
This commit is contained in:
parent
0a7c354dc1
commit
78fd5af1a6
@ -192,6 +192,7 @@ def add_pointclouds_to_volumes(
|
||||
initial_volumes: "Volumes",
|
||||
mode: str = "trilinear",
|
||||
min_weight: float = 1e-4,
|
||||
rescale_features: bool = True,
|
||||
_python: bool = False,
|
||||
) -> "Volumes":
|
||||
"""
|
||||
@ -250,6 +251,10 @@ def add_pointclouds_to_volumes(
|
||||
min_weight: A scalar controlling the lowest possible total per-voxel
|
||||
weight used to normalize the features accumulated in a voxel.
|
||||
Only active for `mode==trilinear`.
|
||||
rescale_features: If False, output features are just the sum of input and
|
||||
added points. If True, they are averaged. In both cases,
|
||||
output densities are just summed without rescaling, so
|
||||
you may need to rescale them afterwards.
|
||||
_python: Set to True to use a pure Python implementation, e.g. for test
|
||||
purposes, which requires more memory and may be slower.
|
||||
|
||||
@ -286,6 +291,7 @@ def add_pointclouds_to_volumes(
|
||||
grid_sizes=initial_volumes.get_grid_sizes(),
|
||||
mask=mask,
|
||||
mode=mode,
|
||||
rescale_features=rescale_features,
|
||||
_python=_python,
|
||||
)
|
||||
|
||||
@ -303,6 +309,7 @@ def add_points_features_to_volume_densities_features(
|
||||
min_weight: float = 1e-4,
|
||||
mask: Optional[torch.Tensor] = None,
|
||||
grid_sizes: Optional[torch.LongTensor] = None,
|
||||
rescale_features: bool = True,
|
||||
_python: bool = False,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
@ -345,6 +352,10 @@ def add_points_features_to_volume_densities_features(
|
||||
grid_sizes: `LongTensor` of shape (minibatch, 3) representing the
|
||||
spatial resolutions of each of the the non-flattened `volumes` tensors,
|
||||
or None to indicate the whole volume is used for every batch element.
|
||||
rescale_features: If False, output features are just the sum of input and
|
||||
added points. If True, they are averaged. In both cases,
|
||||
output densities are just summed without rescaling, so
|
||||
you may need to rescale them afterwards.
|
||||
_python: Set to True to use a pure Python implementation.
|
||||
Returns:
|
||||
volume_features: Output volume of shape `(minibatch, feature_dim, D, H, W)`
|
||||
@ -401,12 +412,13 @@ def add_points_features_to_volume_densities_features(
|
||||
True, # align_corners
|
||||
splat,
|
||||
)
|
||||
if splat:
|
||||
|
||||
if rescale_features:
|
||||
# divide each feature by the total weight of the votes
|
||||
volume_features = volume_features / volume_densities.clamp(min_weight)
|
||||
else:
|
||||
# divide each feature by the total weight of the votes
|
||||
volume_features = volume_features / volume_densities.clamp(1.0)
|
||||
if splat:
|
||||
volume_features = volume_features / volume_densities.clamp(min_weight)
|
||||
else:
|
||||
volume_features = volume_features / volume_densities.clamp(1.0)
|
||||
|
||||
return volume_features, volume_densities
|
||||
|
||||
|
@ -192,12 +192,22 @@ class TestCaseMixin(unittest.TestCase):
|
||||
self.fail(f"{msg} {err}")
|
||||
self.fail(err)
|
||||
|
||||
def assertConstant(self, input: TensorOrArray, value: Real) -> None:
|
||||
def assertConstant(
|
||||
self, input: TensorOrArray, value: Real, *, atol: float = 0
|
||||
) -> None:
|
||||
"""
|
||||
Asserts input is entirely filled with value.
|
||||
|
||||
Args:
|
||||
input: tensor or array
|
||||
value: expected value
|
||||
atol: tolerance
|
||||
"""
|
||||
self.assertEqual(input.min(), value)
|
||||
self.assertEqual(input.max(), value)
|
||||
mn, mx = input.min(), input.max()
|
||||
msg = f"values in range [{mn}, {mx}], not {value}, shape {input.shape}"
|
||||
if atol == 0:
|
||||
self.assertEqual(input.min(), value, msg=msg)
|
||||
self.assertEqual(input.max(), value, msg=msg)
|
||||
else:
|
||||
self.assertGreater(input.min(), value - atol, msg=msg)
|
||||
self.assertLess(input.max(), value + atol, msg=msg)
|
||||
|
@ -387,6 +387,23 @@ class TestPointsToVolumes(TestCaseMixin, unittest.TestCase):
|
||||
)
|
||||
self.assertClose(torch.sum(densities), torch.tensor(30 * 1000.0), atol=0.1)
|
||||
|
||||
def test_unscaled(self):
|
||||
D = 5
|
||||
P = 1000
|
||||
B, C, H, W = 2, 3, D, D
|
||||
densities = torch.zeros(B, 1, D, H, W)
|
||||
features = torch.zeros(B, C, D, H, W)
|
||||
volumes = Volumes(densities=densities, features=features)
|
||||
points = torch.rand(B, 1000, 3) * (D - 1) - ((D - 1) * 0.5)
|
||||
point_features = torch.rand(B, 1000, C)
|
||||
pointclouds = Pointclouds(points=points, features=point_features)
|
||||
|
||||
volumes2 = add_pointclouds_to_volumes(
|
||||
pointclouds, volumes, rescale_features=False
|
||||
)
|
||||
self.assertConstant(volumes2.densities().sum([2, 3, 4]) / P, 1, atol=1e-5)
|
||||
self.assertConstant(volumes2.features().sum([2, 3, 4]) / P, 0.5, atol=0.03)
|
||||
|
||||
def _check_volume_slice_color_density(
|
||||
self, V, split_dim, interp_mode, clr_gt, slice_type, border=3
|
||||
):
|
||||
|
Loading…
x
Reference in New Issue
Block a user