mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-07-31 10:52:50 +08:00
suppress errors in vision/fair/pytorch3d
Differential Revision: D37172764 fbshipit-source-id: a2ec367e56de2781a17f5e708eb5832ec9d7e6b4
This commit is contained in:
parent
ea4f3260e4
commit
7978ffd1e4
@ -23,6 +23,7 @@ def solve(A: torch.Tensor, B: torch.Tensor) -> torch.Tensor: # pragma: no cover
|
||||
# PyTorch version >= 1.8.0
|
||||
return torch.linalg.solve(A, B)
|
||||
|
||||
# pyre-fixme[16]: `Tuple` has no attribute `solution`.
|
||||
return torch.solve(B, A).solution
|
||||
|
||||
|
||||
@ -67,9 +68,14 @@ def meshgrid_ij(
|
||||
Like torch.meshgrid was before PyTorch 1.10.0, i.e. with indexing set to ij
|
||||
"""
|
||||
if (
|
||||
# pyre-fixme[16]: Callable `meshgrid` has no attribute `__kwdefaults__`.
|
||||
torch.meshgrid.__kwdefaults__ is not None
|
||||
and "indexing" in torch.meshgrid.__kwdefaults__
|
||||
):
|
||||
# PyTorch >= 1.10.0
|
||||
# pyre-fixme[6]: For 1st param expected `Union[List[Tensor], Tensor]` but
|
||||
# got `Union[Sequence[Tensor], Tensor]`.
|
||||
return torch.meshgrid(*A, indexing="ij")
|
||||
# pyre-fixme[6]: For 1st param expected `Union[List[Tensor], Tensor]` but got
|
||||
# `Union[Sequence[Tensor], Tensor]`.
|
||||
return torch.meshgrid(*A)
|
||||
|
@ -26,7 +26,7 @@ def make_device(device: Device) -> torch.device:
|
||||
A matching torch.device object
|
||||
"""
|
||||
device = torch.device(device) if isinstance(device, str) else device
|
||||
if device.type == "cuda" and device.index is None: # pyre-ignore[16]
|
||||
if device.type == "cuda" and device.index is None:
|
||||
# If cuda but with no index, then the current cuda device is indicated.
|
||||
# In that case, we fix to that device
|
||||
device = torch.device(f"cuda:{torch.cuda.current_device()}")
|
||||
|
@ -75,12 +75,14 @@ class _SymEig3x3(nn.Module):
|
||||
if inputs.shape[-2:] != (3, 3):
|
||||
raise ValueError("Only inputs of shape (..., 3, 3) are supported.")
|
||||
|
||||
inputs_diag = inputs.diagonal(dim1=-2, dim2=-1) # pyre-ignore[16]
|
||||
inputs_diag = inputs.diagonal(dim1=-2, dim2=-1)
|
||||
inputs_trace = inputs_diag.sum(-1)
|
||||
q = inputs_trace / 3.0
|
||||
|
||||
# Calculate squared sum of elements outside the main diagonal / 2
|
||||
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`.
|
||||
p1 = ((inputs**2).sum(dim=(-1, -2)) - (inputs_diag**2).sum(-1)) / 2
|
||||
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`.
|
||||
p2 = ((inputs_diag - q[..., None]) ** 2).sum(dim=-1) + 2.0 * p1.clamp(self._eps)
|
||||
|
||||
p = torch.sqrt(p2 / 6.0)
|
||||
@ -195,8 +197,9 @@ class _SymEig3x3(nn.Module):
|
||||
cross_products[..., :1, :]
|
||||
)
|
||||
|
||||
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`.
|
||||
norms_sq = (cross_products**2).sum(dim=-1)
|
||||
max_norms_index = norms_sq.argmax(dim=-1) # pyre-ignore[16]
|
||||
max_norms_index = norms_sq.argmax(dim=-1)
|
||||
|
||||
# Pick only the cross-product with highest squared norm for each input
|
||||
max_cross_products = self._gather_by_index(
|
||||
@ -227,9 +230,7 @@ class _SymEig3x3(nn.Module):
|
||||
index_shape = list(source.shape)
|
||||
index_shape[dim] = 1
|
||||
|
||||
return source.gather(dim, index.expand(index_shape)).squeeze( # pyre-ignore[16]
|
||||
dim
|
||||
)
|
||||
return source.gather(dim, index.expand(index_shape)).squeeze(dim)
|
||||
|
||||
def _get_uv(self, w: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
@ -243,7 +244,7 @@ class _SymEig3x3(nn.Module):
|
||||
Tuple of U and V unit-length vector tensors of shape (..., 3)
|
||||
"""
|
||||
|
||||
min_idx = w.abs().argmin(dim=-1) # pyre-ignore[16]
|
||||
min_idx = w.abs().argmin(dim=-1)
|
||||
rotation_2d = self._rotations_3d[min_idx].to(w)
|
||||
|
||||
u = F.normalize((rotation_2d @ w[..., None])[..., 0], dim=-1)
|
||||
|
@ -140,7 +140,6 @@ def compute_extrinsic_matrix(
|
||||
# rotates the model 90 degrees about the x axis. To compensate for this quirk we
|
||||
# roll that rotation into the extrinsic matrix here
|
||||
rot = torch.tensor([[1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 0], [0, 0, 0, 1]])
|
||||
# pyre-fixme[16]: `Tensor` has no attribute `mm`.
|
||||
RT = RT.mm(rot.to(RT))
|
||||
|
||||
return RT
|
||||
@ -180,6 +179,7 @@ def read_binvox_coords(
|
||||
size, translation, scale = _read_binvox_header(f)
|
||||
storage = torch.ByteStorage.from_buffer(f.read())
|
||||
data = torch.tensor([], dtype=torch.uint8)
|
||||
# pyre-fixme[28]: Unexpected keyword argument `source`.
|
||||
data.set_(source=storage)
|
||||
vals, counts = data[::2], data[1::2]
|
||||
idxs = _compute_idxs(vals, counts)
|
||||
|
@ -227,6 +227,8 @@ class ShapeNetBase(torch.utils.data.Dataset): # pragma: no cover
|
||||
sampled_idxs = self._sample_idxs_from_category(
|
||||
sample_num=sample_num, category=category
|
||||
)
|
||||
# pyre-fixme[6]: For 1st param expected `Union[List[Tensor],
|
||||
# typing.Tuple[Tensor, ...]]` but got `Tuple[Tensor, List[int]]`.
|
||||
idxs_tensor = torch.cat((idxs_tensor, sampled_idxs))
|
||||
idxs = idxs_tensor.tolist()
|
||||
# Check if the indices are valid if idxs are supplied.
|
||||
@ -283,4 +285,5 @@ class ShapeNetBase(torch.utils.data.Dataset): # pragma: no cover
|
||||
"category " + category if category is not None else "all categories",
|
||||
)
|
||||
warnings.warn(msg)
|
||||
# pyre-fixme[7]: Expected `List[int]` but got `Tensor`.
|
||||
return sampled_idxs
|
||||
|
@ -640,14 +640,16 @@ class JsonIndexDataset(DatasetBase, ReplaceableBase):
|
||||
)
|
||||
imre = torch.nn.functional.interpolate(
|
||||
torch.from_numpy(image)[None],
|
||||
# pyre-ignore[6]
|
||||
scale_factor=minscale,
|
||||
mode=mode,
|
||||
align_corners=False if mode == "bilinear" else None,
|
||||
recompute_scale_factor=True,
|
||||
)[0]
|
||||
# pyre-fixme[19]: Expected 1 positional argument.
|
||||
imre_ = torch.zeros(image.shape[0], self.image_height, self.image_width)
|
||||
imre_[:, 0 : imre.shape[1], 0 : imre.shape[2]] = imre
|
||||
# pyre-fixme[6]: For 2nd param expected `int` but got `Optional[int]`.
|
||||
# pyre-fixme[6]: For 3rd param expected `int` but got `Optional[int]`.
|
||||
mask = torch.zeros(1, self.image_height, self.image_width)
|
||||
mask[:, 0 : imre.shape[1] - 1, 0 : imre.shape[2] - 1] = 1.0
|
||||
return imre_, minscale, mask
|
||||
|
@ -23,6 +23,7 @@ def is_known_frame(
|
||||
Given a list `frame_type` of frame types in a batch, return a tensor
|
||||
of boolean flags expressing whether the corresponding frame is a known frame.
|
||||
"""
|
||||
# pyre-fixme[7]: Expected `BoolTensor` but got `Tensor`.
|
||||
return torch.tensor(
|
||||
[ft.endswith(DATASET_TYPE_KNOWN) for ft in frame_type],
|
||||
dtype=torch.bool,
|
||||
@ -37,6 +38,7 @@ def is_train_frame(
|
||||
Given a list `frame_type` of frame types in a batch, return a tensor
|
||||
of boolean flags expressing whether the corresponding frame is a training frame.
|
||||
"""
|
||||
# pyre-fixme[7]: Expected `BoolTensor` but got `Tensor`.
|
||||
return torch.tensor(
|
||||
[ft.startswith(DATASET_TYPE_TRAIN) for ft in frame_type],
|
||||
dtype=torch.bool,
|
||||
|
@ -205,11 +205,7 @@ def eval_batch(
|
||||
|
||||
imode = "bilinear" if k == "image_render" else "nearest"
|
||||
cloned_render[k] = (
|
||||
# pyre-fixme[6]: For 2nd param expected `Optional[int]` but got
|
||||
# `Tuple[Any, ...]`.
|
||||
F.interpolate(field[:1], size=image_resol, mode=imode)
|
||||
.detach()
|
||||
.clone()
|
||||
F.interpolate(field[:1], size=image_resol, mode=imode).detach().clone()
|
||||
)
|
||||
|
||||
frame_data = copy.deepcopy(frame_data)
|
||||
@ -408,7 +404,6 @@ def _reduce_camera_iou_overlap(ious: torch.Tensor, topk: int = 2) -> torch.Tenso
|
||||
Returns:
|
||||
single-element Tensor
|
||||
"""
|
||||
# pyre-ignore[16] topk not recognized
|
||||
return ious.topk(k=min(topk, len(ious) - 1)).values.mean()
|
||||
|
||||
|
||||
|
@ -99,6 +99,8 @@ class Autodecoder(Configurable, torch.nn.Module):
|
||||
|
||||
if isinstance(x[0], str):
|
||||
try:
|
||||
# pyre-fixme[9]: x has type `Union[List[str], LongTensor]`; used as
|
||||
# `Tensor`.
|
||||
x = torch.tensor(
|
||||
# pyre-ignore[29]
|
||||
[self._sequence_map[elem] for elem in x],
|
||||
|
@ -169,8 +169,6 @@ class ResNetFeatureExtractor(FeatureExtractorBase):
|
||||
if self.image_rescale != 1.0 and imgs_input is not None:
|
||||
imgs_resized = Fu.interpolate(
|
||||
imgs_input,
|
||||
# pyre-fixme[6]: For 2nd param expected `Optional[List[float]]` but
|
||||
# got `float`.
|
||||
scale_factor=self.image_rescale,
|
||||
mode="bilinear",
|
||||
)
|
||||
|
@ -103,7 +103,11 @@ class IdrFeatureField(ImplicitFunctionBase, torch.nn.Module):
|
||||
self.embed_fn is None and fun_viewpool is None and global_code is None
|
||||
):
|
||||
return torch.tensor(
|
||||
[], device=rays_points_world.device, dtype=rays_points_world.dtype
|
||||
[],
|
||||
device=rays_points_world.device,
|
||||
dtype=rays_points_world.dtype
|
||||
# pyre-fixme[6]: For 2nd param expected `int` but got `Union[Module,
|
||||
# Tensor]`.
|
||||
).view(0, self.out_dim)
|
||||
|
||||
embedding = None
|
||||
@ -128,6 +132,7 @@ class IdrFeatureField(ImplicitFunctionBase, torch.nn.Module):
|
||||
)
|
||||
|
||||
x = embedding
|
||||
# pyre-fixme[29]: `Union[BoundMethod[typing.Callable(torch._C._TensorBase.__s...
|
||||
for layer_idx in range(self.num_layers - 1):
|
||||
if layer_idx in self.skip_in:
|
||||
x = torch.cat([x, embedding], dim=-1) / 2**0.5
|
||||
@ -135,6 +140,7 @@ class IdrFeatureField(ImplicitFunctionBase, torch.nn.Module):
|
||||
# pyre-fixme[29]: `Union[torch.Tensor, torch.nn.Module]` is not a function.
|
||||
x = self.linear_layers[layer_idx](x)
|
||||
|
||||
# pyre-fixme[29]: `Union[BoundMethod[typing.Callable(torch._C._TensorBase...
|
||||
if layer_idx < self.num_layers - 2:
|
||||
# pyre-fixme[29]: `Union[torch.Tensor, torch.nn.Module]` is not a function.
|
||||
x = self.softplus(x)
|
||||
|
@ -406,6 +406,8 @@ class TransformerWithInputSkips(torch.nn.Module):
|
||||
self.last = torch.nn.Linear(dimout, output_dim)
|
||||
_xavier_init(self.last)
|
||||
|
||||
# pyre-fixme[8]: Attribute has type `Tuple[ModuleList, ModuleList]`; used as
|
||||
# `ModuleList`.
|
||||
self.layers_pool, self.layers_ray = (
|
||||
torch.nn.ModuleList(layers_pool),
|
||||
torch.nn.ModuleList(layers_ray),
|
||||
|
@ -93,6 +93,8 @@ class ModelDBIR(ImplicitronModelBase, torch.nn.Module):
|
||||
mask_fg = (fg_probability > 0.5).type_as(image_rgb)
|
||||
|
||||
point_cloud = get_rgbd_point_cloud(
|
||||
# pyre-fixme[6]: For 1st param expected `Union[List[int], int,
|
||||
# LongTensor]` but got `Tensor`.
|
||||
camera[is_known_idx],
|
||||
image_rgb[is_known_idx],
|
||||
depth_map[is_known_idx],
|
||||
@ -101,6 +103,8 @@ class ModelDBIR(ImplicitronModelBase, torch.nn.Module):
|
||||
|
||||
pcl_size = point_cloud.num_points_per_cloud().item()
|
||||
if (self.max_points > 0) and (pcl_size > self.max_points):
|
||||
# pyre-fixme[6]: For 1st param expected `int` but got `Union[bool,
|
||||
# float, int]`.
|
||||
prm = torch.randperm(pcl_size)[: self.max_points]
|
||||
point_cloud = Pointclouds(
|
||||
point_cloud.points_padded()[:, prm, :],
|
||||
|
@ -117,13 +117,7 @@ class LSTMRenderer(BaseRenderer, torch.nn.Module):
|
||||
msg = (
|
||||
f"{t}: mu={float(signed_distance.mean()):1.2e};"
|
||||
+ f" std={float(signed_distance.std()):1.2e};"
|
||||
# pyre-fixme[6]: Expected `Union[bytearray, bytes, str,
|
||||
# typing.SupportsFloat, typing_extensions.SupportsIndex]` for 1st
|
||||
# param but got `Tensor`.
|
||||
+ f" mu_d={float(ray_bundle_t.lengths.mean()):1.2e};"
|
||||
# pyre-fixme[6]: Expected `Union[bytearray, bytes, str,
|
||||
# typing.SupportsFloat, typing_extensions.SupportsIndex]` for 1st
|
||||
# param but got `Tensor`.
|
||||
+ f" std_d={float(ray_bundle_t.lengths.std()):1.2e};"
|
||||
)
|
||||
logger.info(msg)
|
||||
|
@ -164,8 +164,6 @@ class AbstractMaskRaySampler(RaySamplerBase, torch.nn.Module):
|
||||
):
|
||||
sample_mask = torch.nn.functional.interpolate(
|
||||
mask,
|
||||
# pyre-fixme[6]: Expected `Optional[int]` for 2nd param but got
|
||||
# `List[int]`.
|
||||
size=[self.image_height, self.image_width],
|
||||
mode="nearest",
|
||||
)[:, 0]
|
||||
|
@ -123,12 +123,12 @@ class RayTracing(Configurable, nn.Module):
|
||||
|
||||
ray_directions = ray_directions.reshape(-1, 3)
|
||||
mask_intersect = mask_intersect.reshape(-1)
|
||||
# pyre-fixme[9]: object_mask has type `BoolTensor`; used as `Tensor`.
|
||||
object_mask = object_mask.reshape(-1)
|
||||
|
||||
in_mask = ~network_object_mask & object_mask & ~sampler_mask
|
||||
out_mask = ~object_mask & ~sampler_mask
|
||||
|
||||
# pyre-fixme[16]: `Tensor` has no attribute `__invert__`.
|
||||
mask_left_out = (in_mask | out_mask) & ~mask_intersect
|
||||
if (
|
||||
mask_left_out.sum() > 0
|
||||
@ -410,10 +410,17 @@ class RayTracing(Configurable, nn.Module):
|
||||
if n_p_out > 0:
|
||||
out_pts_idx = torch.argmin(sdf_val[p_out_mask, :], -1)
|
||||
sampler_pts[mask_intersect_idx[p_out_mask]] = points[p_out_mask, :, :][
|
||||
torch.arange(n_p_out), out_pts_idx, :
|
||||
# pyre-fixme[6]: For 1st param expected `Union[bool, float, int]`
|
||||
# but got `Tensor`.
|
||||
torch.arange(n_p_out),
|
||||
out_pts_idx,
|
||||
:,
|
||||
]
|
||||
sampler_dists[mask_intersect_idx[p_out_mask]] = pts_intervals[
|
||||
p_out_mask, :
|
||||
p_out_mask,
|
||||
:
|
||||
# pyre-fixme[6]: For 1st param expected `Union[bool, float, int]` but
|
||||
# got `Tensor`.
|
||||
][torch.arange(n_p_out), out_pts_idx]
|
||||
|
||||
# Get Network object mask
|
||||
@ -434,10 +441,16 @@ class RayTracing(Configurable, nn.Module):
|
||||
secant_pts
|
||||
]
|
||||
z_low = pts_intervals[secant_pts][
|
||||
torch.arange(n_secant_pts), sampler_pts_ind[secant_pts] - 1
|
||||
# pyre-fixme[6]: For 1st param expected `Union[bool, float, int]`
|
||||
# but got `Tensor`.
|
||||
torch.arange(n_secant_pts),
|
||||
sampler_pts_ind[secant_pts] - 1,
|
||||
]
|
||||
sdf_low = sdf_val[secant_pts][
|
||||
torch.arange(n_secant_pts), sampler_pts_ind[secant_pts] - 1
|
||||
# pyre-fixme[6]: For 1st param expected `Union[bool, float, int]`
|
||||
# but got `Tensor`.
|
||||
torch.arange(n_secant_pts),
|
||||
sampler_pts_ind[secant_pts] - 1,
|
||||
]
|
||||
cam_loc_secant = cam_loc.reshape(-1, 3)[mask_intersect_idx[secant_pts]]
|
||||
ray_directions_secant = ray_directions.reshape((-1, 3))[
|
||||
@ -514,6 +527,7 @@ class RayTracing(Configurable, nn.Module):
|
||||
mask_max_dis = max_dis[mask].unsqueeze(-1)
|
||||
mask_min_dis = min_dis[mask].unsqueeze(-1)
|
||||
steps = (
|
||||
# pyre-fixme[6]: For 1st param expected `int` but got `Tensor`.
|
||||
steps.unsqueeze(0).repeat(n_mask_points, 1) * (mask_max_dis - mask_min_dis)
|
||||
+ mask_min_dis
|
||||
)
|
||||
@ -533,8 +547,13 @@ class RayTracing(Configurable, nn.Module):
|
||||
mask_sdf_all = torch.cat(mask_sdf_all).reshape(-1, n)
|
||||
min_vals, min_idx = mask_sdf_all.min(-1)
|
||||
min_mask_points = mask_points_all.reshape(-1, n, 3)[
|
||||
torch.arange(0, n_mask_points), min_idx
|
||||
# pyre-fixme[6]: For 2nd param expected `Union[bool, float, int]` but
|
||||
# got `Tensor`.
|
||||
torch.arange(0, n_mask_points),
|
||||
min_idx,
|
||||
]
|
||||
# pyre-fixme[6]: For 2nd param expected `Union[bool, float, int]` but got
|
||||
# `Tensor`.
|
||||
min_mask_dist = steps.reshape(-1, n)[torch.arange(0, n_mask_points), min_idx]
|
||||
|
||||
return min_mask_points, min_mask_dist
|
||||
@ -553,6 +572,7 @@ def _get_sphere_intersection(
|
||||
# cam_loc = cam_loc.unsqueeze(-1)
|
||||
# ray_cam_dot = torch.bmm(ray_directions, cam_loc).squeeze()
|
||||
ray_cam_dot = (ray_directions * cam_loc).sum(-1) # n_images x n_rays
|
||||
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`.
|
||||
under_sqrt = ray_cam_dot**2 - (cam_loc.norm(2, dim=-1) ** 2 - r**2)
|
||||
|
||||
under_sqrt = under_sqrt.reshape(-1)
|
||||
|
@ -132,7 +132,11 @@ class SignedDistanceFunctionRenderer(BaseRenderer, torch.nn.Module):
|
||||
eik_bounding_box: float = self.object_bounding_sphere
|
||||
n_eik_points = batch_size * num_pixels // 2
|
||||
eikonal_points = torch.empty(
|
||||
n_eik_points, 3, device=self._bg_color.device
|
||||
n_eik_points,
|
||||
3,
|
||||
# pyre-fixme[6]: For 3rd param expected `Union[None, str, device]`
|
||||
# but got `Union[device, Tensor, Module]`.
|
||||
device=self._bg_color.device,
|
||||
).uniform_(-eik_bounding_box, eik_bounding_box)
|
||||
eikonal_pixel_points = points.clone()
|
||||
eikonal_pixel_points = eikonal_pixel_points.detach()
|
||||
@ -196,7 +200,9 @@ class SignedDistanceFunctionRenderer(BaseRenderer, torch.nn.Module):
|
||||
pooling_fn=None, # TODO
|
||||
)
|
||||
mask_full.view(-1, 1)[~surface_mask] = torch.sigmoid(
|
||||
-self.soft_mask_alpha * sdf_output[~surface_mask]
|
||||
# pyre-fixme[6]: For 1st param expected `Tensor` but got `float`.
|
||||
-self.soft_mask_alpha
|
||||
* sdf_output[~surface_mask]
|
||||
)
|
||||
|
||||
# scatter points with surface_mask
|
||||
|
@ -550,7 +550,6 @@ def _get_ray_dir_dot_prods(camera: CamerasBase, pts: torch.Tensor):
|
||||
# torch.Tensor, torch.nn.modules.module.Module]` is not a function.
|
||||
# pyre-fixme[29]: `Union[BoundMethod[typing.Callable(torch.Tensor.permute)[[N...
|
||||
camera_rep.T[:, None],
|
||||
# pyre-fixme[29]: `Union[BoundMethod[typing.Callable(torch.Tensor.permute)[[N...
|
||||
camera_rep.R.permute(0, 2, 1),
|
||||
).reshape(-1, *([1] * (pts.ndim - 2)), 3)
|
||||
# cam_centers_rep = camera_rep.get_camera_center().reshape(
|
||||
@ -649,6 +648,7 @@ def _avgmaxstd_reduction_function(
|
||||
x_aggr = torch.cat(pooled_features, dim=-1)
|
||||
|
||||
# zero out features that were all masked out
|
||||
# pyre-fixme[16]: `bool` has no attribute `type_as`.
|
||||
any_active = (w.max(dim=dim, keepdim=True).values > 1e-4).type_as(x_aggr)
|
||||
x_aggr = x_aggr * any_active[..., None]
|
||||
|
||||
@ -676,6 +676,7 @@ def _std_reduction_function(
|
||||
):
|
||||
if mu is None:
|
||||
mu = _avg_reduction_function(x, w, dim=dim)
|
||||
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`.
|
||||
std = wmean((x - mu) ** 2, w, dim=dim, eps=1e-2).clamp(1e-4).sqrt()
|
||||
# FIXME: somehow this is extremely heavy in mem?
|
||||
return std
|
||||
|
@ -205,7 +205,11 @@ def handle_seq_id(
|
||||
if not torch.is_tensor(seq_id):
|
||||
if isinstance(seq_id[0], str):
|
||||
seq_id = [hash(s) for s in seq_id]
|
||||
# pyre-fixme[9]: seq_id has type `Union[List[int], List[str], LongTensor]`;
|
||||
# used as `Tensor`.
|
||||
seq_id = torch.tensor(seq_id, dtype=torch.long, device=device)
|
||||
# pyre-fixme[16]: Item `List` of `Union[List[int], List[str], LongTensor]` has
|
||||
# no attribute `to`.
|
||||
return seq_id.to(device)
|
||||
|
||||
|
||||
@ -287,5 +291,7 @@ def cameras_points_cartesian_product(
|
||||
)
|
||||
.reshape(batch_pts * n_cameras)
|
||||
)
|
||||
# pyre-fixme[6]: For 1st param expected `Union[List[int], int, LongTensor]` but
|
||||
# got `Tensor`.
|
||||
camera_rep = camera[idx_cams]
|
||||
return camera_rep, pts_rep
|
||||
|
@ -215,7 +215,6 @@ class BatchLinear(nn.Module):
|
||||
def last_hyper_layer_init(m) -> None:
|
||||
if type(m) == nn.Linear:
|
||||
nn.init.kaiming_normal_(m.weight, a=0.0, nonlinearity="relu", mode="fan_in")
|
||||
# pyre-fixme[41]: `data` cannot be reassigned. It is a read-only property.
|
||||
m.weight.data *= 1e-1
|
||||
|
||||
|
||||
|
@ -108,6 +108,7 @@ def fit_circle_in_2d(
|
||||
raise ValueError(f"{n_provided} points are not enough to determine a circle")
|
||||
solution = lstsq(design, rhs[:, None])
|
||||
center = solution[:2, 0] / 2
|
||||
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`.
|
||||
radius = torch.sqrt(solution[2, 0] + (center**2).sum())
|
||||
if n_points > 0:
|
||||
if angles is not None:
|
||||
|
@ -50,6 +50,7 @@ def cleanup_eval_depth(
|
||||
# the threshold is a sigma-multiple of the standard deviation of the depth
|
||||
mu = wmean(depth.view(ba, -1, 1), mask.view(ba, -1)).view(ba, 1)
|
||||
std = (
|
||||
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`.
|
||||
wmean((depth.view(ba, -1) - mu).view(ba, -1, 1) ** 2, mask.view(ba, -1))
|
||||
.clamp(1e-4)
|
||||
.sqrt()
|
||||
@ -62,7 +63,6 @@ def cleanup_eval_depth(
|
||||
# print(f'Kept {100.0 * perc_kept.mean():1.3f} % points')
|
||||
|
||||
good_depth_raster = torch.zeros_like(depth).view(ba, -1)
|
||||
# pyre-ignore[16]: scatter_add_
|
||||
good_depth_raster.scatter_add_(1, torch.round(idx_sampled[:, 0]).long(), good_depth)
|
||||
|
||||
good_depth_mask = (good_depth_raster.view(ba, 1, H, W) > 0).float()
|
||||
|
@ -65,6 +65,7 @@ def eval_depth(
|
||||
|
||||
df = gt - pred
|
||||
|
||||
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`.
|
||||
mse_depth = (dmask * (df**2)).sum((1, 2, 3)) / dmask_mass
|
||||
abs_depth = (dmask * df.abs()).sum((1, 2, 3)) / dmask_mass
|
||||
|
||||
@ -100,8 +101,10 @@ def calc_mse(
|
||||
Calculates the mean square error between tensors `x` and `y`.
|
||||
"""
|
||||
if mask is None:
|
||||
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`.
|
||||
return torch.mean((x - y) ** 2)
|
||||
else:
|
||||
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`.
|
||||
return (((x - y) ** 2) * mask).sum() / mask.expand_as(x).sum().clamp(1e-5)
|
||||
|
||||
|
||||
@ -128,6 +131,7 @@ def calc_bce(
|
||||
mask_bg = (1 - mask_fg) * mask
|
||||
weight = mask_fg / mask_fg.sum().clamp(1.0) + mask_bg / mask_bg.sum().clamp(1.0)
|
||||
# weight sum should be at this point ~2
|
||||
# pyre-fixme[58]: `/` is not supported for operand types `int` and `Tensor`.
|
||||
weight = weight * (weight.numel() / weight.sum().clamp(1.0))
|
||||
else:
|
||||
weight = torch.ones_like(gt) * mask
|
||||
|
@ -55,8 +55,6 @@ def get_rgbd_point_cloud(
|
||||
|
||||
pts_colors = torch.nn.functional.interpolate(
|
||||
image_rgb,
|
||||
# pyre-fixme[6]: Expected `Optional[int]` for 2nd param but got
|
||||
# `List[typing.Any]`.
|
||||
size=[imh, imw],
|
||||
mode="bilinear",
|
||||
align_corners=False,
|
||||
@ -133,6 +131,7 @@ def render_point_cloud_pytorch3d(
|
||||
cumprod = torch.cat((torch.ones_like(cumprod[..., :1]), cumprod[..., :-1]), dim=-1)
|
||||
depths = (weights * cumprod * fragments.zbuf).sum(dim=-1)
|
||||
# add the rendering mask
|
||||
# pyre-fixme[6]: For 1st param expected `Tensor` but got `float`.
|
||||
render_mask = -torch.prod(1.0 - weights, dim=-1) + 1.0
|
||||
|
||||
# cat depths and render mask
|
||||
@ -141,8 +140,6 @@ def render_point_cloud_pytorch3d(
|
||||
# reshape back
|
||||
rendered_blob = Fu.interpolate(
|
||||
rendered_blob,
|
||||
# pyre-fixme[6]: Expected `Optional[int]` for 2nd param but got `Tuple[int,
|
||||
# ...]`.
|
||||
size=tuple(render_size),
|
||||
mode="bilinear",
|
||||
)
|
||||
|
@ -99,8 +99,6 @@ def visualize_basics(
|
||||
v = v.repeat(1, 3, 1, 1)
|
||||
v = torch.nn.functional.interpolate(
|
||||
v,
|
||||
# pyre-fixme[6]: Expected `Optional[typing.List[float]]` for 2nd param
|
||||
# but got `float`.
|
||||
scale_factor=(
|
||||
600.0
|
||||
if (
|
||||
|
@ -288,7 +288,6 @@ def make_material_atlas(
|
||||
# w0, w1
|
||||
bary[below_diag, slc] = ((grid[below_diag] + 1.0 / 3.0) / R).T
|
||||
# w0, w1 for above diagonal grid cells.
|
||||
# pyre-fixme[16]: `float` has no attribute `T`.
|
||||
bary[~below_diag, slc] = (((R - 1.0 - grid[~below_diag]) + 2.0 / 3.0) / R).T
|
||||
# w2 = 1. - w0 - w1
|
||||
bary[..., -1] = 1 - bary[..., :2].sum(dim=-1)
|
||||
|
@ -57,7 +57,6 @@ def _format_faces_indices(faces_indices, max_index: int, device, pad_value=None)
|
||||
)
|
||||
|
||||
if pad_value is not None:
|
||||
# pyre-fixme[28]: Unexpected keyword argument `dim`.
|
||||
mask = faces_indices.eq(pad_value).all(dim=-1)
|
||||
|
||||
# Change to 0 based indexing.
|
||||
|
@ -58,7 +58,6 @@ def _check_faces_indices(
|
||||
if pad_value is None:
|
||||
mask = torch.ones(faces_indices.shape[:-1]).bool() # Keep all faces
|
||||
else:
|
||||
# pyre-fixme[16]: `torch.ByteTensor` has no attribute `any`
|
||||
mask = faces_indices.ne(pad_value).any(dim=-1)
|
||||
if torch.any(faces_indices[mask] >= max_index) or torch.any(
|
||||
faces_indices[mask] < 0
|
||||
|
@ -112,6 +112,8 @@ def mesh_laplacian_smoothing(meshes, method: str = "uniform"):
|
||||
if method == "cot":
|
||||
norm_w = torch.sparse.sum(L, dim=1).to_dense().view(-1, 1)
|
||||
idx = norm_w > 0
|
||||
# pyre-fixme[58]: `/` is not supported for operand types `float` and
|
||||
# `Tensor`.
|
||||
norm_w[idx] = 1.0 / norm_w[idx]
|
||||
else:
|
||||
L_sum = torch.sparse.sum(L, dim=1).to_dense().view(-1, 1)
|
||||
|
@ -303,8 +303,8 @@ def point_mesh_edge_distance(meshes: Meshes, pcls: Pointclouds):
|
||||
# weight each example by the inverse of number of points in the example
|
||||
point_to_cloud_idx = pcls.packed_to_cloud_idx() # (sum(P_i), )
|
||||
num_points_per_cloud = pcls.num_points_per_cloud() # (N,)
|
||||
# pyre-ignore[16]: `torch.Tensor` has no attribute `gather`
|
||||
weights_p = num_points_per_cloud.gather(0, point_to_cloud_idx)
|
||||
# pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`.
|
||||
weights_p = 1.0 / weights_p.float()
|
||||
point_to_edge = point_to_edge * weights_p
|
||||
point_dist = point_to_edge.sum() / N
|
||||
@ -378,8 +378,8 @@ def point_mesh_face_distance(
|
||||
# weight each example by the inverse of number of points in the example
|
||||
point_to_cloud_idx = pcls.packed_to_cloud_idx() # (sum(P_i),)
|
||||
num_points_per_cloud = pcls.num_points_per_cloud() # (N,)
|
||||
# pyre-ignore[16]: `torch.Tensor` has no attribute `gather`
|
||||
weights_p = num_points_per_cloud.gather(0, point_to_cloud_idx)
|
||||
# pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`.
|
||||
weights_p = 1.0 / weights_p.float()
|
||||
point_to_face = point_to_face * weights_p
|
||||
point_dist = point_to_face.sum() / N
|
||||
|
@ -119,11 +119,16 @@ def corresponding_cameras_alignment(
|
||||
|
||||
# create a new cameras object and set the R and T accordingly
|
||||
cameras_src_aligned = cameras_src.clone()
|
||||
# pyre-fixme[6]: For 2nd param expected `Tensor` but got `Union[Tensor, Module]`.
|
||||
cameras_src_aligned.R = torch.bmm(align_t_R.expand_as(cameras_src.R), cameras_src.R)
|
||||
cameras_src_aligned.T = (
|
||||
torch.bmm(
|
||||
align_t_T[:, None].repeat(cameras_src.R.shape[0], 1, 1), cameras_src.R
|
||||
align_t_T[:, None].repeat(cameras_src.R.shape[0], 1, 1),
|
||||
# pyre-fixme[6]: For 2nd param expected `Tensor` but got `Union[Tensor,
|
||||
# Module]`.
|
||||
cameras_src.R,
|
||||
)[:, 0]
|
||||
# pyre-fixme[29]: `Union[BoundMethod[typing.Callable(torch._C._TensorBase.__m...
|
||||
+ cameras_src.T * align_t_s
|
||||
)
|
||||
|
||||
@ -171,6 +176,7 @@ def _align_camera_extrinsics(
|
||||
R_A = (U V^T)^T
|
||||
```
|
||||
"""
|
||||
# pyre-fixme[6]: For 1st param expected `Tensor` but got `Union[Tensor, Module]`.
|
||||
RRcov = torch.bmm(cameras_src.R, cameras_tgt.R.transpose(2, 1)).mean(0)
|
||||
U, _, V = torch.svd(RRcov)
|
||||
align_t_R = V @ U.t()
|
||||
@ -204,11 +210,13 @@ def _align_camera_extrinsics(
|
||||
# `Union[BoundMethod[typing.Callable(torch.Tensor.__getitem__)[[Named(self,
|
||||
# torch.Tensor), Named(item, typing.Any)], typing.Any], torch.Tensor],
|
||||
# torch.Tensor, torch.nn.Module]` is not a function.
|
||||
# pyre-fixme[6]: For 1st param expected `Tensor` but got `Union[Tensor, Module]`.
|
||||
A = torch.bmm(cameras_src.R, cameras_src.T[:, :, None])[:, :, 0]
|
||||
# pyre-fixme[29]:
|
||||
# `Union[BoundMethod[typing.Callable(torch.Tensor.__getitem__)[[Named(self,
|
||||
# torch.Tensor), Named(item, typing.Any)], typing.Any], torch.Tensor],
|
||||
# torch.Tensor, torch.nn.Module]` is not a function.
|
||||
# pyre-fixme[6]: For 1st param expected `Tensor` but got `Union[Tensor, Module]`.
|
||||
B = torch.bmm(cameras_src.R, cameras_tgt.T[:, :, None])[:, :, 0]
|
||||
Amu = A.mean(0, keepdim=True)
|
||||
Bmu = B.mean(0, keepdim=True)
|
||||
@ -217,6 +225,7 @@ def _align_camera_extrinsics(
|
||||
# of centered A and centered B
|
||||
Ac = A - Amu
|
||||
Bc = B - Bmu
|
||||
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`.
|
||||
align_t_s = (Ac * Bc).mean() / (Ac**2).mean().clamp(eps)
|
||||
else:
|
||||
# set the scale to identity
|
||||
|
@ -235,7 +235,6 @@ def cubify(voxels, thresh, device=None, align: str = "topleft") -> Meshes:
|
||||
idlenum = idleverts.cumsum(1)
|
||||
|
||||
verts_list = [
|
||||
# pyre-fixme[16]: `Tensor` has no attribute `index_select`.
|
||||
grid_verts.index_select(0, (idleverts[n] == 0).nonzero(as_tuple=False)[:, 0])
|
||||
for n in range(N)
|
||||
]
|
||||
|
@ -119,7 +119,6 @@ def gather_scatter_python(input, edges, directed: bool = False):
|
||||
idx0 = edges[:, 0].view(num_edges, 1).expand(num_edges, input_feature_dim)
|
||||
idx1 = edges[:, 1].view(num_edges, 1).expand(num_edges, input_feature_dim)
|
||||
|
||||
# pyre-fixme[16]: `Tensor` has no attribute `scatter_add`.
|
||||
output = output.scatter_add(0, idx0, input.gather(0, idx1))
|
||||
if not directed:
|
||||
output = output.scatter_add(0, idx1, input.gather(0, idx0))
|
||||
|
@ -94,7 +94,6 @@ def interpolate_face_attributes_python(
|
||||
pix_to_face = pix_to_face.clone()
|
||||
pix_to_face[mask] = 0
|
||||
idx = pix_to_face.view(N * H * W * K, 1, 1).expand(N * H * W * K, 3, D)
|
||||
# pyre-fixme[16]: `Tensor` has no attribute `gather`.
|
||||
pixel_face_vals = face_attributes.gather(0, idx).view(N, H, W, K, 3, D)
|
||||
pixel_vals = (barycentric_coords[..., None] * pixel_face_vals).sum(dim=-2)
|
||||
pixel_vals[mask] = 0 # Replace masked values in output.
|
||||
|
@ -47,7 +47,6 @@ _box_triangles = [
|
||||
|
||||
def _check_coplanar(boxes: torch.Tensor, eps: float = 1e-4) -> None:
|
||||
faces = torch.tensor(_box_planes, dtype=torch.int64, device=boxes.device)
|
||||
# pyre-fixme[16]: `boxes` has no attribute `index_select`.
|
||||
verts = boxes.index_select(index=faces.view(-1), dim=1)
|
||||
B = boxes.shape[0]
|
||||
P, V = faces.shape
|
||||
@ -74,7 +73,6 @@ def _check_nonzero(boxes: torch.Tensor, eps: float = 1e-4) -> None:
|
||||
Checks that the sides of the box have a non zero area
|
||||
"""
|
||||
faces = torch.tensor(_box_triangles, dtype=torch.int64, device=boxes.device)
|
||||
# pyre-fixme[16]: `boxes` has no attribute `index_select`.
|
||||
verts = boxes.index_select(index=faces.view(-1), dim=1)
|
||||
B = boxes.shape[0]
|
||||
T, V = faces.shape
|
||||
|
@ -84,7 +84,6 @@ class _knn_points(Function):
|
||||
dists[mask] = 0
|
||||
else:
|
||||
dists, sort_idx = dists.sort(dim=2)
|
||||
# pyre-fixme[16]: `Tensor` has no attribute `gather`.
|
||||
idx = idx.gather(2, sort_idx)
|
||||
|
||||
ctx.save_for_backward(p1, p2, lengths1, lengths2, idx)
|
||||
|
@ -45,6 +45,7 @@ def laplacian(verts: torch.Tensor, edges: torch.Tensor) -> torch.Tensor:
|
||||
# i.e. A[i, j] = 1 if (i,j) is an edge, or
|
||||
# A[e0, e1] = 1 & A[e1, e0] = 1
|
||||
ones = torch.ones(idx.shape[1], dtype=torch.float32, device=verts.device)
|
||||
# pyre-fixme[16]: Module `sparse` has no attribute `FloatTensor`.
|
||||
A = torch.sparse.FloatTensor(idx, ones, (V, V))
|
||||
|
||||
# the sum of i-th row of A gives the degree of the i-th vertex
|
||||
@ -53,16 +54,20 @@ def laplacian(verts: torch.Tensor, edges: torch.Tensor) -> torch.Tensor:
|
||||
# We construct the Laplacian matrix by adding the non diagonal values
|
||||
# i.e. L[i, j] = 1 ./ deg(i) if (i, j) is an edge
|
||||
deg0 = deg[e0]
|
||||
# pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`.
|
||||
deg0 = torch.where(deg0 > 0.0, 1.0 / deg0, deg0)
|
||||
deg1 = deg[e1]
|
||||
# pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`.
|
||||
deg1 = torch.where(deg1 > 0.0, 1.0 / deg1, deg1)
|
||||
val = torch.cat([deg0, deg1])
|
||||
# pyre-fixme[16]: Module `sparse` has no attribute `FloatTensor`.
|
||||
L = torch.sparse.FloatTensor(idx, val, (V, V))
|
||||
|
||||
# Then we add the diagonal values L[i, i] = -1.
|
||||
idx = torch.arange(V, device=verts.device)
|
||||
idx = torch.stack([idx, idx], dim=0)
|
||||
ones = torch.ones(idx.shape[1], dtype=torch.float32, device=verts.device)
|
||||
# pyre-fixme[16]: Module `sparse` has no attribute `FloatTensor`.
|
||||
L -= torch.sparse.FloatTensor(idx, ones, (V, V))
|
||||
|
||||
return L
|
||||
@ -119,6 +124,7 @@ def cot_laplacian(
|
||||
ii = faces[:, [1, 2, 0]]
|
||||
jj = faces[:, [2, 0, 1]]
|
||||
idx = torch.stack([ii, jj], dim=0).view(2, F * 3)
|
||||
# pyre-fixme[16]: Module `sparse` has no attribute `FloatTensor`.
|
||||
L = torch.sparse.FloatTensor(idx, cot.view(-1), (V, V))
|
||||
|
||||
# Make it symmetric; this means we are also setting
|
||||
@ -133,6 +139,7 @@ def cot_laplacian(
|
||||
val = torch.stack([area] * 3, dim=1).view(-1)
|
||||
inv_areas.scatter_add_(0, idx, val)
|
||||
idx = inv_areas > 0
|
||||
# pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`.
|
||||
inv_areas[idx] = 1.0 / inv_areas[idx]
|
||||
inv_areas = inv_areas.view(-1, 1)
|
||||
|
||||
@ -166,6 +173,7 @@ def norm_laplacian(
|
||||
e01 = edges.t() # (2, E)
|
||||
|
||||
V = verts.shape[0]
|
||||
# pyre-fixme[16]: Module `sparse` has no attribute `FloatTensor`.
|
||||
L = torch.sparse.FloatTensor(e01, w01, (V, V))
|
||||
L = L + L.t()
|
||||
|
||||
|
@ -347,4 +347,5 @@ def _get_value(point: Tuple[int, int, int], volume_data: torch.Tensor) -> float:
|
||||
data: scalar value in the volume at the given point
|
||||
"""
|
||||
x, y, z = point
|
||||
# pyre-fixme[7]: Expected `float` but got `Tensor`.
|
||||
return volume_data[z][y][x]
|
||||
|
@ -49,7 +49,6 @@ def taubin_smoothing(
|
||||
total_weight = torch.sparse.sum(L, dim=1).to_dense().view(-1, 1)
|
||||
verts = (1 - lambd) * verts + lambd * torch.mm(L, verts) / total_weight
|
||||
|
||||
# pyre-ignore
|
||||
L = norm_laplacian(verts, edges)
|
||||
total_weight = torch.sparse.sum(L, dim=1).to_dense().view(-1, 1)
|
||||
verts = (1 - mu) * verts + mu * torch.mm(L, verts) / total_weight
|
||||
|
@ -180,6 +180,7 @@ def iterative_closest_point(
|
||||
t_history.append(SimilarityTransform(R, T, s))
|
||||
|
||||
# compute the root mean squared error
|
||||
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`.
|
||||
Xt_sq_diff = ((Xt - Xt_nn_points) ** 2).sum(2)
|
||||
rmse = oputil.wmean(Xt_sq_diff[:, :, None], mask_X).sqrt()[:, 0, 0]
|
||||
|
||||
|
@ -276,6 +276,7 @@ def add_pointclouds_to_volumes(
|
||||
|
||||
# obtain the conversion mask
|
||||
n_per_pcl = pointclouds.num_points_per_cloud().type_as(pcl_feats)
|
||||
# pyre-fixme[6]: For 1st param expected `Union[bool, float, int]` but got `Tensor`.
|
||||
mask = torch.arange(n_per_pcl.max(), dtype=pcl_feats.dtype, device=pcl_feats.device)
|
||||
mask = (mask[None, :] < n_per_pcl[:, None]).type_as(mask)
|
||||
|
||||
@ -388,6 +389,7 @@ def add_points_features_to_volume_densities_features(
|
||||
mode=mode,
|
||||
min_weight=min_weight,
|
||||
mask=mask,
|
||||
# pyre-fixme[6]: For 8th param expected `LongTensor` but got `Tensor`.
|
||||
grid_sizes=grid_sizes,
|
||||
)
|
||||
|
||||
@ -595,7 +597,6 @@ def _splat_points_to_volumes(
|
||||
rX, rY, rZ = rXYZ.split(1, dim=2)
|
||||
|
||||
# get random indices for the purpose of adding out-of-bounds values
|
||||
# pyre-fixme[16]: `Tensor` has no attribute `new_zeros`.
|
||||
rand_idx = X.new_zeros(X.shape).random_(0, n_voxels)
|
||||
|
||||
# iterate over the x, y, z indices of the 8-neighborhood (xdiff, ydiff, zdiff)
|
||||
@ -635,7 +636,6 @@ def _splat_points_to_volumes(
|
||||
|
||||
# scatter add casts the votes into the weight accumulator
|
||||
# and the feature accumulator
|
||||
# pyre-fixme[16]: `Tensor` has no attribute `scatter_add_`.
|
||||
volume_densities.scatter_add_(1, idx_valid, w_valid)
|
||||
|
||||
# reshape idx_valid -> (minibatch, feature_dim, n_points)
|
||||
@ -719,6 +719,7 @@ def _round_points_to_volumes(
|
||||
X, Y, Z = XYZ.split(1, dim=2)
|
||||
|
||||
# valid - binary indicators of votes that fall into the volume
|
||||
# pyre-fixme[9]: grid_sizes has type `LongTensor`; used as `Tensor`.
|
||||
grid_sizes = grid_sizes.type_as(XYZ)
|
||||
valid = (
|
||||
(0 <= X)
|
||||
@ -743,7 +744,6 @@ def _round_points_to_volumes(
|
||||
|
||||
# scatter add casts the votes into the weight accumulator
|
||||
# and the feature accumulator
|
||||
# pyre-fixme[16]: `Tensor` has no attribute `scatter_add_`.
|
||||
volume_densities.scatter_add_(1, idx_valid, w_valid)
|
||||
|
||||
# reshape idx_valid -> (minibatch, feature_dim, n_points)
|
||||
|
@ -81,6 +81,7 @@ def sample_farthest_points(
|
||||
start_idxs = torch.zeros_like(lengths)
|
||||
if random_start_point:
|
||||
for n in range(N):
|
||||
# pyre-fixme[6]: For 1st param expected `int` but got `Tensor`.
|
||||
start_idxs[n] = torch.randint(high=lengths[n], size=(1,)).item()
|
||||
|
||||
with torch.no_grad():
|
||||
@ -128,14 +129,23 @@ def sample_farthest_points_naive(
|
||||
for n in range(N):
|
||||
# Initialize an array for the sampled indices, shape: (max_K,)
|
||||
sample_idx_batch = torch.full(
|
||||
(max_K,), fill_value=-1, dtype=torch.int64, device=device
|
||||
# pyre-fixme[6]: For 1st param expected `Union[List[int], Size,
|
||||
# typing.Tuple[int, ...]]` but got `Tuple[Tensor]`.
|
||||
(max_K,),
|
||||
fill_value=-1,
|
||||
dtype=torch.int64,
|
||||
device=device,
|
||||
)
|
||||
|
||||
# Initialize closest distances to inf, shape: (P,)
|
||||
# This will be updated at each iteration to track the closest distance of the
|
||||
# remaining points to any of the selected points
|
||||
closest_dists = points.new_full(
|
||||
(lengths[n],), float("inf"), dtype=torch.float32
|
||||
# pyre-fixme[6]: For 1st param expected `Union[List[int], Size,
|
||||
# typing.Tuple[int, ...]]` but got `Tuple[Tensor]`.
|
||||
(lengths[n],),
|
||||
float("inf"),
|
||||
dtype=torch.float32,
|
||||
)
|
||||
|
||||
# Select a random point index and save it as the starting point
|
||||
@ -143,6 +153,10 @@ def sample_farthest_points_naive(
|
||||
sample_idx_batch[0] = selected_idx
|
||||
|
||||
# If the pointcloud has fewer than K points then only iterate over the min
|
||||
# pyre-fixme[6]: For 1st param expected `SupportsRichComparisonT` but got
|
||||
# `Tensor`.
|
||||
# pyre-fixme[6]: For 2nd param expected `SupportsRichComparisonT` but got
|
||||
# `Tensor`.
|
||||
k_n = min(lengths[n], K[n])
|
||||
|
||||
# Iteratively select points for a maximum of k_n
|
||||
@ -151,6 +165,8 @@ def sample_farthest_points_naive(
|
||||
# and all the other points. If a point has already been selected
|
||||
# it's distance will be 0.0 so it will not be selected again as the max.
|
||||
dist = points[n, selected_idx, :] - points[n, : lengths[n], :]
|
||||
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
|
||||
# `int`.
|
||||
dist_to_last_selected = (dist**2).sum(-1) # (P - i)
|
||||
|
||||
# If closer than currently saved distance to one of the selected
|
||||
|
@ -172,6 +172,4 @@ def _rand_barycentric_coords(
|
||||
w0 = 1.0 - u_sqrt
|
||||
w1 = u_sqrt * (1.0 - v)
|
||||
w2 = u_sqrt * v
|
||||
# pyre-fixme[7]: Expected `Tuple[torch.Tensor, torch.Tensor, torch.Tensor]` but
|
||||
# got `Tuple[float, typing.Any, typing.Any]`.
|
||||
return w0, w1, w2
|
||||
|
@ -441,6 +441,8 @@ def _create_faces_index(faces_per_mesh: torch.Tensor, device=None):
|
||||
|
||||
switch123_offset = F - faces_per_mesh # e.g. (8, 5, 7)
|
||||
|
||||
# pyre-fixme[6]: For 1st param expected `Union[List[int], Size,
|
||||
# typing.Tuple[int, ...]]` but got `Tensor`.
|
||||
idx_diffs = torch.ones(4 * F, device=device, dtype=torch.int64)
|
||||
idx_diffs[switch1_idx] += switch123_offset
|
||||
idx_diffs[switch2_idx] += switch123_offset
|
||||
|
@ -89,6 +89,8 @@ def wmean(
|
||||
args = {"dim": dim, "keepdim": keepdim}
|
||||
|
||||
if weight is None:
|
||||
# pyre-fixme[6]: For 1st param expected `Optional[dtype]` but got
|
||||
# `Union[Tuple[int], int]`.
|
||||
return x.mean(**args)
|
||||
|
||||
if any(
|
||||
@ -97,6 +99,8 @@ def wmean(
|
||||
):
|
||||
raise ValueError("wmean: weights are not compatible with the tensor")
|
||||
|
||||
# pyre-fixme[6]: For 1st param expected `Optional[dtype]` but got
|
||||
# `Union[Tuple[int], int]`.
|
||||
return (x * weight[..., None]).sum(**args) / weight[..., None].sum(**args).clamp(
|
||||
eps
|
||||
)
|
||||
|
@ -87,7 +87,6 @@ def vert_align(
|
||||
padding_mode=padding_mode,
|
||||
align_corners=align_corners,
|
||||
) # (N, C, 1, V)
|
||||
# pyre-fixme[28]: Unexpected keyword argument `dim`.
|
||||
feat_sampled = feat_sampled.squeeze(dim=2).transpose(1, 2) # (N, V, C)
|
||||
feats_sampled.append(feat_sampled)
|
||||
feats_sampled = torch.cat(feats_sampled, dim=2) # (N, V, sum(C))
|
||||
@ -101,7 +100,6 @@ def vert_align(
|
||||
.view(-1, 1)
|
||||
.expand(-1, feats_sampled.shape[-1])
|
||||
)
|
||||
# pyre-fixme[16]: `Tensor` has no attribute `gather`.
|
||||
feats_sampled = feats_sampled.gather(0, idx) # (sum(V), C)
|
||||
|
||||
return feats_sampled
|
||||
|
@ -80,7 +80,6 @@ def _opencv_from_cameras_projection(
|
||||
scale = scale.expand(-1, 2)
|
||||
c0 = image_size_wh / 2.0
|
||||
|
||||
# pyre-fixme[29]: `Union[BoundMethod[typing.Callable(torch.Tensor.__neg__)[[Named...
|
||||
principal_point = -p0_pytorch3d * scale + c0
|
||||
focal_length = focal_pytorch3d * scale
|
||||
|
||||
|
@ -401,6 +401,7 @@ class CamerasBase(TensorProperties):
|
||||
|
||||
kwargs = {}
|
||||
|
||||
# pyre-fixme[16]: Module `cuda` has no attribute `LongTensor`.
|
||||
if not isinstance(index, (int, list, torch.LongTensor, torch.cuda.LongTensor)):
|
||||
msg = "Invalid index type, expected int, List[int] or torch.LongTensor; got %r"
|
||||
raise ValueError(msg % type(index))
|
||||
@ -600,7 +601,9 @@ class FoVPerspectiveCameras(CamerasBase):
|
||||
# so the so the z sign is 1.0.
|
||||
z_sign = 1.0
|
||||
|
||||
# pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`.
|
||||
K[:, 0, 0] = 2.0 * znear / (max_x - min_x)
|
||||
# pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`.
|
||||
K[:, 1, 1] = 2.0 * znear / (max_y - min_y)
|
||||
K[:, 0, 2] = (max_x + min_x) / (max_x - min_x)
|
||||
K[:, 1, 2] = (max_y + min_y) / (max_y - min_y)
|
||||
@ -1755,6 +1758,8 @@ def get_ndc_to_screen_transform(
|
||||
K = torch.zeros((cameras._N, 4, 4), device=cameras.device, dtype=torch.float32)
|
||||
if not torch.is_tensor(image_size):
|
||||
image_size = torch.tensor(image_size, device=cameras.device)
|
||||
# pyre-fixme[16]: Item `List` of `Union[List[typing.Any], Tensor, Tuple[Any,
|
||||
# ...]]` has no attribute `view`.
|
||||
image_size = image_size.view(-1, 2) # of shape (1 or B)x2
|
||||
height, width = image_size.unbind(1)
|
||||
|
||||
|
@ -158,7 +158,6 @@ class AbsorptionOnlyRaymarcher(torch.nn.Module):
|
||||
_check_density_bounds(rays_densities)
|
||||
total_transmission = torch.prod(1 - rays_densities, dim=-1, keepdim=True)
|
||||
opacities = 1.0 - total_transmission
|
||||
# pyre-fixme[7]: Expected `Optional[torch.Tensor]` but got `float`.
|
||||
return opacities
|
||||
|
||||
|
||||
|
@ -180,6 +180,8 @@ class MultinomialRaysampler(torch.nn.Module):
|
||||
# is not batched and does not support partial permutation
|
||||
_, width, height, _ = xy_grid.shape
|
||||
weights = xy_grid.new_ones(batch_size, width * height)
|
||||
# pyre-fixme[6]: For 2nd param expected `int` but got `Union[bool,
|
||||
# float, int]`.
|
||||
rays_idx = _safe_multinomial(weights, num_rays)[..., None].expand(-1, -1, 2)
|
||||
|
||||
xy_grid = torch.gather(xy_grid.reshape(batch_size, -1, 2), 1, rays_idx)[
|
||||
@ -478,7 +480,6 @@ def _safe_multinomial(input: torch.Tensor, num_samples: int) -> torch.Tensor:
|
||||
# in some versions of Pytorch, zero probabilty samples can be drawn without an error
|
||||
# due to this bug: https://github.com/pytorch/pytorch/issues/50034. Handle this case:
|
||||
repl = (input > 0.0).sum(dim=-1) < num_samples
|
||||
# pyre-fixme[16]: Undefined attribute `torch.ByteTensor` has no attribute `any`.
|
||||
if repl.any():
|
||||
res[repl] = torch.multinomial(input[repl], num_samples, replacement=True)
|
||||
|
||||
@ -515,7 +516,7 @@ def _xy_to_ray_bundle(
|
||||
"""
|
||||
batch_size = xy_grid.shape[0]
|
||||
spatial_size = xy_grid.shape[1:-1]
|
||||
n_rays_per_image = spatial_size.numel() # pyre-ignore
|
||||
n_rays_per_image = spatial_size.numel()
|
||||
|
||||
# ray z-coords
|
||||
rays_zs = xy_grid.new_empty((0,))
|
||||
|
@ -254,7 +254,6 @@ def _find_verts_intersecting_clipping_plane(
|
||||
|
||||
# p1, p2, p3 are (T, 3) tensors storing the corresponding (x, y, z) coordinates
|
||||
# of p1_face_ind, p2_face_ind, p3_face_ind
|
||||
# pyre-ignore[16]
|
||||
p1 = face_verts.gather(1, p1_face_ind[:, None, None].expand(-1, -1, 3)).squeeze(1)
|
||||
p2 = face_verts.gather(1, p2_face_ind[:, None, None].expand(-1, -1, 3)).squeeze(1)
|
||||
p3 = face_verts.gather(1, p3_face_ind[:, None, None].expand(-1, -1, 3)).squeeze(1)
|
||||
@ -398,7 +397,6 @@ def clip_faces(
|
||||
# into a smaller quadrilateral and split into two triangles)
|
||||
#####################################################################################
|
||||
|
||||
# pyre-ignore[16]:
|
||||
faces_unculled = ~faces_culled
|
||||
# Case 1: no clipped verts or culled faces
|
||||
cases1_unclipped = (faces_num_clipped_verts == 0) & faces_unculled
|
||||
@ -434,7 +432,13 @@ def clip_faces(
|
||||
# These will then be filled in for each case.
|
||||
###########################################
|
||||
F_clipped = (
|
||||
F + faces_delta_cum[-1].item() + faces_delta[-1].item()
|
||||
F
|
||||
# pyre-fixme[58]: `+` is not supported for operand types `int` and
|
||||
# `Union[bool, float, int]`.
|
||||
+ faces_delta_cum[-1].item()
|
||||
# pyre-fixme[58]: `+` is not supported for operand types `int` and
|
||||
# `Union[bool, float, int]`.
|
||||
+ faces_delta[-1].item()
|
||||
) # Total number of faces in the new Meshes
|
||||
face_verts_clipped = torch.zeros(
|
||||
(F_clipped, 3, 3), dtype=face_verts_unclipped.dtype, device=device
|
||||
|
@ -66,8 +66,11 @@ def _list_to_padded_wrapper(
|
||||
"list_to_padded requires tensors to have the same number of dimensions"
|
||||
)
|
||||
raise ValueError(msg)
|
||||
# pyre-fixme[6]: For 2nd param expected `int` but got `Union[bool, float, int]`.
|
||||
x_reshaped.append(y.reshape(-1, D))
|
||||
x_padded = list_to_padded(x_reshaped, pad_size=pad_size, pad_value=pad_value)
|
||||
# pyre-fixme[58]: `+` is not supported for operand types `Tuple[int, int]` and
|
||||
# `Size`.
|
||||
return x_padded.reshape((N, -1) + reshape_dims)
|
||||
|
||||
|
||||
@ -96,8 +99,11 @@ def _padded_to_list_wrapper(
|
||||
N, M = x.shape[:2]
|
||||
reshape_dims = x.shape[2:]
|
||||
D = torch.prod(torch.tensor(reshape_dims)).item()
|
||||
# pyre-fixme[6]: For 3rd param expected `int` but got `Union[bool, float, int]`.
|
||||
x_reshaped = x.reshape(N, M, D)
|
||||
x_list = padded_to_list(x_reshaped, split_size=split_size)
|
||||
# pyre-fixme[58]: `+` is not supported for operand types `Tuple[typing.Any]` and
|
||||
# `Size`.
|
||||
x_list = [xl.reshape((xl.shape[0],) + reshape_dims) for xl in x_list]
|
||||
return x_list
|
||||
|
||||
@ -132,8 +138,6 @@ def _pad_texture_maps(
|
||||
image_BCHW = image.permute(2, 0, 1)[None]
|
||||
new_image_BCHW = interpolate(
|
||||
image_BCHW,
|
||||
# pyre-fixme[6]: Expected `Optional[int]` for 2nd param but got
|
||||
# `Tuple[int, int]`.
|
||||
size=max_shape,
|
||||
mode="bilinear",
|
||||
align_corners=align_corners,
|
||||
|
@ -130,12 +130,15 @@ def _get_splat_kernel_normalization(
|
||||
|
||||
epsilon = 0.05
|
||||
normalization_constant = torch.exp(
|
||||
-(offsets**2).sum(dim=1) / (2 * sigma**2)
|
||||
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`.
|
||||
-(offsets**2).sum(dim=1)
|
||||
/ (2 * sigma**2)
|
||||
).sum()
|
||||
|
||||
# We add an epsilon to the normalization constant to ensure the gradient will travel
|
||||
# through non-boundary pixels' normalization factor, see Sec. 3.3.1 in "Differentia-
|
||||
# ble Surface Rendering via Non-Differentiable Sampling", Cole et al.
|
||||
# pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`.
|
||||
return (1 + epsilon) / normalization_constant
|
||||
|
||||
|
||||
@ -260,6 +263,7 @@ def _compute_splatting_colors_and_weights(
|
||||
torch.floor(pixel_coords_screen[..., :2]) - pixel_coords_screen[..., :2] + 0.5
|
||||
).view((N, H, W, K, 1, 2))
|
||||
|
||||
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`.
|
||||
dist2_p_q = torch.sum((q_to_px_center + offsets) ** 2, dim=5) # (N, H, W, K, 9)
|
||||
splat_weights = torch.exp(-dist2_p_q / (2 * sigma**2))
|
||||
alpha = colors[..., 3:4]
|
||||
@ -413,6 +417,7 @@ def _normalize_and_compose_all_layers(
|
||||
|
||||
# Normalize each of bg/surface/fg splat layers separately.
|
||||
normalization_scales = 1.0 / (
|
||||
# pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`.
|
||||
torch.maximum(
|
||||
splatted_weights_per_occlusion_layer,
|
||||
torch.tensor([1.0], device=device),
|
||||
|
@ -394,6 +394,7 @@ def ndc_grid_sample(
|
||||
|
||||
grid_ndc_flat = grid_ndc.reshape(batch, -1, 1, 2)
|
||||
|
||||
# pyre-fixme[6]: For 2nd param expected `Tuple[int, int]` but got `Size`.
|
||||
grid_flat = ndc_to_grid_sample_coords(grid_ndc_flat, input.shape[2:])
|
||||
|
||||
sampled_input_flat = torch.nn.functional.grid_sample(
|
||||
|
@ -890,7 +890,6 @@ class Meshes:
|
||||
|
||||
# NOTE: this is already applying the area weighting as the magnitude
|
||||
# of the cross product is 2 x area of the triangle.
|
||||
# pyre-fixme[16]: `Tensor` has no attribute `index_add`.
|
||||
verts_normals = verts_normals.index_add(
|
||||
0,
|
||||
faces_packed[:, 1],
|
||||
|
@ -210,7 +210,6 @@ def padded_to_packed(
|
||||
|
||||
# Convert to packed using pad value
|
||||
if pad_value is not None:
|
||||
# pyre-fixme[16]: `ByteTensor` has no attribute `any`.
|
||||
mask = x_packed.ne(pad_value).any(-1)
|
||||
x_packed = x_packed[mask]
|
||||
return x_packed
|
||||
|
@ -50,6 +50,7 @@ def quaternion_to_matrix(quaternions: torch.Tensor) -> torch.Tensor:
|
||||
Rotation matrices as tensor of shape (..., 3, 3).
|
||||
"""
|
||||
r, i, j, k = torch.unbind(quaternions, -1)
|
||||
# pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`.
|
||||
two_s = 2.0 / (quaternions * quaternions).sum(-1)
|
||||
|
||||
o = torch.stack(
|
||||
@ -131,9 +132,17 @@ def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor:
|
||||
# we produce the desired quaternion multiplied by each of r, i, j, k
|
||||
quat_by_rijk = torch.stack(
|
||||
[
|
||||
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
|
||||
# `int`.
|
||||
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
|
||||
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
|
||||
# `int`.
|
||||
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
|
||||
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
|
||||
# `int`.
|
||||
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
|
||||
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
|
||||
# `int`.
|
||||
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
|
||||
],
|
||||
dim=-2,
|
||||
@ -148,7 +157,7 @@ def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor:
|
||||
# forall i; we pick the best-conditioned one (with the largest denominator)
|
||||
|
||||
return quat_candidates[
|
||||
F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, : # pyre-ignore[16]
|
||||
F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :
|
||||
].reshape(batch_dim + (4,))
|
||||
|
||||
|
||||
@ -314,6 +323,7 @@ def random_quaternions(
|
||||
"""
|
||||
if isinstance(device, str):
|
||||
device = torch.device(device)
|
||||
# pyre-fixme[6]: For 2nd param expected `dtype` but got `Optional[dtype]`.
|
||||
o = torch.randn((n, 4), dtype=dtype, device=device)
|
||||
s = (o * o).sum(1)
|
||||
o = o / _copysign(torch.sqrt(s), o[:, 0])[:, None]
|
||||
|
@ -194,9 +194,12 @@ def _se3_V_matrix(
|
||||
V = (
|
||||
torch.eye(3, dtype=log_rotation.dtype, device=log_rotation.device)[None]
|
||||
+ log_rotation_hat
|
||||
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`.
|
||||
* ((1 - torch.cos(rotation_angles)) / (rotation_angles**2))[:, None, None]
|
||||
+ (
|
||||
log_rotation_hat_square
|
||||
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
|
||||
# `int`.
|
||||
* ((rotation_angles - torch.sin(rotation_angles)) / (rotation_angles**3))[
|
||||
:, None, None
|
||||
]
|
||||
@ -211,6 +214,7 @@ def _get_se3_V_input(log_rotation: torch.Tensor, eps: float = 1e-4):
|
||||
A helper function that computes the input variables to the `_se3_V_matrix`
|
||||
function.
|
||||
"""
|
||||
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`.
|
||||
nrms = (log_rotation**2).sum(-1)
|
||||
rotation_angles = torch.clamp(nrms, eps).sqrt()
|
||||
log_rotation_hat = hat(log_rotation)
|
||||
|
@ -160,6 +160,7 @@ def _so3_exp_map(
|
||||
nrms = (log_rot * log_rot).sum(1)
|
||||
# phis ... rotation angles
|
||||
rot_angles = torch.clamp(nrms, eps).sqrt()
|
||||
# pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`.
|
||||
rot_angles_inv = 1.0 / rot_angles
|
||||
fac1 = rot_angles_inv * rot_angles.sin()
|
||||
fac2 = rot_angles_inv * rot_angles_inv * (1.0 - rot_angles.cos())
|
||||
@ -167,8 +168,8 @@ def _so3_exp_map(
|
||||
skews_square = torch.bmm(skews, skews)
|
||||
|
||||
R = (
|
||||
# pyre-fixme[16]: `float` has no attribute `__getitem__`.
|
||||
fac1[:, None, None] * skews
|
||||
# pyre-fixme[16]: `float` has no attribute `__getitem__`.
|
||||
+ fac2[:, None, None] * skews_square
|
||||
+ torch.eye(3, dtype=log_rot.dtype, device=log_rot.device)[None]
|
||||
)
|
||||
@ -216,6 +217,7 @@ def so3_log_map(
|
||||
# 2nd order Taylor expansion: phi_factor = 0.5 + (1.0 / 12) * phi**2
|
||||
phi_factor = torch.empty_like(phi)
|
||||
ok_denom = phi_sin.abs() > (0.5 * eps)
|
||||
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`.
|
||||
phi_factor[~ok_denom] = 0.5 + (phi[~ok_denom] ** 2) * (1.0 / 12)
|
||||
phi_factor[ok_denom] = phi[ok_denom] / (2.0 * phi_sin[ok_denom])
|
||||
|
||||
|
@ -556,7 +556,9 @@ class Scale(Transform3d):
|
||||
Return the inverse of self._matrix.
|
||||
"""
|
||||
xyz = torch.stack([self._matrix[:, i, i] for i in range(4)], dim=1)
|
||||
# pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`.
|
||||
ixyz = 1.0 / xyz
|
||||
# pyre-fixme[6]: For 1st param expected `Tensor` but got `float`.
|
||||
imat = torch.diag_embed(ixyz, dim1=1, dim2=2)
|
||||
return imat
|
||||
|
||||
|
@ -780,7 +780,7 @@ def _add_ray_bundle_trace(
|
||||
"""
|
||||
|
||||
n_pts_per_ray = ray_bundle.lengths.shape[-1]
|
||||
n_rays = ray_bundle.lengths.shape[:-1].numel() # pyre-ignore[16]
|
||||
n_rays = ray_bundle.lengths.shape[:-1].numel()
|
||||
|
||||
# flatten all batches of rays into a single big bundle
|
||||
ray_bundle_flat = RayBundle(
|
||||
|
Loading…
x
Reference in New Issue
Block a user