mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-22 07:10:34 +08:00
Compare commits
19 Commits
v0.7.7
...
bottler/ac
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
9c586b1351 | ||
|
|
e13848265d | ||
|
|
58566963d6 | ||
|
|
e17ed5cd50 | ||
|
|
8ed0c7a002 | ||
|
|
2da913c7e6 | ||
|
|
fca83e6369 | ||
|
|
75ebeeaea0 | ||
|
|
ab793177c6 | ||
|
|
9acdd67b83 | ||
|
|
3f428d9981 | ||
|
|
05cbea115a | ||
|
|
38afdcfc68 | ||
|
|
1e0b1d9c72 | ||
|
|
44702fdb4b | ||
|
|
7edaee71a9 | ||
|
|
d0d0e02007 | ||
|
|
4df110b0a9 | ||
|
|
51fd114d8b |
@@ -162,34 +162,6 @@ workflows:
|
||||
jobs:
|
||||
# - main:
|
||||
# context: DOCKERHUB_TOKEN
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda117
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu117
|
||||
name: linux_conda_py38_cu117_pyt200
|
||||
python_version: '3.8'
|
||||
pytorch_version: 2.0.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py38_cu118_pyt200
|
||||
python_version: '3.8'
|
||||
pytorch_version: 2.0.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda117
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu117
|
||||
name: linux_conda_py38_cu117_pyt201
|
||||
python_version: '3.8'
|
||||
pytorch_version: 2.0.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py38_cu118_pyt201
|
||||
python_version: '3.8'
|
||||
pytorch_version: 2.0.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
@@ -275,33 +247,33 @@ workflows:
|
||||
python_version: '3.8'
|
||||
pytorch_version: 2.3.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda117
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu117
|
||||
name: linux_conda_py39_cu117_pyt200
|
||||
python_version: '3.9'
|
||||
pytorch_version: 2.0.0
|
||||
cu_version: cu118
|
||||
name: linux_conda_py38_cu118_pyt240
|
||||
python_version: '3.8'
|
||||
pytorch_version: 2.4.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py38_cu121_pyt240
|
||||
python_version: '3.8'
|
||||
pytorch_version: 2.4.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py39_cu118_pyt200
|
||||
python_version: '3.9'
|
||||
pytorch_version: 2.0.0
|
||||
name: linux_conda_py38_cu118_pyt241
|
||||
python_version: '3.8'
|
||||
pytorch_version: 2.4.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda117
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu117
|
||||
name: linux_conda_py39_cu117_pyt201
|
||||
python_version: '3.9'
|
||||
pytorch_version: 2.0.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py39_cu118_pyt201
|
||||
python_version: '3.9'
|
||||
pytorch_version: 2.0.1
|
||||
cu_version: cu121
|
||||
name: linux_conda_py38_cu121_pyt241
|
||||
python_version: '3.8'
|
||||
pytorch_version: 2.4.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
@@ -387,33 +359,33 @@ workflows:
|
||||
python_version: '3.9'
|
||||
pytorch_version: 2.3.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda117
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu117
|
||||
name: linux_conda_py310_cu117_pyt200
|
||||
python_version: '3.10'
|
||||
pytorch_version: 2.0.0
|
||||
cu_version: cu118
|
||||
name: linux_conda_py39_cu118_pyt240
|
||||
python_version: '3.9'
|
||||
pytorch_version: 2.4.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py39_cu121_pyt240
|
||||
python_version: '3.9'
|
||||
pytorch_version: 2.4.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py310_cu118_pyt200
|
||||
python_version: '3.10'
|
||||
pytorch_version: 2.0.0
|
||||
name: linux_conda_py39_cu118_pyt241
|
||||
python_version: '3.9'
|
||||
pytorch_version: 2.4.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda117
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu117
|
||||
name: linux_conda_py310_cu117_pyt201
|
||||
python_version: '3.10'
|
||||
pytorch_version: 2.0.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py310_cu118_pyt201
|
||||
python_version: '3.10'
|
||||
pytorch_version: 2.0.1
|
||||
cu_version: cu121
|
||||
name: linux_conda_py39_cu121_pyt241
|
||||
python_version: '3.9'
|
||||
pytorch_version: 2.4.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
@@ -498,6 +470,34 @@ workflows:
|
||||
name: linux_conda_py310_cu121_pyt231
|
||||
python_version: '3.10'
|
||||
pytorch_version: 2.3.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py310_cu118_pyt240
|
||||
python_version: '3.10'
|
||||
pytorch_version: 2.4.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py310_cu121_pyt240
|
||||
python_version: '3.10'
|
||||
pytorch_version: 2.4.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py310_cu118_pyt241
|
||||
python_version: '3.10'
|
||||
pytorch_version: 2.4.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py310_cu121_pyt241
|
||||
python_version: '3.10'
|
||||
pytorch_version: 2.4.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
@@ -582,6 +582,34 @@ workflows:
|
||||
name: linux_conda_py311_cu121_pyt231
|
||||
python_version: '3.11'
|
||||
pytorch_version: 2.3.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py311_cu118_pyt240
|
||||
python_version: '3.11'
|
||||
pytorch_version: 2.4.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py311_cu121_pyt240
|
||||
python_version: '3.11'
|
||||
pytorch_version: 2.4.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py311_cu118_pyt241
|
||||
python_version: '3.11'
|
||||
pytorch_version: 2.4.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py311_cu121_pyt241
|
||||
python_version: '3.11'
|
||||
pytorch_version: 2.4.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
@@ -624,6 +652,34 @@ workflows:
|
||||
name: linux_conda_py312_cu121_pyt231
|
||||
python_version: '3.12'
|
||||
pytorch_version: 2.3.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py312_cu118_pyt240
|
||||
python_version: '3.12'
|
||||
pytorch_version: 2.4.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py312_cu121_pyt240
|
||||
python_version: '3.12'
|
||||
pytorch_version: 2.4.0
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda118
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu118
|
||||
name: linux_conda_py312_cu118_pyt241
|
||||
python_version: '3.12'
|
||||
pytorch_version: 2.4.1
|
||||
- binary_linux_conda:
|
||||
conda_docker_image: pytorch/conda-builder:cuda121
|
||||
context: DOCKERHUB_TOKEN
|
||||
cu_version: cu121
|
||||
name: linux_conda_py312_cu121_pyt241
|
||||
python_version: '3.12'
|
||||
pytorch_version: 2.4.1
|
||||
- binary_linux_conda_cuda:
|
||||
name: testrun_conda_cuda_py310_cu117_pyt201
|
||||
context: DOCKERHUB_TOKEN
|
||||
|
||||
@@ -19,14 +19,14 @@ from packaging import version
|
||||
# The CUDA versions which have pytorch conda packages available for linux for each
|
||||
# version of pytorch.
|
||||
CONDA_CUDA_VERSIONS = {
|
||||
"2.0.0": ["cu117", "cu118"],
|
||||
"2.0.1": ["cu117", "cu118"],
|
||||
"2.1.0": ["cu118", "cu121"],
|
||||
"2.1.1": ["cu118", "cu121"],
|
||||
"2.1.2": ["cu118", "cu121"],
|
||||
"2.2.0": ["cu118", "cu121"],
|
||||
"2.2.2": ["cu118", "cu121"],
|
||||
"2.3.1": ["cu118", "cu121"],
|
||||
"2.4.0": ["cu118", "cu121"],
|
||||
"2.4.1": ["cu118", "cu121"],
|
||||
}
|
||||
|
||||
|
||||
|
||||
20
.github/workflows/build.yml
vendored
Normal file
20
.github/workflows/build.yml
vendored
Normal file
@@ -0,0 +1,20 @@
|
||||
name: facebookresearch/pytorch3d/build_and_test
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
jobs:
|
||||
binary_linux_conda_cuda:
|
||||
runs-on: 4-core-ubuntu-gpu-t4
|
||||
env:
|
||||
PYTHON_VERSION: "3.12"
|
||||
BUILD_VERSION: "${{ github.run_number }}"
|
||||
PYTORCH_VERSION: "2.4.1"
|
||||
CU_VERSION: "cu121"
|
||||
JUST_TESTRUN: 1
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Build and run tests
|
||||
run: |-
|
||||
conda create --name env --yes --quiet conda-build
|
||||
conda run --no-capture-output --name env python3 ./packaging/build_conda.py --use-conda-cuda
|
||||
11
INSTALL.md
11
INSTALL.md
@@ -8,11 +8,10 @@
|
||||
The core library is written in PyTorch. Several components have underlying implementation in CUDA for improved performance. A subset of these components have CPU implementations in C++/PyTorch. It is advised to use PyTorch3D with GPU support in order to use all the features.
|
||||
|
||||
- Linux or macOS or Windows
|
||||
- Python 3.8, 3.9 or 3.10
|
||||
- PyTorch 2.0.0, 2.0.1, 2.1.0, 2.1.1, 2.1.2, 2.2.0, 2.2.1, 2.2.2, 2.3.0 or 2.3.1.
|
||||
- Python
|
||||
- PyTorch 2.1.0, 2.1.1, 2.1.2, 2.2.0, 2.2.1, 2.2.2, 2.3.0, 2.3.1, 2.4.0 or 2.4.1.
|
||||
- torchvision that matches the PyTorch installation. You can install them together as explained at pytorch.org to make sure of this.
|
||||
- gcc & g++ ≥ 4.9
|
||||
- [fvcore](https://github.com/facebookresearch/fvcore)
|
||||
- [ioPath](https://github.com/facebookresearch/iopath)
|
||||
- If CUDA is to be used, use a version which is supported by the corresponding pytorch version and at least version 9.2.
|
||||
- If CUDA older than 11.7 is to be used and you are building from source, the CUB library must be available. We recommend version 1.10.0.
|
||||
@@ -22,7 +21,7 @@ The runtime dependencies can be installed by running:
|
||||
conda create -n pytorch3d python=3.9
|
||||
conda activate pytorch3d
|
||||
conda install pytorch=1.13.0 torchvision pytorch-cuda=11.6 -c pytorch -c nvidia
|
||||
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
|
||||
conda install -c iopath iopath
|
||||
```
|
||||
|
||||
For the CUB build time dependency, which you only need if you have CUDA older than 11.7, if you are using conda, you can continue with
|
||||
@@ -49,6 +48,7 @@ For developing on top of PyTorch3D or contributing, you will need to run the lin
|
||||
- tdqm
|
||||
- jupyter
|
||||
- imageio
|
||||
- fvcore
|
||||
- plotly
|
||||
- opencv-python
|
||||
|
||||
@@ -59,6 +59,7 @@ conda install jupyter
|
||||
pip install scikit-image matplotlib imageio plotly opencv-python
|
||||
|
||||
# Tests/Linting
|
||||
conda install -c fvcore -c conda-forge fvcore
|
||||
pip install black usort flake8 flake8-bugbear flake8-comprehensions
|
||||
```
|
||||
|
||||
@@ -97,7 +98,7 @@ version_str="".join([
|
||||
torch.version.cuda.replace(".",""),
|
||||
f"_pyt{pyt_version_str}"
|
||||
])
|
||||
!pip install fvcore iopath
|
||||
!pip install iopath
|
||||
!pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html
|
||||
```
|
||||
|
||||
|
||||
@@ -23,7 +23,7 @@ conda init bash
|
||||
source ~/.bashrc
|
||||
conda create -y -n myenv python=3.8 matplotlib ipython ipywidgets nbconvert
|
||||
conda activate myenv
|
||||
conda install -y -c fvcore -c iopath -c conda-forge fvcore iopath
|
||||
conda install -y -c iopath iopath
|
||||
conda install -y -c pytorch pytorch=1.6.0 cudatoolkit=10.1 torchvision
|
||||
conda install -y -c pytorch3d-nightly pytorch3d
|
||||
pip install plotly scikit-image
|
||||
|
||||
@@ -5,7 +5,6 @@ sphinx_rtd_theme
|
||||
sphinx_markdown_tables
|
||||
numpy
|
||||
iopath
|
||||
fvcore
|
||||
https://download.pytorch.org/whl/cpu/torchvision-0.15.2%2Bcpu-cp311-cp311-linux_x86_64.whl
|
||||
https://download.pytorch.org/whl/cpu/torch-2.0.1%2Bcpu-cp311-cp311-linux_x86_64.whl
|
||||
omegaconf
|
||||
|
||||
@@ -96,7 +96,7 @@
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install fvcore iopath\n",
|
||||
" !pip install iopath\n",
|
||||
" if sys.platform.startswith(\"linux\"):\n",
|
||||
" print(\"Trying to install wheel for PyTorch3D\")\n",
|
||||
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
|
||||
|
||||
@@ -83,7 +83,7 @@
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install fvcore iopath\n",
|
||||
" !pip install iopath\n",
|
||||
" if sys.platform.startswith(\"linux\"):\n",
|
||||
" print(\"Trying to install wheel for PyTorch3D\")\n",
|
||||
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
|
||||
|
||||
@@ -58,7 +58,7 @@
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install fvcore iopath\n",
|
||||
" !pip install iopath\n",
|
||||
" if sys.platform.startswith(\"linux\"):\n",
|
||||
" print(\"Trying to install wheel for PyTorch3D\")\n",
|
||||
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
|
||||
|
||||
@@ -97,7 +97,7 @@
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install fvcore iopath\n",
|
||||
" !pip install iopath\n",
|
||||
" if sys.platform.startswith(\"linux\"):\n",
|
||||
" print(\"Trying to install wheel for PyTorch3D\")\n",
|
||||
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
|
||||
|
||||
@@ -63,7 +63,7 @@
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install fvcore iopath\n",
|
||||
" !pip install iopath\n",
|
||||
" if sys.platform.startswith(\"linux\"):\n",
|
||||
" print(\"Trying to install wheel for PyTorch3D\")\n",
|
||||
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
|
||||
|
||||
@@ -75,7 +75,7 @@
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install fvcore iopath\n",
|
||||
" !pip install iopath\n",
|
||||
" if sys.platform.startswith(\"linux\"):\n",
|
||||
" print(\"Trying to install wheel for PyTorch3D\")\n",
|
||||
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
|
||||
|
||||
@@ -54,7 +54,7 @@
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install fvcore iopath\n",
|
||||
" !pip install iopath\n",
|
||||
" if sys.platform.startswith(\"linux\"):\n",
|
||||
" print(\"Trying to install wheel for PyTorch3D\")\n",
|
||||
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
|
||||
|
||||
@@ -85,7 +85,7 @@
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install fvcore iopath\n",
|
||||
" !pip install iopath\n",
|
||||
" if sys.platform.startswith(\"linux\"):\n",
|
||||
" print(\"Trying to install wheel for PyTorch3D\")\n",
|
||||
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
|
||||
|
||||
@@ -79,7 +79,7 @@
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install fvcore iopath\n",
|
||||
" !pip install iopath\n",
|
||||
" if sys.platform.startswith(\"linux\"):\n",
|
||||
" print(\"Trying to install wheel for PyTorch3D\")\n",
|
||||
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
|
||||
|
||||
@@ -57,7 +57,7 @@
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install fvcore iopath\n",
|
||||
" !pip install iopath\n",
|
||||
" if sys.platform.startswith(\"linux\"):\n",
|
||||
" print(\"Trying to install wheel for PyTorch3D\")\n",
|
||||
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
|
||||
|
||||
@@ -64,7 +64,7 @@
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install fvcore iopath\n",
|
||||
" !pip install iopath\n",
|
||||
" if sys.platform.startswith(\"linux\"):\n",
|
||||
" print(\"Trying to install wheel for PyTorch3D\")\n",
|
||||
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
|
||||
|
||||
@@ -80,7 +80,7 @@
|
||||
" torch.version.cuda.replace(\".\",\"\"),\n",
|
||||
" f\"_pyt{pyt_version_str}\"\n",
|
||||
" ])\n",
|
||||
" !pip install fvcore iopath\n",
|
||||
" !pip install iopath\n",
|
||||
" if sys.platform.startswith(\"linux\"):\n",
|
||||
" print(\"Trying to install wheel for PyTorch3D\")\n",
|
||||
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
|
||||
|
||||
@@ -4,10 +4,11 @@
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import argparse
|
||||
import os.path
|
||||
import runpy
|
||||
import subprocess
|
||||
from typing import List
|
||||
from typing import List, Tuple
|
||||
|
||||
# required env vars:
|
||||
# CU_VERSION: E.g. cu112
|
||||
@@ -23,7 +24,7 @@ pytorch_major_minor = tuple(int(i) for i in PYTORCH_VERSION.split(".")[:2])
|
||||
source_root_dir = os.environ["PWD"]
|
||||
|
||||
|
||||
def version_constraint(version):
|
||||
def version_constraint(version) -> str:
|
||||
"""
|
||||
Given version "11.3" returns " >=11.3,<11.4"
|
||||
"""
|
||||
@@ -32,7 +33,7 @@ def version_constraint(version):
|
||||
return f" >={version},<{upper}"
|
||||
|
||||
|
||||
def get_cuda_major_minor():
|
||||
def get_cuda_major_minor() -> Tuple[str, str]:
|
||||
if CU_VERSION == "cpu":
|
||||
raise ValueError("fn only for cuda builds")
|
||||
if len(CU_VERSION) != 5 or CU_VERSION[:2] != "cu":
|
||||
@@ -42,11 +43,10 @@ def get_cuda_major_minor():
|
||||
return major, minor
|
||||
|
||||
|
||||
def setup_cuda():
|
||||
def setup_cuda(use_conda_cuda: bool) -> List[str]:
|
||||
if CU_VERSION == "cpu":
|
||||
return
|
||||
return []
|
||||
major, minor = get_cuda_major_minor()
|
||||
os.environ["CUDA_HOME"] = f"/usr/local/cuda-{major}.{minor}/"
|
||||
os.environ["FORCE_CUDA"] = "1"
|
||||
|
||||
basic_nvcc_flags = (
|
||||
@@ -75,6 +75,15 @@ def setup_cuda():
|
||||
|
||||
if os.environ.get("JUST_TESTRUN", "0") != "1":
|
||||
os.environ["NVCC_FLAGS"] = nvcc_flags
|
||||
if use_conda_cuda:
|
||||
os.environ["CONDA_CUDA_TOOLKIT_BUILD_CONSTRAINT1"] = "- cuda-toolkit"
|
||||
os.environ["CONDA_CUDA_TOOLKIT_BUILD_CONSTRAINT2"] = (
|
||||
f"- cuda-version={major}.{minor}"
|
||||
)
|
||||
return ["-c", f"nvidia/label/cuda-{major}.{minor}.0"]
|
||||
else:
|
||||
os.environ["CUDA_HOME"] = f"/usr/local/cuda-{major}.{minor}/"
|
||||
return []
|
||||
|
||||
|
||||
def setup_conda_pytorch_constraint() -> List[str]:
|
||||
@@ -95,7 +104,7 @@ def setup_conda_pytorch_constraint() -> List[str]:
|
||||
return ["-c", "pytorch", "-c", "nvidia"]
|
||||
|
||||
|
||||
def setup_conda_cudatoolkit_constraint():
|
||||
def setup_conda_cudatoolkit_constraint() -> None:
|
||||
if CU_VERSION == "cpu":
|
||||
os.environ["CONDA_CPUONLY_FEATURE"] = "- cpuonly"
|
||||
os.environ["CONDA_CUDATOOLKIT_CONSTRAINT"] = ""
|
||||
@@ -116,14 +125,14 @@ def setup_conda_cudatoolkit_constraint():
|
||||
os.environ["CONDA_CUDATOOLKIT_CONSTRAINT"] = toolkit
|
||||
|
||||
|
||||
def do_build(start_args: List[str]):
|
||||
def do_build(start_args: List[str]) -> None:
|
||||
args = start_args.copy()
|
||||
|
||||
test_flag = os.environ.get("TEST_FLAG")
|
||||
if test_flag is not None:
|
||||
args.append(test_flag)
|
||||
|
||||
args.extend(["-c", "bottler", "-c", "fvcore", "-c", "iopath", "-c", "conda-forge"])
|
||||
args.extend(["-c", "bottler", "-c", "iopath", "-c", "conda-forge"])
|
||||
args.append("--no-anaconda-upload")
|
||||
args.extend(["--python", os.environ["PYTHON_VERSION"]])
|
||||
args.append("packaging/pytorch3d")
|
||||
@@ -132,8 +141,16 @@ def do_build(start_args: List[str]):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Build the conda package.")
|
||||
parser.add_argument(
|
||||
"--use-conda-cuda",
|
||||
action="store_true",
|
||||
help="get cuda from conda ignoring local cuda",
|
||||
)
|
||||
our_args = parser.parse_args()
|
||||
|
||||
args = ["conda", "build"]
|
||||
setup_cuda()
|
||||
args += setup_cuda(use_conda_cuda=our_args.use_conda_cuda)
|
||||
|
||||
init_path = source_root_dir + "/pytorch3d/__init__.py"
|
||||
build_version = runpy.run_path(init_path)["__version__"]
|
||||
|
||||
@@ -26,6 +26,6 @@ version_str="".join([
|
||||
torch.version.cuda.replace(".",""),
|
||||
f"_pyt{pyt_version_str}"
|
||||
])
|
||||
!pip install fvcore iopath
|
||||
!pip install iopath
|
||||
!pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html
|
||||
```
|
||||
|
||||
@@ -144,7 +144,7 @@ do
|
||||
conda activate "$tag"
|
||||
# shellcheck disable=SC2086
|
||||
conda install -y -c pytorch $extra_channel "pytorch=$pytorch_version" "$cudatools=$CUDA_TAG"
|
||||
pip install fvcore iopath
|
||||
pip install iopath
|
||||
echo "python version" "$python_version" "pytorch version" "$pytorch_version" "cuda version" "$cu_version" "tag" "$tag"
|
||||
|
||||
rm -rf dist
|
||||
|
||||
@@ -8,10 +8,13 @@ source:
|
||||
requirements:
|
||||
build:
|
||||
- {{ compiler('c') }} # [win]
|
||||
{{ environ.get('CONDA_CUDA_TOOLKIT_BUILD_CONSTRAINT1', '') }}
|
||||
{{ environ.get('CONDA_CUDA_TOOLKIT_BUILD_CONSTRAINT2', '') }}
|
||||
{{ environ.get('CONDA_CUB_CONSTRAINT') }}
|
||||
|
||||
host:
|
||||
- python
|
||||
- mkl =2023 # [x86_64]
|
||||
{{ environ.get('SETUPTOOLS_CONSTRAINT') }}
|
||||
{{ environ.get('CONDA_PYTORCH_BUILD_CONSTRAINT') }}
|
||||
{{ environ.get('CONDA_PYTORCH_MKL_CONSTRAINT') }}
|
||||
@@ -22,13 +25,14 @@ requirements:
|
||||
- python
|
||||
- numpy >=1.11
|
||||
- torchvision >=0.5
|
||||
- fvcore
|
||||
- mkl =2023 # [x86_64]
|
||||
- iopath
|
||||
{{ environ.get('CONDA_PYTORCH_CONSTRAINT') }}
|
||||
{{ environ.get('CONDA_CUDATOOLKIT_CONSTRAINT') }}
|
||||
|
||||
build:
|
||||
string: py{{py}}_{{ environ['CU_VERSION'] }}_pyt{{ environ['PYTORCH_VERSION_NODOT']}}
|
||||
# script: LD_LIBRARY_PATH=$PREFIX/lib:$BUILD_PREFIX/lib:$LD_LIBRARY_PATH python setup.py install --single-version-externally-managed --record=record.txt # [not win]
|
||||
script: python setup.py install --single-version-externally-managed --record=record.txt # [not win]
|
||||
script_env:
|
||||
- CUDA_HOME
|
||||
@@ -48,6 +52,10 @@ test:
|
||||
- imageio
|
||||
- hydra-core
|
||||
- accelerate
|
||||
- matplotlib
|
||||
- tabulate
|
||||
- pandas
|
||||
- sqlalchemy
|
||||
commands:
|
||||
#pytest .
|
||||
python -m unittest discover -v -s tests -t .
|
||||
|
||||
@@ -99,7 +99,7 @@ except ModuleNotFoundError:
|
||||
no_accelerate = os.environ.get("PYTORCH3D_NO_ACCELERATE") is not None
|
||||
|
||||
|
||||
class Experiment(Configurable): # pyre-ignore: 13
|
||||
class Experiment(Configurable):
|
||||
"""
|
||||
This class is at the top level of Implicitron's config hierarchy. Its
|
||||
members are high-level components necessary for training an implicit rende-
|
||||
@@ -120,12 +120,16 @@ class Experiment(Configurable): # pyre-ignore: 13
|
||||
will be saved here.
|
||||
"""
|
||||
|
||||
# pyre-fixme[13]: Attribute `data_source` is never initialized.
|
||||
data_source: DataSourceBase
|
||||
data_source_class_type: str = "ImplicitronDataSource"
|
||||
# pyre-fixme[13]: Attribute `model_factory` is never initialized.
|
||||
model_factory: ModelFactoryBase
|
||||
model_factory_class_type: str = "ImplicitronModelFactory"
|
||||
# pyre-fixme[13]: Attribute `optimizer_factory` is never initialized.
|
||||
optimizer_factory: OptimizerFactoryBase
|
||||
optimizer_factory_class_type: str = "ImplicitronOptimizerFactory"
|
||||
# pyre-fixme[13]: Attribute `training_loop` is never initialized.
|
||||
training_loop: TrainingLoopBase
|
||||
training_loop_class_type: str = "ImplicitronTrainingLoop"
|
||||
|
||||
|
||||
@@ -45,7 +45,7 @@ class ModelFactoryBase(ReplaceableBase):
|
||||
|
||||
|
||||
@registry.register
|
||||
class ImplicitronModelFactory(ModelFactoryBase): # pyre-ignore [13]
|
||||
class ImplicitronModelFactory(ModelFactoryBase):
|
||||
"""
|
||||
A factory class that initializes an implicit rendering model.
|
||||
|
||||
@@ -61,6 +61,7 @@ class ImplicitronModelFactory(ModelFactoryBase): # pyre-ignore [13]
|
||||
|
||||
"""
|
||||
|
||||
# pyre-fixme[13]: Attribute `model` is never initialized.
|
||||
model: ImplicitronModelBase
|
||||
model_class_type: str = "GenericModel"
|
||||
resume: bool = True
|
||||
|
||||
@@ -30,13 +30,13 @@ from .utils import seed_all_random_engines
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
# pyre-fixme[13]: Attribute `evaluator` is never initialized.
|
||||
class TrainingLoopBase(ReplaceableBase):
|
||||
"""
|
||||
Members:
|
||||
evaluator: An EvaluatorBase instance, used to evaluate training results.
|
||||
"""
|
||||
|
||||
# pyre-fixme[13]: Attribute `evaluator` is never initialized.
|
||||
evaluator: Optional[EvaluatorBase]
|
||||
evaluator_class_type: Optional[str] = "ImplicitronEvaluator"
|
||||
|
||||
|
||||
@@ -6,4 +6,4 @@
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
__version__ = "0.7.7"
|
||||
__version__ = "0.7.8"
|
||||
|
||||
@@ -99,6 +99,7 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def("marching_cubes", &MarchingCubes);
|
||||
|
||||
// Pulsar.
|
||||
// Pulsar not enabled on AMD.
|
||||
#ifdef PULSAR_LOGGING_ENABLED
|
||||
c10::ShowLogInfoToStderr();
|
||||
#endif
|
||||
|
||||
@@ -36,11 +36,13 @@
|
||||
#pragma nv_diag_suppress 2951
|
||||
#pragma nv_diag_suppress 2967
|
||||
#else
|
||||
#if !defined(USE_ROCM)
|
||||
#pragma diag_suppress = attribute_not_allowed
|
||||
#pragma diag_suppress = 1866
|
||||
#pragma diag_suppress = 2941
|
||||
#pragma diag_suppress = 2951
|
||||
#pragma diag_suppress = 2967
|
||||
#endif //! USE_ROCM
|
||||
#endif
|
||||
#else // __CUDACC__
|
||||
#define INLINE inline
|
||||
@@ -56,7 +58,9 @@
|
||||
#pragma clang diagnostic pop
|
||||
#ifdef WITH_CUDA
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#if !defined(USE_ROCM)
|
||||
#include <vector_functions.h>
|
||||
#endif //! USE_ROCM
|
||||
#else
|
||||
#ifndef cudaStream_t
|
||||
typedef void* cudaStream_t;
|
||||
|
||||
@@ -59,6 +59,11 @@ getLastCudaError(const char* errorMessage, const char* file, const int line) {
|
||||
#define SHARED __shared__
|
||||
#define ACTIVEMASK() __activemask()
|
||||
#define BALLOT(mask, val) __ballot_sync((mask), val)
|
||||
|
||||
/* TODO (ROCM-6.2): None of the WARP_* are used anywhere and ROCM-6.2 natively
|
||||
* supports __shfl_*. Disabling until the move to ROCM-6.2.
|
||||
*/
|
||||
#if !defined(USE_ROCM)
|
||||
/**
|
||||
* Find the cumulative sum within a warp up to the current
|
||||
* thread lane, with each mask thread contributing base.
|
||||
@@ -115,6 +120,7 @@ INLINE DEVICE float3 WARP_SUM_FLOAT3(
|
||||
ret.z = WARP_SUM(group, mask, base.z);
|
||||
return ret;
|
||||
}
|
||||
#endif //! USE_ROCM
|
||||
|
||||
// Floating point.
|
||||
// #define FMUL(a, b) __fmul_rn((a), (b))
|
||||
@@ -142,6 +148,7 @@ INLINE DEVICE float3 WARP_SUM_FLOAT3(
|
||||
#define FMA(x, y, z) __fmaf_rn((x), (y), (z))
|
||||
#define I2F(a) __int2float_rn(a)
|
||||
#define FRCP(x) __frcp_rn(x)
|
||||
#if !defined(USE_ROCM)
|
||||
__device__ static float atomicMax(float* address, float val) {
|
||||
int* address_as_i = (int*)address;
|
||||
int old = *address_as_i, assumed;
|
||||
@@ -166,6 +173,7 @@ __device__ static float atomicMin(float* address, float val) {
|
||||
} while (assumed != old);
|
||||
return __int_as_float(old);
|
||||
}
|
||||
#endif //! USE_ROCM
|
||||
#define DMAX(a, b) FMAX(a, b)
|
||||
#define DMIN(a, b) FMIN(a, b)
|
||||
#define DSQRT(a) sqrt(a)
|
||||
@@ -14,7 +14,7 @@
|
||||
#include "./commands.h"
|
||||
|
||||
namespace pulsar {
|
||||
IHD CamGradInfo::CamGradInfo() {
|
||||
IHD CamGradInfo::CamGradInfo(int x) {
|
||||
cam_pos = make_float3(0.f, 0.f, 0.f);
|
||||
pixel_0_0_center = make_float3(0.f, 0.f, 0.f);
|
||||
pixel_dir_x = make_float3(0.f, 0.f, 0.f);
|
||||
|
||||
@@ -63,7 +63,7 @@ inline bool operator==(const CamInfo& a, const CamInfo& b) {
|
||||
};
|
||||
|
||||
struct CamGradInfo {
|
||||
HOST DEVICE CamGradInfo();
|
||||
HOST DEVICE CamGradInfo(int = 0);
|
||||
float3 cam_pos;
|
||||
float3 pixel_0_0_center;
|
||||
float3 pixel_dir_x;
|
||||
|
||||
@@ -24,7 +24,7 @@
|
||||
// #pragma diag_suppress = 68
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
// #pragma pop
|
||||
#include "../cuda/commands.h"
|
||||
#include "../gpu/commands.h"
|
||||
#else
|
||||
#pragma clang diagnostic push
|
||||
#pragma clang diagnostic ignored "-Weverything"
|
||||
|
||||
@@ -46,6 +46,7 @@ IHD float3 outer_product_sum(const float3& a) {
|
||||
}
|
||||
|
||||
// TODO: put intrinsics here.
|
||||
#if !defined(USE_ROCM)
|
||||
IHD float3 operator+(const float3& a, const float3& b) {
|
||||
return make_float3(a.x + b.x, a.y + b.y, a.z + b.z);
|
||||
}
|
||||
@@ -93,6 +94,7 @@ IHD float3 operator*(const float3& a, const float3& b) {
|
||||
IHD float3 operator*(const float& a, const float3& b) {
|
||||
return b * a;
|
||||
}
|
||||
#endif //! USE_ROCM
|
||||
|
||||
INLINE DEVICE float length(const float3& v) {
|
||||
// TODO: benchmark what's faster.
|
||||
|
||||
@@ -283,9 +283,15 @@ GLOBAL void render(
|
||||
(percent_allowed_difference > 0.f &&
|
||||
max_closest_possible_intersection > depth_threshold) ||
|
||||
tracker.get_n_hits() >= max_n_hits;
|
||||
#if defined(__CUDACC__) && defined(__HIP_PLATFORM_AMD__)
|
||||
unsigned long long warp_done = __ballot(done);
|
||||
int warp_done_bit_cnt = __popcll(warp_done);
|
||||
#else
|
||||
uint warp_done = thread_warp.ballot(done);
|
||||
int warp_done_bit_cnt = POPC(warp_done);
|
||||
#endif //__CUDACC__ && __HIP_PLATFORM_AMD__
|
||||
if (thread_warp.thread_rank() == 0)
|
||||
ATOMICADD_B(&n_pixels_done, POPC(warp_done));
|
||||
ATOMICADD_B(&n_pixels_done, warp_done_bit_cnt);
|
||||
// This sync is necessary to keep n_loaded until all threads are done with
|
||||
// painting.
|
||||
thread_block.sync();
|
||||
|
||||
@@ -213,8 +213,8 @@ std::tuple<size_t, size_t, bool, torch::Tensor> Renderer::arg_check(
|
||||
const float& gamma,
|
||||
const float& max_depth,
|
||||
float& min_depth,
|
||||
const c10::optional<torch::Tensor>& bg_col,
|
||||
const c10::optional<torch::Tensor>& opacity,
|
||||
const std::optional<torch::Tensor>& bg_col,
|
||||
const std::optional<torch::Tensor>& opacity,
|
||||
const float& percent_allowed_difference,
|
||||
const uint& max_n_hits,
|
||||
const uint& mode) {
|
||||
@@ -668,8 +668,8 @@ std::tuple<torch::Tensor, torch::Tensor> Renderer::forward(
|
||||
const float& gamma,
|
||||
const float& max_depth,
|
||||
float min_depth,
|
||||
const c10::optional<torch::Tensor>& bg_col,
|
||||
const c10::optional<torch::Tensor>& opacity,
|
||||
const std::optional<torch::Tensor>& bg_col,
|
||||
const std::optional<torch::Tensor>& opacity,
|
||||
const float& percent_allowed_difference,
|
||||
const uint& max_n_hits,
|
||||
const uint& mode) {
|
||||
@@ -888,14 +888,14 @@ std::tuple<torch::Tensor, torch::Tensor> Renderer::forward(
|
||||
};
|
||||
|
||||
std::tuple<
|
||||
at::optional<torch::Tensor>,
|
||||
at::optional<torch::Tensor>,
|
||||
at::optional<torch::Tensor>,
|
||||
at::optional<torch::Tensor>,
|
||||
at::optional<torch::Tensor>,
|
||||
at::optional<torch::Tensor>,
|
||||
at::optional<torch::Tensor>,
|
||||
at::optional<torch::Tensor>>
|
||||
std::optional<torch::Tensor>,
|
||||
std::optional<torch::Tensor>,
|
||||
std::optional<torch::Tensor>,
|
||||
std::optional<torch::Tensor>,
|
||||
std::optional<torch::Tensor>,
|
||||
std::optional<torch::Tensor>,
|
||||
std::optional<torch::Tensor>,
|
||||
std::optional<torch::Tensor>>
|
||||
Renderer::backward(
|
||||
const torch::Tensor& grad_im,
|
||||
const torch::Tensor& image,
|
||||
@@ -912,8 +912,8 @@ Renderer::backward(
|
||||
const float& gamma,
|
||||
const float& max_depth,
|
||||
float min_depth,
|
||||
const c10::optional<torch::Tensor>& bg_col,
|
||||
const c10::optional<torch::Tensor>& opacity,
|
||||
const std::optional<torch::Tensor>& bg_col,
|
||||
const std::optional<torch::Tensor>& opacity,
|
||||
const float& percent_allowed_difference,
|
||||
const uint& max_n_hits,
|
||||
const uint& mode,
|
||||
@@ -922,7 +922,7 @@ Renderer::backward(
|
||||
const bool& dif_rad,
|
||||
const bool& dif_cam,
|
||||
const bool& dif_opy,
|
||||
const at::optional<std::pair<uint, uint>>& dbg_pos) {
|
||||
const std::optional<std::pair<uint, uint>>& dbg_pos) {
|
||||
this->ensure_on_device(this->device_tracker.device());
|
||||
size_t batch_size;
|
||||
size_t n_points;
|
||||
@@ -1045,14 +1045,14 @@ Renderer::backward(
|
||||
}
|
||||
// Prepare the return value.
|
||||
std::tuple<
|
||||
at::optional<torch::Tensor>,
|
||||
at::optional<torch::Tensor>,
|
||||
at::optional<torch::Tensor>,
|
||||
at::optional<torch::Tensor>,
|
||||
at::optional<torch::Tensor>,
|
||||
at::optional<torch::Tensor>,
|
||||
at::optional<torch::Tensor>,
|
||||
at::optional<torch::Tensor>>
|
||||
std::optional<torch::Tensor>,
|
||||
std::optional<torch::Tensor>,
|
||||
std::optional<torch::Tensor>,
|
||||
std::optional<torch::Tensor>,
|
||||
std::optional<torch::Tensor>,
|
||||
std::optional<torch::Tensor>,
|
||||
std::optional<torch::Tensor>,
|
||||
std::optional<torch::Tensor>>
|
||||
ret;
|
||||
if (mode == 1 || (!dif_pos && !dif_col && !dif_rad && !dif_cam && !dif_opy)) {
|
||||
return ret;
|
||||
|
||||
@@ -44,21 +44,21 @@ struct Renderer {
|
||||
const float& gamma,
|
||||
const float& max_depth,
|
||||
float min_depth,
|
||||
const c10::optional<torch::Tensor>& bg_col,
|
||||
const c10::optional<torch::Tensor>& opacity,
|
||||
const std::optional<torch::Tensor>& bg_col,
|
||||
const std::optional<torch::Tensor>& opacity,
|
||||
const float& percent_allowed_difference,
|
||||
const uint& max_n_hits,
|
||||
const uint& mode);
|
||||
|
||||
std::tuple<
|
||||
at::optional<torch::Tensor>,
|
||||
at::optional<torch::Tensor>,
|
||||
at::optional<torch::Tensor>,
|
||||
at::optional<torch::Tensor>,
|
||||
at::optional<torch::Tensor>,
|
||||
at::optional<torch::Tensor>,
|
||||
at::optional<torch::Tensor>,
|
||||
at::optional<torch::Tensor>>
|
||||
std::optional<torch::Tensor>,
|
||||
std::optional<torch::Tensor>,
|
||||
std::optional<torch::Tensor>,
|
||||
std::optional<torch::Tensor>,
|
||||
std::optional<torch::Tensor>,
|
||||
std::optional<torch::Tensor>,
|
||||
std::optional<torch::Tensor>,
|
||||
std::optional<torch::Tensor>>
|
||||
backward(
|
||||
const torch::Tensor& grad_im,
|
||||
const torch::Tensor& image,
|
||||
@@ -75,8 +75,8 @@ struct Renderer {
|
||||
const float& gamma,
|
||||
const float& max_depth,
|
||||
float min_depth,
|
||||
const c10::optional<torch::Tensor>& bg_col,
|
||||
const c10::optional<torch::Tensor>& opacity,
|
||||
const std::optional<torch::Tensor>& bg_col,
|
||||
const std::optional<torch::Tensor>& opacity,
|
||||
const float& percent_allowed_difference,
|
||||
const uint& max_n_hits,
|
||||
const uint& mode,
|
||||
@@ -85,7 +85,7 @@ struct Renderer {
|
||||
const bool& dif_rad,
|
||||
const bool& dif_cam,
|
||||
const bool& dif_opy,
|
||||
const at::optional<std::pair<uint, uint>>& dbg_pos);
|
||||
const std::optional<std::pair<uint, uint>>& dbg_pos);
|
||||
|
||||
// Infrastructure.
|
||||
/**
|
||||
@@ -115,8 +115,8 @@ struct Renderer {
|
||||
const float& gamma,
|
||||
const float& max_depth,
|
||||
float& min_depth,
|
||||
const c10::optional<torch::Tensor>& bg_col,
|
||||
const c10::optional<torch::Tensor>& opacity,
|
||||
const std::optional<torch::Tensor>& bg_col,
|
||||
const std::optional<torch::Tensor>& opacity,
|
||||
const float& percent_allowed_difference,
|
||||
const uint& max_n_hits,
|
||||
const uint& mode);
|
||||
|
||||
@@ -144,7 +144,7 @@ __device__ void CheckPixelInsideFace(
|
||||
const bool zero_face_area =
|
||||
(face_area <= kEpsilon && face_area >= -1.0f * kEpsilon);
|
||||
|
||||
if (zmax < 0 || cull_backfaces && back_face || outside_bbox ||
|
||||
if (zmax < 0 || (cull_backfaces && back_face) || outside_bbox ||
|
||||
zero_face_area) {
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -18,6 +18,8 @@ const auto vEpsilon = 1e-8;
|
||||
|
||||
// Common functions and operators for float2.
|
||||
|
||||
// Complex arithmetic is already defined for AMD.
|
||||
#if !defined(USE_ROCM)
|
||||
__device__ inline float2 operator-(const float2& a, const float2& b) {
|
||||
return make_float2(a.x - b.x, a.y - b.y);
|
||||
}
|
||||
@@ -41,6 +43,7 @@ __device__ inline float2 operator*(const float2& a, const float2& b) {
|
||||
__device__ inline float2 operator*(const float a, const float2& b) {
|
||||
return make_float2(a * b.x, a * b.y);
|
||||
}
|
||||
#endif
|
||||
|
||||
__device__ inline float FloatMin3(const float a, const float b, const float c) {
|
||||
return fminf(a, fminf(b, c));
|
||||
|
||||
@@ -23,37 +23,51 @@ WarpReduceMin(scalar_t* min_dists, int64_t* min_idxs, const size_t tid) {
|
||||
min_idxs[tid] = min_idxs[tid + 32];
|
||||
min_dists[tid] = min_dists[tid + 32];
|
||||
}
|
||||
// AMD does not use explicit syncwarp and instead automatically inserts memory
|
||||
// fences during compilation.
|
||||
#if !defined(USE_ROCM)
|
||||
__syncwarp();
|
||||
#endif
|
||||
// s = 16
|
||||
if (min_dists[tid] > min_dists[tid + 16]) {
|
||||
min_idxs[tid] = min_idxs[tid + 16];
|
||||
min_dists[tid] = min_dists[tid + 16];
|
||||
}
|
||||
#if !defined(USE_ROCM)
|
||||
__syncwarp();
|
||||
#endif
|
||||
// s = 8
|
||||
if (min_dists[tid] > min_dists[tid + 8]) {
|
||||
min_idxs[tid] = min_idxs[tid + 8];
|
||||
min_dists[tid] = min_dists[tid + 8];
|
||||
}
|
||||
#if !defined(USE_ROCM)
|
||||
__syncwarp();
|
||||
#endif
|
||||
// s = 4
|
||||
if (min_dists[tid] > min_dists[tid + 4]) {
|
||||
min_idxs[tid] = min_idxs[tid + 4];
|
||||
min_dists[tid] = min_dists[tid + 4];
|
||||
}
|
||||
#if !defined(USE_ROCM)
|
||||
__syncwarp();
|
||||
#endif
|
||||
// s = 2
|
||||
if (min_dists[tid] > min_dists[tid + 2]) {
|
||||
min_idxs[tid] = min_idxs[tid + 2];
|
||||
min_dists[tid] = min_dists[tid + 2];
|
||||
}
|
||||
#if !defined(USE_ROCM)
|
||||
__syncwarp();
|
||||
#endif
|
||||
// s = 1
|
||||
if (min_dists[tid] > min_dists[tid + 1]) {
|
||||
min_idxs[tid] = min_idxs[tid + 1];
|
||||
min_dists[tid] = min_dists[tid + 1];
|
||||
}
|
||||
#if !defined(USE_ROCM)
|
||||
__syncwarp();
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
@@ -65,30 +79,42 @@ __device__ void WarpReduceMax(
|
||||
dists[tid] = dists[tid + 32];
|
||||
dists_idx[tid] = dists_idx[tid + 32];
|
||||
}
|
||||
#if !defined(USE_ROCM)
|
||||
__syncwarp();
|
||||
#endif
|
||||
if (dists[tid] < dists[tid + 16]) {
|
||||
dists[tid] = dists[tid + 16];
|
||||
dists_idx[tid] = dists_idx[tid + 16];
|
||||
}
|
||||
#if !defined(USE_ROCM)
|
||||
__syncwarp();
|
||||
#endif
|
||||
if (dists[tid] < dists[tid + 8]) {
|
||||
dists[tid] = dists[tid + 8];
|
||||
dists_idx[tid] = dists_idx[tid + 8];
|
||||
}
|
||||
#if !defined(USE_ROCM)
|
||||
__syncwarp();
|
||||
#endif
|
||||
if (dists[tid] < dists[tid + 4]) {
|
||||
dists[tid] = dists[tid + 4];
|
||||
dists_idx[tid] = dists_idx[tid + 4];
|
||||
}
|
||||
#if !defined(USE_ROCM)
|
||||
__syncwarp();
|
||||
#endif
|
||||
if (dists[tid] < dists[tid + 2]) {
|
||||
dists[tid] = dists[tid + 2];
|
||||
dists_idx[tid] = dists_idx[tid + 2];
|
||||
}
|
||||
#if !defined(USE_ROCM)
|
||||
__syncwarp();
|
||||
#endif
|
||||
if (dists[tid] < dists[tid + 1]) {
|
||||
dists[tid] = dists[tid + 1];
|
||||
dists_idx[tid] = dists_idx[tid + 1];
|
||||
}
|
||||
#if !defined(USE_ROCM)
|
||||
__syncwarp();
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -41,7 +41,7 @@ class DataSourceBase(ReplaceableBase):
|
||||
|
||||
|
||||
@registry.register
|
||||
class ImplicitronDataSource(DataSourceBase): # pyre-ignore[13]
|
||||
class ImplicitronDataSource(DataSourceBase):
|
||||
"""
|
||||
Represents the data used in Implicitron. This is the only implementation
|
||||
of DataSourceBase provided.
|
||||
@@ -52,8 +52,11 @@ class ImplicitronDataSource(DataSourceBase): # pyre-ignore[13]
|
||||
data_loader_map_provider_class_type: identifies type for data_loader_map_provider.
|
||||
"""
|
||||
|
||||
# pyre-fixme[13]: Attribute `dataset_map_provider` is never initialized.
|
||||
dataset_map_provider: DatasetMapProviderBase
|
||||
# pyre-fixme[13]: Attribute `dataset_map_provider_class_type` is never initialized.
|
||||
dataset_map_provider_class_type: str
|
||||
# pyre-fixme[13]: Attribute `data_loader_map_provider` is never initialized.
|
||||
data_loader_map_provider: DataLoaderMapProviderBase
|
||||
data_loader_map_provider_class_type: str = "SequenceDataLoaderMapProvider"
|
||||
|
||||
|
||||
@@ -276,6 +276,7 @@ class FrameData(Mapping[str, Any]):
|
||||
image_size_hw=tuple(self.effective_image_size_hw), # pyre-ignore
|
||||
)
|
||||
crop_bbox_xywh = bbox_xyxy_to_xywh(clamp_bbox_xyxy)
|
||||
self.crop_bbox_xywh = crop_bbox_xywh
|
||||
|
||||
if self.fg_probability is not None:
|
||||
self.fg_probability = crop_around_box(
|
||||
|
||||
@@ -66,7 +66,7 @@ _NEED_CONTROL: Tuple[str, ...] = (
|
||||
|
||||
|
||||
@registry.register
|
||||
class JsonIndexDatasetMapProvider(DatasetMapProviderBase): # pyre-ignore [13]
|
||||
class JsonIndexDatasetMapProvider(DatasetMapProviderBase):
|
||||
"""
|
||||
Generates the training / validation and testing dataset objects for
|
||||
a dataset laid out on disk like Co3D, with annotations in json files.
|
||||
@@ -95,6 +95,7 @@ class JsonIndexDatasetMapProvider(DatasetMapProviderBase): # pyre-ignore [13]
|
||||
path_manager_factory_class_type: The class type of `path_manager_factory`.
|
||||
"""
|
||||
|
||||
# pyre-fixme[13]: Attribute `category` is never initialized.
|
||||
category: str
|
||||
task_str: str = "singlesequence"
|
||||
dataset_root: str = _CO3D_DATASET_ROOT
|
||||
@@ -104,8 +105,10 @@ class JsonIndexDatasetMapProvider(DatasetMapProviderBase): # pyre-ignore [13]
|
||||
test_restrict_sequence_id: int = -1
|
||||
assert_single_seq: bool = False
|
||||
only_test_set: bool = False
|
||||
# pyre-fixme[13]: Attribute `dataset` is never initialized.
|
||||
dataset: JsonIndexDataset
|
||||
dataset_class_type: str = "JsonIndexDataset"
|
||||
# pyre-fixme[13]: Attribute `path_manager_factory` is never initialized.
|
||||
path_manager_factory: PathManagerFactory
|
||||
path_manager_factory_class_type: str = "PathManagerFactory"
|
||||
|
||||
|
||||
@@ -56,7 +56,7 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@registry.register
|
||||
class JsonIndexDatasetMapProviderV2(DatasetMapProviderBase): # pyre-ignore [13]
|
||||
class JsonIndexDatasetMapProviderV2(DatasetMapProviderBase):
|
||||
"""
|
||||
Generates the training, validation, and testing dataset objects for
|
||||
a dataset laid out on disk like CO3Dv2, with annotations in gzipped json files.
|
||||
@@ -171,7 +171,9 @@ class JsonIndexDatasetMapProviderV2(DatasetMapProviderBase): # pyre-ignore [13]
|
||||
path_manager_factory_class_type: The class type of `path_manager_factory`.
|
||||
"""
|
||||
|
||||
# pyre-fixme[13]: Attribute `category` is never initialized.
|
||||
category: str
|
||||
# pyre-fixme[13]: Attribute `subset_name` is never initialized.
|
||||
subset_name: str
|
||||
dataset_root: str = _CO3DV2_DATASET_ROOT
|
||||
|
||||
@@ -183,8 +185,10 @@ class JsonIndexDatasetMapProviderV2(DatasetMapProviderBase): # pyre-ignore [13]
|
||||
n_known_frames_for_test: int = 0
|
||||
|
||||
dataset_class_type: str = "JsonIndexDataset"
|
||||
# pyre-fixme[13]: Attribute `dataset` is never initialized.
|
||||
dataset: JsonIndexDataset
|
||||
|
||||
# pyre-fixme[13]: Attribute `path_manager_factory` is never initialized.
|
||||
path_manager_factory: PathManagerFactory
|
||||
path_manager_factory_class_type: str = "PathManagerFactory"
|
||||
|
||||
|
||||
@@ -32,7 +32,7 @@ from .utils import DATASET_TYPE_KNOWN
|
||||
|
||||
|
||||
@registry.register
|
||||
class RenderedMeshDatasetMapProvider(DatasetMapProviderBase): # pyre-ignore [13]
|
||||
class RenderedMeshDatasetMapProvider(DatasetMapProviderBase):
|
||||
"""
|
||||
A simple single-scene dataset based on PyTorch3D renders of a mesh.
|
||||
Provides `num_views` renders of the mesh as train, with no val
|
||||
@@ -76,6 +76,7 @@ class RenderedMeshDatasetMapProvider(DatasetMapProviderBase): # pyre-ignore [13
|
||||
resolution: int = 128
|
||||
use_point_light: bool = True
|
||||
gpu_idx: Optional[int] = 0
|
||||
# pyre-fixme[13]: Attribute `path_manager_factory` is never initialized.
|
||||
path_manager_factory: PathManagerFactory
|
||||
path_manager_factory_class_type: str = "PathManagerFactory"
|
||||
|
||||
|
||||
@@ -83,7 +83,6 @@ class SingleSceneDataset(DatasetBase, Configurable):
|
||||
return self.eval_batches
|
||||
|
||||
|
||||
# pyre-fixme[13]: Uninitialized attribute
|
||||
class SingleSceneDatasetMapProviderBase(DatasetMapProviderBase):
|
||||
"""
|
||||
Base for provider of data for one scene from LLFF or blender datasets.
|
||||
@@ -100,8 +99,11 @@ class SingleSceneDatasetMapProviderBase(DatasetMapProviderBase):
|
||||
testing frame.
|
||||
"""
|
||||
|
||||
# pyre-fixme[13]: Attribute `base_dir` is never initialized.
|
||||
base_dir: str
|
||||
# pyre-fixme[13]: Attribute `object_name` is never initialized.
|
||||
object_name: str
|
||||
# pyre-fixme[13]: Attribute `path_manager_factory` is never initialized.
|
||||
path_manager_factory: PathManagerFactory
|
||||
path_manager_factory_class_type: str = "PathManagerFactory"
|
||||
n_known_frames_for_test: Optional[int] = None
|
||||
|
||||
@@ -348,6 +348,7 @@ def adjust_camera_to_image_scale_(
|
||||
camera: PerspectiveCameras,
|
||||
original_size_wh: torch.Tensor,
|
||||
new_size_wh: torch.LongTensor,
|
||||
# pyre-fixme[7]: Expected `PerspectiveCameras` but got implicit return value of `None`.
|
||||
) -> PerspectiveCameras:
|
||||
focal_length_px, principal_point_px = _convert_ndc_to_pixels(
|
||||
camera.focal_length[0],
|
||||
@@ -367,7 +368,7 @@ def adjust_camera_to_image_scale_(
|
||||
image_size_wh_output,
|
||||
)
|
||||
camera.focal_length = focal_length_scaled[None]
|
||||
camera.principal_point = principal_point_scaled[None] # pyre-ignore
|
||||
camera.principal_point = principal_point_scaled[None]
|
||||
|
||||
|
||||
# NOTE this cache is per-worker; they are implemented as processes.
|
||||
|
||||
@@ -65,7 +65,7 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@registry.register
|
||||
class GenericModel(ImplicitronModelBase): # pyre-ignore: 13
|
||||
class GenericModel(ImplicitronModelBase):
|
||||
"""
|
||||
GenericModel is a wrapper for the neural implicit
|
||||
rendering and reconstruction pipeline which consists
|
||||
@@ -226,34 +226,42 @@ class GenericModel(ImplicitronModelBase): # pyre-ignore: 13
|
||||
|
||||
# ---- global encoder settings
|
||||
global_encoder_class_type: Optional[str] = None
|
||||
# pyre-fixme[13]: Attribute `global_encoder` is never initialized.
|
||||
global_encoder: Optional[GlobalEncoderBase]
|
||||
|
||||
# ---- raysampler
|
||||
raysampler_class_type: str = "AdaptiveRaySampler"
|
||||
# pyre-fixme[13]: Attribute `raysampler` is never initialized.
|
||||
raysampler: RaySamplerBase
|
||||
|
||||
# ---- renderer configs
|
||||
renderer_class_type: str = "MultiPassEmissionAbsorptionRenderer"
|
||||
# pyre-fixme[13]: Attribute `renderer` is never initialized.
|
||||
renderer: BaseRenderer
|
||||
|
||||
# ---- image feature extractor settings
|
||||
# (This is only created if view_pooler is enabled)
|
||||
# pyre-fixme[13]: Attribute `image_feature_extractor` is never initialized.
|
||||
image_feature_extractor: Optional[FeatureExtractorBase]
|
||||
image_feature_extractor_class_type: Optional[str] = None
|
||||
# ---- view pooler settings
|
||||
view_pooler_enabled: bool = False
|
||||
# pyre-fixme[13]: Attribute `view_pooler` is never initialized.
|
||||
view_pooler: Optional[ViewPooler]
|
||||
|
||||
# ---- implicit function settings
|
||||
implicit_function_class_type: str = "NeuralRadianceFieldImplicitFunction"
|
||||
# This is just a model, never constructed.
|
||||
# The actual implicit functions live in self._implicit_functions
|
||||
# pyre-fixme[13]: Attribute `implicit_function` is never initialized.
|
||||
implicit_function: ImplicitFunctionBase
|
||||
|
||||
# ----- metrics
|
||||
# pyre-fixme[13]: Attribute `view_metrics` is never initialized.
|
||||
view_metrics: ViewMetricsBase
|
||||
view_metrics_class_type: str = "ViewMetrics"
|
||||
|
||||
# pyre-fixme[13]: Attribute `regularization_metrics` is never initialized.
|
||||
regularization_metrics: RegularizationMetricsBase
|
||||
regularization_metrics_class_type: str = "RegularizationMetrics"
|
||||
|
||||
|
||||
@@ -59,12 +59,13 @@ class GlobalEncoderBase(ReplaceableBase):
|
||||
|
||||
# TODO: probabilistic embeddings?
|
||||
@registry.register
|
||||
class SequenceAutodecoder(GlobalEncoderBase, torch.nn.Module): # pyre-ignore: 13
|
||||
class SequenceAutodecoder(GlobalEncoderBase, torch.nn.Module):
|
||||
"""
|
||||
A global encoder implementation which provides an autodecoder encoding
|
||||
of the frame's sequence identifier.
|
||||
"""
|
||||
|
||||
# pyre-fixme[13]: Attribute `autodecoder` is never initialized.
|
||||
autodecoder: Autodecoder
|
||||
|
||||
def __post_init__(self):
|
||||
|
||||
@@ -244,7 +244,6 @@ class MLPWithInputSkips(Configurable, torch.nn.Module):
|
||||
|
||||
|
||||
@registry.register
|
||||
# pyre-fixme[13]: Attribute `network` is never initialized.
|
||||
class MLPDecoder(DecoderFunctionBase):
|
||||
"""
|
||||
Decoding function which uses `MLPWithIputSkips` to convert the embedding to output.
|
||||
@@ -272,6 +271,7 @@ class MLPDecoder(DecoderFunctionBase):
|
||||
|
||||
input_dim: int = 3
|
||||
param_groups: Dict[str, str] = field(default_factory=lambda: {})
|
||||
# pyre-fixme[13]: Attribute `network` is never initialized.
|
||||
network: MLPWithInputSkips
|
||||
|
||||
def __post_init__(self):
|
||||
|
||||
@@ -318,10 +318,11 @@ class SRNRaymarchHyperNet(Configurable, torch.nn.Module):
|
||||
|
||||
|
||||
@registry.register
|
||||
# pyre-fixme[13]: Uninitialized attribute
|
||||
class SRNImplicitFunction(ImplicitFunctionBase, torch.nn.Module):
|
||||
latent_dim: int = 0
|
||||
# pyre-fixme[13]: Attribute `raymarch_function` is never initialized.
|
||||
raymarch_function: SRNRaymarchFunction
|
||||
# pyre-fixme[13]: Attribute `pixel_generator` is never initialized.
|
||||
pixel_generator: SRNPixelGenerator
|
||||
|
||||
def __post_init__(self):
|
||||
@@ -366,7 +367,6 @@ class SRNImplicitFunction(ImplicitFunctionBase, torch.nn.Module):
|
||||
|
||||
|
||||
@registry.register
|
||||
# pyre-fixme[13]: Uninitialized attribute
|
||||
class SRNHyperNetImplicitFunction(ImplicitFunctionBase, torch.nn.Module):
|
||||
"""
|
||||
This implicit function uses a hypernetwork to generate the
|
||||
@@ -377,7 +377,9 @@ class SRNHyperNetImplicitFunction(ImplicitFunctionBase, torch.nn.Module):
|
||||
|
||||
latent_dim_hypernet: int = 0
|
||||
latent_dim: int = 0
|
||||
# pyre-fixme[13]: Attribute `hypernet` is never initialized.
|
||||
hypernet: SRNRaymarchHyperNet
|
||||
# pyre-fixme[13]: Attribute `pixel_generator` is never initialized.
|
||||
pixel_generator: SRNPixelGenerator
|
||||
|
||||
def __post_init__(self):
|
||||
|
||||
@@ -805,7 +805,6 @@ class VMFactorizedVoxelGrid(VoxelGridBase):
|
||||
)
|
||||
|
||||
|
||||
# pyre-fixme[13]: Attribute `voxel_grid` is never initialized.
|
||||
class VoxelGridModule(Configurable, torch.nn.Module):
|
||||
"""
|
||||
A wrapper torch.nn.Module for the VoxelGrid classes, which
|
||||
@@ -845,6 +844,7 @@ class VoxelGridModule(Configurable, torch.nn.Module):
|
||||
"""
|
||||
|
||||
voxel_grid_class_type: str = "FullResolutionVoxelGrid"
|
||||
# pyre-fixme[13]: Attribute `voxel_grid` is never initialized.
|
||||
voxel_grid: VoxelGridBase
|
||||
|
||||
extents: Tuple[float, float, float] = (2.0, 2.0, 2.0)
|
||||
|
||||
@@ -39,7 +39,6 @@ enable_get_default_args(HarmonicEmbedding)
|
||||
|
||||
|
||||
@registry.register
|
||||
# pyre-ignore[13]
|
||||
class VoxelGridImplicitFunction(ImplicitFunctionBase, torch.nn.Module):
|
||||
"""
|
||||
This implicit function consists of two streams, one for the density calculation and one
|
||||
@@ -145,9 +144,11 @@ class VoxelGridImplicitFunction(ImplicitFunctionBase, torch.nn.Module):
|
||||
"""
|
||||
|
||||
# ---- voxel grid for density
|
||||
# pyre-fixme[13]: Attribute `voxel_grid_density` is never initialized.
|
||||
voxel_grid_density: VoxelGridModule
|
||||
|
||||
# ---- voxel grid for color
|
||||
# pyre-fixme[13]: Attribute `voxel_grid_color` is never initialized.
|
||||
voxel_grid_color: VoxelGridModule
|
||||
|
||||
# ---- harmonic embeddings density
|
||||
@@ -163,10 +164,12 @@ class VoxelGridImplicitFunction(ImplicitFunctionBase, torch.nn.Module):
|
||||
|
||||
# ---- decoder function for density
|
||||
decoder_density_class_type: str = "MLPDecoder"
|
||||
# pyre-fixme[13]: Attribute `decoder_density` is never initialized.
|
||||
decoder_density: DecoderFunctionBase
|
||||
|
||||
# ---- decoder function for color
|
||||
decoder_color_class_type: str = "MLPDecoder"
|
||||
# pyre-fixme[13]: Attribute `decoder_color` is never initialized.
|
||||
decoder_color: DecoderFunctionBase
|
||||
|
||||
# ---- cuda streams
|
||||
|
||||
@@ -69,7 +69,7 @@ IMPLICIT_FUNCTION_ARGS_TO_REMOVE: List[str] = [
|
||||
|
||||
|
||||
@registry.register
|
||||
class OverfitModel(ImplicitronModelBase): # pyre-ignore: 13
|
||||
class OverfitModel(ImplicitronModelBase):
|
||||
"""
|
||||
OverfitModel is a wrapper for the neural implicit
|
||||
rendering and reconstruction pipeline which consists
|
||||
@@ -198,27 +198,34 @@ class OverfitModel(ImplicitronModelBase): # pyre-ignore: 13
|
||||
|
||||
# ---- global encoder settings
|
||||
global_encoder_class_type: Optional[str] = None
|
||||
# pyre-fixme[13]: Attribute `global_encoder` is never initialized.
|
||||
global_encoder: Optional[GlobalEncoderBase]
|
||||
|
||||
# ---- raysampler
|
||||
raysampler_class_type: str = "AdaptiveRaySampler"
|
||||
# pyre-fixme[13]: Attribute `raysampler` is never initialized.
|
||||
raysampler: RaySamplerBase
|
||||
|
||||
# ---- renderer configs
|
||||
renderer_class_type: str = "MultiPassEmissionAbsorptionRenderer"
|
||||
# pyre-fixme[13]: Attribute `renderer` is never initialized.
|
||||
renderer: BaseRenderer
|
||||
|
||||
# ---- implicit function settings
|
||||
share_implicit_function_across_passes: bool = False
|
||||
implicit_function_class_type: str = "NeuralRadianceFieldImplicitFunction"
|
||||
# pyre-fixme[13]: Attribute `implicit_function` is never initialized.
|
||||
implicit_function: ImplicitFunctionBase
|
||||
coarse_implicit_function_class_type: Optional[str] = None
|
||||
# pyre-fixme[13]: Attribute `coarse_implicit_function` is never initialized.
|
||||
coarse_implicit_function: Optional[ImplicitFunctionBase]
|
||||
|
||||
# ----- metrics
|
||||
# pyre-fixme[13]: Attribute `view_metrics` is never initialized.
|
||||
view_metrics: ViewMetricsBase
|
||||
view_metrics_class_type: str = "ViewMetrics"
|
||||
|
||||
# pyre-fixme[13]: Attribute `regularization_metrics` is never initialized.
|
||||
regularization_metrics: RegularizationMetricsBase
|
||||
regularization_metrics_class_type: str = "RegularizationMetrics"
|
||||
|
||||
|
||||
@@ -18,9 +18,7 @@ from .raymarcher import RaymarcherBase
|
||||
|
||||
|
||||
@registry.register
|
||||
class MultiPassEmissionAbsorptionRenderer( # pyre-ignore: 13
|
||||
BaseRenderer, torch.nn.Module
|
||||
):
|
||||
class MultiPassEmissionAbsorptionRenderer(BaseRenderer, torch.nn.Module):
|
||||
"""
|
||||
Implements the multi-pass rendering function, in particular,
|
||||
with emission-absorption ray marching used in NeRF [1]. First, it evaluates
|
||||
@@ -86,6 +84,7 @@ class MultiPassEmissionAbsorptionRenderer( # pyre-ignore: 13
|
||||
"""
|
||||
|
||||
raymarcher_class_type: str = "EmissionAbsorptionRaymarcher"
|
||||
# pyre-fixme[13]: Attribute `raymarcher` is never initialized.
|
||||
raymarcher: RaymarcherBase
|
||||
|
||||
n_pts_per_ray_fine_training: int = 64
|
||||
|
||||
@@ -16,8 +16,6 @@ from pytorch3d.renderer.implicit.sample_pdf import sample_pdf
|
||||
|
||||
|
||||
@expand_args_fields
|
||||
# pyre-fixme[13]: Attribute `n_pts_per_ray` is never initialized.
|
||||
# pyre-fixme[13]: Attribute `random_sampling` is never initialized.
|
||||
class RayPointRefiner(Configurable, torch.nn.Module):
|
||||
"""
|
||||
Implements the importance sampling of points along rays.
|
||||
@@ -45,7 +43,9 @@ class RayPointRefiner(Configurable, torch.nn.Module):
|
||||
for Anti-Aliasing Neural Radiance Fields." ICCV 2021.
|
||||
"""
|
||||
|
||||
# pyre-fixme[13]: Attribute `n_pts_per_ray` is never initialized.
|
||||
n_pts_per_ray: int
|
||||
# pyre-fixme[13]: Attribute `random_sampling` is never initialized.
|
||||
random_sampling: bool
|
||||
add_input_samples: bool = True
|
||||
blurpool_weights: bool = False
|
||||
|
||||
@@ -24,9 +24,10 @@ from .rgb_net import RayNormalColoringNetwork
|
||||
|
||||
|
||||
@registry.register
|
||||
class SignedDistanceFunctionRenderer(BaseRenderer, torch.nn.Module): # pyre-ignore[13]
|
||||
class SignedDistanceFunctionRenderer(BaseRenderer, torch.nn.Module):
|
||||
render_features_dimensions: int = 3
|
||||
object_bounding_sphere: float = 1.0
|
||||
# pyre-fixme[13]: Attribute `ray_tracer` is never initialized.
|
||||
ray_tracer: RayTracing
|
||||
ray_normal_coloring_network_args: DictConfig = get_default_args_field(
|
||||
RayNormalColoringNetwork
|
||||
|
||||
@@ -121,7 +121,6 @@ def weighted_sum_losses(
|
||||
return None
|
||||
loss = sum(losses_weighted)
|
||||
assert torch.is_tensor(loss)
|
||||
# pyre-fixme[7]: Expected `Optional[Tensor]` but got `int`.
|
||||
return loss
|
||||
|
||||
|
||||
|
||||
@@ -16,7 +16,6 @@ from .feature_aggregator import FeatureAggregatorBase
|
||||
from .view_sampler import ViewSampler
|
||||
|
||||
|
||||
# pyre-ignore: 13
|
||||
class ViewPooler(Configurable, torch.nn.Module):
|
||||
"""
|
||||
Implements sampling of image-based features at the 2d projections of a set
|
||||
@@ -35,8 +34,10 @@ class ViewPooler(Configurable, torch.nn.Module):
|
||||
from a set of source images. FeatureAggregator executes step (4) above.
|
||||
"""
|
||||
|
||||
# pyre-fixme[13]: Attribute `view_sampler` is never initialized.
|
||||
view_sampler: ViewSampler
|
||||
feature_aggregator_class_type: str = "AngleWeightedReductionFeatureAggregator"
|
||||
# pyre-fixme[13]: Attribute `feature_aggregator` is never initialized.
|
||||
feature_aggregator: FeatureAggregatorBase
|
||||
|
||||
def __post_init__(self):
|
||||
|
||||
@@ -156,7 +156,6 @@ def render_point_cloud_pytorch3d(
|
||||
cumprod = torch.cat((torch.ones_like(cumprod[..., :1]), cumprod[..., :-1]), dim=-1)
|
||||
depths = (weights * cumprod * fragments.zbuf).sum(dim=-1)
|
||||
# add the rendering mask
|
||||
# pyre-fixme[6]: For 1st param expected `Tensor` but got `float`.
|
||||
render_mask = -torch.prod(1.0 - weights, dim=-1) + 1.0
|
||||
|
||||
# cat depths and render mask
|
||||
|
||||
@@ -163,6 +163,9 @@ def _read_chunks(
|
||||
if binary_data is not None:
|
||||
binary_data = np.frombuffer(binary_data, dtype=np.uint8)
|
||||
|
||||
# pyre-fixme[7]: Expected `Optional[Tuple[Dict[str, typing.Any],
|
||||
# ndarray[typing.Any, typing.Any]]]` but got `Tuple[typing.Any,
|
||||
# Optional[ndarray[typing.Any, dtype[typing.Any]]]]`.
|
||||
return json_data, binary_data
|
||||
|
||||
|
||||
|
||||
@@ -409,6 +409,7 @@ def _parse_mtl(
|
||||
texture_files = {}
|
||||
material_name = ""
|
||||
|
||||
# pyre-fixme[9]: f has type `str`; used as `IO[typing.Any]`.
|
||||
with _open_file(f, path_manager, "r") as f:
|
||||
for line in f:
|
||||
tokens = line.strip().split()
|
||||
|
||||
@@ -649,8 +649,7 @@ def _load_obj(
|
||||
# Create an array of strings of material names for each face.
|
||||
# If faces_materials_idx == -1 then that face doesn't have a material.
|
||||
idx = faces_materials_idx.cpu().numpy()
|
||||
face_material_names = np.array(material_names)[idx] # (F,)
|
||||
face_material_names[idx == -1] = ""
|
||||
face_material_names = np.array([""] + material_names)[idx + 1] # (F,)
|
||||
|
||||
# Construct the atlas.
|
||||
texture_atlas = make_mesh_texture_atlas(
|
||||
@@ -756,10 +755,13 @@ def save_obj(
|
||||
output_path = Path(f)
|
||||
|
||||
# Save the .obj file
|
||||
# pyre-fixme[9]: f has type `Union[Path, str]`; used as `IO[typing.Any]`.
|
||||
with _open_file(f, path_manager, "w") as f:
|
||||
if save_texture:
|
||||
# Add the header required for the texture info to be loaded correctly
|
||||
obj_header = "\nmtllib {0}.mtl\nusemtl mesh\n\n".format(output_path.stem)
|
||||
# pyre-fixme[16]: Item `Path` of `Union[Path, str]` has no attribute
|
||||
# `write`.
|
||||
f.write(obj_header)
|
||||
_save(
|
||||
f,
|
||||
|
||||
@@ -1250,6 +1250,9 @@ def _save_ply(
|
||||
if verts_normals is not None:
|
||||
verts_dtype.append(("normals", np.float32, 3))
|
||||
if verts_colors is not None:
|
||||
# pyre-fixme[6]: For 1st argument expected `Tuple[str,
|
||||
# Type[floating[_32Bit]], int]` but got `Tuple[str,
|
||||
# Type[Union[floating[_32Bit], unsignedinteger[typing.Any]]], int]`.
|
||||
verts_dtype.append(("colors", color_np_type, 3))
|
||||
|
||||
vert_data = np.zeros(verts.shape[0], dtype=verts_dtype)
|
||||
|
||||
@@ -27,8 +27,10 @@ def _validate_chamfer_reduction_inputs(
|
||||
"""
|
||||
if batch_reduction is not None and batch_reduction not in ["mean", "sum"]:
|
||||
raise ValueError('batch_reduction must be one of ["mean", "sum"] or None')
|
||||
if point_reduction is not None and point_reduction not in ["mean", "sum"]:
|
||||
raise ValueError('point_reduction must be one of ["mean", "sum"] or None')
|
||||
if point_reduction is not None and point_reduction not in ["mean", "sum", "max"]:
|
||||
raise ValueError(
|
||||
'point_reduction must be one of ["mean", "sum", "max"] or None'
|
||||
)
|
||||
if point_reduction is None and batch_reduction is not None:
|
||||
raise ValueError("Batch reduction must be None if point_reduction is None")
|
||||
|
||||
@@ -80,7 +82,6 @@ def _chamfer_distance_single_direction(
|
||||
x_normals,
|
||||
y_normals,
|
||||
weights,
|
||||
batch_reduction: Union[str, None],
|
||||
point_reduction: Union[str, None],
|
||||
norm: int,
|
||||
abs_cosine: bool,
|
||||
@@ -103,11 +104,6 @@ def _chamfer_distance_single_direction(
|
||||
raise ValueError("weights cannot be negative.")
|
||||
if weights.sum() == 0.0:
|
||||
weights = weights.view(N, 1)
|
||||
if batch_reduction in ["mean", "sum"]:
|
||||
return (
|
||||
(x.sum((1, 2)) * weights).sum() * 0.0,
|
||||
(x.sum((1, 2)) * weights).sum() * 0.0,
|
||||
)
|
||||
return ((x.sum((1, 2)) * weights) * 0.0, (x.sum((1, 2)) * weights) * 0.0)
|
||||
|
||||
cham_norm_x = x.new_zeros(())
|
||||
@@ -135,7 +131,10 @@ def _chamfer_distance_single_direction(
|
||||
if weights is not None:
|
||||
cham_norm_x *= weights.view(N, 1)
|
||||
|
||||
if point_reduction is not None:
|
||||
if point_reduction == "max":
|
||||
assert not return_normals
|
||||
cham_x = cham_x.max(1).values # (N,)
|
||||
elif point_reduction is not None:
|
||||
# Apply point reduction
|
||||
cham_x = cham_x.sum(1) # (N,)
|
||||
if return_normals:
|
||||
@@ -146,22 +145,34 @@ def _chamfer_distance_single_direction(
|
||||
if return_normals:
|
||||
cham_norm_x /= x_lengths_clamped
|
||||
|
||||
if batch_reduction is not None:
|
||||
# batch_reduction == "sum"
|
||||
cham_x = cham_x.sum()
|
||||
if return_normals:
|
||||
cham_norm_x = cham_norm_x.sum()
|
||||
if batch_reduction == "mean":
|
||||
div = weights.sum() if weights is not None else max(N, 1)
|
||||
cham_x /= div
|
||||
if return_normals:
|
||||
cham_norm_x /= div
|
||||
|
||||
cham_dist = cham_x
|
||||
cham_normals = cham_norm_x if return_normals else None
|
||||
return cham_dist, cham_normals
|
||||
|
||||
|
||||
def _apply_batch_reduction(
|
||||
cham_x, cham_norm_x, weights, batch_reduction: Union[str, None]
|
||||
):
|
||||
if batch_reduction is None:
|
||||
return (cham_x, cham_norm_x)
|
||||
# batch_reduction == "sum"
|
||||
N = cham_x.shape[0]
|
||||
cham_x = cham_x.sum()
|
||||
if cham_norm_x is not None:
|
||||
cham_norm_x = cham_norm_x.sum()
|
||||
if batch_reduction == "mean":
|
||||
if weights is None:
|
||||
div = max(N, 1)
|
||||
elif weights.sum() == 0.0:
|
||||
div = 1
|
||||
else:
|
||||
div = weights.sum()
|
||||
cham_x /= div
|
||||
if cham_norm_x is not None:
|
||||
cham_norm_x /= div
|
||||
return (cham_x, cham_norm_x)
|
||||
|
||||
|
||||
def chamfer_distance(
|
||||
x,
|
||||
y,
|
||||
@@ -197,7 +208,8 @@ def chamfer_distance(
|
||||
batch_reduction: Reduction operation to apply for the loss across the
|
||||
batch, can be one of ["mean", "sum"] or None.
|
||||
point_reduction: Reduction operation to apply for the loss across the
|
||||
points, can be one of ["mean", "sum"] or None.
|
||||
points, can be one of ["mean", "sum", "max"] or None. Using "max" leads to the
|
||||
Hausdorff distance.
|
||||
norm: int indicates the norm used for the distance. Supports 1 for L1 and 2 for L2.
|
||||
single_directional: If False (default), loss comes from both the distance between
|
||||
each point in x and its nearest neighbor in y and each point in y and its nearest
|
||||
@@ -227,6 +239,10 @@ def chamfer_distance(
|
||||
|
||||
if not ((norm == 1) or (norm == 2)):
|
||||
raise ValueError("Support for 1 or 2 norm.")
|
||||
|
||||
if point_reduction == "max" and (x_normals is not None or y_normals is not None):
|
||||
raise ValueError('Normals must be None if point_reduction is "max"')
|
||||
|
||||
x, x_lengths, x_normals = _handle_pointcloud_input(x, x_lengths, x_normals)
|
||||
y, y_lengths, y_normals = _handle_pointcloud_input(y, y_lengths, y_normals)
|
||||
|
||||
@@ -238,13 +254,13 @@ def chamfer_distance(
|
||||
x_normals,
|
||||
y_normals,
|
||||
weights,
|
||||
batch_reduction,
|
||||
point_reduction,
|
||||
norm,
|
||||
abs_cosine,
|
||||
)
|
||||
if single_directional:
|
||||
return cham_x, cham_norm_x
|
||||
loss = cham_x
|
||||
loss_normals = cham_norm_x
|
||||
else:
|
||||
cham_y, cham_norm_y = _chamfer_distance_single_direction(
|
||||
y,
|
||||
@@ -254,17 +270,23 @@ def chamfer_distance(
|
||||
y_normals,
|
||||
x_normals,
|
||||
weights,
|
||||
batch_reduction,
|
||||
point_reduction,
|
||||
norm,
|
||||
abs_cosine,
|
||||
)
|
||||
if point_reduction is not None:
|
||||
return (
|
||||
cham_x + cham_y,
|
||||
(cham_norm_x + cham_norm_y) if cham_norm_x is not None else None,
|
||||
)
|
||||
return (
|
||||
(cham_x, cham_y),
|
||||
(cham_norm_x, cham_norm_y) if cham_norm_x is not None else None,
|
||||
)
|
||||
if point_reduction == "max":
|
||||
loss = torch.maximum(cham_x, cham_y)
|
||||
loss_normals = None
|
||||
elif point_reduction is not None:
|
||||
loss = cham_x + cham_y
|
||||
if cham_norm_x is not None:
|
||||
loss_normals = cham_norm_x + cham_norm_y
|
||||
else:
|
||||
loss_normals = None
|
||||
else:
|
||||
loss = (cham_x, cham_y)
|
||||
if cham_norm_x is not None:
|
||||
loss_normals = (cham_norm_x, cham_norm_y)
|
||||
else:
|
||||
loss_normals = None
|
||||
return _apply_batch_reduction(loss, loss_normals, weights, batch_reduction)
|
||||
|
||||
@@ -617,6 +617,7 @@ def _splat_points_to_volumes(
|
||||
w = wX * wY * wZ
|
||||
|
||||
# valid - binary indicators of votes that fall into the volume
|
||||
# pyre-fixme[16]: `int` has no attribute `long`.
|
||||
valid = (
|
||||
(0 <= X_)
|
||||
* (X_ < grid_sizes_xyz[:, None, 0:1])
|
||||
@@ -635,14 +636,19 @@ def _splat_points_to_volumes(
|
||||
idx_valid = idx * valid + rand_idx * (1 - valid)
|
||||
w_valid = w * valid.type_as(w)
|
||||
if mask is not None:
|
||||
# pyre-fixme[6]: For 1st argument expected `Tensor` but got `int`.
|
||||
w_valid = w_valid * mask.type_as(w)[:, :, None]
|
||||
|
||||
# scatter add casts the votes into the weight accumulator
|
||||
# and the feature accumulator
|
||||
# pyre-fixme[6]: For 3rd argument expected `Tensor` but got
|
||||
# `Union[int, Tensor]`.
|
||||
volume_densities.scatter_add_(1, idx_valid, w_valid)
|
||||
|
||||
# reshape idx_valid -> (minibatch, feature_dim, n_points)
|
||||
idx_valid = idx_valid.view(ba, 1, n_points).expand_as(points_features)
|
||||
# pyre-fixme[16]: Item `int` of `Union[int, Tensor]` has no
|
||||
# attribute `view`.
|
||||
w_valid = w_valid.view(ba, 1, n_points)
|
||||
|
||||
# volume_features of shape (minibatch, feature_dim, n_voxels)
|
||||
@@ -724,6 +730,7 @@ def _round_points_to_volumes(
|
||||
# valid - binary indicators of votes that fall into the volume
|
||||
# pyre-fixme[9]: grid_sizes has type `LongTensor`; used as `Tensor`.
|
||||
grid_sizes = grid_sizes.type_as(XYZ)
|
||||
# pyre-fixme[16]: `int` has no attribute `long`.
|
||||
valid = (
|
||||
(0 <= X)
|
||||
* (X < grid_sizes_xyz[:, None, 0:1])
|
||||
|
||||
@@ -143,8 +143,6 @@ def convert_pointclouds_to_tensor(pcl: Union[torch.Tensor, "Pointclouds"]):
|
||||
elif torch.is_tensor(pcl):
|
||||
X = pcl
|
||||
num_points = X.shape[1] * torch.ones( # type: ignore
|
||||
# pyre-fixme[16]: Item `Pointclouds` of `Union[Pointclouds, Tensor]` has
|
||||
# no attribute `shape`.
|
||||
X.shape[0],
|
||||
device=X.device,
|
||||
dtype=torch.int64,
|
||||
|
||||
@@ -6,6 +6,8 @@
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
import torch
|
||||
|
||||
from .blending import (
|
||||
BlendParams,
|
||||
hard_rgb_blend,
|
||||
|
||||
@@ -212,15 +212,15 @@ def softmax_rgb_blend(
|
||||
|
||||
# Reshape to be compatible with (N, H, W, K) values in fragments
|
||||
if torch.is_tensor(zfar):
|
||||
# pyre-fixme[16]
|
||||
zfar = zfar[:, None, None, None]
|
||||
if torch.is_tensor(znear):
|
||||
# pyre-fixme[16]: Item `float` of `Union[float, Tensor]` has no attribute
|
||||
# `__getitem__`.
|
||||
znear = znear[:, None, None, None]
|
||||
|
||||
# pyre-fixme[6]: Expected `float` but got `Union[float, Tensor]`
|
||||
z_inv = (zfar - fragments.zbuf) / (zfar - znear) * mask
|
||||
# pyre-fixme[6]: Expected `Tensor` but got `float`
|
||||
z_inv_max = torch.max(z_inv, dim=-1).values[..., None].clamp(min=eps)
|
||||
# pyre-fixme[6]: Expected `Tensor` but got `float`
|
||||
weights_num = prob_map * torch.exp((z_inv - z_inv_max) / blend_params.gamma)
|
||||
|
||||
# Also apply exp normalize trick for the background color weight.
|
||||
|
||||
@@ -1782,8 +1782,6 @@ def get_ndc_to_screen_transform(
|
||||
K = torch.zeros((cameras._N, 4, 4), device=cameras.device, dtype=torch.float32)
|
||||
if not torch.is_tensor(image_size):
|
||||
image_size = torch.tensor(image_size, device=cameras.device)
|
||||
# pyre-fixme[16]: Item `List` of `Union[List[typing.Any], Tensor, Tuple[Any,
|
||||
# ...]]` has no attribute `view`.
|
||||
image_size = image_size.view(-1, 2) # of shape (1 or B)x2
|
||||
height, width = image_size.unbind(1)
|
||||
|
||||
|
||||
@@ -497,6 +497,7 @@ def clip_faces(
|
||||
faces_case3 = face_verts_unclipped[case3_unclipped_idx]
|
||||
|
||||
# index (0, 1, or 2) of the vertex in front of the clipping plane
|
||||
# pyre-fixme[61]: `faces_clipped_verts` is undefined, or not always defined.
|
||||
p1_face_ind = torch.where(~faces_clipped_verts[case3_unclipped_idx])[1]
|
||||
|
||||
# Solve for the points p4, p5 that intersect the clipping plane
|
||||
@@ -540,6 +541,7 @@ def clip_faces(
|
||||
faces_case4 = face_verts_unclipped[case4_unclipped_idx]
|
||||
|
||||
# index (0, 1, or 2) of the vertex behind the clipping plane
|
||||
# pyre-fixme[61]: `faces_clipped_verts` is undefined, or not always defined.
|
||||
p1_face_ind = torch.where(faces_clipped_verts[case4_unclipped_idx])[1]
|
||||
|
||||
# Solve for the points p4, p5 that intersect the clipping plane
|
||||
|
||||
@@ -6,7 +6,10 @@
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
import torch
|
||||
|
||||
from .compositor import AlphaCompositor, NormWeightedCompositor
|
||||
|
||||
from .pulsar.unified import PulsarPointsRenderer
|
||||
|
||||
from .rasterize_points import rasterize_points
|
||||
|
||||
@@ -270,6 +270,8 @@ class TensorProperties(nn.Module):
|
||||
# to have the same shape as the input tensor.
|
||||
new_dims = len(tensor_dims) - len(idx_dims)
|
||||
new_shape = idx_dims + (1,) * new_dims
|
||||
# pyre-fixme[58]: `+` is not supported for operand types
|
||||
# `Tuple[int]` and `torch._C.Size`
|
||||
expand_dims = (-1,) + tensor_dims[1:]
|
||||
_batch_idx = _batch_idx.view(*new_shape)
|
||||
_batch_idx = _batch_idx.expand(*expand_dims)
|
||||
|
||||
@@ -97,7 +97,10 @@ def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
ret = torch.zeros_like(x)
|
||||
positive_mask = x > 0
|
||||
ret[positive_mask] = torch.sqrt(x[positive_mask])
|
||||
if torch.is_grad_enabled():
|
||||
ret[positive_mask] = torch.sqrt(x[positive_mask])
|
||||
else:
|
||||
ret = torch.where(positive_mask, torch.sqrt(x), ret)
|
||||
return ret
|
||||
|
||||
|
||||
|
||||
@@ -369,6 +369,7 @@ def plot_scene(
|
||||
# update camera viewpoint if provided
|
||||
if viewpoints_eye_at_up_world is not None:
|
||||
# Use camera params for batch index or the first camera if only one provided.
|
||||
# pyre-fixme[61]: `n_viewpoint_cameras` is undefined, or not always defined.
|
||||
viewpoint_idx = min(n_viewpoint_cameras - 1, subplot_idx)
|
||||
|
||||
eye, at, up = (i[viewpoint_idx] for i in viewpoints_eye_at_up_world)
|
||||
@@ -627,7 +628,7 @@ def _add_struct_from_batch(
|
||||
|
||||
|
||||
def _add_mesh_trace(
|
||||
fig: go.Figure, # pyre-ignore[11]
|
||||
fig: go.Figure,
|
||||
meshes: Meshes,
|
||||
trace_name: str,
|
||||
subplot_idx: int,
|
||||
@@ -988,7 +989,7 @@ def _gen_fig_with_subplots(
|
||||
def _update_axes_bounds(
|
||||
verts_center: torch.Tensor,
|
||||
max_expand: float,
|
||||
current_layout: go.Scene, # pyre-ignore[11]
|
||||
current_layout: go.Scene,
|
||||
) -> None: # pragma: no cover
|
||||
"""
|
||||
Takes in the vertices' center point and max spread, and the current plotly figure
|
||||
|
||||
@@ -59,6 +59,8 @@ def texturesuv_image_matplotlib(
|
||||
for i in indices:
|
||||
# setting clip_on=False makes it obvious when
|
||||
# we have UV coordinates outside the correct range
|
||||
# pyre-fixme[6]: For 1st argument expected `Tuple[float, float]` but got
|
||||
# `ndarray[Any, Any]`.
|
||||
ax.add_patch(Circle(centers[i], radius, color=color, clip_on=False))
|
||||
|
||||
|
||||
|
||||
2
setup.py
2
setup.py
@@ -153,7 +153,7 @@ setup(
|
||||
)
|
||||
+ [trainer],
|
||||
package_dir={trainer: "projects/implicitron_trainer"},
|
||||
install_requires=["fvcore", "iopath"],
|
||||
install_requires=["iopath"],
|
||||
extras_require={
|
||||
"all": ["matplotlib", "tqdm>4.29.0", "imageio", "ipywidgets"],
|
||||
"dev": ["flake8", "usort"],
|
||||
|
||||
@@ -847,6 +847,85 @@ class TestChamfer(TestCaseMixin, unittest.TestCase):
|
||||
loss, loss_norm, pred_loss[0], pred_loss_norm[0], p1, p11, p2, p22
|
||||
)
|
||||
|
||||
def test_chamfer_point_reduction_max(self):
|
||||
"""
|
||||
Compare output of vectorized chamfer loss with naive implementation
|
||||
for point_reduction = "max" and batch_reduction = None.
|
||||
"""
|
||||
N, P1, P2 = 7, 10, 18
|
||||
device = get_random_cuda_device()
|
||||
points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
|
||||
p1 = points_normals.p1
|
||||
p2 = points_normals.p2
|
||||
weights = points_normals.weights
|
||||
p11 = p1.detach().clone()
|
||||
p22 = p2.detach().clone()
|
||||
p11.requires_grad = True
|
||||
p22.requires_grad = True
|
||||
|
||||
pred_loss, unused_pred_loss_norm = TestChamfer.chamfer_distance_naive(
|
||||
p1, p2, x_normals=None, y_normals=None
|
||||
)
|
||||
|
||||
loss, loss_norm = chamfer_distance(
|
||||
p11,
|
||||
p22,
|
||||
x_normals=None,
|
||||
y_normals=None,
|
||||
weights=weights,
|
||||
batch_reduction=None,
|
||||
point_reduction="max",
|
||||
)
|
||||
pred_loss_max = torch.maximum(
|
||||
pred_loss[0].max(1).values, pred_loss[1].max(1).values
|
||||
)
|
||||
pred_loss_max *= weights
|
||||
self.assertClose(loss, pred_loss_max)
|
||||
|
||||
self.assertIsNone(loss_norm)
|
||||
|
||||
# Check gradients
|
||||
self._check_gradients(loss, loss_norm, pred_loss_max, None, p1, p11, p2, p22)
|
||||
|
||||
def test_single_directional_chamfer_point_reduction_max(self):
|
||||
"""
|
||||
Compare output of vectorized single directional chamfer loss with naive implementation
|
||||
for point_reduction = "max" and batch_reduction = None.
|
||||
"""
|
||||
N, P1, P2 = 7, 10, 18
|
||||
device = get_random_cuda_device()
|
||||
points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
|
||||
p1 = points_normals.p1
|
||||
p2 = points_normals.p2
|
||||
weights = points_normals.weights
|
||||
p11 = p1.detach().clone()
|
||||
p22 = p2.detach().clone()
|
||||
p11.requires_grad = True
|
||||
p22.requires_grad = True
|
||||
|
||||
pred_loss, unused_pred_loss_norm = TestChamfer.chamfer_distance_naive(
|
||||
p1, p2, x_normals=None, y_normals=None
|
||||
)
|
||||
|
||||
loss, loss_norm = chamfer_distance(
|
||||
p11,
|
||||
p22,
|
||||
x_normals=None,
|
||||
y_normals=None,
|
||||
weights=weights,
|
||||
batch_reduction=None,
|
||||
point_reduction="max",
|
||||
single_directional=True,
|
||||
)
|
||||
pred_loss_max = pred_loss[0].max(1).values
|
||||
pred_loss_max *= weights
|
||||
self.assertClose(loss, pred_loss_max)
|
||||
|
||||
self.assertIsNone(loss_norm)
|
||||
|
||||
# Check gradients
|
||||
self._check_gradients(loss, loss_norm, pred_loss_max, None, p1, p11, p2, p22)
|
||||
|
||||
def _check_gradients(
|
||||
self,
|
||||
loss,
|
||||
@@ -1020,9 +1099,9 @@ class TestChamfer(TestCaseMixin, unittest.TestCase):
|
||||
with self.assertRaisesRegex(ValueError, "batch_reduction must be one of"):
|
||||
chamfer_distance(p1, p2, weights=weights, batch_reduction="max")
|
||||
|
||||
# Error when point_reduction is not in ["mean", "sum"] or None.
|
||||
# Error when point_reduction is not in ["mean", "sum", "max"] or None.
|
||||
with self.assertRaisesRegex(ValueError, "point_reduction must be one of"):
|
||||
chamfer_distance(p1, p2, weights=weights, point_reduction="max")
|
||||
chamfer_distance(p1, p2, weights=weights, point_reduction="min")
|
||||
|
||||
def test_incorrect_weights(self):
|
||||
N, P1, P2 = 16, 64, 128
|
||||
|
||||
Reference in New Issue
Block a user