34 Commits

Author SHA1 Message Date
Jeremy Reizenstein
75ebeeaea0 update version to 0.7.8
Summary: as title

Reviewed By: das-intensity

Differential Revision: D62588556

fbshipit-source-id: 55bae19dd1df796e83179cd29d805fcd871b6d23
2024-09-13 02:31:49 -07:00
Jeremy Reizenstein
ab793177c6 remove pytorch2.0 builds
Summary: these are failing in ci

Reviewed By: das-intensity

Differential Revision: D62594666

fbshipit-source-id: 5e3a7441be2978803dc2d3e361365e0fffa7ad3b
2024-09-13 02:07:25 -07:00
Jeremy Reizenstein
9acdd67b83 fix obj material indexing bug #1368
Summary:
Make the negative index actually not an error

fixes https://github.com/facebookresearch/pytorch3d/issues/1368

Reviewed By: das-intensity

Differential Revision: D62177991

fbshipit-source-id: e5ed433bde1f54251c4d4b6db073c029cbe87343
2024-09-13 02:00:49 -07:00
Nicholas Dahm
3f428d9981 pytorch 2.4.0 + 2.4.1
Summary:
Apparently pytorch 2.4 is now supported as per [this closed issue](https://github.com/facebookresearch/pytorch3d/issues/1863).

Added the `2.4.0` & `2.4.1` versions to `regenerate.py` then ran that as per the `README_fb.md` which generated `config.yml` changes.

Reviewed By: bottler

Differential Revision: D62517831

fbshipit-source-id: 002e276dfe2fa078136ff2f6c747d937abbadd1a
2024-09-11 15:09:43 -07:00
Josh Fromm
05cbea115a Hipify Pytorch3D (#1851)
Summary:
X-link: https://github.com/pytorch/pytorch/pull/133343

X-link: https://github.com/fairinternal/pytorch3d/pull/45

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1851

Enables pytorch3d to build on AMD. An important part of enabling this was not compiling the Pulsar backend when the target is AMD. There are simply too many kernel incompatibilites to make it work (I tried haha). Fortunately, it doesnt seem like most modern applications of pytorch3d rely on Pulsar. We should be able to unlock most of pytorch3d's goodness on AMD without it.

Reviewed By: bottler, houseroad

Differential Revision: D61171993

fbshipit-source-id: fd4aee378a3568b22676c5bf2b727c135ff710af
2024-08-15 16:18:22 -07:00
generatedunixname89002005307016
38afdcfc68 upgrade pyre version in fbcode/vision - batch 2
Reviewed By: bottler

Differential Revision: D60992234

fbshipit-source-id: 899db6ed590ef966ff651c11027819e59b8401a3
2024-08-09 02:07:45 -07:00
Christine Sun
1e0b1d9c72 Remove Python versions from Install.md
Summary: To avoid the installation instructions for PyTorch3D becoming out-of-date, instead of specifying certain Python versions, update to just `Python`. Reader will understand it has to be a Python version compatible with GitHub.

Reviewed By: bottler

Differential Revision: D60919848

fbshipit-source-id: 5e974970a0db3d3d32fae44e5dd30cbc1ce237a9
2024-08-07 13:46:31 -07:00
Rebecca Chen (Python)
44702fdb4b Add "max" point reduction for chamfer distance
Summary:
* Adds a "max" option for the point_reduction input to the
  chamfer_distance function.
* When combining the x and y directions, maxes the losses instead
  of summing them when point_reduction="max".
* Moves batch reduction to happen after the directions are
  combined.
* Adds test_chamfer_point_reduction_max and
  test_single_directional_chamfer_point_reduction_max tests.

Fixes  https://github.com/facebookresearch/pytorch3d/issues/1838

Reviewed By: bottler

Differential Revision: D60614661

fbshipit-source-id: 7879816acfda03e945bada951b931d2c522756eb
2024-08-02 10:46:07 -07:00
Jeremy Reizenstein
7edaee71a9 allow matrix_to_quaternion onnx export
Summary: Attempt to allow torch.onnx.dynamo_export(matrix_to_quaternion) to work.

Differential Revision: D59812279

fbshipit-source-id: 4497e5b543bec9d5c2bdccfb779d154750a075ad
2024-07-16 11:30:20 -07:00
Roman Shapovalov
d0d0e02007 Fix: setting FrameData.crop_bbox_xywh for backwards compatibility
Summary: This diff is fixing a backwards compatibility issue in PyTorch3D's dataset API. The code ensures that the `crop_bbox_xywh` attribute is set when box_crop flag is on. This is an implementation detail that people should not really use, however some people depend on this behaviour.

Reviewed By: bottler

Differential Revision: D59777449

fbshipit-source-id: b875e9eb909038b8629ccdade87661bb2c39d529
2024-07-16 02:21:13 -07:00
Jeremy Reizenstein
4df110b0a9 remove fvcore dependency
Summary: This is not actually needed and is causing a conda-forge confusion to do with python_abi - which needs users to have `-c conda-forge` when they install pytorch3d.

Reviewed By: patricklabatut

Differential Revision: D59587930

fbshipit-source-id: 961ae13a62e1b2b2ce6d8781db38bd97eca69e65
2024-07-11 04:35:38 -07:00
Huy Do
51fd114d8b Forward fix internal pyre failure from D58983461
Summary:
X-link: https://github.com/pytorch/pytorch/pull/129525

Somehow, using underscore alias of some builtin types breaks pyre

Reviewed By: malfet, clee2000

Differential Revision: D59029768

fbshipit-source-id: cfa2171b66475727b9545355e57a8297c1dc0bc6
2024-06-27 07:35:18 -07:00
Jeremy Reizenstein
89653419d0 version 0.7.7
Summary: New version

Reviewed By: MichaelRamamonjisoa

Differential Revision: D58668979

fbshipit-source-id: 195eaf83e4da51a106ef72e38dbb98c51c51724c
2024-06-25 06:59:24 -07:00
Jeremy Reizenstein
7980854d44 require pytorch 2.0+
Summary: Problems with timeouts on old builds.

Reviewed By: MichaelRamamonjisoa

Differential Revision: D58819435

fbshipit-source-id: e1976534a102ad3841f3b297c772e916aeea12cb
2024-06-21 08:15:17 -07:00
Jeremy Reizenstein
51d7c06ddd MKL version fix in CI (#1820)
Summary:
Fix for "undefined symbol: iJIT_NotifyEvent" build issue,

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1820

Reviewed By: MichaelRamamonjisoa

Differential Revision: D58685326

fbshipit-source-id: 48b54367c00851cc6fbb111ca98d69a2ace8361b
2024-06-21 08:15:17 -07:00
Sergii Dymchenko
00c36ec01c Update deprecated PyTorch functions in fbcode/vision
Reviewed By: bottler

Differential Revision: D58762015

fbshipit-source-id: a0d05fe63a88d33e3f7783b5a7b2a476dd3a7449
2024-06-20 14:06:28 -07:00
vedrenne
b0462d8079 Allow indexing for classes inheriting Transform3d (#1801)
Summary:
Currently, it is not possible to access a sub-transform using an indexer for all 3d transforms inheriting the `Transforms3d` class.
For instance:

```python
from pytorch3d import transforms

N = 10
r = transforms.random_rotations(N)
T = transforms.Transform3d().rotate(R=r)
R = transforms.Rotate(r)

x = T[0]  # ok
x = R[0]  # TypeError: __init__() got an unexpected keyword argument 'matrix'
```

This is because all these classes (namely `Rotate`, `Translate`, `Scale`, `RotateAxisAngle`) inherit the `__getitem__()` method from `Transform3d` which has the [following code on line 201](https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/transform3d.py#L201):

```python
return self.__class__(matrix=self.get_matrix()[index])
```

The four classes inheriting `Transform3d` are not initialized through a matrix argument, hence they error.
I propose to modify the `__getitem__()` method of the `Transform3d` class to fix this behavior. The least invasive way to do it I can think of consists of creating an empty instance of the current class, then setting the `_matrix` attribute manually. Thus, instead of
```python
return self.__class__(matrix=self.get_matrix()[index])
```
I propose to do:
```python
instance = self.__class__.__new__(self.__class__)
instance._matrix = self.get_matrix()[index]
return instance
```

As far as I can tell, this modification occurs no modification whatsoever for the user, except for the ability to index all 3d transforms.

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1801

Reviewed By: MichaelRamamonjisoa

Differential Revision: D58410389

Pulled By: bottler

fbshipit-source-id: f371e4c63d2ae4c927a7ad48c2de8862761078de
2024-06-17 07:48:18 -07:00
Jeremy Reizenstein
b66d17a324 Undo c10=>std optional rename
Summary: Undoes the pytorch3d changes in D57294278 because they break builds for for PyTorch<2.1 .

Reviewed By: MichaelRamamonjisoa

Differential Revision: D57379779

fbshipit-source-id: 47a12511abcec4c3f4e2f62eff5ba99deb2fab4c
2024-06-17 07:09:30 -07:00
Kyle Vedder
717493cb79 Fixed last dimension size check so that it doesn't trivially pass. (#1815)
Summary:
Currently, it checks that the `2`th dimension of `p2` is the same size as the `2`th dimension of `p2` instead of `p1`.

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1815

Reviewed By: MichaelRamamonjisoa

Differential Revision: D58586966

Pulled By: bottler

fbshipit-source-id: d4f723fa264f90fe368c10825c1acdfdc4c406dc
2024-06-17 06:00:13 -07:00
Jeremy Reizenstein
302da69461 builds for PyTorch 2.2.1 2.2.2 2.3.0 2.3.1
Summary: Build for new pytorch versions

Reviewed By: MichaelRamamonjisoa

Differential Revision: D58668956

fbshipit-source-id: 7fdfb377b370448d6147daded6a21b8db87586fb
2024-06-17 05:57:59 -07:00
Roman Shapovalov
4ae25bfce7 Moving ray bundle to float dtype
Summary: We can now move ray bundle to float dtype (e.g. from fp16 like types).

Reviewed By: bottler

Differential Revision: D57493109

fbshipit-source-id: 4e18a427e968b646fe5feafbff653811cd007981
2024-05-30 10:06:38 -07:00
Richard Barnes
bd52f4a408 c10::optional -> std::optional in tensorboard/adhoc/Adhoc.h +9
Summary: `c10::optional` was switched to be `std::optional` after PyTorch moved to C++17. Let's eliminate `c10::optional`, if we can.

Reviewed By: albanD

Differential Revision: D57294278

fbshipit-source-id: f6f26133c43f8d92a4588f59df7d689e7909a0cd
2024-05-13 16:40:34 -07:00
generatedunixname89002005307016
17117106e4 upgrade pyre version in fbcode/vision - batch 2
Differential Revision: D57183103

fbshipit-source-id: 7e2f42ddc6a1fa02abc27a451987d67a00264cbb
2024-05-10 01:18:43 -07:00
Richard Barnes
aec76bb4c8 Remove unused-but-set variables in vision/fair/pytorch3d/pytorch3d/csrc/pulsar/include/renderer.render.device.h +1
Summary:
This diff removes a variable that was set, but which was not used.

LLVM-15 has a warning `-Wunused-but-set-variable` which we treat as an error because it's so often diagnostic of a code issue. Unused but set variables often indicate a programming mistake, but can also just be unnecessary cruft that harms readability and performance.

Removing this variable will not change how your code works, but the unused variable may indicate your code isn't working the way you thought it was. I've gone through each of these by hand, but mistakes may have slipped through. If you feel the diff needs changes before landing, **please commandeer** and make appropriate changes: there are hundreds of these and responding to them individually is challenging.

For questions/comments, contact r-barnes.

 - If you approve of this diff, please use the "Accept & Ship" button :-)

Reviewed By: bottler

Differential Revision: D56886956

fbshipit-source-id: 0c515ed98b812b1c106a59e19ec90751ce32e8c0
2024-05-02 13:58:05 -07:00
Andres Suarez
47d5dc8824 Apply clang-format 18
Summary: Previously this code conformed from clang-format 12.

Reviewed By: igorsugak

Differential Revision: D56065247

fbshipit-source-id: f5a985dd8f8b84f2f9e1818b3719b43c5a1b05b3
2024-04-14 11:28:32 -07:00
generatedunixname89002005307016
fe0b1bae49 upgrade pyre version in fbcode/vision - batch 2
Differential Revision: D55650177

fbshipit-source-id: d5faa4d805bb40fe3dea70b0601e7a1382b09f3a
2024-04-02 18:11:50 -07:00
Ruishen Lyu
ccf22911d4 Optimize list_to_packed to avoid for loop (#1737)
Summary:
For larger N and Mi value (e.g. N=154, Mi=238) I notice list_to_packed() has become a bottleneck for my application. By removing the for loop and running on GPU, i see a 10-20 x speedup.

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1737

Reviewed By: MichaelRamamonjisoa

Differential Revision: D54187993

Pulled By: bottler

fbshipit-source-id: 16399a24cb63b48c30460c7d960abef603b115d0
2024-04-02 07:50:25 -07:00
Ashim Dahal
128be02fc0 feat: adjusted sample_nums (#1768)
Summary:
adjusted sample_nums to match the number of columns in the image grid. It originally produced image grid with 5 axes but only 3 images and after this fix, the block would work as intended.

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1768

Reviewed By: MichaelRamamonjisoa

Differential Revision: D55632872

Pulled By: bottler

fbshipit-source-id: 44d633a8068076889e49d49b8a7910dba0db37a7
2024-04-02 06:02:48 -07:00
Roeia Kishk
31e3488a51 Changed tutorials' pip searching
Summary:
### Generalise tutorials' pip searching:
## Required Information:
This diff contains changes to several PyTorch3D tutorials.

**Purpose of this diff:**
Replace the current installation code with a more streamlined approach that tries to install the wheel first and falls back to installing from source if the wheel is not found.

**Why this diff is required:**
This diff makes it easier to cope with new PyTorch releases and reduce the need for manual intervention, as the current process involves checking the version of PyTorch in Colab and building a new wheel if it doesn't match the expected version, which generates additional work each time there is a a new PyTorch version in Colab.

**Changes:**
Before:
```
    if torch.__version__.startswith("2.1.") and sys.platform.startswith("linux"):
        # We try to install PyTorch3D via a released wheel.
        pyt_version_str=torch.__version__.split("+")[0].replace(".", "")
        version_str="".join([
            f"py3{sys.version_info.minor}_cu",
            torch.version.cuda.replace(".",""),
            f"_pyt{pyt_version_str}"
        ])
        !pip install fvcore iopath
        !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html
    else:
        # We try to install PyTorch3D from source.
        !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'
```
After:
```
    pyt_version_str=torch.__version__.split("+")[0].replace(".", "")
    version_str="".join([
        f"py3{sys.version_info.minor}_cu",
        torch.version.cuda.replace(".",""),
        f"_pyt{pyt_version_str}"
    ])
    !pip install fvcore iopath
    if sys.platform.startswith("linux"):
      # We try to install PyTorch3D via a released wheel.
      !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html
      pip_list = !pip freeze
      need_pytorch3d = not any(i.startswith("pytorch3d==") for  i in pip_list)

    if need_pytorch3d:
        # We try to install PyTorch3D from source.
        !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'
```

Reviewed By: bottler

Differential Revision: D55431832

fbshipit-source-id: a8de9162470698320241ae8401427dcb1ce17c37
2024-03-28 11:24:43 -07:00
generatedunixname89002005307016
b215776f2d upgrade pyre version in fbcode/vision - batch 2
Differential Revision: D55395614

fbshipit-source-id: 71677892b5d6f219f6df25b4efb51fb0f6b1441b
2024-03-26 22:02:22 -07:00
Cijo Jose
38cf0dc1c5 TexturesUV multiple maps
Summary: Implements the  the TexturesUV with multiple map ids.

Reviewed By: bottler

Differential Revision: D53944063

fbshipit-source-id: 06c25eb6d69f72db0484f16566dd2ca32a560b82
2024-03-12 06:59:31 -07:00
Jaap Suter
7566530669 CUDA marching_cubes fix
Summary:
Fix an inclusive vs exclusive scan mix-up that was accidentally introduced when removing the Thrust dependency (`Thrust::exclusive_scan`) and reimplementing it using `at::cumsum` (which does an inclusive scan).

This fixes two Github reported issues:

 * https://github.com/facebookresearch/pytorch3d/issues/1731
 * https://github.com/facebookresearch/pytorch3d/issues/1751

Reviewed By: bottler

Differential Revision: D54605545

fbshipit-source-id: da9e92f3f8a9a35f7b7191428d0b9a9ca03e0d4d
2024-03-07 15:38:24 -08:00
Conner Nilsen
a27755db41 Pyre Configurationless migration for] [batch:85/112] [shard:6/N]
Reviewed By: inseokhwang

Differential Revision: D54438157

fbshipit-source-id: a6acfe146ed29fff82123b5e458906d4b4cee6a2
2024-03-04 18:30:37 -08:00
Amethyst Reese
3da7703c5a apply Black 2024 style in fbcode (4/16)
Summary:
Formats the covered files with pyfmt.

paintitblack

Reviewed By: aleivag

Differential Revision: D54447727

fbshipit-source-id: 8844b1caa08de94d04ac4df3c768dbf8c865fd2f
2024-03-02 17:31:19 -08:00
252 changed files with 1988 additions and 697 deletions

View File

@@ -162,90 +162,6 @@ workflows:
jobs:
# - main:
# context: DOCKERHUB_TOKEN
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda113
context: DOCKERHUB_TOKEN
cu_version: cu113
name: linux_conda_py38_cu113_pyt1120
python_version: '3.8'
pytorch_version: 1.12.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda116
context: DOCKERHUB_TOKEN
cu_version: cu116
name: linux_conda_py38_cu116_pyt1120
python_version: '3.8'
pytorch_version: 1.12.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda113
context: DOCKERHUB_TOKEN
cu_version: cu113
name: linux_conda_py38_cu113_pyt1121
python_version: '3.8'
pytorch_version: 1.12.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda116
context: DOCKERHUB_TOKEN
cu_version: cu116
name: linux_conda_py38_cu116_pyt1121
python_version: '3.8'
pytorch_version: 1.12.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda116
context: DOCKERHUB_TOKEN
cu_version: cu116
name: linux_conda_py38_cu116_pyt1130
python_version: '3.8'
pytorch_version: 1.13.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda117
context: DOCKERHUB_TOKEN
cu_version: cu117
name: linux_conda_py38_cu117_pyt1130
python_version: '3.8'
pytorch_version: 1.13.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda116
context: DOCKERHUB_TOKEN
cu_version: cu116
name: linux_conda_py38_cu116_pyt1131
python_version: '3.8'
pytorch_version: 1.13.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda117
context: DOCKERHUB_TOKEN
cu_version: cu117
name: linux_conda_py38_cu117_pyt1131
python_version: '3.8'
pytorch_version: 1.13.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda117
context: DOCKERHUB_TOKEN
cu_version: cu117
name: linux_conda_py38_cu117_pyt200
python_version: '3.8'
pytorch_version: 2.0.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py38_cu118_pyt200
python_version: '3.8'
pytorch_version: 2.0.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda117
context: DOCKERHUB_TOKEN
cu_version: cu117
name: linux_conda_py38_cu117_pyt201
python_version: '3.8'
pytorch_version: 2.0.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py38_cu118_pyt201
python_version: '3.8'
pytorch_version: 2.0.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
@@ -303,89 +219,61 @@ workflows:
python_version: '3.8'
pytorch_version: 2.2.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda113
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu113
name: linux_conda_py39_cu113_pyt1120
python_version: '3.9'
pytorch_version: 1.12.0
cu_version: cu118
name: linux_conda_py38_cu118_pyt222
python_version: '3.8'
pytorch_version: 2.2.2
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda116
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu116
name: linux_conda_py39_cu116_pyt1120
python_version: '3.9'
pytorch_version: 1.12.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda113
context: DOCKERHUB_TOKEN
cu_version: cu113
name: linux_conda_py39_cu113_pyt1121
python_version: '3.9'
pytorch_version: 1.12.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda116
context: DOCKERHUB_TOKEN
cu_version: cu116
name: linux_conda_py39_cu116_pyt1121
python_version: '3.9'
pytorch_version: 1.12.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda116
context: DOCKERHUB_TOKEN
cu_version: cu116
name: linux_conda_py39_cu116_pyt1130
python_version: '3.9'
pytorch_version: 1.13.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda117
context: DOCKERHUB_TOKEN
cu_version: cu117
name: linux_conda_py39_cu117_pyt1130
python_version: '3.9'
pytorch_version: 1.13.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda116
context: DOCKERHUB_TOKEN
cu_version: cu116
name: linux_conda_py39_cu116_pyt1131
python_version: '3.9'
pytorch_version: 1.13.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda117
context: DOCKERHUB_TOKEN
cu_version: cu117
name: linux_conda_py39_cu117_pyt1131
python_version: '3.9'
pytorch_version: 1.13.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda117
context: DOCKERHUB_TOKEN
cu_version: cu117
name: linux_conda_py39_cu117_pyt200
python_version: '3.9'
pytorch_version: 2.0.0
cu_version: cu121
name: linux_conda_py38_cu121_pyt222
python_version: '3.8'
pytorch_version: 2.2.2
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py39_cu118_pyt200
python_version: '3.9'
pytorch_version: 2.0.0
name: linux_conda_py38_cu118_pyt231
python_version: '3.8'
pytorch_version: 2.3.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda117
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu117
name: linux_conda_py39_cu117_pyt201
python_version: '3.9'
pytorch_version: 2.0.1
cu_version: cu121
name: linux_conda_py38_cu121_pyt231
python_version: '3.8'
pytorch_version: 2.3.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py39_cu118_pyt201
python_version: '3.9'
pytorch_version: 2.0.1
name: linux_conda_py38_cu118_pyt240
python_version: '3.8'
pytorch_version: 2.4.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py38_cu121_pyt240
python_version: '3.8'
pytorch_version: 2.4.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py38_cu118_pyt241
python_version: '3.8'
pytorch_version: 2.4.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py38_cu121_pyt241
python_version: '3.8'
pytorch_version: 2.4.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
@@ -443,89 +331,61 @@ workflows:
python_version: '3.9'
pytorch_version: 2.2.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda113
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu113
name: linux_conda_py310_cu113_pyt1120
python_version: '3.10'
pytorch_version: 1.12.0
cu_version: cu118
name: linux_conda_py39_cu118_pyt222
python_version: '3.9'
pytorch_version: 2.2.2
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda116
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu116
name: linux_conda_py310_cu116_pyt1120
python_version: '3.10'
pytorch_version: 1.12.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda113
context: DOCKERHUB_TOKEN
cu_version: cu113
name: linux_conda_py310_cu113_pyt1121
python_version: '3.10'
pytorch_version: 1.12.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda116
context: DOCKERHUB_TOKEN
cu_version: cu116
name: linux_conda_py310_cu116_pyt1121
python_version: '3.10'
pytorch_version: 1.12.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda116
context: DOCKERHUB_TOKEN
cu_version: cu116
name: linux_conda_py310_cu116_pyt1130
python_version: '3.10'
pytorch_version: 1.13.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda117
context: DOCKERHUB_TOKEN
cu_version: cu117
name: linux_conda_py310_cu117_pyt1130
python_version: '3.10'
pytorch_version: 1.13.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda116
context: DOCKERHUB_TOKEN
cu_version: cu116
name: linux_conda_py310_cu116_pyt1131
python_version: '3.10'
pytorch_version: 1.13.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda117
context: DOCKERHUB_TOKEN
cu_version: cu117
name: linux_conda_py310_cu117_pyt1131
python_version: '3.10'
pytorch_version: 1.13.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda117
context: DOCKERHUB_TOKEN
cu_version: cu117
name: linux_conda_py310_cu117_pyt200
python_version: '3.10'
pytorch_version: 2.0.0
cu_version: cu121
name: linux_conda_py39_cu121_pyt222
python_version: '3.9'
pytorch_version: 2.2.2
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py310_cu118_pyt200
python_version: '3.10'
pytorch_version: 2.0.0
name: linux_conda_py39_cu118_pyt231
python_version: '3.9'
pytorch_version: 2.3.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda117
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu117
name: linux_conda_py310_cu117_pyt201
python_version: '3.10'
pytorch_version: 2.0.1
cu_version: cu121
name: linux_conda_py39_cu121_pyt231
python_version: '3.9'
pytorch_version: 2.3.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py310_cu118_pyt201
python_version: '3.10'
pytorch_version: 2.0.1
name: linux_conda_py39_cu118_pyt240
python_version: '3.9'
pytorch_version: 2.4.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py39_cu121_pyt240
python_version: '3.9'
pytorch_version: 2.4.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py39_cu118_pyt241
python_version: '3.9'
pytorch_version: 2.4.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py39_cu121_pyt241
python_version: '3.9'
pytorch_version: 2.4.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
@@ -582,6 +442,62 @@ workflows:
name: linux_conda_py310_cu121_pyt220
python_version: '3.10'
pytorch_version: 2.2.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py310_cu118_pyt222
python_version: '3.10'
pytorch_version: 2.2.2
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py310_cu121_pyt222
python_version: '3.10'
pytorch_version: 2.2.2
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py310_cu118_pyt231
python_version: '3.10'
pytorch_version: 2.3.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py310_cu121_pyt231
python_version: '3.10'
pytorch_version: 2.3.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py310_cu118_pyt240
python_version: '3.10'
pytorch_version: 2.4.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py310_cu121_pyt240
python_version: '3.10'
pytorch_version: 2.4.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py310_cu118_pyt241
python_version: '3.10'
pytorch_version: 2.4.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py310_cu121_pyt241
python_version: '3.10'
pytorch_version: 2.4.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
@@ -638,6 +554,62 @@ workflows:
name: linux_conda_py311_cu121_pyt220
python_version: '3.11'
pytorch_version: 2.2.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py311_cu118_pyt222
python_version: '3.11'
pytorch_version: 2.2.2
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py311_cu121_pyt222
python_version: '3.11'
pytorch_version: 2.2.2
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py311_cu118_pyt231
python_version: '3.11'
pytorch_version: 2.3.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py311_cu121_pyt231
python_version: '3.11'
pytorch_version: 2.3.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py311_cu118_pyt240
python_version: '3.11'
pytorch_version: 2.4.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py311_cu121_pyt240
python_version: '3.11'
pytorch_version: 2.4.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py311_cu118_pyt241
python_version: '3.11'
pytorch_version: 2.4.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py311_cu121_pyt241
python_version: '3.11'
pytorch_version: 2.4.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
@@ -652,6 +624,62 @@ workflows:
name: linux_conda_py312_cu121_pyt220
python_version: '3.12'
pytorch_version: 2.2.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py312_cu118_pyt222
python_version: '3.12'
pytorch_version: 2.2.2
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py312_cu121_pyt222
python_version: '3.12'
pytorch_version: 2.2.2
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py312_cu118_pyt231
python_version: '3.12'
pytorch_version: 2.3.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py312_cu121_pyt231
python_version: '3.12'
pytorch_version: 2.3.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py312_cu118_pyt240
python_version: '3.12'
pytorch_version: 2.4.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py312_cu121_pyt240
python_version: '3.12'
pytorch_version: 2.4.0
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda118
context: DOCKERHUB_TOKEN
cu_version: cu118
name: linux_conda_py312_cu118_pyt241
python_version: '3.12'
pytorch_version: 2.4.1
- binary_linux_conda:
conda_docker_image: pytorch/conda-builder:cuda121
context: DOCKERHUB_TOKEN
cu_version: cu121
name: linux_conda_py312_cu121_pyt241
python_version: '3.12'
pytorch_version: 2.4.1
- binary_linux_conda_cuda:
name: testrun_conda_cuda_py310_cu117_pyt201
context: DOCKERHUB_TOKEN

View File

@@ -19,16 +19,14 @@ from packaging import version
# The CUDA versions which have pytorch conda packages available for linux for each
# version of pytorch.
CONDA_CUDA_VERSIONS = {
"1.12.0": ["cu113", "cu116"],
"1.12.1": ["cu113", "cu116"],
"1.13.0": ["cu116", "cu117"],
"1.13.1": ["cu116", "cu117"],
"2.0.0": ["cu117", "cu118"],
"2.0.1": ["cu117", "cu118"],
"2.1.0": ["cu118", "cu121"],
"2.1.1": ["cu118", "cu121"],
"2.1.2": ["cu118", "cu121"],
"2.2.0": ["cu118", "cu121"],
"2.2.2": ["cu118", "cu121"],
"2.3.1": ["cu118", "cu121"],
"2.4.0": ["cu118", "cu121"],
"2.4.1": ["cu118", "cu121"],
}

View File

@@ -8,11 +8,10 @@
The core library is written in PyTorch. Several components have underlying implementation in CUDA for improved performance. A subset of these components have CPU implementations in C++/PyTorch. It is advised to use PyTorch3D with GPU support in order to use all the features.
- Linux or macOS or Windows
- Python 3.8, 3.9 or 3.10
- PyTorch 1.12.0, 1.12.1, 1.13.0, 2.0.0, 2.0.1, 2.1.0, 2.1.1, 2.1.2 or 2.2.0.
- Python
- PyTorch 2.1.0, 2.1.1, 2.1.2, 2.2.0, 2.2.1, 2.2.2, 2.3.0, 2.3.1, 2.4.0 or 2.4.1.
- torchvision that matches the PyTorch installation. You can install them together as explained at pytorch.org to make sure of this.
- gcc & g++ ≥ 4.9
- [fvcore](https://github.com/facebookresearch/fvcore)
- [ioPath](https://github.com/facebookresearch/iopath)
- If CUDA is to be used, use a version which is supported by the corresponding pytorch version and at least version 9.2.
- If CUDA older than 11.7 is to be used and you are building from source, the CUB library must be available. We recommend version 1.10.0.
@@ -22,7 +21,7 @@ The runtime dependencies can be installed by running:
conda create -n pytorch3d python=3.9
conda activate pytorch3d
conda install pytorch=1.13.0 torchvision pytorch-cuda=11.6 -c pytorch -c nvidia
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
conda install -c iopath iopath
```
For the CUB build time dependency, which you only need if you have CUDA older than 11.7, if you are using conda, you can continue with
@@ -49,6 +48,7 @@ For developing on top of PyTorch3D or contributing, you will need to run the lin
- tdqm
- jupyter
- imageio
- fvcore
- plotly
- opencv-python
@@ -59,6 +59,7 @@ conda install jupyter
pip install scikit-image matplotlib imageio plotly opencv-python
# Tests/Linting
conda install -c fvcore -c conda-forge fvcore
pip install black usort flake8 flake8-bugbear flake8-comprehensions
```
@@ -97,7 +98,7 @@ version_str="".join([
torch.version.cuda.replace(".",""),
f"_pyt{pyt_version_str}"
])
!pip install fvcore iopath
!pip install iopath
!pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html
```

View File

@@ -23,7 +23,7 @@ conda init bash
source ~/.bashrc
conda create -y -n myenv python=3.8 matplotlib ipython ipywidgets nbconvert
conda activate myenv
conda install -y -c fvcore -c iopath -c conda-forge fvcore iopath
conda install -y -c iopath iopath
conda install -y -c pytorch pytorch=1.6.0 cudatoolkit=10.1 torchvision
conda install -y -c pytorch3d-nightly pytorch3d
pip install plotly scikit-image

View File

@@ -5,7 +5,6 @@ sphinx_rtd_theme
sphinx_markdown_tables
numpy
iopath
fvcore
https://download.pytorch.org/whl/cpu/torchvision-0.15.2%2Bcpu-cp311-cp311-linux_x86_64.whl
https://download.pytorch.org/whl/cpu/torch-2.0.1%2Bcpu-cp311-cp311-linux_x86_64.whl
omegaconf

View File

@@ -83,25 +83,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith(\"2.2.\") and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@@ -70,25 +70,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith(\"2.2.\") and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@@ -45,25 +45,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith(\"2.2.\") and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{
@@ -405,7 +411,7 @@
"outputs": [],
"source": [
"random_model_images = shapenet_dataset.render(\n",
" sample_nums=[3],\n",
" sample_nums=[5],\n",
" device=device,\n",
" cameras=cameras,\n",
" raster_settings=raster_settings,\n",

View File

@@ -84,25 +84,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith(\"2.2.\") and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@@ -50,25 +50,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith(\"2.2.\") and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@@ -62,25 +62,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith(\"2.2.\") and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@@ -41,25 +41,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith(\"2.2.\") and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@@ -72,25 +72,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith(\"2.2.\") and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@@ -66,25 +66,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith(\"2.2.\") and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@@ -44,25 +44,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith(\"2.2.\") and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@@ -51,25 +51,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith(\"2.2.\") and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@@ -67,25 +67,31 @@
"import os\n",
"import sys\n",
"import torch\n",
"import subprocess\n",
"need_pytorch3d=False\n",
"try:\n",
" import pytorch3d\n",
"except ModuleNotFoundError:\n",
" need_pytorch3d=True\n",
"if need_pytorch3d:\n",
" if torch.__version__.startswith(\"2.2.\") and sys.platform.startswith(\"linux\"):\n",
" # We try to install PyTorch3D via a released wheel.\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install fvcore iopath\n",
" pyt_version_str=torch.__version__.split(\"+\")[0].replace(\".\", \"\")\n",
" version_str=\"\".join([\n",
" f\"py3{sys.version_info.minor}_cu\",\n",
" torch.version.cuda.replace(\".\",\"\"),\n",
" f\"_pyt{pyt_version_str}\"\n",
" ])\n",
" !pip install iopath\n",
" if sys.platform.startswith(\"linux\"):\n",
" print(\"Trying to install wheel for PyTorch3D\")\n",
" !pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html\n",
" else:\n",
" # We try to install PyTorch3D from source.\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
" pip_list = !pip freeze\n",
" need_pytorch3d = not any(i.startswith(\"pytorch3d==\") for i in pip_list)\n",
" if need_pytorch3d:\n",
" print(f\"failed to find/install wheel for {version_str}\")\n",
"if need_pytorch3d:\n",
" print(\"Installing PyTorch3D from source\")\n",
" !pip install ninja\n",
" !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
]
},
{

View File

@@ -80,6 +80,12 @@ def setup_cuda():
def setup_conda_pytorch_constraint() -> List[str]:
pytorch_constraint = f"- pytorch=={PYTORCH_VERSION}"
os.environ["CONDA_PYTORCH_CONSTRAINT"] = pytorch_constraint
if pytorch_major_minor < (2, 2):
os.environ["CONDA_PYTORCH_MKL_CONSTRAINT"] = "- mkl!=2024.1.0"
os.environ["SETUPTOOLS_CONSTRAINT"] = "- setuptools<70"
else:
os.environ["CONDA_PYTORCH_MKL_CONSTRAINT"] = ""
os.environ["SETUPTOOLS_CONSTRAINT"] = "- setuptools"
os.environ["CONDA_PYTORCH_BUILD_CONSTRAINT"] = pytorch_constraint
os.environ["PYTORCH_VERSION_NODOT"] = PYTORCH_VERSION.replace(".", "")
@@ -117,7 +123,7 @@ def do_build(start_args: List[str]):
if test_flag is not None:
args.append(test_flag)
args.extend(["-c", "bottler", "-c", "fvcore", "-c", "iopath", "-c", "conda-forge"])
args.extend(["-c", "bottler", "-c", "iopath", "-c", "conda-forge"])
args.append("--no-anaconda-upload")
args.extend(["--python", os.environ["PYTHON_VERSION"]])
args.append("packaging/pytorch3d")

View File

@@ -26,6 +26,6 @@ version_str="".join([
torch.version.cuda.replace(".",""),
f"_pyt{pyt_version_str}"
])
!pip install fvcore iopath
!pip install iopath
!pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html
```

View File

@@ -144,7 +144,7 @@ do
conda activate "$tag"
# shellcheck disable=SC2086
conda install -y -c pytorch $extra_channel "pytorch=$pytorch_version" "$cudatools=$CUDA_TAG"
pip install fvcore iopath
pip install iopath
echo "python version" "$python_version" "pytorch version" "$pytorch_version" "cuda version" "$cu_version" "tag" "$tag"
rm -rf dist

View File

@@ -12,8 +12,9 @@ requirements:
host:
- python
- setuptools
{{ environ.get('SETUPTOOLS_CONSTRAINT') }}
{{ environ.get('CONDA_PYTORCH_BUILD_CONSTRAINT') }}
{{ environ.get('CONDA_PYTORCH_MKL_CONSTRAINT') }}
{{ environ.get('CONDA_CUDATOOLKIT_CONSTRAINT') }}
{{ environ.get('CONDA_CPUONLY_FEATURE') }}
@@ -21,7 +22,6 @@ requirements:
- python
- numpy >=1.11
- torchvision >=0.5
- fvcore
- iopath
{{ environ.get('CONDA_PYTORCH_CONSTRAINT') }}
{{ environ.get('CONDA_CUDATOOLKIT_CONSTRAINT') }}

View File

@@ -3,3 +3,5 @@
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe

View File

@@ -5,6 +5,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
""""
This file is the entry point for launching experiments with Implicitron.
@@ -97,7 +99,7 @@ except ModuleNotFoundError:
no_accelerate = os.environ.get("PYTORCH3D_NO_ACCELERATE") is not None
class Experiment(Configurable): # pyre-ignore: 13
class Experiment(Configurable):
"""
This class is at the top level of Implicitron's config hierarchy. Its
members are high-level components necessary for training an implicit rende-
@@ -118,12 +120,16 @@ class Experiment(Configurable): # pyre-ignore: 13
will be saved here.
"""
# pyre-fixme[13]: Attribute `data_source` is never initialized.
data_source: DataSourceBase
data_source_class_type: str = "ImplicitronDataSource"
# pyre-fixme[13]: Attribute `model_factory` is never initialized.
model_factory: ModelFactoryBase
model_factory_class_type: str = "ImplicitronModelFactory"
# pyre-fixme[13]: Attribute `optimizer_factory` is never initialized.
optimizer_factory: OptimizerFactoryBase
optimizer_factory_class_type: str = "ImplicitronOptimizerFactory"
# pyre-fixme[13]: Attribute `training_loop` is never initialized.
training_loop: TrainingLoopBase
training_loop_class_type: str = "ImplicitronTrainingLoop"

View File

@@ -3,3 +3,5 @@
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import logging
import os
from typing import Optional
@@ -43,7 +45,7 @@ class ModelFactoryBase(ReplaceableBase):
@registry.register
class ImplicitronModelFactory(ModelFactoryBase): # pyre-ignore [13]
class ImplicitronModelFactory(ModelFactoryBase):
"""
A factory class that initializes an implicit rendering model.
@@ -59,6 +61,7 @@ class ImplicitronModelFactory(ModelFactoryBase): # pyre-ignore [13]
"""
# pyre-fixme[13]: Attribute `model` is never initialized.
model: ImplicitronModelBase
model_class_type: str = "GenericModel"
resume: bool = True

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import inspect
import logging
import os

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import logging
import os
import time
@@ -28,13 +30,13 @@ from .utils import seed_all_random_engines
logger = logging.getLogger(__name__)
# pyre-fixme[13]: Attribute `evaluator` is never initialized.
class TrainingLoopBase(ReplaceableBase):
"""
Members:
evaluator: An EvaluatorBase instance, used to evaluate training results.
"""
# pyre-fixme[13]: Attribute `evaluator` is never initialized.
evaluator: Optional[EvaluatorBase]
evaluator_class_type: Optional[str] = "ImplicitronEvaluator"

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import random

View File

@@ -3,3 +3,5 @@
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import os
import tempfile
import unittest

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import logging
import os
import unittest

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import os
import unittest

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import contextlib
import logging
import os

View File

@@ -5,6 +5,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
"""
Script to visualize a previously trained model. Example call:

View File

@@ -343,12 +343,14 @@ class RadianceFieldRenderer(torch.nn.Module):
# For a full render pass concatenate the output chunks,
# and reshape to image size.
out = {
k: torch.cat(
[ch_o[k] for ch_o in chunk_outputs],
dim=1,
).view(-1, *self._image_size, 3)
if chunk_outputs[0][k] is not None
else None
k: (
torch.cat(
[ch_o[k] for ch_o in chunk_outputs],
dim=1,
).view(-1, *self._image_size, 3)
if chunk_outputs[0][k] is not None
else None
)
for k in ("rgb_fine", "rgb_coarse", "rgb_gt")
}
else:

View File

@@ -4,4 +4,6 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
__version__ = "0.7.6"
# pyre-unsafe
__version__ = "0.7.8"

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
from .datatypes import Device, get_device, make_device

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
from typing import Sequence, Tuple, Union
import torch

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
from typing import Optional, Union
import torch

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import math
from typing import Tuple

View File

@@ -4,5 +4,7 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
from .symeig3x3 import symeig3x3
from .utils import _safe_det_3x3

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import math
from typing import Optional, Tuple

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import torch

View File

@@ -7,11 +7,15 @@
*/
// clang-format off
#if !defined(USE_ROCM)
#include "./pulsar/global.h" // Include before <torch/extension.h>.
#endif
#include <torch/extension.h>
// clang-format on
#if !defined(USE_ROCM)
#include "./pulsar/pytorch/renderer.h"
#include "./pulsar/pytorch/tensor_util.h"
#endif
#include "ball_query/ball_query.h"
#include "blending/sigmoid_alpha_blend.h"
#include "compositing/alpha_composite.h"
@@ -99,6 +103,8 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("marching_cubes", &MarchingCubes);
// Pulsar.
// Pulsar not enabled on AMD.
#if !defined(USE_ROCM)
#ifdef PULSAR_LOGGING_ENABLED
c10::ShowLogInfoToStderr();
#endif
@@ -183,4 +189,5 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.attr("MAX_UINT") = py::int_(MAX_UINT);
m.attr("MAX_USHORT") = py::int_(MAX_USHORT);
m.attr("PULSAR_MAX_GRAD_SPHERES") = py::int_(MAX_GRAD_SPHERES);
#endif
}

View File

@@ -338,7 +338,7 @@ std::tuple<at::Tensor, at::Tensor> KNearestNeighborIdxCuda(
TORCH_CHECK((norm == 1) || (norm == 2), "Norm must be 1 or 2.");
TORCH_CHECK(p2.size(2) == D, "Point sets must have the same last dimension");
TORCH_CHECK(p1.size(2) == D, "Point sets must have the same last dimension");
auto long_dtype = lengths1.options().dtype(at::kLong);
auto idxs = at::zeros({N, P1, K}, long_dtype);
auto dists = at::zeros({N, P1, K}, p1.options());

View File

@@ -382,6 +382,44 @@ __global__ void GenerateFacesKernel(
} // end for grid-strided kernel
}
// ATen/Torch does not have an exclusive-scan operator. Additionally, in the
// code below we need to get the "total number of items to work on" after
// a scan, which with an inclusive-scan would simply be the value of the last
// element in the tensor.
//
// This utility function hits two birds with one stone, by running
// an inclusive-scan into a right-shifted view of a tensor that's
// allocated to be one element bigger than the input tensor.
//
// Note; return tensor is `int64_t` per element, even if the input
// tensor is only 32-bit. Also, the return tensor is one element bigger
// than the input one.
//
// Secondary optional argument is an output argument that gets the
// value of the last element of the return tensor (because you almost
// always need this CPU-side right after this function anyway).
static at::Tensor ExclusiveScanAndTotal(
const at::Tensor& inTensor,
int64_t* optTotal = nullptr) {
const auto inSize = inTensor.sizes()[0];
auto retTensor = at::zeros({inSize + 1}, at::kLong).to(inTensor.device());
using at::indexing::None;
using at::indexing::Slice;
auto rightShiftedView = retTensor.index({Slice(1, None)});
// Do an (inclusive-scan) cumulative sum in to the view that's
// shifted one element to the right...
at::cumsum_out(rightShiftedView, inTensor, 0, at::kLong);
if (optTotal) {
*optTotal = retTensor[inSize].cpu().item<int64_t>();
}
// ...so that the not-shifted tensor holds the exclusive-scan
return retTensor;
}
// Entrance for marching cubes cuda extension. Marching Cubes is an algorithm to
// create triangle meshes from an implicit function (one of the form f(x, y, z)
// = 0). It works by iteratively checking a grid of cubes superimposed over a
@@ -444,20 +482,18 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> MarchingCubesCuda(
using at::indexing::Slice;
auto d_voxelVerts =
at::zeros({numVoxels + 1}, at::TensorOptions().dtype(at::kInt))
at::zeros({numVoxels}, at::TensorOptions().dtype(at::kInt))
.to(vol.device());
auto d_voxelVerts_ = d_voxelVerts.index({Slice(1, None)});
auto d_voxelOccupied =
at::zeros({numVoxels + 1}, at::TensorOptions().dtype(at::kInt))
at::zeros({numVoxels}, at::TensorOptions().dtype(at::kInt))
.to(vol.device());
auto d_voxelOccupied_ = d_voxelOccupied.index({Slice(1, None)});
// Execute "ClassifyVoxelKernel" kernel to precompute
// two arrays - d_voxelOccupied and d_voxelVertices to global memory,
// which stores the occupancy state and number of voxel vertices per voxel.
ClassifyVoxelKernel<<<grid, threads, 0, stream>>>(
d_voxelVerts_.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
d_voxelOccupied_.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
d_voxelVerts.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
d_voxelOccupied.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
vol.packed_accessor32<float, 3, at::RestrictPtrTraits>(),
isolevel);
AT_CUDA_CHECK(cudaGetLastError());
@@ -467,12 +503,9 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> MarchingCubesCuda(
// count for voxels in the grid and compute the number of active voxels.
// If the number of active voxels is 0, return zero tensor for verts and
// faces.
auto d_voxelOccupiedScan = at::cumsum(d_voxelOccupied, 0);
auto d_voxelOccupiedScan_ = d_voxelOccupiedScan.index({Slice(1, None)});
// number of active voxels
int64_t activeVoxels = d_voxelOccupiedScan[numVoxels].cpu().item<int64_t>();
int64_t activeVoxels = 0;
auto d_voxelOccupiedScan =
ExclusiveScanAndTotal(d_voxelOccupied, &activeVoxels);
const int device_id = vol.device().index();
auto opt = at::TensorOptions().dtype(at::kInt).device(at::kCUDA, device_id);
@@ -487,24 +520,21 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> MarchingCubesCuda(
return std::make_tuple(verts, faces, ids);
}
// Execute "CompactVoxelsKernel" kernel to compress voxels for accleration.
// Execute "CompactVoxelsKernel" kernel to compress voxels for acceleration.
// This allows us to run triangle generation on only the occupied voxels.
auto d_compVoxelArray = at::zeros({activeVoxels}, opt);
CompactVoxelsKernel<<<grid, threads, 0, stream>>>(
d_compVoxelArray.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
d_voxelOccupied.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
d_voxelOccupiedScan_
d_voxelOccupiedScan
.packed_accessor32<int64_t, 1, at::RestrictPtrTraits>(),
numVoxels);
AT_CUDA_CHECK(cudaGetLastError());
cudaDeviceSynchronize();
// Scan d_voxelVerts array to generate offsets of vertices for each voxel
auto d_voxelVertsScan = at::cumsum(d_voxelVerts, 0);
auto d_voxelVertsScan_ = d_voxelVertsScan.index({Slice(1, None)});
// total number of vertices
int64_t totalVerts = d_voxelVertsScan[numVoxels].cpu().item<int64_t>();
int64_t totalVerts = 0;
auto d_voxelVertsScan = ExclusiveScanAndTotal(d_voxelVerts, &totalVerts);
// Execute "GenerateFacesKernel" kernel
// This runs only on the occupied voxels.
@@ -524,7 +554,7 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> MarchingCubesCuda(
faces.packed_accessor<int64_t, 2, at::RestrictPtrTraits>(),
ids.packed_accessor<int64_t, 1, at::RestrictPtrTraits>(),
d_compVoxelArray.packed_accessor32<int, 1, at::RestrictPtrTraits>(),
d_voxelVertsScan_.packed_accessor32<int64_t, 1, at::RestrictPtrTraits>(),
d_voxelVertsScan.packed_accessor32<int64_t, 1, at::RestrictPtrTraits>(),
activeVoxels,
vol.packed_accessor32<float, 3, at::RestrictPtrTraits>(),
faceTable.packed_accessor32<int, 2, at::RestrictPtrTraits>(),

View File

@@ -357,11 +357,11 @@ void MAX_WS(
//
//
#define END_PARALLEL() \
end_parallel:; \
end_parallel :; \
}
#define END_PARALLEL_NORET() }
#define END_PARALLEL_2D() \
end_parallel:; \
end_parallel :; \
} \
}
#define END_PARALLEL_2D_NORET() \

View File

@@ -93,7 +93,7 @@ HOST void construct(
MALLOC(self->di_sorted_d, DrawInfo, max_num_balls);
MALLOC(self->region_flags_d, char, max_num_balls);
MALLOC(self->num_selected_d, size_t, 1);
MALLOC(self->forw_info_d, float, width* height*(3 + 2 * n_track));
MALLOC(self->forw_info_d, float, width* height * (3 + 2 * n_track));
MALLOC(self->min_max_pixels_d, IntersectInfo, 1);
MALLOC(self->grad_pos_d, float3, max_num_balls);
MALLOC(self->grad_col_d, float, max_num_balls* n_channels);

View File

@@ -99,7 +99,7 @@ GLOBAL void render(
/** Whether loading of balls is completed. */
SHARED bool loading_done;
/** The number of balls loaded overall (just for statistics). */
SHARED int n_balls_loaded;
[[maybe_unused]] SHARED int n_balls_loaded;
/** The area this thread block covers. */
SHARED IntersectInfo block_area;
if (thread_block.thread_rank() == 0) {

View File

@@ -244,8 +244,7 @@ at::Tensor RasterizeCoarseCuda(
if (num_bins_y >= kMaxItemsPerBin || num_bins_x >= kMaxItemsPerBin) {
std::stringstream ss;
ss << "In RasterizeCoarseCuda got num_bins_y: " << num_bins_y
<< ", num_bins_x: " << num_bins_x << ", "
<< "; that's too many!";
<< ", num_bins_x: " << num_bins_x << ", " << "; that's too many!";
AT_ERROR(ss.str());
}
auto opts = elems_per_batch.options().dtype(at::kInt);

View File

@@ -144,7 +144,7 @@ __device__ void CheckPixelInsideFace(
const bool zero_face_area =
(face_area <= kEpsilon && face_area >= -1.0f * kEpsilon);
if (zmax < 0 || cull_backfaces && back_face || outside_bbox ||
if (zmax < 0 || (cull_backfaces && back_face) || outside_bbox ||
zero_face_area) {
return;
}

View File

@@ -18,6 +18,8 @@ const auto vEpsilon = 1e-8;
// Common functions and operators for float2.
// Complex arithmetic is already defined for AMD.
#if !defined(USE_ROCM)
__device__ inline float2 operator-(const float2& a, const float2& b) {
return make_float2(a.x - b.x, a.y - b.y);
}
@@ -41,6 +43,7 @@ __device__ inline float2 operator*(const float2& a, const float2& b) {
__device__ inline float2 operator*(const float a, const float2& b) {
return make_float2(a * b.x, a * b.y);
}
#endif
__device__ inline float FloatMin3(const float a, const float b, const float c) {
return fminf(a, fminf(b, c));

View File

@@ -23,37 +23,51 @@ WarpReduceMin(scalar_t* min_dists, int64_t* min_idxs, const size_t tid) {
min_idxs[tid] = min_idxs[tid + 32];
min_dists[tid] = min_dists[tid + 32];
}
// AMD does not use explicit syncwarp and instead automatically inserts memory
// fences during compilation.
#if !defined(USE_ROCM)
__syncwarp();
#endif
// s = 16
if (min_dists[tid] > min_dists[tid + 16]) {
min_idxs[tid] = min_idxs[tid + 16];
min_dists[tid] = min_dists[tid + 16];
}
#if !defined(USE_ROCM)
__syncwarp();
#endif
// s = 8
if (min_dists[tid] > min_dists[tid + 8]) {
min_idxs[tid] = min_idxs[tid + 8];
min_dists[tid] = min_dists[tid + 8];
}
#if !defined(USE_ROCM)
__syncwarp();
#endif
// s = 4
if (min_dists[tid] > min_dists[tid + 4]) {
min_idxs[tid] = min_idxs[tid + 4];
min_dists[tid] = min_dists[tid + 4];
}
#if !defined(USE_ROCM)
__syncwarp();
#endif
// s = 2
if (min_dists[tid] > min_dists[tid + 2]) {
min_idxs[tid] = min_idxs[tid + 2];
min_dists[tid] = min_dists[tid + 2];
}
#if !defined(USE_ROCM)
__syncwarp();
#endif
// s = 1
if (min_dists[tid] > min_dists[tid + 1]) {
min_idxs[tid] = min_idxs[tid + 1];
min_dists[tid] = min_dists[tid + 1];
}
#if !defined(USE_ROCM)
__syncwarp();
#endif
}
template <typename scalar_t>
@@ -65,30 +79,42 @@ __device__ void WarpReduceMax(
dists[tid] = dists[tid + 32];
dists_idx[tid] = dists_idx[tid + 32];
}
#if !defined(USE_ROCM)
__syncwarp();
#endif
if (dists[tid] < dists[tid + 16]) {
dists[tid] = dists[tid + 16];
dists_idx[tid] = dists_idx[tid + 16];
}
#if !defined(USE_ROCM)
__syncwarp();
#endif
if (dists[tid] < dists[tid + 8]) {
dists[tid] = dists[tid + 8];
dists_idx[tid] = dists_idx[tid + 8];
}
#if !defined(USE_ROCM)
__syncwarp();
#endif
if (dists[tid] < dists[tid + 4]) {
dists[tid] = dists[tid + 4];
dists_idx[tid] = dists_idx[tid + 4];
}
#if !defined(USE_ROCM)
__syncwarp();
#endif
if (dists[tid] < dists[tid + 2]) {
dists[tid] = dists[tid + 2];
dists_idx[tid] = dists_idx[tid + 2];
}
#if !defined(USE_ROCM)
__syncwarp();
#endif
if (dists[tid] < dists[tid + 1]) {
dists[tid] = dists[tid + 1];
dists_idx[tid] = dists_idx[tid + 1];
}
#if !defined(USE_ROCM)
__syncwarp();
#endif
}

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
from .r2n2 import BlenderCamera, collate_batched_R2N2, R2N2, render_cubified_voxels
from .shapenet import ShapeNetCore
from .utils import collate_batched_meshes

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
from .r2n2 import R2N2
from .utils import BlenderCamera, collate_batched_R2N2, render_cubified_voxels

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import json
import warnings
from os import path

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import math
from typing import Dict, List

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
from .shapenet_core import ShapeNetCore

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import json
import os
import warnings

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import warnings
from typing import Dict, List, Optional, Tuple

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
from typing import Dict, List
from pytorch3d.renderer.mesh import TexturesAtlas

View File

@@ -3,3 +3,5 @@
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe

View File

@@ -3,3 +3,5 @@
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import torch
from pytorch3d.implicitron.tools.config import registry

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
from dataclasses import dataclass
from enum import Enum
from typing import Iterator, List, Optional, Tuple

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
from typing import Optional, Tuple
from pytorch3d.implicitron.tools.config import (
@@ -39,7 +41,7 @@ class DataSourceBase(ReplaceableBase):
@registry.register
class ImplicitronDataSource(DataSourceBase): # pyre-ignore[13]
class ImplicitronDataSource(DataSourceBase):
"""
Represents the data used in Implicitron. This is the only implementation
of DataSourceBase provided.
@@ -50,8 +52,11 @@ class ImplicitronDataSource(DataSourceBase): # pyre-ignore[13]
data_loader_map_provider_class_type: identifies type for data_loader_map_provider.
"""
# pyre-fixme[13]: Attribute `dataset_map_provider` is never initialized.
dataset_map_provider: DatasetMapProviderBase
# pyre-fixme[13]: Attribute `dataset_map_provider_class_type` is never initialized.
dataset_map_provider_class_type: str
# pyre-fixme[13]: Attribute `data_loader_map_provider` is never initialized.
data_loader_map_provider: DataLoaderMapProviderBase
data_loader_map_provider_class_type: str = "SequenceDataLoaderMapProvider"

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
from collections import defaultdict
from dataclasses import dataclass
from typing import (

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import logging
import os
from dataclasses import dataclass

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import os
from abc import ABC, abstractmethod
from collections import defaultdict
@@ -274,6 +276,7 @@ class FrameData(Mapping[str, Any]):
image_size_hw=tuple(self.effective_image_size_hw), # pyre-ignore
)
crop_bbox_xywh = bbox_xyxy_to_xywh(clamp_bbox_xyxy)
self.crop_bbox_xywh = crop_bbox_xywh
if self.fg_probability is not None:
self.fg_probability = crop_around_box(
@@ -432,7 +435,7 @@ class FrameData(Mapping[str, Any]):
# TODO: don't store K; enforce working in NDC space
return join_cameras_as_batch(batch)
else:
return torch.utils.data._utils.collate.default_collate(batch)
return torch.utils.data.dataloader.default_collate(batch)
FrameDataSubtype = TypeVar("FrameDataSubtype", bound=FrameData)
@@ -576,11 +579,11 @@ class GenericFrameDataBuilder(FrameDataBuilderBase[FrameDataSubtype], ABC):
camera_quality_score=safe_as_tensor(
sequence_annotation.viewpoint_quality_score, torch.float
),
point_cloud_quality_score=safe_as_tensor(
point_cloud.quality_score, torch.float
)
if point_cloud is not None
else None,
point_cloud_quality_score=(
safe_as_tensor(point_cloud.quality_score, torch.float)
if point_cloud is not None
else None
),
)
fg_mask_np: Optional[np.ndarray] = None

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import copy
import functools
import gzip
@@ -124,9 +126,9 @@ class JsonIndexDataset(DatasetBase, ReplaceableBase):
dimension of the cropping bounding box, relative to box size.
"""
frame_annotations_type: ClassVar[
Type[types.FrameAnnotation]
] = types.FrameAnnotation
frame_annotations_type: ClassVar[Type[types.FrameAnnotation]] = (
types.FrameAnnotation
)
path_manager: Any = None
frame_annotations_file: str = ""

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import json
import os
@@ -64,7 +66,7 @@ _NEED_CONTROL: Tuple[str, ...] = (
@registry.register
class JsonIndexDatasetMapProvider(DatasetMapProviderBase): # pyre-ignore [13]
class JsonIndexDatasetMapProvider(DatasetMapProviderBase):
"""
Generates the training / validation and testing dataset objects for
a dataset laid out on disk like Co3D, with annotations in json files.
@@ -93,6 +95,7 @@ class JsonIndexDatasetMapProvider(DatasetMapProviderBase): # pyre-ignore [13]
path_manager_factory_class_type: The class type of `path_manager_factory`.
"""
# pyre-fixme[13]: Attribute `category` is never initialized.
category: str
task_str: str = "singlesequence"
dataset_root: str = _CO3D_DATASET_ROOT
@@ -102,8 +105,10 @@ class JsonIndexDatasetMapProvider(DatasetMapProviderBase): # pyre-ignore [13]
test_restrict_sequence_id: int = -1
assert_single_seq: bool = False
only_test_set: bool = False
# pyre-fixme[13]: Attribute `dataset` is never initialized.
dataset: JsonIndexDataset
dataset_class_type: str = "JsonIndexDataset"
# pyre-fixme[13]: Attribute `path_manager_factory` is never initialized.
path_manager_factory: PathManagerFactory
path_manager_factory_class_type: str = "PathManagerFactory"

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import copy
import json
@@ -54,7 +56,7 @@ logger = logging.getLogger(__name__)
@registry.register
class JsonIndexDatasetMapProviderV2(DatasetMapProviderBase): # pyre-ignore [13]
class JsonIndexDatasetMapProviderV2(DatasetMapProviderBase):
"""
Generates the training, validation, and testing dataset objects for
a dataset laid out on disk like CO3Dv2, with annotations in gzipped json files.
@@ -169,7 +171,9 @@ class JsonIndexDatasetMapProviderV2(DatasetMapProviderBase): # pyre-ignore [13]
path_manager_factory_class_type: The class type of `path_manager_factory`.
"""
# pyre-fixme[13]: Attribute `category` is never initialized.
category: str
# pyre-fixme[13]: Attribute `subset_name` is never initialized.
subset_name: str
dataset_root: str = _CO3DV2_DATASET_ROOT
@@ -181,8 +185,10 @@ class JsonIndexDatasetMapProviderV2(DatasetMapProviderBase): # pyre-ignore [13]
n_known_frames_for_test: int = 0
dataset_class_type: str = "JsonIndexDataset"
# pyre-fixme[13]: Attribute `dataset` is never initialized.
dataset: JsonIndexDataset
# pyre-fixme[13]: Attribute `path_manager_factory` is never initialized.
path_manager_factory: PathManagerFactory
path_manager_factory_class_type: str = "PathManagerFactory"

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import numpy as np
import torch

View File

@@ -1,6 +1,8 @@
# @lint-ignore-every LICENSELINT
# Adapted from https://github.com/bmild/nerf/blob/master/load_blender.py
# Copyright (c) 2020 bmild
# pyre-unsafe
import json
import os

View File

@@ -1,6 +1,8 @@
# @lint-ignore-every LICENSELINT
# Adapted from https://github.com/bmild/nerf/blob/master/load_llff.py
# Copyright (c) 2020 bmild
# pyre-unsafe
import logging
import os
import warnings

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
from os.path import dirname, join, realpath
from typing import Optional, Tuple
@@ -30,7 +32,7 @@ from .utils import DATASET_TYPE_KNOWN
@registry.register
class RenderedMeshDatasetMapProvider(DatasetMapProviderBase): # pyre-ignore [13]
class RenderedMeshDatasetMapProvider(DatasetMapProviderBase):
"""
A simple single-scene dataset based on PyTorch3D renders of a mesh.
Provides `num_views` renders of the mesh as train, with no val
@@ -74,6 +76,7 @@ class RenderedMeshDatasetMapProvider(DatasetMapProviderBase): # pyre-ignore [13
resolution: int = 128
use_point_light: bool = True
gpu_idx: Optional[int] = 0
# pyre-fixme[13]: Attribute `path_manager_factory` is never initialized.
path_manager_factory: PathManagerFactory
path_manager_factory_class_type: str = "PathManagerFactory"

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import warnings
from collections import Counter

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
# This file defines a base class for dataset map providers which
# provide data for a single scene.
@@ -81,7 +83,6 @@ class SingleSceneDataset(DatasetBase, Configurable):
return self.eval_batches
# pyre-fixme[13]: Uninitialized attribute
class SingleSceneDatasetMapProviderBase(DatasetMapProviderBase):
"""
Base for provider of data for one scene from LLFF or blender datasets.
@@ -98,8 +99,11 @@ class SingleSceneDatasetMapProviderBase(DatasetMapProviderBase):
testing frame.
"""
# pyre-fixme[13]: Attribute `base_dir` is never initialized.
base_dir: str
# pyre-fixme[13]: Attribute `object_name` is never initialized.
object_name: str
# pyre-fixme[13]: Attribute `path_manager_factory` is never initialized.
path_manager_factory: PathManagerFactory
path_manager_factory_class_type: str = "PathManagerFactory"
n_known_frames_for_test: Optional[int] = None

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import logging
from typing import Any, Dict, Optional, Tuple

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import dataclasses
import gzip

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import functools
import warnings
@@ -346,6 +348,7 @@ def adjust_camera_to_image_scale_(
camera: PerspectiveCameras,
original_size_wh: torch.Tensor,
new_size_wh: torch.LongTensor,
# pyre-fixme[7]: Expected `PerspectiveCameras` but got implicit return value of `None`.
) -> PerspectiveCameras:
focal_length_px, principal_point_px = _convert_ndc_to_pixels(
camera.focal_length[0],
@@ -365,7 +368,7 @@ def adjust_camera_to_image_scale_(
image_size_wh_output,
)
camera.focal_length = focal_length_scaled[None]
camera.principal_point = principal_point_scaled[None] # pyre-ignore
camera.principal_point = principal_point_scaled[None]
# NOTE this cache is per-worker; they are implemented as processes.

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
from typing import cast, Optional, Tuple
import torch
@@ -88,9 +90,11 @@ def get_implicitron_sequence_pointcloud(
frame_data.camera,
frame_data.image_rgb,
frame_data.depth_map,
(cast(torch.Tensor, frame_data.fg_probability) > 0.5).float()
if mask_points and frame_data.fg_probability is not None
else None,
(
(cast(torch.Tensor, frame_data.fg_probability) > 0.5).float()
if mask_points and frame_data.fg_probability is not None
else None
),
)
return point_cloud, frame_data

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import dataclasses
import os

View File

@@ -3,3 +3,5 @@
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import copy
import warnings
@@ -282,9 +284,9 @@ def eval_batch(
image_rgb_masked=image_rgb_masked,
depth_render=cloned_render["depth_render"],
depth_map=frame_data.depth_map,
depth_mask=frame_data.depth_mask[:1]
if frame_data.depth_mask is not None
else None,
depth_mask=(
frame_data.depth_mask[:1] if frame_data.depth_mask is not None else None
),
visdom_env=visualize_visdom_env,
)

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import copy
import json
import logging

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
# Allows to register the models
# see: pytorch3d.implicitron.tools.config.registry:register
from pytorch3d.implicitron.models.generic_model import GenericModel

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional

View File

@@ -4,4 +4,6 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
from .feature_extractor import FeatureExtractorBase

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
from typing import Any, Dict, Optional
import torch

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import logging
import math
from typing import Any, Dict, Optional, Tuple

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
# Note: The #noqa comments below are for unused imports of pluggable implementations
# which are part of implicitron. They ensure that the registry is prepopulated.
@@ -63,7 +65,7 @@ logger = logging.getLogger(__name__)
@registry.register
class GenericModel(ImplicitronModelBase): # pyre-ignore: 13
class GenericModel(ImplicitronModelBase):
"""
GenericModel is a wrapper for the neural implicit
rendering and reconstruction pipeline which consists
@@ -224,34 +226,42 @@ class GenericModel(ImplicitronModelBase): # pyre-ignore: 13
# ---- global encoder settings
global_encoder_class_type: Optional[str] = None
# pyre-fixme[13]: Attribute `global_encoder` is never initialized.
global_encoder: Optional[GlobalEncoderBase]
# ---- raysampler
raysampler_class_type: str = "AdaptiveRaySampler"
# pyre-fixme[13]: Attribute `raysampler` is never initialized.
raysampler: RaySamplerBase
# ---- renderer configs
renderer_class_type: str = "MultiPassEmissionAbsorptionRenderer"
# pyre-fixme[13]: Attribute `renderer` is never initialized.
renderer: BaseRenderer
# ---- image feature extractor settings
# (This is only created if view_pooler is enabled)
# pyre-fixme[13]: Attribute `image_feature_extractor` is never initialized.
image_feature_extractor: Optional[FeatureExtractorBase]
image_feature_extractor_class_type: Optional[str] = None
# ---- view pooler settings
view_pooler_enabled: bool = False
# pyre-fixme[13]: Attribute `view_pooler` is never initialized.
view_pooler: Optional[ViewPooler]
# ---- implicit function settings
implicit_function_class_type: str = "NeuralRadianceFieldImplicitFunction"
# This is just a model, never constructed.
# The actual implicit functions live in self._implicit_functions
# pyre-fixme[13]: Attribute `implicit_function` is never initialized.
implicit_function: ImplicitFunctionBase
# ----- metrics
# pyre-fixme[13]: Attribute `view_metrics` is never initialized.
view_metrics: ViewMetricsBase
view_metrics_class_type: str = "ViewMetrics"
# pyre-fixme[13]: Attribute `regularization_metrics` is never initialized.
regularization_metrics: RegularizationMetricsBase
regularization_metrics_class_type: str = "RegularizationMetrics"
@@ -395,9 +405,11 @@ class GenericModel(ImplicitronModelBase): # pyre-ignore: 13
n_targets = (
1
if evaluation_mode == EvaluationMode.EVALUATION
else batch_size
if self.n_train_target_views <= 0
else min(self.n_train_target_views, batch_size)
else (
batch_size
if self.n_train_target_views <= 0
else min(self.n_train_target_views, batch_size)
)
)
# A helper function for selecting n_target first elements from the input
@@ -422,9 +434,12 @@ class GenericModel(ImplicitronModelBase): # pyre-ignore: 13
ray_bundle: ImplicitronRayBundle = self.raysampler(
target_cameras,
evaluation_mode,
mask=mask_crop[:n_targets]
if mask_crop is not None and sampling_mode == RenderSamplingMode.MASK_SAMPLE
else None,
mask=(
mask_crop[:n_targets]
if mask_crop is not None
and sampling_mode == RenderSamplingMode.MASK_SAMPLE
else None
),
)
# custom_args hold additional arguments to the implicit function.

View File

@@ -3,3 +3,5 @@
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import warnings
from collections import defaultdict
from typing import Dict, List, Optional, Union

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
from typing import List, Optional, Union
import torch
@@ -57,12 +59,13 @@ class GlobalEncoderBase(ReplaceableBase):
# TODO: probabilistic embeddings?
@registry.register
class SequenceAutodecoder(GlobalEncoderBase, torch.nn.Module): # pyre-ignore: 13
class SequenceAutodecoder(GlobalEncoderBase, torch.nn.Module):
"""
A global encoder implementation which provides an autodecoder encoding
of the frame's sequence identifier.
"""
# pyre-fixme[13]: Attribute `autodecoder` is never initialized.
autodecoder: Autodecoder
def __post_init__(self):

View File

@@ -3,3 +3,5 @@
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
from abc import ABC, abstractmethod
from typing import Optional

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
"""
This file contains
- modules which get used by ImplicitFunction objects for decoding an embedding defined in
@@ -242,7 +244,6 @@ class MLPWithInputSkips(Configurable, torch.nn.Module):
@registry.register
# pyre-fixme[13]: Attribute `network` is never initialized.
class MLPDecoder(DecoderFunctionBase):
"""
Decoding function which uses `MLPWithIputSkips` to convert the embedding to output.
@@ -270,6 +271,7 @@ class MLPDecoder(DecoderFunctionBase):
input_dim: int = 3
param_groups: Dict[str, str] = field(default_factory=lambda: {})
# pyre-fixme[13]: Attribute `network` is never initialized.
network: MLPWithInputSkips
def __post_init__(self):

View File

@@ -2,6 +2,8 @@
# Adapted from https://github.com/lioryariv/idr/blob/main/code/model/
# implicit_differentiable_renderer.py
# Copyright (c) 2020 Lior Yariv
# pyre-unsafe
import math
from typing import Optional, Tuple
@@ -102,9 +104,7 @@ class IdrFeatureField(ImplicitFunctionBase, torch.nn.Module):
elif self.n_harmonic_functions_xyz >= 0 and layer_idx == 0:
torch.nn.init.constant_(lin.bias, 0.0)
torch.nn.init.constant_(lin.weight[:, 3:], 0.0)
torch.nn.init.normal_(
lin.weight[:, :3], 0.0, 2**0.5 / out_dim**0.5
)
torch.nn.init.normal_(lin.weight[:, :3], 0.0, 2**0.5 / out_dim**0.5)
elif self.n_harmonic_functions_xyz >= 0 and layer_idx in self.skip_in:
torch.nn.init.constant_(lin.bias, 0.0)
torch.nn.init.normal_(lin.weight, 0.0, 2**0.5 / out_dim**0.5)

View File

@@ -4,6 +4,8 @@
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import logging
from typing import Optional, Tuple
@@ -193,9 +195,9 @@ class NeuralRadianceFieldBase(ImplicitFunctionBase, torch.nn.Module):
embeds = create_embeddings_for_implicit_function(
xyz_world=rays_points_world,
# for 2nd param but got `Union[None, torch.Tensor, torch.nn.Module]`.
xyz_embedding_function=self.harmonic_embedding_xyz
if self.input_xyz
else None,
xyz_embedding_function=(
self.harmonic_embedding_xyz if self.input_xyz else None
),
global_code=global_code,
fun_viewpool=fun_viewpool,
xyz_in_camera_coords=self.xyz_ray_dir_in_camera_coords,

Some files were not shown because too many files have changed in this diff Show More