mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-01 03:12:49 +08:00
Mods and bugfixes for LLFF and Blender repros
Summary: LLFF (and most/all non-synth datasets) will have no background/foreground distinction. Add support for data with no fg mask. Also, we had a bug in stats loading, like this: * Load stats * One of the stats has a history of length 0 * That's fine, e.g. maybe it's fg_error but the dataset has no notion of fg/bg. So leave it as len 0 * Check whether all the stats have the same history length as an arbitrarily chosen "reference-stat" * Ooops the reference-stat happened to be the stat with length 0 * assert (legit_stat_len == reference_stat_len (=0)) ---> failed assert Also some minor fixes (from Jeremy's other diff) to support LLFF Reviewed By: davnov134 Differential Revision: D38475272 fbshipit-source-id: 5b35ac86d1d5239759f537621f41a3aa4eb3bd68
This commit is contained in:
parent
624bc5a274
commit
c83ec3555d
@ -1,7 +1,7 @@
|
||||
defaults:
|
||||
- repro_singleseq_base
|
||||
- _self_
|
||||
exp_dir: "./data/nerf_blender_publ/${oc.env:BLENDER_SINGLESEQ_CLASS}"
|
||||
exp_dir: "./data/nerf_blender_repro/${oc.env:BLENDER_SINGLESEQ_CLASS}"
|
||||
data_source_ImplicitronDataSource_args:
|
||||
data_loader_map_provider_SequenceDataLoaderMapProvider_args:
|
||||
dataset_length_train: 100
|
||||
@ -16,17 +16,18 @@ data_source_ImplicitronDataSource_args:
|
||||
|
||||
model_factory_ImplicitronModelFactory_args:
|
||||
model_GenericModel_args:
|
||||
raysampler_AdaptiveRaySampler_args:
|
||||
mask_images: false
|
||||
raysampler_class_type: NearFarRaySampler
|
||||
raysampler_NearFarRaySampler_args:
|
||||
n_rays_per_image_sampled_from_mask: 4096
|
||||
scene_extent: 2.0
|
||||
min_depth: 2
|
||||
max_depth: 6
|
||||
renderer_MultiPassEmissionAbsorptionRenderer_args:
|
||||
density_noise_std_train: 1.0
|
||||
n_pts_per_ray_fine_training: 128
|
||||
n_pts_per_ray_fine_evaluation: 128
|
||||
raymarcher_EmissionAbsorptionRaymarcher_args:
|
||||
blend_output: true
|
||||
bg_color:
|
||||
- 1.0
|
||||
blend_output: false
|
||||
loss_weights:
|
||||
loss_rgb_mse: 1.0
|
||||
loss_prev_stage_rgb_mse: 1.0
|
||||
@ -35,11 +36,11 @@ model_factory_ImplicitronModelFactory_args:
|
||||
loss_autodecoder_norm: 0.00
|
||||
|
||||
optimizer_factory_ImplicitronOptimizerFactory_args:
|
||||
exponential_lr_step_size: 3001
|
||||
exponential_lr_step_size: 2500
|
||||
lr_policy: Exponential
|
||||
|
||||
training_loop_ImplicitronTrainingLoop_args:
|
||||
max_epochs: 3001
|
||||
max_epochs: 2000
|
||||
metric_print_interval: 100
|
||||
store_checkpoints_purge: 3
|
||||
test_when_finished: true
|
||||
|
@ -249,6 +249,7 @@ class ImplicitronTrainingLoop(TrainingLoopBase): # pyre-ignore [13]
|
||||
stats = Stats(
|
||||
# log_vars should be a list, but OmegaConf might load them as ListConfig
|
||||
list(log_vars),
|
||||
plot_file=os.path.join(exp_dir, "train_stats.pdf"),
|
||||
visdom_env=visdom_env_charts,
|
||||
verbose=False,
|
||||
visdom_server=self.visdom_server,
|
||||
|
@ -95,6 +95,7 @@ data_source_ImplicitronDataSource_args:
|
||||
n_known_frames_for_test: null
|
||||
path_manager_factory_PathManagerFactory_args:
|
||||
silence_logs: true
|
||||
downscale_factor: 4
|
||||
dataset_map_provider_RenderedMeshDatasetMapProvider_args:
|
||||
num_views: 40
|
||||
data_file: null
|
||||
|
@ -162,7 +162,7 @@ class TestExperiment(unittest.TestCase):
|
||||
|
||||
|
||||
class TestNerfRepro(unittest.TestCase):
|
||||
@unittest.skip("This runs full NeRF training on Blender data.")
|
||||
@unittest.skip("This test runs full blender training.")
|
||||
def test_nerf_blender(self):
|
||||
# Train vanilla NERF.
|
||||
# Set env vars BLENDER_DATASET_ROOT and BLENDER_SINGLESEQ_CLASS first!
|
||||
@ -174,6 +174,22 @@ class TestNerfRepro(unittest.TestCase):
|
||||
experiment.dump_cfg(cfg)
|
||||
experiment_runner.run()
|
||||
|
||||
@unittest.skip("This test runs full llff training.")
|
||||
def test_nerf_llff(self):
|
||||
# Train vanilla NERF.
|
||||
# Set env vars LLFF_DATASET_ROOT and LLFF_SINGLESEQ_CLASS first!
|
||||
LLFF_SINGLESEQ_CLASS = os.environ["LLFF_SINGLESEQ_CLASS"]
|
||||
if not interactive_testing_requested():
|
||||
return
|
||||
with initialize_config_dir(config_dir=str(IMPLICITRON_CONFIGS_DIR)):
|
||||
cfg = compose(
|
||||
config_name=f"repro_singleseq_nerf_llff_{LLFF_SINGLESEQ_CLASS}",
|
||||
overrides=[],
|
||||
)
|
||||
experiment_runner = experiment.Experiment(**cfg)
|
||||
experiment.dump_cfg(cfg)
|
||||
experiment_runner.run()
|
||||
|
||||
@unittest.skip("This test checks resuming of the NeRF training.")
|
||||
def test_nerf_blender_resume(self):
|
||||
# Train one train batch of NeRF, then resume for one more batch.
|
||||
|
@ -32,17 +32,21 @@ class LlffDatasetMapProvider(SingleSceneDatasetMapProviderBase):
|
||||
and test datasets, and this many random training frames are added to
|
||||
each test batch. If not set, test batches each contain just a single
|
||||
testing frame.
|
||||
downscale_factor: determines image sizes.
|
||||
"""
|
||||
|
||||
downscale_factor: int = 4
|
||||
|
||||
def _load_data(self) -> None:
|
||||
path_manager = self.path_manager_factory.get()
|
||||
images, poses, _ = load_llff_data(
|
||||
self.base_dir, factor=8, path_manager=path_manager
|
||||
self.base_dir, factor=self.downscale_factor, path_manager=path_manager
|
||||
)
|
||||
hwf = poses[0, :3, -1]
|
||||
poses = poses[:, :3, :4]
|
||||
|
||||
i_test = np.arange(images.shape[0])[::8]
|
||||
llffhold = 8
|
||||
i_test = np.arange(images.shape[0])[::llffhold]
|
||||
i_test_index = set(i_test.tolist())
|
||||
i_train = np.array(
|
||||
[i for i in np.arange(images.shape[0]) if i not in i_test_index]
|
||||
|
@ -27,6 +27,7 @@ from .utils import DATASET_TYPE_KNOWN, DATASET_TYPE_UNKNOWN
|
||||
_SINGLE_SEQUENCE_NAME: str = "one_sequence"
|
||||
|
||||
|
||||
@expand_args_fields
|
||||
class SingleSceneDataset(DatasetBase, Configurable):
|
||||
"""
|
||||
A dataset from images from a single scene.
|
||||
@ -110,7 +111,6 @@ class SingleSceneDatasetMapProviderBase(DatasetMapProviderBase):
|
||||
def _get_dataset(
|
||||
self, split_idx: int, frame_type: str, set_eval_batches: bool = False
|
||||
) -> SingleSceneDataset:
|
||||
expand_args_fields(SingleSceneDataset)
|
||||
# pyre-ignore[16]
|
||||
split = self.i_split[split_idx]
|
||||
frame_types = [frame_type] * len(split)
|
||||
|
@ -245,13 +245,20 @@ def eval_batch(
|
||||
if frame_data.mask_crop is None:
|
||||
warnings.warn("mask_crop is None, assuming the whole image is valid.")
|
||||
|
||||
if frame_data.fg_probability is None:
|
||||
warnings.warn("fg_probability is None, assuming the whole image is fg.")
|
||||
|
||||
# threshold the masks to make ground truth binary masks
|
||||
# pyre-ignore [58]
|
||||
mask_fg = frame_data.fg_probability >= mask_thr
|
||||
mask_fg = (
|
||||
frame_data.fg_probability >= mask_thr
|
||||
if frame_data.fg_probability is not None
|
||||
# pyre-ignore [16]
|
||||
else torch.ones_like(frame_data.image_rgb[:, :1, ...]).bool()
|
||||
)
|
||||
|
||||
mask_crop = (
|
||||
frame_data.mask_crop
|
||||
if frame_data.mask_crop is not None
|
||||
# pyre-ignore [6]
|
||||
else torch.ones_like(mask_fg)
|
||||
)
|
||||
|
||||
@ -259,7 +266,6 @@ def eval_batch(
|
||||
# pyre-fixme[6]: Expected `Tensor` for 1st param but got
|
||||
# `Optional[torch.Tensor]`.
|
||||
frame_data.image_rgb,
|
||||
# pyre-ignore [6]
|
||||
mask_fg,
|
||||
bg_color=bg_color,
|
||||
)
|
||||
@ -275,7 +281,6 @@ def eval_batch(
|
||||
# pyre-fixme[6]: Expected `Tensor` for 4th param but got
|
||||
# `Optional[torch.Tensor]`.
|
||||
depth_map=frame_data.depth_map,
|
||||
# pyre-fixme[16]: `Optional` has no attribute `__getitem__`.
|
||||
depth_mask=frame_data.depth_mask[:1],
|
||||
visdom_env=visualize_visdom_env,
|
||||
)
|
||||
@ -284,7 +289,7 @@ def eval_batch(
|
||||
|
||||
results["iou"] = iou(
|
||||
cloned_render["mask_render"],
|
||||
mask_fg, # pyre-ignore [6]
|
||||
mask_fg,
|
||||
mask=mask_crop,
|
||||
)
|
||||
|
||||
|
@ -13,8 +13,8 @@ from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import lpips
|
||||
import torch
|
||||
import tqdm
|
||||
|
||||
import tqdm
|
||||
from pytorch3d.implicitron.dataset import utils as ds_utils
|
||||
|
||||
from pytorch3d.implicitron.evaluation import evaluate_new_view_synthesis as evaluate
|
||||
|
@ -198,7 +198,6 @@ class Stats(object):
|
||||
if verbose:
|
||||
print(f"Adding {add_log_var}")
|
||||
self.log_vars.append(add_log_var)
|
||||
# self.synchronize_logged_vars(self.log_vars, verbose=verbose)
|
||||
|
||||
def update(self, preds, time_start=None, freeze_iter=False, stat_set="train"):
|
||||
|
||||
@ -230,7 +229,6 @@ class Stats(object):
|
||||
elapsed = time.time() - time_start
|
||||
time_per_it = float(elapsed) / float(it + 1)
|
||||
val = time_per_it
|
||||
# self.stats[stat_set]['sec/it'].update(time_per_it,epoch=epoch,n=1)
|
||||
else:
|
||||
if stat in preds:
|
||||
try:
|
||||
@ -441,7 +439,6 @@ class Stats(object):
|
||||
self.log_vars = log_vars # !!!
|
||||
|
||||
for stat_set in stat_sets:
|
||||
reference_stat = list(self.stats[stat_set].keys())[0]
|
||||
for stat in log_vars:
|
||||
if stat not in self.stats[stat_set]:
|
||||
if verbose:
|
||||
@ -468,12 +465,11 @@ class Stats(object):
|
||||
lastep = self.epoch + 1
|
||||
for ep in range(lastep):
|
||||
self.stats[stat_set][stat].update(default_val, n=1, epoch=ep)
|
||||
epoch_self = self.stats[stat_set][reference_stat].get_epoch()
|
||||
epoch_generated = self.stats[stat_set][stat].get_epoch()
|
||||
assert (
|
||||
epoch_self == epoch_generated
|
||||
epoch_generated == self.epoch + 1
|
||||
), "bad epoch of synchronized log_var! %d vs %d" % (
|
||||
epoch_self,
|
||||
self.epoch + 1,
|
||||
epoch_generated,
|
||||
)
|
||||
|
||||
|
@ -83,6 +83,7 @@ dataset_map_provider_LlffDatasetMapProvider_args:
|
||||
n_known_frames_for_test: null
|
||||
path_manager_factory_PathManagerFactory_args:
|
||||
silence_logs: true
|
||||
downscale_factor: 4
|
||||
dataset_map_provider_RenderedMeshDatasetMapProvider_args:
|
||||
num_views: 40
|
||||
data_file: null
|
||||
|
@ -69,6 +69,7 @@ class TestDataLlff(TestCaseMixin, unittest.TestCase):
|
||||
provider = LlffDatasetMapProvider(
|
||||
base_dir="manifold://co3d/tree/nerf_data/nerf_llff_data/fern",
|
||||
object_name="fern",
|
||||
downscale_factor=8,
|
||||
)
|
||||
dataset_map = provider.get_dataset_map()
|
||||
known_matrix = torch.zeros(1, 4, 4)
|
||||
|
Loading…
x
Reference in New Issue
Block a user