Krzysztof Chalupka c83ec3555d Mods and bugfixes for LLFF and Blender repros
Summary:
LLFF (and most/all non-synth datasets) will have no background/foreground distinction. Add support for data with no fg mask.

Also, we had a bug in stats loading, like this:
  * Load stats
  * One of the stats has a history of length 0
  * That's fine, e.g. maybe it's fg_error but the dataset has no notion of fg/bg. So leave it as len 0
  * Check whether all the stats have the same history length as an arbitrarily chosen "reference-stat"
  * Ooops the reference-stat happened to be the stat with length 0
  * assert (legit_stat_len == reference_stat_len (=0)) ---> failed assert

Also some minor fixes (from Jeremy's other diff) to support LLFF

Reviewed By: davnov134

Differential Revision: D38475272

fbshipit-source-id: 5b35ac86d1d5239759f537621f41a3aa4eb3bd68
2022-08-09 15:04:44 -07:00

490 lines
16 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import gzip
import json
import time
import warnings
from collections.abc import Iterable
from itertools import cycle
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import colors as mcolors
from pytorch3d.implicitron.tools.vis_utils import get_visdom_connection
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.history = []
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1, epoch=0):
# make sure the history is of the same len as epoch
while len(self.history) <= epoch:
self.history.append([])
self.history[epoch].append(val / n)
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def get_epoch_averages(self, epoch=-1):
if len(self.history) == 0: # no stats here
return None
elif epoch == -1:
return [
(float(np.array(x).mean()) if len(x) > 0 else float("NaN"))
for x in self.history
]
else:
return float(np.array(self.history[epoch]).mean())
def get_all_values(self):
all_vals = [np.array(x) for x in self.history]
all_vals = np.concatenate(all_vals)
return all_vals
def get_epoch(self):
return len(self.history)
@staticmethod
def from_json_str(json_str):
self = AverageMeter()
self.__dict__.update(json.loads(json_str))
return self
class Stats(object):
# TODO: update this with context manager
"""
stats logging object useful for gathering statistics of training a deep net in pytorch
Example:
```
# init stats structure that logs statistics 'objective' and 'top1e'
stats = Stats( ('objective','top1e') )
network = init_net() # init a pytorch module (=nueral network)
dataloader = init_dataloader() # init a dataloader
for epoch in range(10):
# start of epoch -> call new_epoch
stats.new_epoch()
# iterate over batches
for batch in dataloader:
output = network(batch) # run and save into a dict of output variables "output"
# stats.update() automatically parses the 'objective' and 'top1e' from
# the "output" dict and stores this into the db
stats.update(output)
stats.print() # prints the averages over given epoch
# stores the training plots into '/tmp/epoch_stats.pdf'
# and plots into a visdom server running at localhost (if running)
stats.plot_stats(plot_file='/tmp/epoch_stats.pdf')
```
"""
def __init__(
self,
log_vars,
verbose=False,
epoch=-1,
visdom_env="main",
do_plot=True,
plot_file=None,
visdom_server="http://localhost",
visdom_port=8097,
):
self.verbose = verbose
self.log_vars = log_vars
self.visdom_env = visdom_env
self.visdom_server = visdom_server
self.visdom_port = visdom_port
self.plot_file = plot_file
self.do_plot = do_plot
self.hard_reset(epoch=epoch)
@staticmethod
def from_json_str(json_str):
self = Stats([])
# load the global state
self.__dict__.update(json.loads(json_str))
# recover the AverageMeters
for stat_set in self.stats:
self.stats[stat_set] = {
log_var: AverageMeter.from_json_str(log_vals_json_str)
for log_var, log_vals_json_str in self.stats[stat_set].items()
}
return self
@staticmethod
def load(flpath, postfix=".jgz"):
flpath = _get_postfixed_filename(flpath, postfix)
with gzip.open(flpath, "r") as fin:
data = json.loads(fin.read().decode("utf-8"))
return Stats.from_json_str(data)
def save(self, flpath, postfix=".jgz"):
flpath = _get_postfixed_filename(flpath, postfix)
# store into a gzipped-json
with gzip.open(flpath, "w") as fout:
fout.write(json.dumps(self, cls=StatsJSONEncoder).encode("utf-8"))
# some sugar to be used with "with stats:" at the beginning of the epoch
def __enter__(self):
if self.do_plot and self.epoch >= 0:
self.plot_stats(self.visdom_env)
self.new_epoch()
def __exit__(self, type, value, traceback):
iserr = type is not None and issubclass(type, Exception)
iserr = iserr or (type is KeyboardInterrupt)
if iserr:
print("error inside 'with' block")
return
if self.do_plot:
self.plot_stats(self.visdom_env)
def reset(self): # to be called after each epoch
stat_sets = list(self.stats.keys())
if self.verbose:
print("stats: epoch %d - reset" % self.epoch)
self.it = {k: -1 for k in stat_sets}
for stat_set in stat_sets:
for stat in self.stats[stat_set]:
self.stats[stat_set][stat].reset()
def hard_reset(self, epoch=-1): # to be called during object __init__
self.epoch = epoch
if self.verbose:
print("stats: epoch %d - hard reset" % self.epoch)
self.stats = {}
# reset
self.reset()
def new_epoch(self):
if self.verbose:
print("stats: new epoch %d" % (self.epoch + 1))
self.epoch += 1
self.reset() # zero the stats + increase epoch counter
def gather_value(self, val):
if isinstance(val, (float, int)):
val = float(val)
else:
val = val.data.cpu().numpy()
val = float(val.sum())
return val
def add_log_vars(self, added_log_vars, verbose=True):
for add_log_var in added_log_vars:
if add_log_var not in self.stats:
if verbose:
print(f"Adding {add_log_var}")
self.log_vars.append(add_log_var)
def update(self, preds, time_start=None, freeze_iter=False, stat_set="train"):
if self.epoch == -1: # uninitialized
print(
"warning: epoch==-1 means uninitialized stats structure -> new_epoch() called"
)
self.new_epoch()
if stat_set not in self.stats:
self.stats[stat_set] = {}
self.it[stat_set] = -1
if not freeze_iter:
self.it[stat_set] += 1
epoch = self.epoch
it = self.it[stat_set]
for stat in self.log_vars:
if stat not in self.stats[stat_set]:
self.stats[stat_set][stat] = AverageMeter()
if stat == "sec/it": # compute speed
if time_start is None:
elapsed = 0.0
else:
elapsed = time.time() - time_start
time_per_it = float(elapsed) / float(it + 1)
val = time_per_it
else:
if stat in preds:
try:
val = self.gather_value(preds[stat])
except KeyError:
raise ValueError(
"could not extract prediction %s\
from the prediction dictionary"
% stat
) from None
else:
val = None
if val is not None:
self.stats[stat_set][stat].update(val, epoch=epoch, n=1)
def get_epoch_averages(self, epoch=None):
stat_sets = list(self.stats.keys())
if epoch is None:
epoch = self.epoch
if epoch == -1:
epoch = list(range(self.epoch))
outvals = {}
for stat_set in stat_sets:
outvals[stat_set] = {
"epoch": epoch,
"it": self.it[stat_set],
"epoch_max": self.epoch,
}
for stat in self.stats[stat_set].keys():
if self.stats[stat_set][stat].count == 0:
continue
if isinstance(epoch, Iterable):
avgs = self.stats[stat_set][stat].get_epoch_averages()
avgs = [avgs[e] for e in epoch]
else:
avgs = self.stats[stat_set][stat].get_epoch_averages(epoch=epoch)
outvals[stat_set][stat] = avgs
return outvals
def print(
self,
max_it=None,
stat_set="train",
vars_print=None,
get_str=False,
skip_nan=False,
stat_format=lambda s: s.replace("loss_", "").replace("prev_stage_", "ps_"),
):
epoch = self.epoch
stats = self.stats
str_out = ""
it = self.it[stat_set]
stat_str = ""
stats_print = sorted(stats[stat_set].keys())
for stat in stats_print:
if stats[stat_set][stat].count == 0:
continue
if skip_nan and not np.isfinite(stats[stat_set][stat].avg):
continue
stat_str += " {0:.12}: {1:1.3f} |".format(
stat_format(stat), stats[stat_set][stat].avg
)
head_str = "[%s] | epoch %3d | it %5d" % (stat_set, epoch, it)
if max_it:
head_str += "/ %d" % max_it
str_out = "%s | %s" % (head_str, stat_str)
if get_str:
return str_out
else:
print(str_out)
def plot_stats(
self, visdom_env=None, plot_file=None, visdom_server=None, visdom_port=None
):
# use the cached visdom env if none supplied
if visdom_env is None:
visdom_env = self.visdom_env
if visdom_server is None:
visdom_server = self.visdom_server
if visdom_port is None:
visdom_port = self.visdom_port
if plot_file is None:
plot_file = self.plot_file
stat_sets = list(self.stats.keys())
print(
"printing charts to visdom env '%s' (%s:%d)"
% (visdom_env, visdom_server, visdom_port)
)
novisdom = False
viz = get_visdom_connection(server=visdom_server, port=visdom_port)
if not viz.check_connection():
print("no visdom server! -> skipping visdom plots")
novisdom = True
lines = []
# plot metrics
if not novisdom:
viz.close(env=visdom_env, win=None)
for stat in self.log_vars:
vals = []
stat_sets_now = []
for stat_set in stat_sets:
val = self.stats[stat_set][stat].get_epoch_averages()
if val is None:
continue
else:
val = np.array(val).reshape(-1)
stat_sets_now.append(stat_set)
vals.append(val)
if len(vals) == 0:
continue
lines.append((stat_sets_now, stat, vals))
if not novisdom:
for tmodes, stat, vals in lines:
title = "%s" % stat
opts = {"title": title, "legend": list(tmodes)}
for i, (tmode, val) in enumerate(zip(tmodes, vals)):
update = "append" if i > 0 else None
valid = np.where(np.isfinite(val))[0]
if len(valid) == 0:
continue
x = np.arange(len(val))
viz.line(
Y=val[valid],
X=x[valid],
env=visdom_env,
opts=opts,
win=f"stat_plot_{title}",
name=tmode,
update=update,
)
if plot_file:
print("exporting stats to %s" % plot_file)
ncol = 3
nrow = int(np.ceil(float(len(lines)) / ncol))
matplotlib.rcParams.update({"font.size": 5})
color = cycle(plt.cm.tab10(np.linspace(0, 1, 10)))
fig = plt.figure(1)
plt.clf()
for idx, (tmodes, stat, vals) in enumerate(lines):
c = next(color)
plt.subplot(nrow, ncol, idx + 1)
plt.gca()
for vali, vals_ in enumerate(vals):
c_ = c * (1.0 - float(vali) * 0.3)
valid = np.where(np.isfinite(vals_))[0]
if len(valid) == 0:
continue
x = np.arange(len(vals_))
plt.plot(x[valid], vals_[valid], c=c_, linewidth=1)
plt.ylabel(stat)
plt.xlabel("epoch")
plt.gca().yaxis.label.set_color(c[0:3] * 0.75)
plt.legend(tmodes)
gcolor = np.array(mcolors.to_rgba("lightgray"))
plt.grid(
b=True, which="major", color=gcolor, linestyle="-", linewidth=0.4
)
plt.grid(
b=True, which="minor", color=gcolor, linestyle="--", linewidth=0.2
)
plt.minorticks_on()
plt.tight_layout()
plt.show()
try:
fig.savefig(plot_file)
except PermissionError:
warnings.warn("Cant dump stats due to insufficient permissions!")
def synchronize_logged_vars(self, log_vars, default_val=float("NaN"), verbose=True):
stat_sets = list(self.stats.keys())
# remove the additional log_vars
for stat_set in stat_sets:
for stat in self.stats[stat_set].keys():
if stat not in log_vars:
print("additional stat %s:%s -> removing" % (stat_set, stat))
self.stats[stat_set] = {
stat: v for stat, v in self.stats[stat_set].items() if stat in log_vars
}
self.log_vars = log_vars # !!!
for stat_set in stat_sets:
for stat in log_vars:
if stat not in self.stats[stat_set]:
if verbose:
print(
"missing stat %s:%s -> filling with default values (%1.2f)"
% (stat_set, stat, default_val)
)
elif len(self.stats[stat_set][stat].history) != self.epoch + 1:
h = self.stats[stat_set][stat].history
if len(h) == 0: # just never updated stat ... skip
continue
else:
if verbose:
print(
"incomplete stat %s:%s -> reseting with default values (%1.2f)"
% (stat_set, stat, default_val)
)
else:
continue
self.stats[stat_set][stat] = AverageMeter()
self.stats[stat_set][stat].reset()
lastep = self.epoch + 1
for ep in range(lastep):
self.stats[stat_set][stat].update(default_val, n=1, epoch=ep)
epoch_generated = self.stats[stat_set][stat].get_epoch()
assert (
epoch_generated == self.epoch + 1
), "bad epoch of synchronized log_var! %d vs %d" % (
self.epoch + 1,
epoch_generated,
)
class StatsJSONEncoder(json.JSONEncoder):
def default(self, o):
if isinstance(o, (AverageMeter, Stats)):
enc = self.encode(o.__dict__)
return enc
else:
raise TypeError(
f"Object of type {o.__class__.__name__} " f"is not JSON serializable"
)
def _get_postfixed_filename(fl, postfix):
return fl if fl.endswith(postfix) else fl + postfix