Krzysztof Chalupka c83ec3555d Mods and bugfixes for LLFF and Blender repros
Summary:
LLFF (and most/all non-synth datasets) will have no background/foreground distinction. Add support for data with no fg mask.

Also, we had a bug in stats loading, like this:
  * Load stats
  * One of the stats has a history of length 0
  * That's fine, e.g. maybe it's fg_error but the dataset has no notion of fg/bg. So leave it as len 0
  * Check whether all the stats have the same history length as an arbitrarily chosen "reference-stat"
  * Ooops the reference-stat happened to be the stat with length 0
  * assert (legit_stat_len == reference_stat_len (=0)) ---> failed assert

Also some minor fixes (from Jeremy's other diff) to support LLFF

Reviewed By: davnov134

Differential Revision: D38475272

fbshipit-source-id: 5b35ac86d1d5239759f537621f41a3aa4eb3bd68
2022-08-09 15:04:44 -07:00

448 lines
16 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import time
from typing import Any, List, Optional
import torch
from accelerate import Accelerator
from pytorch3d.implicitron.evaluation.evaluator import EvaluatorBase
from pytorch3d.implicitron.models.base_model import ImplicitronModelBase
from pytorch3d.implicitron.models.generic_model import EvaluationMode
from pytorch3d.implicitron.tools import model_io, vis_utils
from pytorch3d.implicitron.tools.config import (
registry,
ReplaceableBase,
run_auto_creation,
)
from pytorch3d.implicitron.tools.stats import Stats
from pytorch3d.renderer.cameras import CamerasBase
from torch.utils.data import DataLoader
from .utils import seed_all_random_engines
logger = logging.getLogger(__name__)
class TrainingLoopBase(ReplaceableBase):
def run(
self,
train_loader: DataLoader,
val_loader: Optional[DataLoader],
test_loader: Optional[DataLoader],
model: ImplicitronModelBase,
optimizer: torch.optim.Optimizer,
scheduler: Any,
**kwargs,
) -> None:
raise NotImplementedError()
def load_stats(
self,
log_vars: List[str],
exp_dir: str,
resume: bool = True,
resume_epoch: int = -1,
**kwargs,
) -> Stats:
raise NotImplementedError()
@registry.register
class ImplicitronTrainingLoop(TrainingLoopBase): # pyre-ignore [13]
"""
Members:
eval_only: If True, only run evaluation using the test dataloader.
evaluator: An EvaluatorBase instance, used to evaluate training results.
max_epochs: Train for this many epochs. Note that if the model was
loaded from a checkpoint, we will restart training at the appropriate
epoch and run for (max_epochs - checkpoint_epoch) epochs.
store_checkpoints: If True, store model and optimizer state checkpoints.
store_checkpoints_purge: If >= 0, remove any checkpoints older or equal
to this many epochs.
test_interval: Evaluate on a test dataloader each `test_interval` epochs.
test_when_finished: If True, evaluate on a test dataloader when training
completes.
validation_interval: Validate each `validation_interval` epochs.
clip_grad: Optionally clip the gradient norms.
If set to a value <=0.0, no clipping
metric_print_interval: The batch interval at which the stats should be
logged.
visualize_interval: The batch interval at which the visualizations
should be plotted
visdom_env: The name of the Visdom environment to use for plotting.
visdom_port: The Visdom port.
visdom_server: Address of the Visdom server.
"""
# Parameters of the outer training loop.
eval_only: bool = False
evaluator: EvaluatorBase
evaluator_class_type: str = "ImplicitronEvaluator"
max_epochs: int = 1000
store_checkpoints: bool = True
store_checkpoints_purge: int = 1
test_interval: int = -1
test_when_finished: bool = False
validation_interval: int = 1
# Gradient clipping.
clip_grad: float = 0.0
# Visualization/logging parameters.
metric_print_interval: int = 5
visualize_interval: int = 1000
visdom_env: str = ""
visdom_port: int = int(os.environ.get("VISDOM_PORT", 8097))
visdom_server: str = "http://127.0.0.1"
def __post_init__(self):
run_auto_creation(self)
def run(
self,
*,
train_loader: DataLoader,
val_loader: Optional[DataLoader],
test_loader: Optional[DataLoader],
model: ImplicitronModelBase,
optimizer: torch.optim.Optimizer,
scheduler: Any,
accelerator: Optional[Accelerator],
all_train_cameras: Optional[CamerasBase],
device: torch.device,
exp_dir: str,
stats: Stats,
seed: int,
**kwargs,
):
"""
Entry point to run the training and validation loops
based on the specified config file.
"""
start_epoch = stats.epoch + 1
assert scheduler.last_epoch == stats.epoch + 1
assert scheduler.last_epoch == start_epoch
# only run evaluation on the test dataloader
if self.eval_only:
if test_loader is not None:
self.evaluator.run(
all_train_cameras=all_train_cameras,
dataloader=test_loader,
device=device,
dump_to_json=True,
epoch=stats.epoch,
exp_dir=exp_dir,
model=model,
)
return
else:
raise ValueError(
"Cannot evaluate and dump results to json, no test data provided."
)
# loop through epochs
for epoch in range(start_epoch, self.max_epochs):
# automatic new_epoch and plotting of stats at every epoch start
with stats:
# Make sure to re-seed random generators to ensure reproducibility
# even after restart.
seed_all_random_engines(seed + epoch)
cur_lr = float(scheduler.get_last_lr()[-1])
logger.debug(f"scheduler lr = {cur_lr:1.2e}")
# train loop
self._training_or_validation_epoch(
accelerator=accelerator,
device=device,
epoch=epoch,
loader=train_loader,
model=model,
optimizer=optimizer,
stats=stats,
validation=False,
)
# val loop (optional)
if val_loader is not None and epoch % self.validation_interval == 0:
self._training_or_validation_epoch(
accelerator=accelerator,
device=device,
epoch=epoch,
loader=val_loader,
model=model,
optimizer=optimizer,
stats=stats,
validation=True,
)
# eval loop (optional)
if (
test_loader is not None
and self.test_interval > 0
and epoch % self.test_interval == 0
):
self.evaluator.run(
all_train_cameras=all_train_cameras,
device=device,
dataloader=test_loader,
model=model,
)
assert stats.epoch == epoch, "inconsistent stats!"
self._checkpoint(accelerator, epoch, exp_dir, model, optimizer, stats)
scheduler.step()
new_lr = float(scheduler.get_last_lr()[-1])
if new_lr != cur_lr:
logger.info(f"LR change! {cur_lr} -> {new_lr}")
if self.test_when_finished:
if test_loader is not None:
self.evaluator.run(
all_train_cameras=all_train_cameras,
device=device,
dump_to_json=True,
epoch=stats.epoch,
exp_dir=exp_dir,
dataloader=test_loader,
model=model,
)
else:
raise ValueError(
"Cannot evaluate and dump results to json, no test data provided."
)
def load_stats(
self,
log_vars: List[str],
exp_dir: str,
resume: bool = True,
resume_epoch: int = -1,
**kwargs,
) -> Stats:
"""
Load Stats that correspond to the model's log_vars and resume_epoch.
Args:
log_vars: A list of variable names to log. Should be a subset of the
`preds` returned by the forward function of the corresponding
ImplicitronModelBase instance.
exp_dir: Root experiment directory.
resume: If False, do not load stats from the checkpoint speci-
fied by resume and resume_epoch; instead, create a fresh stats object.
stats: The stats structure (optionally loaded from checkpoint)
"""
# Init the stats struct
visdom_env_charts = (
vis_utils.get_visdom_env(self.visdom_env, exp_dir) + "_charts"
)
stats = Stats(
# log_vars should be a list, but OmegaConf might load them as ListConfig
list(log_vars),
plot_file=os.path.join(exp_dir, "train_stats.pdf"),
visdom_env=visdom_env_charts,
verbose=False,
visdom_server=self.visdom_server,
visdom_port=self.visdom_port,
)
model_path = None
if resume:
if resume_epoch > 0:
model_path = model_io.get_checkpoint(exp_dir, resume_epoch)
if not os.path.isfile(model_path):
raise FileNotFoundError(
f"Cannot find stats from epoch {resume_epoch}."
)
else:
model_path = model_io.find_last_checkpoint(exp_dir)
if model_path is not None:
stats_path = model_io.get_stats_path(model_path)
stats_load = model_io.load_stats(stats_path)
# Determine if stats should be reset
if resume:
if stats_load is None:
logger.warning("\n\n\n\nCORRUPT STATS -> clearing stats\n\n\n\n")
last_epoch = model_io.parse_epoch_from_model_path(model_path)
logger.info(f"Estimated resume epoch = {last_epoch}")
# Reset the stats struct
for _ in range(last_epoch + 1):
stats.new_epoch()
assert last_epoch == stats.epoch
else:
logger.info(f"Found previous stats in {stats_path} -> resuming.")
stats = stats_load
# Update stats properties incase it was reset on load
stats.visdom_env = visdom_env_charts
stats.visdom_server = self.visdom_server
stats.visdom_port = self.visdom_port
stats.plot_file = os.path.join(exp_dir, "train_stats.pdf")
stats.synchronize_logged_vars(log_vars)
else:
logger.info("Clearing stats")
return stats
def _training_or_validation_epoch(
self,
epoch: int,
loader: DataLoader,
model: ImplicitronModelBase,
optimizer: torch.optim.Optimizer,
stats: Stats,
validation: bool,
*,
accelerator: Optional[Accelerator],
bp_var: str = "objective",
device: torch.device,
**kwargs,
) -> None:
"""
This is the main loop for training and evaluation including:
model forward pass, loss computation, backward pass and visualization.
Args:
epoch: The index of the current epoch
loader: The dataloader to use for the loop
model: The model module optionally loaded from checkpoint
optimizer: The optimizer module optionally loaded from checkpoint
stats: The stats struct, also optionally loaded from checkpoint
validation: If true, run the loop with the model in eval mode
and skip the backward pass
accelerator: An optional Accelerator instance.
bp_var: The name of the key in the model output `preds` dict which
should be used as the loss for the backward pass.
device: The device on which to run the model.
"""
if validation:
model.eval()
trainmode = "val"
else:
model.train()
trainmode = "train"
t_start = time.time()
# get the visdom env name
visdom_env_imgs = stats.visdom_env + "_images_" + trainmode
viz = vis_utils.get_visdom_connection(
server=stats.visdom_server,
port=stats.visdom_port,
)
# Iterate through the batches
n_batches = len(loader)
for it, net_input in enumerate(loader):
last_iter = it == n_batches - 1
# move to gpu where possible (in place)
net_input = net_input.to(device)
# run the forward pass
if not validation:
optimizer.zero_grad()
preds = model(
**{**net_input, "evaluation_mode": EvaluationMode.TRAINING}
)
else:
with torch.no_grad():
preds = model(
**{**net_input, "evaluation_mode": EvaluationMode.EVALUATION}
)
# make sure we dont overwrite something
assert all(k not in preds for k in net_input.keys())
# merge everything into one big dict
preds.update(net_input)
# update the stats logger
stats.update(preds, time_start=t_start, stat_set=trainmode)
# pyre-ignore [16]
assert stats.it[trainmode] == it, "inconsistent stat iteration number!"
# print textual status update
if it % self.metric_print_interval == 0 or last_iter:
stats.print(stat_set=trainmode, max_it=n_batches)
# visualize results
if (
(accelerator is None or accelerator.is_local_main_process)
and self.visualize_interval > 0
and it % self.visualize_interval == 0
):
prefix = f"e{stats.epoch}_it{stats.it[trainmode]}"
if hasattr(model, "visualize"):
# pyre-ignore [29]
model.visualize(
viz,
visdom_env_imgs,
preds,
prefix,
)
# optimizer step
if not validation:
loss = preds[bp_var]
assert torch.isfinite(loss).all(), "Non-finite loss!"
# backprop
if accelerator is None:
loss.backward()
else:
accelerator.backward(loss)
if self.clip_grad > 0.0:
# Optionally clip the gradient norms.
total_norm = torch.nn.utils.clip_grad_norm(
model.parameters(), self.clip_grad
)
if total_norm > self.clip_grad:
logger.debug(
f"Clipping gradient: {total_norm}"
+ f" with coef {self.clip_grad / float(total_norm)}."
)
optimizer.step()
def _checkpoint(
self,
accelerator: Optional[Accelerator],
epoch: int,
exp_dir: str,
model: ImplicitronModelBase,
optimizer: torch.optim.Optimizer,
stats: Stats,
):
"""
Save a model and its corresponding Stats object to a file, if
`self.store_checkpoints` is True. In addition, if
`self.store_checkpoints_purge` is True, remove any checkpoints older
than `self.store_checkpoints_purge` epochs old.
"""
if self.store_checkpoints and (
accelerator is None or accelerator.is_local_main_process
):
if self.store_checkpoints_purge > 0:
for prev_epoch in range(epoch - self.store_checkpoints_purge):
model_io.purge_epoch(exp_dir, prev_epoch)
outfile = model_io.get_checkpoint(exp_dir, epoch)
unwrapped_model = (
model if accelerator is None else accelerator.unwrap_model(model)
)
model_io.safe_save_model(
unwrapped_model, stats, outfile, optimizer=optimizer
)