pytorch3d/tests/test_sample_points_from_meshes.py
Georgia Gkioxari 60f3c4e7d2 cpp support for packed to padded
Summary:
Cpu implementation for packed to padded and added gradients
```
Benchmark                                     Avg Time(μs)      Peak Time(μs) Iterations
--------------------------------------------------------------------------------
PACKED_TO_PADDED_2_100_300_1_cpu                    138             221           3625
PACKED_TO_PADDED_2_100_300_1_cuda:0                 184             261           2716
PACKED_TO_PADDED_2_100_300_16_cpu                   555             726            901
PACKED_TO_PADDED_2_100_300_16_cuda:0                179             260           2794
PACKED_TO_PADDED_2_100_3000_1_cpu                   396             519           1262
PACKED_TO_PADDED_2_100_3000_1_cuda:0                181             274           2764
PACKED_TO_PADDED_2_100_3000_16_cpu                 4517            5003            111
PACKED_TO_PADDED_2_100_3000_16_cuda:0               224             397           2235
PACKED_TO_PADDED_2_1000_300_1_cpu                   138             212           3616
PACKED_TO_PADDED_2_1000_300_1_cuda:0                180             282           2775
PACKED_TO_PADDED_2_1000_300_16_cpu                  565             711            885
PACKED_TO_PADDED_2_1000_300_16_cuda:0               179             264           2797
PACKED_TO_PADDED_2_1000_3000_1_cpu                  389             494           1287
PACKED_TO_PADDED_2_1000_3000_1_cuda:0               180             271           2777
PACKED_TO_PADDED_2_1000_3000_16_cpu                4522            5170            111
PACKED_TO_PADDED_2_1000_3000_16_cuda:0              216             286           2313
PACKED_TO_PADDED_10_100_300_1_cpu                   251             345           1995
PACKED_TO_PADDED_10_100_300_1_cuda:0                178             262           2806
PACKED_TO_PADDED_10_100_300_16_cpu                 2354            2750            213
PACKED_TO_PADDED_10_100_300_16_cuda:0               178             291           2814
PACKED_TO_PADDED_10_100_3000_1_cpu                 1519            1786            330
PACKED_TO_PADDED_10_100_3000_1_cuda:0               179             237           2791
PACKED_TO_PADDED_10_100_3000_16_cpu               24705           25879             21
PACKED_TO_PADDED_10_100_3000_16_cuda:0              228             316           2191
PACKED_TO_PADDED_10_1000_300_1_cpu                  261             432           1919
PACKED_TO_PADDED_10_1000_300_1_cuda:0               181             261           2756
PACKED_TO_PADDED_10_1000_300_16_cpu                2349            2770            213
PACKED_TO_PADDED_10_1000_300_16_cuda:0              180             256           2782
PACKED_TO_PADDED_10_1000_3000_1_cpu                1613            1929            310
PACKED_TO_PADDED_10_1000_3000_1_cuda:0              183             253           2739
PACKED_TO_PADDED_10_1000_3000_16_cpu              22041           23653             23
PACKED_TO_PADDED_10_1000_3000_16_cuda:0             220             343           2270
PACKED_TO_PADDED_32_100_300_1_cpu                   555             750            901
PACKED_TO_PADDED_32_100_300_1_cuda:0                188             282           2661
PACKED_TO_PADDED_32_100_300_16_cpu                 7550            8131             67
PACKED_TO_PADDED_32_100_300_16_cuda:0               181             272           2770
PACKED_TO_PADDED_32_100_3000_1_cpu                 4574            6327            110
PACKED_TO_PADDED_32_100_3000_1_cuda:0               173             254           2884
PACKED_TO_PADDED_32_100_3000_16_cpu               70366           72563              8
PACKED_TO_PADDED_32_100_3000_16_cuda:0              349             654           1433
PACKED_TO_PADDED_32_1000_300_1_cpu                  612             728            818
PACKED_TO_PADDED_32_1000_300_1_cuda:0               189             295           2647
PACKED_TO_PADDED_32_1000_300_16_cpu                7699            8254             65
PACKED_TO_PADDED_32_1000_300_16_cuda:0              189             311           2646
PACKED_TO_PADDED_32_1000_3000_1_cpu                5105            5261             98
PACKED_TO_PADDED_32_1000_3000_1_cuda:0              191             260           2625
PACKED_TO_PADDED_32_1000_3000_16_cpu              87073           92708              6
PACKED_TO_PADDED_32_1000_3000_16_cuda:0             344             425           1455
--------------------------------------------------------------------------------

Benchmark                                           Avg Time(μs)      Peak Time(μs) Iterations
--------------------------------------------------------------------------------
PACKED_TO_PADDED_TORCH_2_100_300_1_cpu                    492             627           1016
PACKED_TO_PADDED_TORCH_2_100_300_1_cuda:0                 768             975            652
PACKED_TO_PADDED_TORCH_2_100_300_16_cpu                   659             804            760
PACKED_TO_PADDED_TORCH_2_100_300_16_cuda:0                781             918            641
PACKED_TO_PADDED_TORCH_2_100_3000_1_cpu                   624             734            802
PACKED_TO_PADDED_TORCH_2_100_3000_1_cuda:0                778             929            643
PACKED_TO_PADDED_TORCH_2_100_3000_16_cpu                 2609            2850            192
PACKED_TO_PADDED_TORCH_2_100_3000_16_cuda:0               758             901            660
PACKED_TO_PADDED_TORCH_2_1000_300_1_cpu                   467             612           1072
PACKED_TO_PADDED_TORCH_2_1000_300_1_cuda:0                772             905            648
PACKED_TO_PADDED_TORCH_2_1000_300_16_cpu                  689             839            726
PACKED_TO_PADDED_TORCH_2_1000_300_16_cuda:0               789            1143            635
PACKED_TO_PADDED_TORCH_2_1000_3000_1_cpu                  629             735            795
PACKED_TO_PADDED_TORCH_2_1000_3000_1_cuda:0               812             916            616
PACKED_TO_PADDED_TORCH_2_1000_3000_16_cpu                2716            3117            185
PACKED_TO_PADDED_TORCH_2_1000_3000_16_cuda:0              844            1288            593
PACKED_TO_PADDED_TORCH_10_100_300_1_cpu                  2387            2557            210
PACKED_TO_PADDED_TORCH_10_100_300_1_cuda:0               4112            4993            122
PACKED_TO_PADDED_TORCH_10_100_300_16_cpu                 3385            4254            148
PACKED_TO_PADDED_TORCH_10_100_300_16_cuda:0              3959            4902            127
PACKED_TO_PADDED_TORCH_10_100_3000_1_cpu                 2918            3105            172
PACKED_TO_PADDED_TORCH_10_100_3000_1_cuda:0              4054            4450            124
PACKED_TO_PADDED_TORCH_10_100_3000_16_cpu               12748           13623             40
PACKED_TO_PADDED_TORCH_10_100_3000_16_cuda:0             4023            4395            125
PACKED_TO_PADDED_TORCH_10_1000_300_1_cpu                 2258            2492            222
PACKED_TO_PADDED_TORCH_10_1000_300_1_cuda:0              3997            4312            126
PACKED_TO_PADDED_TORCH_10_1000_300_16_cpu                3404            3597            147
PACKED_TO_PADDED_TORCH_10_1000_300_16_cuda:0             3877            4227            129
PACKED_TO_PADDED_TORCH_10_1000_3000_1_cpu                2789            3054            180
PACKED_TO_PADDED_TORCH_10_1000_3000_1_cuda:0             3821            4402            131
PACKED_TO_PADDED_TORCH_10_1000_3000_16_cpu              11967           12963             42
PACKED_TO_PADDED_TORCH_10_1000_3000_16_cuda:0            3729            4290            135
PACKED_TO_PADDED_TORCH_32_100_300_1_cpu                  6933            8152             73
PACKED_TO_PADDED_TORCH_32_100_300_1_cuda:0              11856           12287             43
PACKED_TO_PADDED_TORCH_32_100_300_16_cpu                 9895           11205             51
PACKED_TO_PADDED_TORCH_32_100_300_16_cuda:0             12354           13596             41
PACKED_TO_PADDED_TORCH_32_100_3000_1_cpu                 9516           10128             53
PACKED_TO_PADDED_TORCH_32_100_3000_1_cuda:0             12917           13597             39
PACKED_TO_PADDED_TORCH_32_100_3000_16_cpu               41209           43783             13
PACKED_TO_PADDED_TORCH_32_100_3000_16_cuda:0            12210           13288             41
PACKED_TO_PADDED_TORCH_32_1000_300_1_cpu                 7179            7689             70
PACKED_TO_PADDED_TORCH_32_1000_300_1_cuda:0             11896           12381             43
PACKED_TO_PADDED_TORCH_32_1000_300_16_cpu               10127           15494             50
PACKED_TO_PADDED_TORCH_32_1000_300_16_cuda:0            12034           12817             42
PACKED_TO_PADDED_TORCH_32_1000_3000_1_cpu                8743           10251             58
PACKED_TO_PADDED_TORCH_32_1000_3000_1_cuda:0            12023           12908             42
PACKED_TO_PADDED_TORCH_32_1000_3000_16_cpu              39071           41777             13
PACKED_TO_PADDED_TORCH_32_1000_3000_16_cuda:0           11999           13690             42
--------------------------------------------------------------------------------
```

Reviewed By: bottler, nikhilaravi, jcjohnson

Differential Revision: D19870575

fbshipit-source-id: 23a2477b73373c411899633386c87ab034c3702a
2020-02-19 10:48:54 -08:00

326 lines
10 KiB
Python

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import unittest
from pathlib import Path
import torch
from pytorch3d import _C
from pytorch3d.ops.sample_points_from_meshes import sample_points_from_meshes
from pytorch3d.structures.meshes import Meshes
from pytorch3d.utils.ico_sphere import ico_sphere
class TestSamplePoints(unittest.TestCase):
def setUp(self) -> None:
super().setUp()
torch.manual_seed(1)
@staticmethod
def init_meshes(
num_meshes: int = 10,
num_verts: int = 1000,
num_faces: int = 3000,
device: str = "cpu",
):
device = torch.device(device)
verts_list = []
faces_list = []
for _ in range(num_meshes):
verts = torch.rand(
(num_verts, 3), dtype=torch.float32, device=device
)
faces = torch.randint(
num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
)
verts_list.append(verts)
faces_list.append(faces)
meshes = Meshes(verts_list, faces_list)
return meshes
def test_all_empty_meshes(self):
"""
Check sample_points_from_meshes raises an exception if all meshes are
invalid.
"""
device = torch.device("cuda:0")
verts1 = torch.tensor([], dtype=torch.float32, device=device)
faces1 = torch.tensor([], dtype=torch.int64, device=device)
meshes = Meshes(
verts=[verts1, verts1, verts1], faces=[faces1, faces1, faces1]
)
with self.assertRaises(ValueError) as err:
sample_points_from_meshes(
meshes, num_samples=100, return_normals=True
)
self.assertTrue("Meshes are empty." in str(err.exception))
def test_sampling_output(self):
"""
Check outputs of sampling are correct for different meshes.
For an ico_sphere, the sampled vertices should lie on a unit sphere.
For an empty mesh, the samples and normals should be 0.
"""
device = torch.device("cuda:0")
# Unit simplex.
verts_pyramid = torch.tensor(
[
[0.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0],
],
dtype=torch.float32,
device=device,
)
faces_pyramid = torch.tensor(
[[0, 1, 2], [0, 2, 3], [0, 1, 3], [1, 2, 3]],
dtype=torch.int64,
device=device,
)
sphere_mesh = ico_sphere(9, device)
verts_sphere, faces_sphere = sphere_mesh.get_mesh_verts_faces(0)
verts_empty = torch.tensor([], dtype=torch.float32, device=device)
faces_empty = torch.tensor([], dtype=torch.int64, device=device)
num_samples = 10
meshes = Meshes(
verts=[verts_empty, verts_sphere, verts_pyramid],
faces=[faces_empty, faces_sphere, faces_pyramid],
)
samples, normals = sample_points_from_meshes(
meshes, num_samples=num_samples, return_normals=True
)
samples = samples.cpu()
normals = normals.cpu()
self.assertEqual(samples.shape, (3, num_samples, 3))
self.assertEqual(normals.shape, (3, num_samples, 3))
# Empty meshes: should have all zeros for samples and normals.
self.assertTrue(
torch.allclose(samples[0, :], torch.zeros((1, num_samples, 3)))
)
self.assertTrue(
torch.allclose(normals[0, :], torch.zeros((1, num_samples, 3)))
)
# Sphere: points should have radius 1.
x, y, z = samples[1, :].unbind(1)
radius = torch.sqrt(x ** 2 + y ** 2 + z ** 2)
self.assertTrue(torch.allclose(radius, torch.ones((num_samples))))
# Pyramid: points shoudl lie on one of the faces.
pyramid_verts = samples[2, :]
pyramid_normals = normals[2, :]
self.assertTrue(
torch.allclose(
pyramid_verts.lt(1).float(), torch.ones_like(pyramid_verts)
)
)
self.assertTrue(
torch.allclose(
(pyramid_verts >= 0).float(), torch.ones_like(pyramid_verts)
)
)
# Face 1: z = 0, x + y <= 1, normals = (0, 0, 1).
face_1_idxs = pyramid_verts[:, 2] == 0
face_1_verts, face_1_normals = (
pyramid_verts[face_1_idxs, :],
pyramid_normals[face_1_idxs, :],
)
self.assertTrue(
torch.all((face_1_verts[:, 0] + face_1_verts[:, 1]) <= 1)
)
self.assertTrue(
torch.allclose(
face_1_normals,
torch.tensor([0, 0, 1], dtype=torch.float32).expand(
face_1_normals.size()
),
)
)
# Face 2: x = 0, z + y <= 1, normals = (1, 0, 0).
face_2_idxs = pyramid_verts[:, 0] == 0
face_2_verts, face_2_normals = (
pyramid_verts[face_2_idxs, :],
pyramid_normals[face_2_idxs, :],
)
self.assertTrue(
torch.all((face_2_verts[:, 1] + face_2_verts[:, 2]) <= 1)
)
self.assertTrue(
torch.allclose(
face_2_normals,
torch.tensor([1, 0, 0], dtype=torch.float32).expand(
face_2_normals.size()
),
)
)
# Face 3: y = 0, x + z <= 1, normals = (0, -1, 0).
face_3_idxs = pyramid_verts[:, 1] == 0
face_3_verts, face_3_normals = (
pyramid_verts[face_3_idxs, :],
pyramid_normals[face_3_idxs, :],
)
self.assertTrue(
torch.all((face_3_verts[:, 0] + face_3_verts[:, 2]) <= 1)
)
self.assertTrue(
torch.allclose(
face_3_normals,
torch.tensor([0, -1, 0], dtype=torch.float32).expand(
face_3_normals.size()
),
)
)
# Face 4: x + y + z = 1, normals = (1, 1, 1)/sqrt(3).
face_4_idxs = pyramid_verts.gt(0).all(1)
face_4_verts, face_4_normals = (
pyramid_verts[face_4_idxs, :],
pyramid_normals[face_4_idxs, :],
)
self.assertTrue(
torch.allclose(
face_4_verts.sum(1), torch.ones(face_4_verts.size(0))
)
)
self.assertTrue(
torch.allclose(
face_4_normals,
(
torch.tensor([1, 1, 1], dtype=torch.float32)
/ torch.sqrt(torch.tensor(3, dtype=torch.float32))
).expand(face_4_normals.size()),
)
)
def test_mutinomial(self):
"""
Confirm that torch.multinomial does not sample elements which have
zero probability.
"""
freqs = torch.cuda.FloatTensor(
[
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.03178183361887932,
0.027680952101945877,
0.033176131546497345,
0.046052902936935425,
0.07742464542388916,
0.11543981730937958,
0.14148041605949402,
0.15784293413162231,
0.13180233538150787,
0.08271478116512299,
0.049702685326337814,
0.027557924389839172,
0.018125897273421288,
0.011851548217236996,
0.010252203792333603,
0.007422595750540495,
0.005372154992073774,
0.0045109698548913,
0.0036087757907807827,
0.0035267581697553396,
0.0018864056328311563,
0.0024605290964245796,
0.0022964938543736935,
0.0018453967059031129,
0.0010662291897460818,
0.0009842115687206388,
0.00045109697384759784,
0.0007791675161570311,
0.00020504408166743815,
0.00020504408166743815,
0.00020504408166743815,
0.00012302644609007984,
0.0,
0.00012302644609007984,
4.100881778867915e-05,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
]
)
sample = []
for _ in range(1000):
torch.cuda.get_rng_state()
sample = torch.multinomial(freqs, 1000, True)
if freqs[sample].min() == 0:
sample_idx = (freqs[sample] == 0).nonzero()[0][0]
sampled = sample[sample_idx]
print(
"%s th element of last sample was %s, which has probability %s"
% (sample_idx, sampled, freqs[sampled])
)
return False
return True
def test_multinomial_weights(self):
"""
Confirm that torch.multinomial does not sample elements which have
zero probability using a real example of input from a training run.
"""
weights = torch.load(Path(__file__).resolve().parent / "weights.pt")
S = 4096
num_trials = 100
for _ in range(0, num_trials):
weights[weights < 0] = 0.0
samples = weights.multinomial(S, replacement=True)
sampled_weights = weights[samples]
assert sampled_weights.min() > 0
if sampled_weights.min() <= 0:
return False
return True
@staticmethod
def sample_points_with_init(
num_meshes: int,
num_verts: int,
num_faces: int,
num_samples: int,
device: str = "cpu",
):
verts_list = []
faces_list = []
for _ in range(num_meshes):
verts = torch.rand(
(num_verts, 3), dtype=torch.float32, device=device
)
faces = torch.randint(
num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
)
verts_list.append(verts)
faces_list.append(faces)
meshes = Meshes(verts_list, faces_list)
torch.cuda.synchronize()
def sample_points():
sample_points_from_meshes(
meshes, num_samples=num_samples, return_normals=True
)
torch.cuda.synchronize()
return sample_points